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Abstract

We consider a generalization of elliptic multiple zeta values, which we call twisted
elliptic multiple zeta values. These arise as iterated integrals on an elliptic curve
from which a rational lattice has been removed. At the cusp, twisted elliptic
multiple zeta values are shown to degenerate to cyclotomic multiple zeta values
in the same way as elliptic multiple zeta values degenerate to classical multiple
zeta values. We investigate properties of twisted elliptic multiple zeta values and
utilize them in the evaluation of the non-planar part of the four-point one-loop
open- superstring amplitude.
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1 Introduction

Within the program of studying iterated integrals on Riemann surfaces of various genera, the
genus-zero case, which leads to multiple zeta values (MZVs) [1–3], is the starting point and takes
the most prominent rôle. During the last years, however, the genus-one situation has received
more attention: various iterated integrals on the elliptic curve as well as associated periods and
elliptic associators have been investigated [4–7].

The simplest genus-one generalizations of MZVs are elliptic multiple zeta values (eMZVs),
which arise from iterated integrals on the once-punctured elliptic curve, that is the elliptic curve
where the origin is removed [8]. In this article, the notion of eMZVs is extended to twisted
elliptic multiple zeta values (teMZVs), which are iterated integrals on a multiply-punctured
elliptic curve. While for eMZVs it is sufficient to remove the origin, teMZVs arise when a lattice
with rational coordinates as visualized in figure 1 is removed from the elliptic curve.

The iterated integrals to be considered are performed over a path parallel to the real axis and
are therefore a generalization of Enriquez’ A-cycle eMZVs. If no lattice is removed, we obtain
A-cycle eMZVs by definition. 1 A slight technical difficulty, which was absent for eMZVs, is that
the integrands giving rise to teMZVs might have additional poles along the path of integration.
We address the problem by suggesting a rather natural regularization scheme, which essentially
amounts to integrating over an infinitesimal deformation of the real axis.
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Figure 1: The shaded region represents the elliptic curve C/(Z + Zτ), where edges marked by || and|| are identified. In the setup of teMZVs, points from the lattice Q + Qτ are removed from the elliptic
curve. Here we show the example {0, 1

3 ,
2
3}+ {0, 1

3 ,
2
3}τ .

A crucial tool in the study of eMZVs was the existence of a certain first-order linear differen-
tial equation, expressing eMZVs as special linear combinations of iterated integrals of Eisenstein
series and MZVs [7,8,10,11]. In particular, this is an efficient way to compute their q-expansion,
which is instrumental for finding (as well as excluding) linear relations among eMZVs. Even
more so, since iterated integrals of Eisenstein series are linearly independent [12], the differential
equation amounts to a decomposition of eMZVs into basic constituents, which reduces the study
of relations among eMZVs to solving linear systems of equations. One of the main results of this
article is the generalization of this differential equation to teMZVs. We find that the occurrence
of the classical Eisenstein series (for SL2(Z)) in the differential equation for eMZVs naturally
generalizes to an occurrence of certain weighting functions f (n)(s + rτ, τ), where r, s ∈ Q, and

1It is worth noting that there is no structural problem in defining twisted B-cycle eMZVs by considering
integration paths parallel to the direction of the modular parameter τ [9].
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the latter are also known to be modular forms for congruence subgroups of SL2(Z). Likewise,
one can again identify a procedure delivering the boundary data for teMZVs at the cusp i∞
of the modular parameter τ , and relating them to integrals over genus-zero Riemann surfaces
in a natural way. While for eMZVs this procedure leads to MZVs, in the case of teMZVs we
obtain cyclotomic MZVs [3, 13–15]. A further parallel to eMZVs is the existence of shuffle and
Fay relations [10,16].

Scattering amplitudes in open-superstring theories have been recently noticed as a rewarding
setup where iterated integrals on Riemann surfaces appear naturally. Generalizing the ubiquity
of MZVs in tree-level amplitudes2, one-loop scattering amplitudes (corresponding to genus-one
surfaces) provide a natural testing ground for eMZVs [30]. However, the analysis in ref. [30] was
focused on the planar sector of the one-loop amplitude where the integrations are performed
over a single boundary of a genus-one surface with cylinder topology.

In this article, teMZVs will be identified as the suitable language for the calculation of the
non-planar part of the open-string one-loop amplitude: the extension of the iterated integrals
to both boundaries of the cylinder leads to the class of teMZVs with twist τ/2. We will employ
these teMZVs to calculate non-planar contributions to the low-energy expansion3 of the four-
point one-loop open-string amplitude. Explicit results will be given up to the third subleading
low-energy order which are checked to match the expressions available in the literature at the
first subleading low-energy order [31] and at the cusp [32]. As in the planar case, their efficient
computation crucially relies on the differential equation satisfied by teMZVs.

Interestingly, our final result for the non-planar part of string scattering amplitudes in the
cases considered can be expressed in terms of eMZVs alone, i.e. teMZVs with twist τ/2 cancel out.
This observation relies on providing explicit formulas for certain linear combinations of teMZVs
with twist τ/2 in terms of eMZVs, which can in turn be checked using their differential equation.
We will provide physics arguments bolstering the conjecture that this feature will persist to all
orders in the low-energy expansion, and it would be very interesting to find a mathematical
explanation for this effect.

Finally, we expect the teMZVs defined here to be closely related to the monodromy of
the universal twisted elliptic KZB equation to be studied in upcoming work of Calaque and
Gonzalez [9]. A particularly important aspect of their work is the definition of a twisted version
of the derivation algebra, the untwisted version of which [33, 5, 34, 35] already appeared in the
study of eMZVs [10, 36, 11]. Similar to the situation for eMZVs, this twisted derivation algebra
might be capable of encoding the number of indecomposable teMZVs of a given weight and
length.

In section 2 we introduce teMZVs, and discuss the expansion of their constituents with
respect to the modular parameter of the elliptic curve. Thereby we set the stage for section 3,
where a differential equation for teMZVs w.r.t. τ as well as a procedure to extract their τ → i∞
limit is presented. In section 4, the formalism is applied to the calculation of the non-planar
contribution to the open-string one-loop scattering amplitude and the rôle of teMZVs therein is
discussed. After concluding and pointing out a couple of open problems in section 5 we provide
various appendices containing collections of definitions for the numerous objects appearing as
well as several detailed calculations omitted in the main text.

2See [17–19] for a discussion of the contributing iterated integrals on a genus-zero surface in the mathematics
literature and [20,21] for a treatment via polylogarithms in a physics context. Moreover, the expansion of n-point
disk integrals has been addressed via motivic MZVs [22] and the Drinfeld associator [23] (also see [24]). As
a complementary approach, the relation of disk integrals to hypergeometric functions has been used to obtain
(n ≤ 5)-point expansions [25,26] and certain ranges of low-energy orders at n ≤ 7 points, see e.g. [27–29].

3The low-energy expansion of string amplitudes refers to an expansion in the inverse string tension α′.
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2 From elliptic to twisted elliptic multiple zeta values

Elliptic multiple zeta values can be represented as iterated integrals on the multiply punctured
elliptic curve C/(Z + Zτ) \ {b1, . . . , b`} with parameter τ in the upper half plane H, where we
denote q = exp(2πiτ). Starting from Γ(; z) = 1, elliptic iterated integrals are defined recursively
via

Γ
(
n1 n2 ... n`
b1 b2 ... b` ; z

)
=
∫ z

0
dt f (n1)(t− b1) Γ

(
n2 ... n`
b2 ... b` ; t

)
, z ∈ [0, 1] , (2.1)

where the interval of integration is [0, z]. As will be discussed in subsection 2.1, regularization
prescriptions have to be specified, if ni = 1 and bi ∈ [0, z].

The weighting functions f (n)(z, τ) arise as expansion coefficients of the doubly-periodic com-
pletion of the Eisenstein–Kronecker series, starting with

f (0)(z, τ) = 1 , f (1)(z, τ) = θ′1(z, τ)
θ1(z, τ) + 2πi Im (z)

Im (τ) , (2.2)

see appendix B for details and conventions. They are doubly-periodic functions of alternating
parity

f (n)(z + 1, τ) = f (n)(z + τ, τ) = f (n)(z, τ) , f (n)(−z, τ) = (−1)nf (n)(z, τ) , (2.3)

and the function f (1)(z−bi, τ) in eq. (2.2) acquires a pole at z = bi which requires regularization
of eq. (2.1). Throughout the article, we will frequently omit noting the τ -dependence of both
weighting functions f (n) and elliptic iterated integrals eq. (2.1).

In refs. [30, 10], the main focus was on elliptic multiple zeta values, whose shifting parame-
ters bi – referred to as twists – have been limited to bi = 0. Correspondingly, the elliptic curve
in question has a single puncture only: E×τ = C/(Z + Zτ) \ {0}. Evaluating this subclass of
elliptic iterated integrals at z = 1 leads to the definition of Enriquez’ A-cycle elliptic multiple
zeta values or eMZVs for short:

ω(n1, n2, . . . , n`) =
∫

0≤zi≤zi+1≤1

f (n1)(z1)dz1 f
(n2)(z2)dz2 . . . f

(n`)(z`)dz` (2.4)

= Γ ( n` ... n2 n1
0 ... 0 0 ; 1) = Γ(n`, . . . , n2, n1; 1) .

The quantities w =
∑`
i=1 ni, and the number ` of integrations in eqs. (2.1) and (2.4) are re-

ferred to as weight and length of the elliptic iterated integral and of the corresponding eMZV,
respectively.

Allowing for rational values si and ri in bi = si + riτ , leads to twisted elliptic multiple zeta
values or teMZVs:

ω
(
n1, n2, ..., n`
b1, b2, ..., b`

)
=

∫
0≤zi≤zi+1≤1

f (n1)(z1 − b1)dz1 f
(n2)(z2 − b2)dz2 . . . f

(n`)(z` − b`)dz`

= Γ
(
n` n`−1 ... n1
b` b`−1 ... b1 ; 1

)
, (2.5)

where the notions of weight and length carry over from eq. (2.4) directly. Taking the double-
periodicity (2.3) of the weighting functions f (n) into account, one can limit the attention to the
fundamental domain of the elliptic curve with ri, si ∈ [0, 1), i.e. the shaded region in figure 2.

In this article we are going to limit our attention to twists Q + Qτ , that is ri, si ∈ Q. In
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Figure 2: Example of the lattice ΛN + ΛNτ at N = 3: Proper rational twists and generic twists are
marked in red and blue, respectively. Edges marked by || and || are identified in C/(Z+Zτ), respectively.

order to classify those, let us introduce

ΛN =
{

0, 1
N
,

2
N
, . . . ,

N − 1
N

}
, Λ×N = ΛN \ {0} . (2.6)

If bi ∈ Λ×N , the twist is referred to as proper rational. Correspondingly, all other twists – that is
those with bi ∈ (ΛN +ΛNτ)\Λ×N as visualized in figure 2 – are called generic twists. While in the
latter situation divergences occur at endpoints only and can be addressed using the methods in
ref. [8], the presence of a proper rational twist requires more work as discussed in subsection 2.1.

Twisted eMZVs based on proper rational twists do not make an appearance in the open-
string one-loop amplitude. However, they are interesting from a number-theoretic point of view
because their constant terms give rise to cyclotomic generalizations of MZVs or “cyclotomic
MZVs” for short [3,13–15]. The set of (generic) twists bi ∈ {0, τ/2} turns out to lead to teMZVs
relevant for the non-planar open-string amplitude, which we are going to discuss in section 4.

2.1 Regularization

In order to regularize the divergences in eq. (2.5) caused by twists b1, . . . , b` ∈ Λ×N , we propose
to replace the straight line [0, 1] by the domain of integration [0, 1]ε in the right panel of figure 3.

0 1

τ τ + 1

•
1
N

•
2
N

•
3
N

. . .

. . . •
N−1
N

0 1

τ τ + 1

0 1
•
1
N

•
2
N

•
3
N

. . . •
N−1
N

. . .

Figure 3: Deformation of the straight-line path [0, 1] to the path [0, 1]ε, avoiding the possible singularities
of f (1).

Here, ε > 0 is an additional real parameter, which determines the radii of the semicircles around
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the proper rational twists in figure 3. One then defines regularized values of teMZVs

ω
(
n1, n2, ..., n`
b1, b2, ..., b`

)
= lim

ε→0

∫
[0,1]ε

f (n1)(z1 − b1) dz1 f
(n2)(z2 − b2) dz2 . . . f

(n`)(z` − b`) dz` , (2.7)

which agree with eq. (2.5) if all twists are generic. The existence of the limit in eq. (2.7) requires
some explanation because f (1)(z − bi) has a pole at z = bi. For a single proper rational twist
b ∈ Λ×N , the path [0, 1]ε can be written as the composition of a straight line from 0 to b − ε,
followed by a semicircle from b − ε to b + ε above b, and then followed by a straight line from
b+ ε to 1:

ω
( 1
b

)
= lim

ε→0

∫
[0,b−ε]

dz f (1)(z − b) +
∫

[b−ε,b+ε]
dz f (1)(z − b) +

∫
[b+ε,1]

dz f (1)(z − b) . (2.8)

Clearly, the contribution to eq. (2.8) coming from the non-holomorphic part 2πi Im (z)
Im (τ) of f (1)

in eq. (2.2) vanishes in the limit ε → 0. The contribution coming from the closed one-form
θ′1(z,τ)
θ1(z,τ)dz in turn is independent of ε by Stokes’ theorem, since the paths [0, 1]ε belong to the
same homotopy class. Computing the right hand side of eq. (2.8), we find that

ω
( 1
b

)
= log

(
θ1(1− b, τ)
θ1(b, τ)

)
− iπ = −iπ , (2.9)

where the first term comes from the first and third integral in eq. (2.8) and vanishes by reflection
and periodicity of the θ1 function. The contribution of −iπ is due to the second integral in
eq. (2.8), by the residue theorem.

The higher-length case is handled similarly. First we note that on the semicircles we have
additional contributions from the non-holomorphic parts of the weighting functions f (ni)(zi−bi)
(cf. eq. (2.17) below), given by powers of 2πi Im (zi−bi)

Im (τ) . These additional contributions on the
semicircle are bounded by Im (zi) ≤ ε, and the accompanying meromorphic functions have at
most a simple pole at bi. Hence, the overall integrand on the semicircle is finite as ε → 0.
Subsequently, we may use the composition of paths formula for iterated integrals (cf. eq. (C.3))
to check that the contributions from the non-holomorphic parts on the semicircles are in fact of
order O(ε) and therefore do not contribute in the limit ε → 0. Thus we are left with integrals
over meromorphic functions of the zi, which do not depend on ε by homotopy of all paths [0, 1]ε.

The upshot is then that, up to terms which vanish in the limit ε → 0, the right hand side
of eq. (2.7) is independent of ε, thus convergent. An example at length two can be found in
appendix C.

2.2 General properties of elliptic iterated integrals and (t)eMZVs

In general, iterated integrals of the form (2.1) satisfy shuffle relations. In terms of combined
letters Bi = ni

bi , the shuffle relation for elliptic iterated integrals reads

Γ(B1, B2, . . . , B`B ; z) Γ(C1, . . . , C`C ; z) = Γ
(
(B1, B2, . . . , B`B ) (C1, . . . , C`C ); z

)
, (2.10)

where denotes the shuffle product [37]. Naturally, the shuffle relation eq. (2.10) straightfor-
wardly carries over to eMZVs,

ω(n1, n2, . . . , n`n)ω(m1,m2, . . . ,m`m) = ω
(
(n1, n2, . . . , n`n) (m1,m2, . . . ,m`m)

)
, (2.11)
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and teMZVs

ω(B1, B2, . . . , B`B )ω(C1, . . . , C`C ) = ω
(
(B1, B2, . . . , B`B ) (C1, . . . , C`C )

)
, (2.12)

where the Bi, Ci are combined letters as defined above.
Taking into account the parity property (2.3) of the weighting functions f (ni) and the defi-

nition of elliptic iterated integrals, one finds the reflection identity

Γ
(
n1 n2 ... n`
b1 b2 ... b` ; z

)
= (−1)n1+n2+...+n` Γ

(
n` ... n2 n1
z−b` ... z−b2 z−b1 ; z

)
, (2.13)

which is, however, valid only if the combined letter Bi = 1
bi

with bi a proper rational twist does
not occur. The need to exclude such instances of Bi stems from the regularization of section 2.1
which does not preserve the reflection property.

Again, as in the case of the shuffle relation, there is an echo of the reflection identity for
eMZVs and teMZVs:

ω(n1, n2, . . . , n`−1, n`) = (−1)n1+n2+...+n` ω(n`, n`−1, . . . , n2, n1)

ω
(
n1, n2, ..., n`
b1, b2, ..., b`

)
= (−1)n1+n2+...+n` ω

( n`, n`−1, ..., n1
b̃`, b̃`−1, ..., b̃1

)
, (2.14)

where b̃i is the representative of −bi in the fundamental domain of the elliptic curve and letters
Bi = 1

bi
with bi a proper rational twist are again excluded.

2.3 q-expansion of teMZVs

In contrast to usual MZVs, which are just numbers, eMZVs and teMZVs are functions of the
modular parameter τ and can be expanded in its exponentiated cousin q = e2πiτ . The q-
expansions of eMZVs and teMZVs rely on the available q-expansions of the weighting functions
f (n). The discussion below will simplify considerably, if we consider in addition a class of
meromorphic weighting functions g(n).

While the weighting functions f (n) appear as expansion coefficients of the doubly-periodic
completion Ω(z, α, τ) of the Eisenstein–Kronecker series F (z, α, τ) (cf. eq. (B.1)) [6]

Ω(z, α, τ) = exp
(

2πiα Im (z)
Im (τ)

)
F (z, α, τ) =

∞∑
n=0

f (n)(z, τ)αn−1 , (2.15)

the functions g(n) are the expansion coefficients of the Eisenstein–Kronecker series [38,39]

F (z, α, τ) =
∞∑
n=0

g(n)(z, τ)αn−1 . (2.16)

The set of meromorphic functions g(n)(z, τ) starts with g(0) = 1 and g(1)(z, τ) = θ′1(z,τ)
θ1(z,τ) and can

be related to their doubly-periodic but non-holomorphic4 completions via eq. (2.15):

f (n)(z, τ) =
n∑
j=0

1
(n− j)!

(
2πi Im (z)

Im (τ)

)n−j
g(j)(z, τ) . (2.17)

4Note that by Liouville’s theorem, every meromorphic, doubly-periodic function, which has at most a simple
pole at zero must be constant. Therefore, one either has to include non-holomorphic factors (as we do here,
following [6]) or allow poles of order ≥ 2 (as in [4], §5.1.2).
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Quasi-periodicity and the reflection property of F (z, α, τ) (see eqs. (B.5) and (B.6)) imply the
following properties of the g(n)(z, τ),

g(n)(z) = g(n)(z + 1) , g(n)(z + τ) =
n∑
j=0

(−2πi)j

j! g(n−j)(z) , g(n)(−z) = (−1)ng(n)(z) , (2.18)

and their Fourier expansions are given by [39,6, 30]

g(1)(z, τ) = π cot(πz)− 2i(2πi)
∞∑

n,m=1
sin(2πmz) qmn

g(2k)(z, τ) = −2ζ2k − 2 (2πi)2k

(2k − 1)!

∞∑
n,m=1

cos(2πmz)n2k−1qmn , k > 0 (2.19)

g(2k+1)(z, τ) = −2i(2πi)
2k+1

(2k)!

∞∑
n,m=1

sin(2πmz)n2kqmn , k > 0 .

For real values of z one finds from eqs. (2.15) and (2.17) that f (n)(z) = g(n)(z) and their
q-expansions agree. In particular, they can be employed to find q-expansions for eMZVs

ω(n1, n2, . . . , n`) = ω0(n1, n2, . . . , n`) +
∞∑
k=1

ck(n1, n2, . . . , n`)qk . (2.20)

The q-independent quantity ω0 in eq. (2.20) is called the constant term of the eMZV ω and is
known to be a Q[(2πi)−1]-linear combination of MZVs (see refs. [30, 10,11]).

In order to describe the q-dependence of teMZVs in a similar manner, we consider the
twist b = s+ rτ ∈ ΛN + ΛNτ in the weighting function f (n)(z− b) eq. (2.17) for real values of z:

f (n)(z − s− rτ, τ) =
n∑
j=0

(−2πir)n−j

(n− j)! g(j)(z − s− rτ, τ) , z ∈ R . (2.21)

Employing eqns. (2.19), the functions g(j)(z − b, τ), can be expanded in non-negative rational
powers of q,

g(2k+1)(z − s− rτ, τ) = δk,0π cot(π(z − s− rτ)) + (2πi)2k

(2k)!

∞∑
m,n=1

n2kqmn

×
{

cos(2πm(z − s))(qmr − q−mr)− i sin(2πm(z − s))(qmr + q−mr)
}
, k ≥ 0

g(2k)(z − s− rτ, τ) = −2ζ2k −
(2πi)2k−1

(2k − 1)!

∞∑
m,n=1

n2k−1qmn (2.22)

×
{

cos(2πm(z − s))(qmr + q−mr)− i sin(2πm(z − s))(qmr − q−mr)
}
, k > 0 .

If 0 < r < 1, i.e. if b is a generic twist, then the cotangent term in g(1) may be rewritten as

π cot(π(z − s− rτ)) = iπ(1 + qre2πi(s−z))
∞∑
n=0

(qre2πi(s−z))n . (2.23)

On these grounds, f (n)(z − s − rτ) can be expanded in powers of qr and q1−r such that every

9



teMZV admits an expansion in qp,

ω
(
n1, n2, ..., n`
b1, b2, ..., b`

)
= ω0

(
n1, n2, ..., n`
b1, b2, ..., b`

)
+
∞∑
k=1

ck
(
n1,n2,...,n`
b1,b2,...,b`

)
(qp)k , (2.24)

where 1/p ∈ Q is the least common denominator of all occurring ri. The q-independent quantity
ω0 in eq. (2.24) is called the constant term of the teMZV, which we are going to study in
section 3. Depending on the set of twists bi, different classes of objects appear as constant terms:
while MZVs cover constant terms for generic twists, proper rational twists lead to cyclotomic
MZVs [3, 13–15]. We will refer to teMZVs for which ck

(
n1,n2,...,n`
b1,b2,...,b`

)
= 0 for all k ∈ N+ as

constant.

3 q-expansion for twisted elliptic multiple zeta values

The goal of this section is to set up an initial value problem for teMZVs eq. (2.5) and to
obtain their q-expansion without performing any integral over their trigonometric constituents
in eq. (2.22). The differential equation to be derived in this section will prove to be the main tool
to allow the efficient computation and comparison of teMZVs in a convenient representation as
iterated integrals. In particular, this representation will prove useful in the context of calculating
non-planar contributions to the one-loop amplitude in section 4.

Following the strategy for computing the usual eMZV’s q-expansion in [8,10], in a first step
we derive a first-order differential equation in τ for teMZVs. In the second step, a boundary
value at the cusp τ → i∞ will be determined to identify a unique solution to the differential
equation. Since the action of ∂τ reduces the length of teMZVs, one can derive the q-expansion
for teMZVs recursively.

For eMZVs, classical Eisenstein series and MZVs are the building blocks for the τ -derivative
and constant term respectively [8, 10, 11]. Similarly, we will show that the weighting functions
f (n)(b, τ) evaluated at lattice points b ∈ ΛN + ΛNτ and cyclotomic MZVs are suitable general-
izations thereof for teMZVs.

After deriving the differential equation in subsection 3.1, the constant term will be elaborated
on in subsection 3.2 for generic twists and modifications when including proper rational twists
are discussed in subsection 3.3.

3.1 Differential equation

We begin by defining a generating series for teMZVs of length `,

T
[
α1, α2, ..., α`
b1, b2, ..., b`

]
=

∫
0≤zi≤zi+1≤1

Ω(z1 − b1, α1, τ) dz1 Ω(z2 − b2, α2, τ) dz2 . . .Ω(z` − b`, α`, τ) dz`

=
∞∑

n1,n2,...,n`=0
αn1−1

1 αn2−1
2 . . . αn`−1

` ω
(
n1, n2, ..., n`
b1, b2, ..., b`

)
, (3.1)

generalizing a construction of ref. [8]. For simplicity, we will assume in this subsection that the
twists bi = si + riτ are generic, i.e ri ∈ (0, 1). The case of proper rational twists is discussed in
appendix F.

First, since the domain of integration in eq. (3.1) is the interval [0, 1] ⊂ R, it is natural
to restrict the function z 7→ Ω(z − b, α, τ) to real arguments of z. With this restriction, the
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following differential equation is then a consequence of the mixed heat equation (B.4)

∂τΩ(z − s− rτ, α, τ) = exp(−2πirα)∂τF (z − s− rτ, α, τ)

= exp(−2πirα)
(
− r∂z + 1

2πi∂z∂α
)
F (z − s− rτ, α, τ)

= 1
2πi∂z∂αΩ(z − s− rτ, α, τ) .

(3.2)

Here the partial derivative ∂τ is understood to act on all occurrences of the variable τ . Fur-
thermore, we have used that ∂zr = ∂τr = 0, since the twist b = s + rτ is fixed, and therefore
neither depends on z nor τ . Note that in going from the first to the second line in eq. (3.2),
the term r∂z appears by taking the occurrence of τ in the first argument of the Kronecker se-
ries into account. However, this additional term gets neatly absorbed when returning to the
doubly-periodic completion Ω(z − s− rτ, α, τ) in the last line.

The τ -derivative of the generating function in eq. (3.1) reads

2πi ∂
∂τ

T
[
α1, α2, ..., α`
b1, b2, ..., b`

]
=

∫
0≤zi≤zi+1≤1

dz1 dz2 . . . dz`
∑̀
i=1

∂zi∂αiΩ(zi − bi, αi)
∏̀
j 6=i

Ω(zj − bj , αj)

= ∂α`Ω(−b`, α`) T
[
α1, ..., α`−1
b1, ..., b`−1

]
− ∂α1Ω(−b1, α1) T

[
α2, ..., α`
b2, ..., b`

]
+
∑̀
i=2

(
T
[
α1, ..., αi−2, αi−1+αi, αi+1, ..., α`
b1, ..., bi−2, bi, bi+1, ..., b`

]
∂αi−1Ω(bi − bi−1, αi−1)

− T
[
α1, ..., αi−2, αi−1+αi, αi+1, ..., α`
b1, ..., bi−2, bi−1, bi+1, ..., b`

]
∂αiΩ(bi−1 − bi, αi)

)
,

(3.3)

where we used eq. (3.2) in the first line and suppressed the dependence of T and Ω on the
modular parameter τ . In the second equality, the number of integrations is reduced by evaluating∫

dzi ∂zi∂αiΩ(zi − bi, αi) via boundary terms ∂αiΩ(zi − bi, αi)|zi+1
zi−1 with z0 = 0 and z`+1 = 1.

The resulting products of the form Ω(zi − bi−1, αi−1)Ω(zi − bi, αi) are rewritten using the Fay
identity eq. (B.3) such that each integration variable zi appears in at most one factor of Ω. The
details of the computation can be found in appendix E.

Upon expanding Ω and T in eq. (3.3) in αi, one can compare the coefficients of the monomials
αm1

1 . . . αm`` . The coefficient of each monomial is a linear combination of some f (n) multiplied
by teMZVs of length `− 1. Working out the details yields the following differential equation for
teMZVs (` ≥ 2), and using the shorthand

h(n)(u, τ) = (n− 1)f (n)(u, τ) . (3.4)

for u ∈ C/(Z + Zτ), we find

2πi∂τ ω
(
n1, ..., n`
b1, ..., b`

)
= h(n`+1)(−b`)ω

(
n1, ..., n`−1
b1, ..., b`−1

)
− h(n1+1)(−b1)ω

(
n2, ..., n`
b2, ..., b`

)
+
∑̀
i=2

[
θni≥1

ni−1+1∑
k=0

(
ni + k − 1

k

)
h(ni−1−k+1)(bi − bi−1)ω

(
n1, ..., ni−2, ni+k, ni+1, ..., n`
b1, ..., bi−2, bi, bi+1, ..., b`

)

− θni−1≥1

ni+1∑
k=0

(
ni−1 + k − 1

k

)
h(ni−k+1)(bi−1 − bi)ω

(
n1, ..., ni−2, ni−1+k, ni+1, ..., n`
b1, ..., bi−2, bi−1, bi+1, ..., b`

)
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+ (−1)ni+1θni−1≥1θni≥1h
(ni−1+ni+1)(bi − bi−1)ω

(
n1, ..., ni−2, 0, ni+1, ..., n`
b1, ..., bi−2, 0, bi+1, ..., b`

) ]
, (3.5)

where we have introduced θn≥1 = 1 − δn,0 for non-negative n to indicate that some of the
contributions in the last three lines vanish for ni = 0. For vanishing twists bi = 0, eq. (3.5)
reduces to the differential equation for eMZVs stated in eq. (2.47) of ref. [10] since the weighting
functions f (n) are related to holomorphic Eisenstein series (with G0(τ) = −1) via

− lim
z→0

f (k)(z, τ) = Gk(τ) =


2 ζk + 2(2πi)k

(k − 1)!

∞∑
m,n=1

mk−1qmn : k ≥ 2 even

−1 : k = 0
0 : k 6= 1 odd

, (3.6)

where the limit is understood to be taken along the real axis. In other words, the functions
h(n)(b, τ) occurring in the differential equation (3.5) (which are modular forms for congruence
subgroups of SL2(Z)) take the rôle of Eisenstein series in the differential equation for eMZVs.
Also, note that the exceptional case f (1)(z, τ) (which has a pole at z = 0) does not appear in
eq. (3.3) since it is accompanied by α0 = 1 in the generating series Ω(z, α, τ) and is therefore
annihilated upon application of the α-derivative.

3.2 Constant terms for generic twists

In this subsection we are going to extend the constant-term procedure for eMZVs studied in
[10,11] to a procedure delivering the constant terms for teMZVs. Calculating the constant term
for teMZVs amounts to the computation of the limit τ → i∞ of eq. (2.5). This limit will figure
as the initial value for the differential equation (3.5) discussed in the previous subsection.

In order to make the bookkeeping more efficient, it is convenient to consider a suitable
generating series of teMZVs, which is a generalization of the A-part of Enriquez’ elliptic KZB
associator [7] to the realm of teMZVs: More precisely, for every N ≥ 1 we will consider a formal
power series in nested commutators

adnx(y) = [x, . . . [x, [x,︸ ︷︷ ︸
n times

y]] . . .] , n ≥ 0 , (3.7)

of the non-commutative variables y, {xbi}bi∈(ΛN+ΛN τ)\Λ×N
as follows:

Atwist
(ΛN+ΛN τ)\Λ×N

(τ) =
∑
`≥0

(−1)`
∑

n1, n2, . . . , n` ≥ 0
b1, b2, . . . , b` ∈ (ΛN + ΛNτ) \ Λ×N

ω
(
n1, n2, ..., n`
b1, b2, ..., b`

)
adn`xb` (y) . . . adn2

xb2
(y) adn1

xb1
(y)

= P̃ exp
(
−
∫ 1

0
dz
∞∑
k=0

∑
b ∈ (ΛN+ΛNτ)\Λ×N

f (k)(z − b, τ) adkxb(y)
)
, (3.8)

where ΛN and Λ×N were defined in eq. (2.6), and P̃ exp(. . .) denotes the path-ordered exponential
with reverted order of multiplication for the non-commutative variables in comparison to the
order of the integration variables5 z. We note that there is no loss of generality in studying the
lattice ΛN + ΛNτ rather than ΛN + ΛMτ with M 6= N : the latter can be embedded into the

5Although composed of several non-commutative variables xbi and y, each nested commutator adni
xbi

(y) is
treated as a single letter when reversing the order of multiplication.
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lattice ΛN ′+ΛN ′τ with N ′ the least common multiple of M and N . Also, proper rational twists
b ∈ Λ×N have been excluded from the summation range for b in eq. (3.8) in order to relegate a
discussion of the additional ingredients required in these cases to section 3.3.

The series (3.8) combines different instances of the generating series T
[
α1 α2 ... α`
b1 b2 ... b`

]
in eq. (3.1),

Atwist
(ΛN+ΛN τ)\Λ×N

(τ)←→
∑
`≥0

(−1)`
∑

b1,...,b`∈(ΛN+ΛN τ)\Λ×N

T
[
α` α`−1 ... α1
b` b`−1 ... b1

]
, (3.9)

summing over all values of the length ` ≥ 0 and the generic twists bi ∈ (ΛN+ΛNτ)\Λ×N . The non-
commutative product of adkixbi (y) corresponds to commutative variables αki−1

i in eq. (3.1), which
accompany individual teMZVs in the respective generating series. While the organization via
αki−1
i is better suited for the study of the differential equation of teMZVs, the non-commutative

variables adkixbi (y) in eq. (3.7) are well adapted to the subsequent analysis of their constant
terms6.

3.2.1 Degeneration of weighting functions

In order to compute limτ→i∞A
twist
(ΛN+ΛN τ)\Λ×N

(τ), we need to study the degeneration of the weight-

ing functions f (k)(z−b, τ) as τ → i∞ (or equivalently q → 0). Conveniently, the limit is expressed
in the variables

w = e2πiz , dz = 1
2πi

dw
w
. (3.10)

Using the q-expansions eqs. (2.22) and (2.23) together with eq. (2.21) we obtain, for generic
twists and k > 1,

lim
τ→i∞

f (k)(z − s− rτ, τ) dz =
(
πi(−2πir)k−1

(k − 1)! − 2
b k2 c∑
m=0

(−2πir)k−2m

(k − 2m)! ζ2m

) 1
2πi

dw
w

= −dw
w

k∑
m=0

Bm(−2πi)m−1

m!
(−2πir)k−m

(k −m)! , k > 1 . (3.11)

Here, we have used ζ2m = −B2m(2πi)2m

2(2m)! , where Bk denotes the kth Bernoulli number (such that
B1 = −1

2). While f (0) = 1, the case of f (1)(z − b) is special and we find

lim
τ→i∞

f (1)(z − s− rτ, τ) dz =



(1
2 − r

) dw
w

: r 6= 0

−1
2

dw
w

+ dw
w − 1 : r = s = 0

. (3.12)

Combining eqs. (3.11) and (3.12) allows to rewrite the exponent of eq. (3.8) as follows:

lim
τ→i∞

−dz
∞∑
k=0

( ∑
b∈(ΛN+ΛN τ)\Λ×N

f (k)(z − b, τ) adkxb(y)
)

= ỹN
dw
w

+ t
dw
w − 1 , (3.13)

6The use of two, essentially equivalent, generating series of teMZVs goes back to Enriquez’ original work on
eMZVs [8].
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where

ỹN = − adx0

e2πi adx0 − 1
(y) +

∑
b∈(ΛN+ΛN τ)\ΛN

adxbe−2πir adxb

e−2πi adxb − 1
(y) , t = [y, x0] . (3.14)

These definitions of ỹN and t are tailored to track the appearance of the forms dw
w and dw

w−1 in
the degeneration limits eqs. (3.11) and (3.12) of f (k)(z− b, τ). In absence of twists, for instance,
the first contribution to ỹN in eq. (3.14) stems from setting r = 0 in eq. (3.11) and identifying
the generating series of Bk(−2πi)k−1

k! adkx0(y):

lim
τ→i∞

−dz
∞∑
k=0

(
f (k)(z, τ) adkx0(y)

)
= −dw

w

∞∑
k=0

Bk(2πi)k−1

k! adkx0(y)− dw
w − 1adx0(y)

= − adx0

e2πiadx0 − 1
(y)dw

w
− dw
w − 1adx0(y) . (3.15)

In the generalization to non-zero twists r 6= 0, the second contribution to ỹN in eq. (3.14) arises
as the generating series of

∑k
m=0

Bm(−2πi)m−1

m!
(−2πir)k−m

(k−m)! adkxb(y). Note in particular that the
dependence on r gives rise to the factor of e−2πiradxb in the numerator.

By comparing the degeneration behaviour in eq. (3.13) with eq. (3.8), we deduce that

lim
τ→i∞

Atwist
(ΛN+ΛN τ)\Λ×N

(τ) = P̃ exp
( ∫
C2π

0 (1)

[
ỹN
w

+ t

w − 1

]
dw
)
, (3.16)

where the unit circle w ∈ C2π
0 (1) arises from the path of integration [0, 1] ⊂ C under the change

of variables eq. (3.10). Strictly speaking, eq. (3.16) requires regularization, due to divergences
at w = 1. They are treated in analogy to eMZVs as described in refs. [8, 11, 30] and cause
modifications to be pointed out in the subsequent discussion.

3.2.2 Deforming the integration contour

We have expressed limτ→i∞A
twist
(ΛN+ΛN τ)\Λ×N

(τ) as a generating series of iterated integrals of ex-
plicit differential forms along the unit circle C2π

0 (1), see the left panel of figure 4 below. Although
the functions limτ→i∞ f

(k)(z − b, τ) in eqs. (3.11) and (3.12) were restricted to real values of
z, they can be extended to the doubly-punctured complex plane z ∈ C \ {0, 1} (with r kept
constant). In this way, the integrand in eq. (3.13) is holomorphic on C\{0, 1}, and the resulting
path-ordered exponential eq. (3.16) is homotopy-invariant. Therefore one can replace the unit
circle by a contour homotopic to it, visualized in the right panel of figure 4.

This deformed contour can in turn be viewed as the composition of straight paths P1, P
−1
1

connecting the points w = 0, 1 along with a circle C2π
0 (ε) of infinitesimal radius around the

origin, as shown in figure 4. Moreover, the regularization alluded to above manifests itself in
figure 4: both paths C2π

0 (1) as well as the composition P−1
1 C2π

0 (ε)P1Ĉ
0
π(ε) have to leave w = 1

with velocity −1 and arrive back at w = 1 with the same velocity. More precisely, both paths,
which really are smooth functions [0, 1] → C× must have a derivative equal to − ∂

∂w ∈ T1(C×),
where T1 denotes the tangent space at 1. This is also the reason for the semicircle Ĉ0

π(ε).
The virtue of deforming the path of integration is that eq. (3.16) can now be computed

rather explicitly. First, in view of the reversal operation contained in the definition of P̃, the
composition of paths α and β translates into a concatenation of the non-commutative series
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•
w = 0

•
w = 1

Re(w)

Im(w)

Ĉ0
π(ε)

P−1
1

P1

C2π
0 (ε)

• •
w = 1

Re(w)

Im(w)

Figure 4: Deformation of the unit circle C2π
0 (1) to the path composition P−1

1 C2π
0 (ε)P1Ĉ

0
π(ε).

with reversed order,
P̃ exp

(∫
αβ
ω

)
= P̃ exp

(∫
β
ω

)
P̃ exp

(∫
α
ω

)
(3.17)

regardless of the differential form ω. Hence, the equality of homotopy classes of paths (relative
to the tangent vector − ∂

∂w at 1) [C2π
0 (1)] = [P−1

1 C2π
0 (ε)P1Ĉ

0
π(ε)] allows to rewrite eq. (3.16) as

lim
τ→i∞

Atwist
(ΛN+ΛN τ)\Λ×N

(τ) = eiπtΦ(ỹN , t)e2πiỹNΦ(ỹN , t)−1, (3.18)

where Φ(ỹN , t) denotes the Drinfeld associator [40]. In deducing eq. (3.18), we have used the
identities

Φ(ỹN , t) = P̃ exp
( ∫
P1

[ ỹN
w

+ t

w − 1
]

dw
)
, (3.19)

e2πiỹN = P̃ exp
( ∫
C2π

0 (ε)

[ ỹN
w

+ t

w − 1
]

dw
)
, (3.20)

eiπt = P̃ exp
( ∫
Ĉ0
π(ε)

[ ỹN
w

+ t

w − 1
]

dw
)
. (3.21)

Since the coefficients of Φ are Q-linear combinations of MZVs [41], an implementation of
eq. (3.18) using a standard computer algebra system can be used to explicitly write the constant
terms of teMZVs for generic twists as Q[(2πi)−1]-linear combinations of MZVs. Equation (3.18)
is a generalization of a similar formalism for eMZVs, which has been established in refs. [7] (see
also [10]). Examples for constant terms of teMZVs computed via eq. (3.18) are gathered in
appendix G.1.

3.3 Constant terms for all twists

So far, we have only considered the constant terms of teMZVs with generic twists. The presence
of proper rational twists b ∈ Λ×N requires a separate discussion due to the additional features of
the corresponding weighting function f (1)(z − b, τ):
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• its simple pole in the interior of the domain of integration requires the regularization
procedure of subsection 2.1

• its τ → i∞ limit introduces singularities dw
w−ζ with ζ denoting a root of unity

In order to facilitate the computation of the constant terms of teMZVs including proper rational
twists, we again introduce a generating series for bookkeeping purposes

Atwist
ΛN+ΛN τ (τ) =

∑
`≥0

(−1)`
∑

n1, n2, . . . , n` ≥ 0
b1, b2, . . . , b` ∈ ΛN + ΛNτ

ω
(
n1, n2, ..., n`
b1, b2, ..., b`

)
adn`xb` (y) . . . adn2

xb2
(y) adn1

xb1
(y)

= lim
ε→0
P̃ exp

(
−
∫

[0,1]ε
dz
∞∑
k=0

∑
b∈ΛN+ΛN τ

f (k)(z − b, τ) adkxb(y)
)
, (3.22)

which generalizes eq. (3.8) to the case of arbitrary twists.

3.3.1 Degeneration of weighting functions

As in the above situation we need to determine the degeneration limit of the weighting functions
f (k)(z − b, τ) as τ → i∞. The only case, where this degeneration limit differs from the results
of the previous subsection (cf. eqs. (3.11) and (3.12)) is k = 1 and r = 0:

lim
τ→i∞

f (1)(z − s, τ) dz = −1
2

dw
w

+ dw
w − e2πis . (3.23)

Note the occurrence of the root of unity e2πis. Denoting the set of N th roots of unity by

µN =
{
e2πis | s ∈ ΛN

}
, (3.24)

the generalization of eq. (3.13) to twists b ∈ ΛN + ΛNτ reads

lim
τ→i∞

−dz
∞∑
k=0

∑
b ∈ ΛN+ΛNτ

f (k)(z − b, τ) adkxb(y) = ỹN
dw
w

+
∑
ζ∈µN

tζ
dw
w − ζ

, (3.25)

where7

ỹN = −
∑
b∈ΛN

adxb
e2πiadxb − 1

(y) +
∑

b ∈ (ΛN+ΛNτ)\ΛN

adxbe−2πiradxb

e−2πiadxb − 1
(y)

tζ = [y, xs] , for ζ = e2πis ∈ µN . (3.26)

Equation (3.26) is the generalization of eq. (3.14) to arbitrary twists in the lattice ΛN + ΛNτ ,
and can be proved along the lines of the previous subsection. In particular, the expression for
ỹN follows by repeating the steps which have been detailed around eq. (3.15).

3.3.2 Deforming the integration contour

Now the image of the integration contour [0, 1]ε under the transformation z 7→ w = e2πiz

is the unit circle around 0, which is dented at the roots of unity e2πis ∈ µN as pictured in
7Note that the definition of ỹN for all twists is different from eq. (3.14) in the previous subsection which is

valid for generic twists only.
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figure 5 below. However, the point w = 1 is special and will be taken care of by the regular-
ization of subsection 3.2. Similar to the situation above, the dented unit circle is homotopic to
[P−1

1 C2π
0 (ε)P1Ĉ

0
π(ε)] as depicted in figure 5 for twists in Λ3.

•

•

e2πi/3

e4πi/3

•
w = 0

•
w = 1

Re(w)

Im(w)

Ĉ0
π(ε)

•

•

e2πi/3

e4πi/3

P−1
1

P1

C2π
0 (ε)

• •
w = 1

Re(w)

Im(w)

Figure 5: Deformation of the dented unit circle to the path composition P−1
1 C2π

0 (ε)P1Ĉ
0
π(ε). Proper

rational twists s = 0, 1
N , . . . ,

N−1
N are mapped to unit roots ζ = e2πis ∈ µN .

Hence, eq. (3.18) can be generalized to

lim
τ→i∞

Atwist
ΛN+ΛN τ (τ) = eiπt1ΦN (ỹN , (tζ)ζ∈µN )e2πiỹNΦN (ỹN , (tζ)ζ∈µN )−1 , (3.27)

where ΦN (e0, (eζ)ζ∈µN ) is the cyclotomic version of the Drinfeld associator [42], defined by

ΦN (e0, (eζ)ζ∈µN ) = P̃ exp
(∫ 1

0

[
e0
w

+
∑
ζ∈µN

eζ
w − ζ

]
dw
)
. (3.28)

Since ΦN is the generating series of N -cyclotomic MZVs [3,13–15], the constant terms of teMZVs
for arbitrary twists in the lattice ΛN + ΛNτ are Q[(2πi)−1]-linear combinations of cyclotomic
MZVs. Definitions and properties of cyclotomic MZVs are collected in appendix D, and examples
for constant terms of teMZVs with proper rational twists can be found in appendix G.2.

As exemplified by ω0
(

1
1/2

)
= −iπ, it is the regularization of divergences occurring for proper

rational twists, which spoils the validity of the reflection property eq. (2.14) for letters B = 1
b

with b ∈ Λ×N . It would be interesting to identify an alternative regularization scheme where
eq. (2.14) is preserved.

4 One-loop open-string amplitude

This section is devoted to the discussion of the appearance of teMZVs in a physics context – in
the low-energy expansion of scattering amplitudes in string theory [43–47]. In general, string
amplitudes at lower loop orders8 g ≤ 2, possibly also at g = 3, 4, can be represented by integrals
over the moduli space of punctured Riemann surfaces of genus g. For one-loop scattering of

8In the Ramond–Neveu–Schwarz approach to superstring theory, (g ≥ 5)-loop amplitudes cannot be derived
from the moduli space of ordinary Riemann surfaces since the moduli space of the required super Riemann surfaces
of genus g ≥ 5 is not split [48].
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Figure 6: Worldsheets of cylinder topology are mapped to the shaded region, see the left and the right
panel for the planar and the non-planar case, respectively. The punctures on the boundaries are taken to
have coordinates with Re (zj) ∈ [0, 1] and either Im (zj) = 0 or Im (zj) = t

2 . The identification of edges
is marked by || and || , respectively, and inherited from a torus with modular parameter τ = it. The
Mœbius topology is not drawn here, because all its contributions to the amplitude can be inferred from
the planar cylinder topology. This can be seen by the change of variables described in ref. [49].

open strings, the Riemann surfaces or worldsheets of interest are the cylinder and the Mœbius
strip. The punctures – the insertion points of vertex operators for external states – are then
integrated over the boundary components of the worldsheets. These boundary integrals are
weighted by traces over Lie-algebra generators ta associated with the gauge degrees of freedom
of the open-string states: Each boundary component contributes a separate trace factor, in each
of which the order of multiplication matches the ordering of the associated punctures.

A convenient parametrization of the one-loop open-string topologies – the cylinder and the
Mœbius strip – can be obtained starting from the torus by restricting the modular parameter
to τC = it and to τM = it + 1

2 , respectively, where t ∈ R+. In both cases, the boundary is
parametrized via z ∈ C/(Z + Zτ) with Re (z) ∈ [0, 1] and Im (z) = 0 or Im (z) = t

2 which is
sometimes referred to as the closed-string channel.

In this setup, elliptic iterated integrals eq. (2.1) appear naturally when integrating over
moduli spaces of cylinder- and Mœbius-strip punctures. This is yet another example, where the
iterated integrals on the boundary of open-string worldsheets yield special values of polyloga-
rithms tailored to the corresponding Riemann surfaces, generalizing the ubiquity of MZVs at
genus zero.

Cylindrical worldsheets with all insertions on the same boundary are referred to as planar
cylinders. For these contributions to the amplitude, all integrals over the punctures were shown
to boil down to eMZVs in [30]. Moreover, the only difference between integrals over punctures
on the Mœbius strip and those on the planar cylinder is the value of the modular parameter
τ [49]: therefore one can straightforwardly convert the contributions from the planar cylinder
to those of the Mœbius strip by

• replacing qC = e2πiτC = e−2πt in the Fourier expansion of the eMZVs in the planar-cylinder
contribution by qM = e2πiτM = e−2πt+iπ = −qC ; this results in alternating relative signs
between the coefficients in the qC-expansion of the Mœbius-strip contributions and the
cylinder contributions.

• inserting a factor of ± 32
NG

for the Mœbius strip to account for its single boundary of doubled
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length compared to individual boundary components of the cylinder [49]. The “+” sign is
for gauge groups USp(NG) and “−” for SO(NG).

Hence, for a gauge group SO(32), the constant term in the q-expansion w.r.t. qC which would
give rise to a UV divergence upon integration over t ∈ R+ cancels between the cylinder and the
Mœbius strip [49].

The double-trace contributions, on the other hand, stem entirely from the cylinder topology
with punctures on two different boundaries – non-planar cylinder diagrams. We will see that
the integrals over the punctures boil down to teMZVs with purely imaginary modular parameter
and twists b ∈ {0, τC2 } = {0, it2 }.

In the planar case mentioned above the link between eMZVs and the worldsheet integral
over the cylinder boundary was established as follows: Punctures on the same boundary enter
through the genus-one Green function at real arguments which can be written as an integral over
the weighting function f (1)(x) with real argument x ∈ (0, 1) [30]. Consequently, we will show
that the new ingredient in the case of the non-planar cylinder, i.e. the genus-one Green function
for two insertions on different boundaries, is related to integrals over f (1)(x − τ/2). Hence, the
non-planar contributions may be expressed as iterated integrals on E×τ \ {τ/2} described above,
which eventually lead to the teMZVs introduced in section 2.

In order to simplify the final formulas, we employ the differential equation of section 3 to
build in all the relations among the teMZVs we encounter (see appendix G.3). In fact, as will
be detailed in section 4.3, these relations ultimately reduce all instances of teMZVs to eMZVs
alone. Still, teMZVs are an essential tool for intermediate steps and to render the subsequent
computations completely algorithmic.

4.1 The four-point integrals

We will illustrate the emergence of teMZVs through the non-planar contribution to the four-
point one-loop amplitude of the open superstring. Its dependence on the external polarizations
enters through a prefactor K universal to all worldsheet topologies [50] and is irrelevant for the
subsequent discussion. Then, setting qC = q and qM = −q as discussed above, the complete
expression for the one-loop open-string four-point amplitude reads [49]

A1−loop
4 = K

1∫
0

dq
q

{
Tr(t1t2t3t4)

[
NG I1234(q)− 32 I1234(−q)

]
+ Tr(t1t2) Tr(t3t4)I12|34(q) + cyc(2, 3, 4)

}
, (4.1)

where ta are traceless generators of the gauge group SO(NG) and the traces are taken in its
fundamental representation. The accompanying integrals are given by9

I1234(q) =
∫ 1

0
dx4

∫ x4

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1 δ(x1)

4∏
i<j

exp
[1

2sijG(xij , τ)
]
, (4.2)

I12|34(q) =
∫ 1

0
dx4

∫ 1

0
dx3

∫ 1

0
dx2

∫ 1

0
dx1 δ(x1) (4.3)

× exp
[1

2s12G(x12, τ) + 1
2s34G(x34, τ) + 1

2
∑
i=1,2
j=3,4

sijG(xij − τ/2, τ)
]
,

9Note that I1234(q) was denoted by I4pt(1, 2, 3, 4) in ref. [30] and that I12|34(q) is defined with a factor of two
in comparison to the integral h(s, u) in ref. [31] because we do not impose x3 < x4 as done in the latter reference.
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where the insertion points z1,2 = x1,2 and z3,4 = x3,4+τ/2 of the vertex operators are parametrized
by real integration variables xi with xij = xi−xj , see figure 6. Translation invariance on a genus-
one surface has been used to fix x1 = 0 through the above delta function. The genus-one Green
functions10 [32]

G(z, τ) = log
∣∣∣∣θ1(z, τ)
θ′1(0, τ)

∣∣∣∣2 − 2π
Im(τ)Im(z)2 (4.4)

depend on the differences of punctures zi and their second argument τ will often be suppressed.
Considering the parametrization of the cylinder visualized in figure 6, vertex insertions on
different boundaries give rise to arguments xij − τ/2 as for instance seen in the contribution
G(x13 − τ/2, τ) to the exponent of eq. (4.3).

Given the relations between the dimensionless Mandelstam invariants11,

s34 = s12 , s14 = s23 , s13 = s24 = −s12 − s23 , (4.5)

the integrands of eqs. (4.2) and (4.3) are unchanged if the Green function eq. (4.4) is shifted by
a z-independent function. This feature will be made use of in the following subsections.

Configurations with three punctures on the same boundary lead to color factors such as
Tr(t1t2t3)Tr(t4) which vanish for traceless SO(NG) generators considered in eq. (4.1). Never-
theless, the accompanying integral

I123|4(q) =
∫ 1

0
dx4

∫ 1

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1 δ(x1) (4.6)

× exp
[1

2

3∑
1≤i<j

sijG(xij , τ) + 1
2

3∑
j=1

sj4G(xj4 − τ/2, τ)
]]

plays an important rôle for one-loop monodromy relations [53, 31]. It will be demonstrated in
appendix H that eq. (4.6) may be expanded in terms of teMZVs using the same techniques as
will be applied to the integral I12|34(q) in eq. (4.3) along with two punctures on each boundary.
For both non-planar integrals I12|34(q) and I123|4(q), our results up to and including the order
of s3

ij can be simplified to ultimately yield combinations of eMZVs, i.e., as mentioned earlier, all
of their twisted counterparts are found to drop out at the orders considered.

4.1.1 Analytic versus non-analytic momentum dependence

The one-loop four-point amplitude is a non-analytic function of the Mandelstam invariants
eq. (4.5): From the integration over q in eq. (4.1), the region with t→∞ or q = e−2πt → 0 leads
to branch cuts well-known from the Feynman integrals in the field-theory limit [50]. Moreover,
the non-planar contribution I12|34(q) additionally integrates to kinematic poles in s12, reflecting
the exchange of closed-string states between the cylinder boundaries [44]. Since both the poles
and the branch cuts stem from the integration over q, the integrals eqs. (4.2) and (4.3) over the
punctures by themselves do not reflect the singularity structure of the one-loop amplitude.

10 As pointed out earlier, the cylinder and the Mœbius-strip worldsheets for open-string one-loop amplitudes
are derived from a torus, and the restrictions of the modular parameters and the punctures can be understood
in terms of involutions. The open-string Green function eq. (4.4) is constructed using the method of images and
therefore takes the same functional form as its closed-string counterpart adapted to the torus: This follows from
the localization of the open-string punctures on the boundaries of the cylinder and the Moebius-strip worldsheets
which are in turn fixed points of the defining involutions [51,52].

11Mandelstam invariants are defined by sij = α′(ki + kj)2, where ki denote the momenta of the external
open-string states with i = 1, 2, 3, 4 subject to momentum conservation

∑4
i=1 ki = 0 and k2

i = 0.
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At fixed values of q it is possible to separate the overall amplitude into analytic and non-
analytic parts. For the four-point closed-string one-loop amplitude, a careful procedure to
isolate the logarithmic dependence on sij has been developed in ref. [54]: this method allows for
a focused study of the analytic sector where modular graph functions take the rôle of eMZVs
[55,56].

While the integrals in the expansion of eq. (4.2) have been performed at fixed value of
q, integrating for instance eq. (4.7) below and its counterpart from the Mœbius strip over q
introduces divergences, also for the gauge group SO(32). The choice of regularization scheme
for these divergences (see [31] for an example at the first subleading order in α′) reflects a
particular way of splitting the analytic and non-analytic parts of the final expression for the
amplitude after integrating over q.

4.1.2 The low-energy expansion in the single-trace sector

In the following, we will study the analytic part of the non-planar one-loop four-point amplitude
by Taylor-expansion of eq. (4.3) in sij and thereby in α′, probing the low-energy behaviour. The
analogous low-energy expansion for the single-trace integral eq. (4.2) has been performed in [30],

I1234(q) = ω(0, 0, 0) − 2ω(0, 1, 0, 0) (s12 + s23) + 2ω(0, 1, 1, 0, 0)
(
s2

12 + s2
23
)

(4.7)
− 2ω(0, 1, 0, 1, 0) s12s23 + β5 (s3

12 + 2s2
12s23 + 2s12s

2
23 + s3

23) + β2,3 s12s23(s12 + s23) + O(α′4)

with the following combinations of eMZVs at order α′3:

β5 = 4
3
[
ω(0, 0, 1, 0, 0, 2) + ω(0, 1, 1, 0, 1, 0)− ω(2, 0, 1, 0, 0, 0)− ζ2 ω(0, 1, 0, 0)

]
(4.8)

β2,3 = ζ3
12 + 8 ζ2

3 ω(0, 1, 0, 0)− 5
18 ω(0, 3, 0, 0) . (4.9)

It was explained in the reference that the dependence of the single-trace integral eq. (4.7) on q

is captured by eMZVs at any order in α′. Note that the contributions of the planar cylinder and
the Mœbius strip to eq. (4.1) are obtained by integrating eq. (4.7) over arguments q → e−2πt

and q → −e−2πt, respectively, with t ∈ R+.
In analogy with eq. (4.7), we will determine the α′-expansion of the non-planar integral

eq. (4.3) in the framework of teMZVs. Since the main emphasis of this article is to exemplify
the use of teMZVs in the calculation of non-planar one-loop amplitudes, a detailed analysis of
the singularity structure after integration over q is left for the future.

4.2 The genus-one Green function as an elliptic iterated integral

The link between open-string amplitudes and the framework of elliptic iterated integrals is the
holomorphic derivative12

∂zG(z, τ) = f (1)(z, τ) , z ∈ C \ (Z + Zτ) , (4.10)
12In contrast to section 3, where ∂z denoted the derivative w.r.t. the real parameter z, ∂z denotes the holomor-

phic derivative in this section.
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of the genus-one Green function eq. (4.4) in the integrals eqs. (4.2) and (4.3). It allows to rewrite
the exponent in the non-planar integral eq. (4.3) into the form

1
2s12G(x12, τ) + 1

2s34G(x34, τ) +
∑
i=1,2
j=3,4

1
2sijG

(
xij − τ/2, τ

)
= s12P (x12) + s34P (x34) +

∑
i=1,2
j=3,4

sijQ(xij) , (4.11)

where the entire dependence on the real parts13 xi ∈ R of the punctures z1,2 = x1,2 and z3,4 =
x3,4 + τ/2 is captured via elliptic iterated integrals eq. (2.1):

P (x) =
∫ x

0
dy f (1)(y) = Γ ( 1

0 ;x) (4.12)

Q(x) = c(q) +
∫ x

0
dy f (1) (y − τ/2) = c(q) + Γ

(
1
τ/2 ;x

)
. (4.13)

The appearance of the xi-independent quantity

c(q) = − iπ2 −
1
8 log(q) + 2

∞∑
m=1

1
m

[ qm

1− qm −
qm/2

1− qm
]

(4.14)

is special to the non-planar cylinder and caused by the different properties of the Green functions
G(xij) andG(xij−τ/2) connecting punctures on the same and different boundaries of the cylinder,
respectively.

In passing to the right hand side of eq. (4.11) we have used momentum conservation
∑4
i<j sij =

0 to discard

1
2G(x)− P (x) = iπ

2 − log(2π) = 1
2G
(
x− τ/2

)
−Q(x) . (4.15)

A detailed explanation of the relations above and the underlying regularization will be given in
the following two subsections.

4.2.1 G(x) versus P (x)

In the case of punctures on the same boundary of the cylinder, the Green functions with ar-
guments x ∈ [0, 1] and τ ∈ iR+ reduce to 1

2G(x, τ) = log θ1(x,τ)
θ′1(0,τ) . Up to an additive constant,

this expression can be recovered by the following integration with a regulator ε > 0 in the lower
limit: ∫ x

ε
dyf (1)(y) = log(θ1(x))− log(θ1(ε))

= log(θ1(x))− log(θ′1(0))− log(ε) +O(ε) (4.16)

= 1
2G(x)− log(−2πiε) + log(−2πi) +O(ε) .

The regularization scheme for the limit ε→ 0 has to be chosen consistently with the treatment
of divergent eMZVs: Following the conventions of [30], the regularized value of an eMZV is

13Restricting the first argument G(x, τ) to be real (as appropriate for our parametrization of the cylinder) leads
to a relative factor of two between ∂xG(x, τ) = 2f (1)(x, τ), x ∈ R and eq. (4.10). This factor of two has been
neglected in early versions of [30], and it is not altered by a complex shift ∂xG(x−τ/2, τ) = 2f (1)(x−τ/2, τ), x ∈ R.
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defined to be the constant term in an expansion14 w.r.t. log(−2πiε), and we choose the principal
branch of the logarithm, such that log(−i) = − iπ

2 . Hence, log(−2πiε) is formally set to zero in
eq. (4.16), and we obtain

P (x) = lim
ε→0

Reg
∫ x

ε
dy f (1)(y) = 1

2G(x) + log(−2πi) = 1
2G(x)− iπ

2 + log(2π) , (4.17)

reproducing the first equality in eq. (4.15).

4.2.2 G(x− τ/2) versus Q(x)

Pairs of punctures on different boundaries of the cylinder lead to arguments x− τ/2 of the Green
function eq. (4.4), where x ∈ [0, 1]. In these cases, the Green function may be related to the
integral∫ x

0
dy f (1) (y − τ/2) = log

(
θ1
(
x− τ/2

))
− iπx− log

(
θ1
(
− τ/2

))
= log

∣∣θ1
(
x− τ/2

)∣∣− iπ

2 − log
(
− θ1

(
τ/2
))

(4.18)

= 1
2G
(
x− τ/2

)
+ log θ′1(0)− 1

8 log(q)− iπ

2 − log
(
− iq−1/8θ4(0)

)
= 1

2G
(
x− τ/2

)
+ log

(
θ′1(0)
θ4(0)

)
= 1

2G
(
x− τ/2

)
− 1

2G
(
τ/2
)
,

without any need for regularization. In passing to the second line, we have chosen the principal
branch of the logarithm to relate log(θ1(x− τ/2))− iπx = log |θ1(x− τ/2)|− iπ

2 , see appendix A
for our conventions and several identities for the theta functions. In the next step, we have
introduced the Green function via log |θ1(x − τ/2)| = 1

2G(x − τ/2) + log θ′1(0) − 1
8 log(q) and

used the theta-function identity θ1(τ/2) = iq−1/8θ4(0), cf. eq. (A.3).
Using the infinite-product representations eq. (A.1) of the theta functions, the result of

eq. (4.18) can be rewritten as [57]

x∫
0

dy f (1) (y − τ/2)− 1
2G(x− τ/2) = log

(
θ′1(0)
θ4(0)

)

= log(2πq1/8) + 2
∞∑
n=1

[
log(1− qn)− log(1− qn−1/2)

]
= log(2πq1/8) + 2

∞∑
m=1

1
m

[ qm/2

1− qm −
qm

1− qm
]

(4.19)

= − iπ2 + log(2π)− c(q) .

In passing to the third line, we have rearranged the infinite sums15 to identify the quantity c(q)
14The expansion in log(−2πiε) will ensure that the constant terms of eMZVs are Q[(2πi)−1]-linear combinations

of MZVs, as opposed to Q[(2πi)−1, log(2π)]-linear combinations of MZVs (as in [8], Proposition 2.8).
15Note the following useful intermediate expressions whose sum is denoted by − 1

2Q3 in ref. [31]

∞∑
n=1

log(1− qn) = −
∞∑

m,n=1

qmn

m
= −

∞∑
m=1

1
m

qm

1− qm , −
∞∑
n=1

log(1− qn−
1
2 ) =

∞∑
m,n=1

qmn−m/2

m
=
∞∑
m=1

1
m

qm/2

1− qm .
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in eq. (4.14). In this way, one arrives at

Q(x) = c(q) +
∫ x

0
dy f (1)(y − τ/2

)
= 1

2G
(
x− τ/2

)
− iπ

2 + log(2π) , (4.20)

and the second equality in eq. (4.15) is confirmed.

4.3 Non-planar contribution to the four-point amplitude

Using the identities discussed in the previous subsections, the integral eq. (4.3) relevant to the
non-planar cylinder can be written as

I12|34(q) =
∫ 34

12
exp

[
s12P (x12) + s34P (x34) +

∑
i=1,2
j=3,4

sijQ(xij)
]
, (4.21)

where P (x) and Q(x) are given by the elliptic iterated integrals eqs. (4.12) and (4.13) and we
have introduced the following shorthand for the integration measure:∫ 34

12
=
∫ 1

0
dx4

∫ 1

0
dx3

∫ 1

0
dx2

∫ 1

0
dx1 δ(x1) . (4.22)

We will now investigate the Taylor-expansion of eq. (4.21) in the dimensionless Mandelstam
invariants eq. (4.5) and thus in α′ by expanding the exponentials esijP (xij) and esijQ(xij) in the
integrand:

I12|34(q) = e−2s12c(q)
∫ 34

12

∞∑
nij=0

(s12 Γ ( 1
0 ;x12))n12(s34 Γ ( 1

0 ;x34))n34

n12!n34!
∏
i=1,2
j=3,4

(
sij Γ

(
1
τ/2 ;xij

))nij
nij !

.

(4.23)
The punctures xi only enter via elliptic iterated integrals, and Fay relations among the weighting
functions f (n) guarantee that the individual integrations over xi can always be performed in
terms of further elliptic iterated integrals, see appendix I. Hence, each order in α′ can be
expressed in terms of teMZVs and the quantity c(q) in eq. (4.14), where the latter will also
be related to teMZVs in eq. (4.49). Moreover, the explicit results up to the third order can
in fact be expressed in terms of (untwisted) eMZVs only, without the need to involve their
twisted counterparts. Whether this behaviour persists at any order in α′ will be discussed in
subsection 4.3.5.

4.3.1 Structure of the leading orders α′≤3

As a first step towards an expansion in terms of teMZVs, we classify the inequivalent integrals
w.r.t. the cycle structure of Tr(t1t2) Tr(t3t4) which occur at the orders α′≤3 of eq. (4.23): We
will use the shorthand Pij = P (xij) and Qij = Q(xij) for the two integrals at order α′1,

d1
1 =

∫ 34

12
P12 , d1

2 =
∫ 34

12
Q13 , (4.24)

the six integrals at order α′2,

d2
1 = 1

2

∫ 34

12
P 2

12 , d2
3 =

∫ 34

12
P12Q13 , d2

5 =
∫ 34

12
Q13Q14 (4.25)
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d2
2 = 1

2

∫ 34

12
Q2

13 , d2
4 =

∫ 34

12
P12P34 , d2

6 =
∫ 34

12
Q13Q24 ,

and the twelve integrals at order α′3:

d3
1 = 1

6

∫ 34

12
P 3

12 , d3
5 = 1

2

∫ 34

12
P 2

12P34 , d3
9 =

∫ 34

12
P12Q13Q24

d3
2 = 1

6

∫ 34

12
Q3

13 , d3
6 = 1

2

∫ 34

12
Q2

13Q14 , d3
10 =

∫ 34

12
P12Q13Q14 (4.26)

d3
3 = 1

2

∫ 34

12
P 2

12Q13 , d3
7 = 1

2

∫ 34

12
Q2

13Q24 , d3
11 =

∫ 34

12
P34Q13Q14

d3
4 = 1

2

∫ 34

12
P12Q

2
13 , d3

8 =
∫ 34

12
P12P34Q13 , d3

12 =
∫ 34

12
Q13Q14Q23 .

In fact, some of the above dji can be related via cyclicity and reflection properties of the five-point
open-string worldsheet setup where the integration measure eq. (4.22) is generalized to∫ 45

123
=
∫ 1

0
dx5

∫ 1

0
dx4

∫ 1

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1 δ(x1) . (4.27)

Using ∂iQij = −∂jQij and the vanishing of
∫ 1
0 dxj ∂jQij by double periodicity of the Green

function, we find one relation

0 =
∫ 45

123
Q25 ∂Q14 =

∫ 45

123
Q25 (Q24 −Q34) ⇒ d2

5 = d2
6 (4.28)

among the integrals eq. (4.25) at order α′2. The same methods yield the two relations

0 =
∫ 45

123Q
2
25∂Q14

0 =
∫ 45

123 P23Q25∂Q14

}
⇒

{
d3

7 = d3
6

d3
9 = d3

10
(4.29)

among the integrals eq. (4.26) at order α′3.

4.3.2 teMZVs at orders α′≤3

As a next step, we exploit the representations eqs. (4.12) and (4.13) of Pij and Qij to express
the above dij in terms of teMZVs: The two instances at order α′ yield

d1
1 =

∫ 1

0
dx2

∫ x2

0
dy f (1)(y) = ω

(
1, 0
0, 0

)
(4.30)

d1
2 = c(q) +

∫ 1

0
dx3

∫ x3

0
dy f (1)(y − τ/2

)
= c(q) + ω

(
1, 0
τ/2, 0

)
, (4.31)

and we can similarly convert the five independent integrals at order α′2 to

d2
1 = ω

(
1, 1, 0
0, 0, 0

)
(4.32)

d2
2 = 1

2c(q)
2 + c(q)ω

(
1, 0
τ/2, 0

)
+ ω

(
1, 1, 0
τ/2, τ/2, 0

)
(4.33)

d2
3 = d1

1d
1
2 = ω

(
1, 0
0, 0

) (
c(q) + ω

(
1, 0
τ/2, 0

))
(4.34)
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d2
4 = (d1

1)2 = ω
(

1, 0
0, 0

)2
(4.35)

d2
5 = (d1

2)2 =
(
c(q) + ω

(
1, 0
τ/2, 0

))2
(4.36)

and the ten independent integrals at order α′3 to

d3
1 = ω

(
1, 1, 1, 0
0, 0, 0, 0

)
(4.37)

d3
2 = 1

6c(q)
3 + 1

2c(q)
2 ω
(

1, 0
τ/2, 0

)
+ c(q)ω

(
1, 1, 0
τ/2, τ/2, 0

)
+ ω

(
1, 1, 1, 0
τ/2, τ/2, τ/2, 0

)
(4.38)

d3
3 = d2

1d
1
2 = ω

(
1, 1, 0
0, 0, 0

) (
c(q) + ω

(
1, 0
τ/2, 0

))
(4.39)

d3
4 = d1

1d
2
2 = ω

(
1, 0
0, 0

)(1
2c(q)

2 + c(q)ω
(

1, 0
τ/2, 0

)
+ ω

(
1, 1, 0
τ/2, τ/2, 0

))
(4.40)

d3
5 = d1

1d
2
1 = ω

(
1, 1, 0
0, 0, 0

)
ω
(

1, 0
0, 0

)
(4.41)

d3
7 = d1

2d
2
2 =

(
c(q) + ω

(
1, 0
τ/2, 0

))(1
2c(q)

2 + c(q)ω
(

1, 0
τ/2, 0

)
+ ω

(
1, 1, 0
τ/2, τ/2, 0

))
(4.42)

d3
8 = d1

1d
2
3 = (d1

1)2d1
2 = ω

(
1, 0
0, 0

)2 (
c(q) + ω

(
1, 0
τ/2, 0

))
(4.43)

d3
9 = d1

2d
2
3 = d1

1(d1
2)2 = ω

(
1, 0
0, 0

) (
c(q) + ω

(
1, 0
τ/2, 0

))2
(4.44)

d3
11 = ω

(
1, 0
0, 0

) (
c(q) + ω

(
1, 0
τ/2, 0

))2
+ 1

3 ω
(

0, 3, 0, 0
0, 0, 0, 0

)
(4.45)

d3
12 = d1

2d
2
5 = (d1

2)3 =
(
c(q) + ω

(
1, 0
τ/2, 0

))3
. (4.46)

Note that d2
6, d

3
6 and d3

10 are determined by eqs. (4.28) and (4.29), and the derivation of the more
involved integral d3

11 is detailed in appendix I.

4.3.3 Assembling the orders α′≤3

Once we apply momentum conservation eq. (4.5) to the integral eq. (4.23), its leading orders in
the α′-expansion simplify to

I12|34(q) = 1 + 2s12 (d1
1 − d1

2) + s2
12 (2d2

1 + 2d2
2 − 4d2

3 + d2
4 + d2

5) + s13s23 (2d2
5 − 4d2

2)
+ 2s3

12 (d3
1 − d3

2 − 2d3
3 + 2d3

4 + d3
5 − d3

7 − d3
8 + d3

9) (4.47)
− 2s12s13s23 (d3

12 − 3d3
2 + 4d3

4 − d3
7 − 2d3

11) + O(α′4) .

The q-dependence of the relevant teMZVs can be determined by solving the initial-value problem
set up in section 3, yielding for instance

ω
(

1, 0
0, 0

)
= − iπ2 + 2

∞∑
n,m=1

qmn

m
, ω

(
1, 0
τ/2, 0

)
= 2

∞∑
n,m=1

qm(n−1/2)

m
, (4.48)

26



and further examples can be found in appendix G.4. By comparing the q-expansion with the
expression eq. (4.14) for c(q), we infer that

c(q) = ω
(

1, 0
0, 0

)
− ω

(
1, 0
τ/2, 0

)
− 1

8 log(q) , (4.49)

which identifies the prefactor e−2s12c(q) in eq. (4.23) as qs12/4 multiplied by a series in teMZVs
ω
(

1, 0
0, 0

)
and ω

(
1, 0
τ/2, 0

)
. Moreover, eq. (4.49) simplifies the order α′1 of eq. (4.47) to

I12|34(q)
∣∣
s12

= 2(d1
1 − d1

2) = 2
{
ω
(

1, 0
0, 0

)
− ω

(
1, 0
τ/2, 0

)
− c(q)

}
= 1

4 log(q) , (4.50)

in agreement with [31]. Also at higher orders of eq. (4.47), we convert any appearance of c(q)
into −1

8 log(q) via eq. (4.49) and obtain

I12|34(q)
∣∣
s2

12
= (log(q)2)

32 + 2ω
(

1, 1, 0
0, 0, 0

)
− ω

(
1, 0
0, 0

)2
+ 2ω

(
1, 1, 0
τ/2, τ/2, 0

)
− ω

(
1, 0
τ/2, 0

)2

= (log(q)2)
32 + 7ζ2

6 + 2ω(0, 0, 2) (4.51)

I12|34(q)
∣∣
s13s23

= 2ω
(

1, 0
τ/2, 0

)2
− 4ω

(
1, 1, 0
τ/2, τ/2, 0

)
= −2ω(0, 0, 2)− 2ζ2

3 (4.52)

via teMZV relations eqs. (G.11) and (G.12) as well as

I12|34(q)
∣∣
s3

12
= 1

3!

( log(q)
4

)3
+ 1

4 log(q)
(7ζ2

6 + 2ω(0, 0, 2)
)

+ 2
3 ω

(
1, 0
0, 0

)3
− 2ω

(
1, 0
0, 0

)
ω
(

1, 1, 0
0, 0, 0

)
+ 2ω

(
1, 1, 1, 0
0, 0, 0, 0

)
(4.53)

− 2
3 ω

(
1, 0
τ/2, 0

)3
+ 2ω

(
1, 0
τ/2, 0

)
ω
(

1, 1, 0
τ/2, τ/2, 0

)
− 2ω

(
1, 1, 1, 0
τ/2, τ/2, τ/2, 0

)
= 1

3!

( log(q)
4

)3
+ 1

4 log(q)
(7ζ2

6 + 2ω(0, 0, 2)
)
− 4 ζ2 ω(0, 1, 0, 0)

I12|34(q)
∣∣
s12s23s13

= 1
4 log(q)

(
−2ω(0, 0, 2)− 2ζ2

3

)
+ 4

3 ω(0, 3, 0, 0)

+ 2ω
(

1, 0
τ/2, 0

)3
− 6ω

(
1, 0
τ/2, 0

)
ω
(

1, 1, 0
τ/2, τ/2, 0

)
+ 6ω

(
1, 1, 1, 0
τ/2, τ/2, τ/2, 0

)
(4.54)

= 1
4 log(q)

(
−2ω(0, 0, 2)− 2ζ2

3

)
+ 5

3 ω(0, 3, 0, 0) + 4 ζ2 ω(0, 1, 0, 0)− 1
2ζ3

via teMZV relations eqs. (G.13) and (G.14). As will be discussed shortly, the cancellation of
teMZVs with nonzero twist manifests the absence of unphysical poles in the string amplitude
after integration over q.

4.3.4 Summary of the orders α′≤3

As is clear by comparing eq. (4.23) with eq. (4.49), any appearance of log(q) can be traced back
to the expansion of qs12/4. Hence, the above orders α′≤3 can be summarized as

I12|34(q) = qs12/4
{

1 + s2
12

(7ζ2
6 + 2ω(0, 0, 2)

)
− 2s13s23

(ζ2
3 + ω(0, 0, 2)

)
(4.55)

− 4 ζ2 ω(0, 1, 0, 0) s3
12 + s12s13s23

(5
3 ω(0, 3, 0, 0) + 4 ζ2 ω(0, 1, 0, 0)− 1

2ζ3
)

+O(α′4)
}
,
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and the integral I123|4(q) in eq. (4.6) admits a similar low-energy expansion in terms of eMZVs
only, see eq. (H.26). While the q-expansions of the above eMZVs are listed in appendix G.4,
their constant terms yield

I12|34(q) = qs12/4
{

1 + 1
2ζ2s

2
12 −

1
2ζ3s

3
12 +O(q, α′4)

}
, (4.56)

in agreement with the all-order α′ expression given in [31]

I12|34(q) = 22s12qs12/4

π


(

Γ(1
2 + s12

2 )
Γ(1 + s12

2 )

)2

+O(q)

 . (4.57)

With the above strategy and the techniques exemplified in appendix I, there is no limitation
in obtaining higher orders of the α′-expansion eq. (4.55). Similarly, non-planar open-string
amplitudes with five and more external legs can be expanded along the same lines16 because
their integrands depend on the punctures and τ through products of f (n) and Eisenstein series
[58,59,30].

4.3.5 Higher orders in α′ and eMZVs

The exclusive appearance of eMZVs at the leading orders of the α′-expansion eq. (4.55) illustrates
a general property of the non-planar integral I12|34(q): apart from the prefactor qs12/4, its q-
expansion comprises integer powers only. This property is shared by eMZVs but not by typical
teMZVs involving twists τ/2.

The absence of half-odd integer powers qn+1/2 with n ∈ N0 can be explained from physical
constraints on the pole structure of the open-string amplitude: Performing the q-integration in
the amplitude prescription eq. (4.1) over expansions of the schematic form

I12|34(q) = qs12/4
∞∑
n=0

(anqn + cnq
n+1/2) (4.58)

yields kinematic poles at s12 = −4n in case of integer powers of q and at s12 = −4n− 2 in case
of half-odd integer powers, respectively, with n ∈ N0:

1∫
0

dq
q
I12|34(q) =

∞∑
n=0

{ 4an
s12 + 4n + 4cn

s12 + 4n+ 2

}
. (4.59)

The expansion coefficients an and cn are understood to be formal power series in the Mandelstam
variables sij accompanied by Q[(2πi)−1]-linear combinations of MZVs.

The singular values of Mandelstam variables s12 = α′(k1 +k2)2 in scattering amplitudes with
external momenta ki correspond to internal masses −α′m2. As a general property of non-planar
one-loop open-string string amplitudes, the kinematic poles arising from the integration over q
reveal the appearance of closed-string modes among the internal states [44]. In particular, the
poles in eq. (4.59) with residues proportional to an and cn signal the exchange of closed-string
states with masses m2 = 4n

α′ and m2 = 4n+2
α′ , respectively, with n ∈ N0. However, the closed-

superstring spectrum only comprises masses m2 = 4n
α′ , whereas states with m2 = 4n+2

α′ cannot
be found in GSO projected string theories [43, 44, 46, 47]. Hence, the pole structure of 4cn

s12+4n+2

16See section 5.1 of [30] for the analogous expansion of the planar five-point one-loop amplitude in terms of
eMZVs.
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due to half-odd integer powers of q would signal the propagation of unphysical states and violate
unitarity if some of the cn were nonzero.

However, it is not immediately clear if an integer-power q-expansion eq. (4.58) with cn = 0
is necessarily expressible in terms of eMZVs. Given that q−s12/4I12|34(q) was argued to comprise
teMZVs with twists ∈ {0, τ/2}, this leads to the following, purely mathematical question: If a
linear combination of teMZVs with twists ∈ {0, τ/2} is such that its q-expansion has integer
exponents only, can it be written as a linear combination of eMZVs (i.e. teMZVs with vanishing
twists) only?

We expect that an answer to this question will necessitate a closer study of the decomposi-
tion of teMZVs into iterated τ -integrals of the functions h(n)(b) in eq. (3.4), with b ∈ {0, τ/2}.
Given that h(n)(b) are modular forms for congruence subgroups of SL2(Z), this decomposition of
teMZVs generalizes the decomposition of eMZVs into linear combinations of iterated Eisenstein
integrals [10, 36]. In particular, a natural first step would be to prove linear independence of
iterated τ -integrals comprised of the integrands h(n)(b) with b ∈ {0, τ/2}, which would generalize
results of [12,60], and can presumably be proved along similar lines.

In any case, based on the arguments presented in this subsection, we conjecture that all
orders in the α′-expansion eq. (4.55) are furnished by eMZVs. The same is expected to hold for
all non-planar n-point amplitudes at one loop prior to integration over q. It is conceivable that
this can be derived from the one-loop monodromy relations [53,31], and it would be interesting
to work out a rigorous proof.

5 Conclusions

In this article, teMZVs have been introduced as iterated integrals on an elliptic curve with
multiple punctures on a lattice Q + Qτ . Our main result is the identification of an initial-value
problem satisfied by teMZVs, which expresses them in terms of linear combinations of iterated
τ -integrals of the weighting functions f (n) with coefficients given by cyclotomic MZVs.

As an application of teMZVs in physics we have studied one-loop scattering amplitudes of
open-string states. In the non-planar sector of the four-point amplitude, the low-energy ex-
pansion can be computed by integrals over the two boundaries of a cylinder. A systematic
procedure is established, which allows to evaluate these integrals in terms of teMZVs. There
is no conceptual bottleneck in extending the procedure to one-loop amplitudes with an arbi-
trary number of external states. Having calculated the non-planar amplitude up to the third
subleading low-energy order, we find that the results can ultimately be simplified to eMZVs.

The results of this article trigger a variety of questions: From a mathematical perspective,
the differential equation of teMZVs could serve as a starting point to classify their relations
and to understand the underlying algebraic principles. In the untwisted case, a crucial rôle
was played by a certain derivation algebra. We expect that a suitable twisted analogue of the
derivation algebra [9] will likewise control the algebraic structure of teMZVs.

In a physics context, the methods of this article allow to compute higher orders in the low-
energy expansion of non-planar one-loop open-string amplitudes and to investigate its structure.
More interestingly, higher-loop open-string amplitudes should require an extension of elliptic
iterated integrals to Riemann surfaces of higher genus and a suitable generalization of teMZVs
to accommodate multiple boundaries.
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Appendix

A Jacobi theta functions

For later use we note as well the expansion of Jacobi theta functions (and derivatives thereof)
as an expansion in the parameter q = e2πiτ [57]

θ1(z, τ) = 2q1/8 sin(πz)
∞∏
n=1

(1− qn)(1− 2qn cos(2πz) + q2n)

θ′1(0, τ) = 2πq1/8
∞∏
n=1

(1− qn)3

θ4(z, τ) =
∞∏
n=1

(1− qn)(1− 2qn−1/2 cos(2πz) + q2n−1) ,

(A.1)

which all turn out to be positive given z ∈ [0, 1] and q ∈ [0, 1]. Furthermore, a periodicity
property useful for calculating eq. (4.18) as well as a relation between θ1 and θ4 reads

θ1(z +m+ nτ, τ) = (−1)n+mq−n
2/2e−2πinz θ1(z, τ) (A.2)

θ4(z, τ) = −ieiπzq1/8 θ1(z + τ/2, τ) . (A.3)

B Weighting functions

The weighting functions f (n)(z, τ) arise as expansion coefficients of the doubly-periodic comple-
tion Ω(z, α, τ) of the Eisenstein–Kronecker series F (z, α, τ),

Ω(z, α, τ) = exp
(

2πiα Im (z)
Im (τ)

)
F (z, α, τ) =

∞∑
n=0

f (n)(z, τ)αn−1 , (B.1)

which, in turn is given by [61,6]

F (z, α, τ) = θ′1(0, τ)θ1(z + α, τ)
θ1(z, τ)θ1(α, τ) . (B.2)
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The odd Jacobi theta function θ1 is defined in appendix A, and the derivative with respect to
the first argument is denoted by a tick. For real z, the expressions in eqs. (B.1) and (B.2) agree,
and the lowest-order examples of f (n) are spelt out in eq. (2.2). In fact, f (1) is the only weighting
function with a simple pole on the lattice Z + Zτ , while all f (n) with n 6= 1 are non-singular on
the entire elliptic curve.

Both the Eisenstein–Kronecker series F (z, α, τ) and its doubly periodic completion Ω(z, α, τ)
satisfy the Fay identity

Ω(z1, α1, τ)Ω(z2, α2, τ) = Ω(z1, α1 + α2, τ)Ω(z2 − z1, α2, τ)
+ Ω(z2, α1 + α2, τ)Ω(z1 − z2, α1, τ) .

(B.3)

Furthermore, the Eisenstein–Kronecker series satisfies the mixed heat equation

2πi ∂τF (z, α, τ) = ∂α∂zF (z, α, τ) . (B.4)

Both the Fay identity eq. (B.3) and the mixed heat equation (B.4) are relevant in the calculations
of section 3. Starting from the quasi-periodicity of the Eisenstein–Kronecker series,

F (z + 1, α, τ) = F (z, α, τ) , F (z + τ, α, τ) = exp(−2πiα)F (z, α, τ) , (B.5)

and its reflection property
F (−z,−α, τ) = −F (z, α, τ) , (B.6)

it is straightforward to derive properties eq. (2.3) of the weighting functions f (n).

C A teMZV with proper rational twist b = 1/2

We illustrate the definition of teMZVs in the case of proper rational twists b ∈ Λ×N = { 1
N , . . . ,

N−1
N },

via an explicit computation of ω
(

0, 1
0, 1/2

)
. Our starting point is the definition eq. (2.7) of teMZVs

with twists bi ∈ {0, 1/2} through the integral

ω
(
n1, n2, ..., n`
b1, b2, ..., b`

)
= lim

ε→0

∫
α1δεα2

f (n1)(z − b1)dz1 f
(n2)(z − b2)dz2 . . . f

(n`)(z − b`)dz` . (C.1)

We choose the parametrization of the individual path segments depicted in figure 3 as

α1(t) =
(1

2 − ε
)
t

δε(t) = 1
2 − ε exp(−iπt)

α2(t) = 1
2 + ε+

(1
2 − ε

)
t

(C.2)

with t ∈ (0, 1) in each case. Then we may compute the iterated integral using the composition
of paths formula, for the smooth one-forms ωi = f (ni)(z − bi)dz (cf. [62], Proposition 2.9)

∫
αβ

ω1ω2 . . . ω` =
∑̀
k=0

∫
α

ω1ω2 . . . ωk

∫
β

ωk+1 . . . ω` , (C.3)

where the paths α, β are such that α(1) = β(0) and the empty integral is defined to be one.
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As the forms ωi = f (ni)(z−bi)dz admit an expansion in q we may treat the q0 term separately
from the rest, assuming the q-expansion can be exchanged with the integration. Then, as the
coefficients of the jth power qj for j 6= 0 are well defined on the real line, we may exchange
the limit ε→ 0 with the integration and compute this part of the integral over the much more
mundane path γ(t) = t. Specifically, the q dependent part is given by

Iq = −2i(2πi)
∫

0<t1<t2<1

dt1dt2
∞∑

n,m=1
qmn sin

(
2πm

(
t2 −

1
2

))
= −2

∞∑
n,m=1

(−1)mqmn

m
. (C.4)

We note that this can be reproduced from the differential equation (3.5) for real twists

ω
(

0, 1
0, 1/2

)
= ω0

(
0, 1
0, 1/2

)
+

q∫
0

d log(q1)
−4π2

[
ω
(

2
1/2

)
− f (2)

(1
2 , q1

)]

= ω0
(

0, 1
0, 1/2

)
+

q∫
0

d log(q1)
−4π2

8π2
∞∑

m,n=1
(−1)mn qmn1

 ,

(C.5)

where the integration constant ω0
(

0, 1
0, 1/2

)
remains to be determined.

Application of eq. (C.3) for the constant term f
(n)
0 (z − b) of the q expansion of f (n)(z − b)

yields, bearing in mind that f (0)(z) = 1,

I0 =
∫

α1δεα2

dz1 f
(1)
0

(
z2 −

1
2

)
dz2

=
∫
α1

dz1 f
(1)
0

(
z2 −

1
2

)
dz2 +

∫
δε

dz1 f
(1)
0

(
z2 −

1
2

)
dz2 +

∫
α2

dz1 f
(1)
0

(
z2 −

1
2

)
dz2

+
∫
α1

dw
∫
δε

f
(1)
0

(
z − 1

2

)
dz +

∫
α1

dw
∫
α2

f
(1)
0

(
z − 1

2

)
dz +

∫
δε

dw
∫
α2

f
(1)
0

(
z − 1

2

)
dz .

(C.6)

The individual integrals are given by∫
α1

dz1 f
(1)
0

(
z2 −

1
2

)
dz2 =

∫
0<t1<t2<1

dt1dt2
(1

2 − ε
)2
π cot

(
π

[(1
2 − ε

)
t2 −

1
2

])

= log(2)
2 + log(πε)

2 +O(ε) (C.7)∫
δε

dz1 f
(1)
0

(
z2 −

1
2

)
dz2 =

∫
0<t1<t2<1

dt1dt2 (iπ)2ε2e−iπ(t1+t2)π cot(−πεe−iπt2)

= O(ε) (C.8)∫
α2

dz1 f
(1)
0

(
z2 −

1
2

)
dz2 =

∫
0<t1<t2<1

dt1dt2
(1

2 − ε
)2
π cot

(
π

[(1
2 − ε

)
t2 + ε

])

= log(2)
2 + ε log(πε) +O(ε) (C.9)∫

α1

dw
∫
δε

f
(1)
0

(
z − 1

2

)
dz = iπ

(
ε− 1

2

)
(C.10)

∫
α1

dw
∫
α2

f
(1)
0

(
z − 1

2

)
dz =

(
ε− 1

2

)
log(sin(πε)) (C.11)
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∫
δε

dw
∫
α2

f
(1)
0

(
z − 1

2

)
dz = −2ε log(sin(πε)) . (C.12)

Note that due to limε→0 ε log(sin(πε)) = 0 the only singular contributions stem from the integrals
in eqs. (C.7) and (C.11), which cancel in their sum. Then, we arrive at

lim
ε→0

I0 = − iπ2 + log(2) , (C.13)

as predicted by the constant-term procedure eq. (3.27), see eq. (G.7). Finally, upon combination
with the q-series in eq. (C.4), the desired teMZV is given by

ω
(

0, 1
0, 1/2

)
= lim

ε→0
(I0 + Iq) = − iπ2 + log(2)− 2

∞∑
n,m=1

(−1)mqmn

m
. (C.14)

D MZVs and cyclotomic MZVs

Cyclotomic MZVs (also called “multiple polylogarithms at roots of unity”) are generalizations
of MZVs. While MZVs are represented by nested sums of the form

ζn1,n2,...,nr = ζ(n1, n2, . . . , nr) =
∞∑

0<k1<k2<...<kr

1
kn1

1 kn2
2 . . . knrr

, n1, . . . , nr−1 ≥ 1, nr ≥ 2,

(D.1)
cyclotomic MZVs are represented by nested sums with additional “coloring” given by N th roots
of unity σ1, . . . , σr ∈ µN :

ζ ( n1, n2, ..., nr
σ1, σ2, ..., σr ) =

∑
0<k1<k2<...<kr

σk1
1 σ

k2
2 . . . σkrr

kn1
1 kn2

2 . . . knrr
, n1, . . . , nr ≥ 1, nr ≥ 2 if σr = 1 . (D.2)

Likewise, the integral representation of MZVs

ζ(n1, . . . , nr) =
∫

0≤ti≤ti+1≤1

dt1
1− t1

dt2
t2

. . .
dtn1

tn1

dtn1+1
1− tn1+1

. . .
dtw
tw

, w = n1 + . . .+ nr , (D.3)

generalizes to an integral representation for cyclotomic MZVs

ζ ( n1, n2, ..., nr
σ1, σ2, ..., σr ) =

∫
0≤ti≤ti+1≤1

dt1
η1 − t1

dt2
t2

. . .
dtn1

tn1

dtn1+1
η2 − tn1+1

. . .
dtw
tw

, (D.4)

where ηi = (σiσi+1 · · ·σr)−1. The positive integer N , implicit in the definition of cyclotomic
MZVs, is sometimes considered an additional datum, and one speaks of N -cyclotomic MZVs to
emphasize the choice of N .

Cyclotomic MZVs have first been considered by Goncharov [3]. Suitable references for cyclo-
tomic MZVs include [13–15]. For a detailed study of N -cyclotomic MZVs where N = 2, 3, 4, 6, 8,
see [63]. More recently, the case N = 6 has generated further interest [64–66].
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E Details on the differential equation of teMZVs

In this appendix, we give a detailed derivation of the differential equation (3.5) in the case
b1, b` 6= 0. The case b1 = 0 or b` = 0 is technically more complicated, since the iterated integrals
involved need to be regularized according to ref. [8]. However, using Proposition 3.1 of [8], the
arguments of this section go through for b1 = 0 or b` = 0 as well.

Using the mixed heat equation (3.2) for Ω(z − b, α), we may rewrite the τ -derivative of the
generating function eq. (3.1) of length-` teMZVs as

2πi ∂
∂τ

T
[
α1, α2, ..., α`
b1, b2, ..., b`

]
=

∫
0≤zp≤zp+1≤1

dz1 dz2 . . . dz`
∑̀
i=1

∂αi∂ziΩ(zi − bi, αi)
∏̀
j 6=i

Ω(zj − bj , αj)

=
∫

0≤zp≤zp+1≤1

dz2 . . . dz` ∂α1Ω(z2 − b1, α1)
∏̀
j=2

Ω(zj − bj , αj)− ∂α1Ω(−b1, α1) T
[
α2, ..., α`
b2, ..., b`

]

+ ∂α`Ω(−b`, α`) T
[
α1, ..., α`−1
b1, ..., b`−1

]
−

∫
0≤zp≤zp+1≤1

dz1 . . . dz`−1 ∂α`Ω(z`−1 − b`, α`)
`−1∏
j=1

Ω(zj − bj , αj)

+
`−1∑
i=2

∫
0≤zp≤zp+1≤1

dz1 . . . dzi−1 dzi+1 . . . dzr ∂αiΩ(zi − bi, αi)
∣∣∣zi=zi+1

zi=zi−1

∏̀
j 6=i

Ω(zj − bj , αj)

= ∂α`Ω(−b`, α`) T
[
α1, ..., α`−1
b1, ..., b`−1

]
− ∂α1Ω(−b1, α1) T

[
α2 ... α`
b2 ... b`

]
(E.1)

+
∫

0≤zp≤zp+1≤1

dz2 dz3 . . . dz`
∑̀
i=2

∏̀
j 6=i,1

Ω(zj − bj , αj) (∂αi−1 − ∂αi)Ω(zi − bi−1, αi−1)Ω(zi − bi, αi)

= ∂α`Ω(−b`, α`) T
[
α1, ..., α`−1
b1, ..., b`−1

]
− ∂α1Ω(−b1, α1) T

[
α2, ..., α`
b2, ..., b`

]
+
∑̀
i=2

(
T
[
α1, ..., αi−2, αi−1+αi, αi+1, ..., α`
b1, ..., bi−2, bi, bi+1, ..., b`

]
∂αi−1Ω(bi − bi−1, αi−1)

− T
[
α1, ..., αi−2, αi−1+αi, αi+1, ..., α`
b1, ..., bi−2, bi−1, bi+1, ..., b`

]
∂αiΩ(bi−1 − bi, αi)

)
,

where we mapped the integrals over ∂zi(. . .) to boundary terms in the second equality and used
the Fay identity (B.3) in the last equality to simplify

(∂αi−1 − ∂αi)Ω(zi − bi−1, αi−1)Ω(zi − bi, αi) (E.2)

= (∂αi−1 − ∂αi)
[
Ω(zi−bi, αi−1+αi)Ω(bi−bi−1, αi−1) + Ω(zi−bi−1, αi−1+αi)∂αiΩ(bi−1−bi, αi)

]
= Ω(zi − bi, αi−1 + αi)∂αi−1Ω(bi − bi−1, αi−1)− Ω(zi − bi−1, αi−1 + αi)∂αiΩ(bi−1 − bi, αi) .

From the above differential equation for the generating function one may deduce a differential
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equation for teMZVs,

2πi∂τ T
[
α1, α2, ..., α`
b1, b2, ..., b`

]
= 2πi

∞∑
n1,n2,...,n`=0

αn1−1
1 . . . αn`−1

` ∂τ ω
(
n1, ..., n`
b1, ..., b`

)
= ∂α`Ω(−b`, α`) T

[
α1, ..., α`−1
b1, ..., b`−1

]
− ∂α1Ω(−b1, α1) T

[
α2, ..., α`
b2, ..., b`

]
+
∑̀
i=2

(
T
[
α1, ..., αi−2, αi−1+αi, αi+1, ..., α`
b1, ..., bi−2, bi, bi+1, ..., b`

]
∂αi−1Ω(bi − bi−1, αi−1)

− T
[
α1, ..., αi−2, αi−1+αi, αi+1, ..., α`
b1, ..., bi−2, bi−1, bi+1, ..., b`

]
∂αiΩ(bi−1 − bi, αi)

)
.

(E.3)

Eventually we want to equate coefficients to extract the τ -derivative of a particular teMZV. For
this purpose let us consider the terms in eq. (E.3) separately. Recalling the definition eq. (3.4)
of h(n) we may rewrite the first term on the right hand side of eq. (E.3) as

∂α`Ω(−b`, α`) T
[
α1, ..., α`−1
b1, ..., b`−1

]
=

∞∑
n`=0

h(n`)(−b`)αn`−2
`

∞∑
n1,n2,...,n`−1=0

αn1−1
1 . . . α

n`−1−1
`−1 ω

(
n1, ..., n`−1
b1, ..., b`−1

)

=
∞∑

n1,n2,...,n`=0
αn1−1

1 . . . α
n`−1−1
`−1 αn`−1

` h(n`+1)(−b`)ω
(
n1, ..., n`−1
b1, ..., b`−1

)

+ h(0)(−b`)α−2
`

∞∑
n1,n2,...,n`−1=0

αn1−1
1 . . . α

n`−1−1
`−1 ω

(
n1, ..., n`−1
b1, ..., b`−1

)
,

(E.4)

and similarly for the second term. The sum ∼ α−2
` is canceled by contributions from the last

two lines of eq. (E.3), which we will now turn to

T
[
α1, ..., αi−2, αi−1+αi, αi+1, ..., α`
b1, ..., bi−2, bi, bi+1, ..., b`

]
∂αi−1Ω(bi − bi−1, αi−1)

=
∞∑

n1,...,ni−2,ni+1,...,n`=0
αn1−1

1 . . . α
ni−2−1
i−2 α

ni+1−1
i+1 . . . αn`−1

`

×
[

(αi−1 + αi)−1 ω
(
n1, ..., ni−2, 0, ni+1, ..., n`
b1, ..., bi−2, bi, bi+1, ..., b`

) ∞∑
j=0

h(j)(bi − bi−1)αj−2
i−1︸ ︷︷ ︸

= Bi,+

+
∞∑

j,k=0

k∑
p=0

(
k

p

)
αk−p+j−2
i−1 αpi ω

(
n1, ..., ni−2, k+1, ni+1, ..., n`
b1, ..., bi−2, bi, bi+1, ..., b`

)
h(j)(bi − bi−1)

︸ ︷︷ ︸
= Ci,+

]
(E.5)

with an analogous definition for Bi,− and Ci,− relevant to the last term of eq. (E.3)

Bi,− = (αi−1 + αi)−1 ω
(
n1, ..., ni−2, 0, ni+1, ..., n`
b1, ..., bi−2, bi−1, bi+1, ..., b`

) ∞∑
j=0

h(j)(bi−1 − bi)αj−2
i (E.6)

Ci,− =
∞∑

j,k=0

k∑
p=0

(
k

p

)
αk−p+j−2
i αpi−1 ω

(
n1, ..., ni−2, k+1, ni+1, ..., n`
b1, ..., bi−2, bi−1, bi+1, ..., b`

)
h(j)(bi−1 − bi) . (E.7)

In the following the manipulations only affect pairs (αi−1, αi), hence we will suppress the sum-
mation over the other α’s. Since h(0)(b) = −1 does not depend on b, we can set it to zero for
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the iterated integral

ω
(
n1, ..., ni−2, 0, ni+1, ..., n`
b1, ..., bi−2, bi−1, bi+1, ..., b`

)
= ω

(
n1, ..., ni−2, 0, ni+1, ..., n`
b1, ..., bi−2, 0, bi+1, ..., b`

)
. (E.8)

Hence, for the terms not expressible by the binomial law Bi,±, we can use h(0) = −1, h(1) = 0,
h(2)(b) = h(2)(−b) as well as

(αji−1 − (−1)jαji ) = (αi−1 + αi)
j−1∑
a=0

(−1)j−1−aαai−1α
j−1−a
i , j > 0 (E.9)

to obtain

Bi,+ −Bi,−

= (αi−1 + αi)−1 ω
(
n1, ..., ni−2, 0, ni+1, ..., n`
b1, ..., bi−2, 0, bi+1, ..., b`

) ∞∑
j=0

(
h(j)(bi − bi−1)αj−2

i−1 − h
(j)(bi−1 − bi)αj−2

i

)

= ω
(
n1, ..., ni−2, 0, ni+1, ..., n`
b1, ..., bi−2, 0, bi+1, ..., b`

) (α−2
i − α

−2
i−1

αi−1 + αi
+
∞∑
j=0

h(j+3)(bi − bi−1)
j∑

a=0
(−1)j−aαai−1α

j−a
i

)
.

(E.10)

The singular term α−2
i −α

−2
i−1

αi−1+αi = 1
αi−1αi

( 1
αi
− 1
αi−1

) will eventually cancel among differentBi,+−Bi,−.
The remaining contribution may be rewritten into a form where we can easily read off the
coefficient of a given monomial in the αi,

ω
(
n1, ..., ni−2, 0, ni+1, ..., n`
b1, ..., bi−2, 0, bi+1, ..., b`

) ∞∑
j=0

h(j+3)(bi − bi−1)
j∑

a=0
(−1)j−aαai−1α

j−a
i

= ω
(
n1, ..., ni−2, 0, ni+1, ..., n`
b1, ..., bi−2, 0, bi+1, ..., b`

) ∞∑
m,n=0

h(m+n+3)(bi − bi−1)(−1)nαmi−1α
n
i ,

(E.11)

which gives rise to the last line of eq. (3.5).
For the contributions Ci,± we have

Ci,+ =
∞∑

j,k=0

k∑
p=0

(
k

p

)
αk+j−p−2
i−1 αpi ω

(
n1, ..., ni−2, k+1, ni+1, ..., n`
b1, ..., bi−2, bi, bi+1, ..., b`

)
h(j)(bi − bi−1)

=
∞∑

j,k=0

k−1∑
p=0

(
k

p

)
αk+j−p−1
i−1 αpi ω

(
n1, ..., ni−2, k+1, ni+1, ..., n`
b1, ..., bi−2, bi, bi+1, ..., b`

)
h(j+1)(bi − bi−1)

+
∞∑
k=0

k∑
p=0

(
k + 1
p

)
αk−p−1
i−1 αpi ω

(
n1, ..., ni−2, k+2, ni+1, ..., n`
b1, ..., bi−2, bi, bi+1, ..., b`

)
h(0)(bi − bi−1)

+ α−2
i−1

∞∑
a=0

h(0)(bi − bi−1)αai ω
(
n1, ..., ni−2, a+1, ni+1, ..., n`
b1, ..., bi−2, bi, bi+1, ..., b`

)
.

(E.12)

The sums proportional to α−2
i−1 cancel among the corresponding contributions from Ci,+ and

Ci−1,−. For the cases i = 2 and i = r it is canceled by the corresponding sums in the last line
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of eq. (E.4). We then find for the remaining part of Ci,+

∞∑
j,k=0

k−1∑
p=0

(
k

p

)
αk+j−p−1
i−1 αpi ω

(
n1, ..., ni−2, k+1, ni+1, ..., n`
b1, ..., bi−2, bi, bi+1, ..., b`

)
h(j+1)(bi−1 − bi)

+
∞∑
k=0

k∑
p=0

(
k + 1
p

)
αk−p−1
i−1 αpi ω

(
n1, ..., ni−2, k+2, ni+1, ..., n`
b1, ..., bi−2, bi, bi+1, ..., b`

)
h(0)(bi−1 − bi)

=
∞∑

m,n=0
αm−1
i−1 α

n
i

m∑
j=0

(
m+ n− j

n

)
ω
(
n1, ..., ni−2, m+n+1−j, ni+1, ..., n`
b1, ..., bi−2, bi, bi+1, ..., b`

)
h(j+1)(bi−1 − bi)

+
∞∑

m,n=0
αm−1
i−1 α

n
i

(
m+ n+ 1

n

)
ω
(
n1, ..., ni−2, m+n+2, ni+1, ..., n`
b1, ..., bi−2, bi, bi+1, ..., b`

)
h(0)(bi−1 − bi)

=
∞∑

m,n=0
αm−1
i−1 α

n
i

m+1∑
k=0

(
n+ k

k

)
ω
(
n1, ..., ni−2, n+k+1, ni+1, ..., n`
b1, ..., bi−2, bi, bi+1, ..., b`

)
h(m−k+1)(bi−1 − bi) ,

(E.13)

which, in combination with an analogous contribution from Ci,−, gives rise to the second and
third line of eq. (3.5).

F Differential equation for proper rational twists

The derivation of the differential equation given in appendix E was a priori only valid for generic
twists. In this appendix, we provide an argument why it also holds for proper rational twists
bi ∈ Q. The only difference is that in eq. (E.1) we now need to carefully keep track of the effect
of deforming the domain of integration [0, 1] infinitesimally to obtain [0, 1]ε (cf. figure 3). The
key point is that the integral along [0, 1]ε is the same as along [0, 1] up to terms which vanish in
the limit, and the differential equation (E.1) goes through without change.

As in the case of generic twists, it will be convenient to define a generating function

TR
[
α1, ..., α`
b1, ..., b`

]
= lim

ε→0
TR
ε

[
α1, ..., α`
b1, ..., b`

]
, (F.1)

TR
ε

[
α1, ..., α`
b1, ..., b`

]
=

∫
0≤ti≤ti+1≤1

(γ∗RΩ(z1 − b1, α1, τ)dz1) . . . (γ∗RΩ(z` − b`, α`, τ)dz`) , (F.2)

where γR = [0, 1]ε and γ∗R denotes its pullback. Here and throughout this appendix, we will
denote the pullback of the coordinate zi along γR by ti. We note that in the case where all bi
are generic twists, we may pass to the limit ε → 0 immediately and integrate along the line
γR(t) = t, which leads to eq. (3.1). Pulling back Ω(z, α, τ)dz along γR, we obtain

γ∗RΩ(zi − bi, αi, τ)dzi = γ∗R e
−2πiriαiF (zi − bi, αi, τ)dzi︸ ︷︷ ︸

= Ω̃(zi−bi,αi,τ)dzi

+O(ε) , (F.3)

since Im(zi) is of order ε on [0, 1]ε.
The resulting form Ω̃(z, α, τ)dz is now meromorphic; therefore the integral over Ω̃(z, α, τ)dz

along any path depends exclusively on its homotopy class. In particular, since the paths [0, 1]ε
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are all homotopic for sufficiently small ε, for every such ε we get17

TR
[
α1, ..., α`
b1, ..., b`

]
= lim

ε→0
T̃R
ε

[
α1, ..., α`
b1, ..., b`

]
= T̃R

ε

[
α1, ..., α`
b1, ..., b`

]
,

T̃R
ε

[
α1, ..., α`
b1, ..., b`

]
=

∫
0≤ti≤ti+1≤1

(γ∗RΩ̃(z1 − b1, α1, τ)dz1) . . . (γ∗RΩ̃(z` − b`, α`, τ)dz`) . (F.4)

Furthermore, we define the intermediate object

T̃R
ε

[
α1, ..., αi
b1, ..., bi ; zi+1

]
=

∫
0≤t1≤...≤ti≤ti+1

(γ∗RΩ̃(z1 − b1, α1, τ)dz1) . . . (γ∗RΩ̃(zi − bi, αi, τ)dzi)

=
ti+1∫
0

γ∗R

(
Ω̃(zi − bi, αi, τ) T̃R

ε

[
α1, ..., αi
b1, ..., bi ; zi

]
dzi
)

(F.5)

with 0 < ti+1 < 1. It satisfies

∂zi+1 T̃R
ε

[
α1, ..., αi
b1, ..., bi ; zi+1

]
= Ω̃(zi+1 − bi, αi, τ) T̃R

ε

[
α1, ..., αi−1
b1, ..., bi−1 ; zi+1

]
. (F.6)

Using the above setup, we now show that all essential aspects of the computation (E.1) in
appendix E remain unchanged. Firstly, we compute the τ -derivative of γ∗RΩ̃ and obtain

2πi∂τγ∗R
(
Ω̃(zi − bi, αi, τ)dzi

)
= 2πi∂τ

(
e−2πiriαiF (γR(ti)− bi, αi, τ)dγR(ti)

)
= e−2πiriαi

[
(−2πiri∂γR(ti) + ∂γR(ti)∂αi)F (γR(ti)− bi, αi, τ)

]
dγR(ti)

= γ∗R

(
∂zi∂αiΩ̃(zi − bi, αi, τ)dzi

)
, (F.7)

using the mixed heat equation (B.4) for F (z, α, τ) in the second step. In particular, γ∗RΩ̃ itself
satisfies a mixed-heat type equation. Secondly, we may exchange the τ -derivative with the
integration

2πi∂τ T̃R
ε

[
α1, ..., α`
b1, ..., b`

]
=
∑̀
i=1

∫
0≤tj−1≤tj≤1

∏̀
j>i

(γ∗RΩ̃(zj − bj , αj , τ)dzj) (F.8)

×
ti+1∫
0

γ∗R

(
(∂zi∂αiΩ̃(zi − bi, αi, τ)) T̃R

ε

[
α1, ..., αi−1
b1, ..., bi−1 ; zi

]
dzi
)
,

since the τ -derivative of the integrand is bounded on the domain of integration. Rewriting the
ith integration using integration by parts yields

ti+1∫
0

γ∗R

(
(∂zi∂αiΩ̃(zi − bi, αi, τ)) T̃R

ε

[
α1, ..., αi−1
b1, ..., bi−1 ; zi

]
dzi
)

= γ∗R

(
∂αiΩ̃(zi+1 − bi, αi, τ)) T̃R

ε

[
α1, ..., αi−1
b1, ..., bi−1 ; zi+1

])
(F.9)

17Recall that the same argument has already been used in subsection 2.1 to show that our version of teMZVs
for proper rational twists is well-defined (more precisely that the limit in eq. (2.7) exists).
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−
ti+1∫
0

γ∗R

(
(∂αiΩ̃(zi − bi, αi, τ))Ω̃(zi−1 − bi−1, αi−1, τ) T̃R

ε

[
α1, ..., αi−2
b1, ..., bi−2 ; zi

]
dzi
)
,

as in the case of generic twists. Therefore, we may proceed further as in the computation of
eq. (E.1) and arrive at the same result simply by virtue of the replacements T→ TR

ε and Ω→ Ω̃.

G Properties of teMZVs

The purpose of this appendix is to gather constant terms and q-expansions of teMZVs as well
as selected relations relevant to the one-loop open-string amplitude in section 4.

G.1 Constant terms for generic twists

We start by listing a few simple examples for constant terms of teMZVs with generic twists.
These constant terms are obtained from eq. (3.18) by comparing the coefficients of words in
the non-commutative variables adnxb(y) on both sides, see eq. (3.14) for the change of alphabet
between the two sides. At length one, specializing eqs. (3.11) and (3.12) to r = 1

2 yields

ω0
( n
τ/2
)

=


2n−1 − 1

2n−2 ζn : n even

0 : n odd ,
(G.1)

see eq. (2.24) for the ω0(. . .) notation. This immediately implies that

ω0
(
..., 2k−1, ...
..., τ/2, ...

)
= 0 , k ∈ N , (G.2)

regardless on the position of the combined letter 2k−1
τ/2 . Similarly, higher-length examples include

ω0
(
n, 0
τ/2, 0

)
=


2n−1 − 1

2n−1 ζn : n even

0 : n odd
, ω0

(
1, n
0, τ/2

)
=

(−iπ)2n−1 − 1
2n−1 ζn : n even

0 : n odd

ω0
(

2, 0, 0
0, 0, 0

)
= −ζ2

3 , ω0
(

0, 1, 0, 0
0, 0, 0, 0

)
= 3ζ3

4π2 , ω0
(

0, 3, 0, 0
0, 0, 0, 0

)
= 0 (G.3)

ω0
(

1, 0, 2
0, 0, τ/2

)
= − iπ

3

24 , ω0
(

0, 2, 2
0, 0, τ/2

)
= − π4

108 , ω0
(

0, 1, 0, 2
0, 0, 0, τ/2

)
= ζ3

8 ,

and we obtain the following examples with more general twists b ∈ (ΛN + ΛNτ) \ Λ×N :

ω0
(

1
1/2+τ/3

)
= − iπ3 , ω0

(
2, 1, 0, 1
τ/2, τ/4, 0, 0

)
= − iπ48ζ3 + 5

8ζ4, (G.4)

ω0
(

1, 1
τ/3, τ/5

)
= −3

5ζ2, ω0
(

3, 1, 0, 1
2τ/5, 0, 0, τ/4

)
= − 9

125ζ2ζ3 . (G.5)

Given a twist b = s + rτ with r 6= 0, the constant term does not depend on s (cf. eqs. (3.11)
and (3.12)).

Up to weight five and length three (respectively weight three and length four), we have
checked the constant-term procedure for consistency with Fay relations among teMZVs which
can be derived along the lines of [10]. As already noted above, the constant-term procedure
discussed in subsection 3.2 covers all eMZVs occurring in the one-loop open-string amplitude at
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the orders considered in section 4. The examples presented here address all teMZVs relevant to
the calculations in section 4.3.

G.2 Constant terms for proper rational twists

For the proper rational twist b = 1
2 we arrive at the following examples of constant terms

ω0
(

1
1/2

)
= −iπ, ω0

(
2, 0, 1

1/2, 0, 1/2

)
= iπ3

24 − ζ2 log(2) , (G.6)

ω0
(

0, 1
0, 1/2

)
= − iπ2 + log(2) , ω0

(
1, 0, 0

1/2, 0, 0

)
= − iπ8 −

log(2)
2 , (G.7)

while twists b ∈ Λ×3 give rise to

ω0
(

1
1/3

)
= −iπ, ω0

(
1, 1

1/3, 2/3

)
= iπ

(
ζ
(

1
e4πi/3

)
− ζ

(
1

e2πi/3

))
− 3ζ2, (G.8)

ω0
(

1, 1, 2
0, 0, 1/3

)
= 5

2ζ4, ω0
(

1, 1, 0
1/3, 0, 0

)
= − iπ2 ζ

(
1

e2πi/3

)
+ 1

2ζ
(

2
e2πi/3

)
− ζ

( 1, 1
e4πi/3, e2πi/3

)
, (G.9)

ω0
(

1, 1, 0, 1
1/3, 0, 0, 0

)
= iπ

4 ζ2 + ζ2ζ
(

1
e2πi/3

)
+ iπ

4 ζ
(

2
e2πi/3

)
+ 1

4ζ
(

3
e2πi/3

)
− iπ

2 ζ
( 1, 1
e4πi/3, e2πi/3

)
− 1

2ζ
( 1, 2
e4πi/3, e2πi/3

)
− 1

2ζ
( 2, 1
e4πi/3, e2πi/3

)
,

(G.10)

see eq. (D.2) for the definition of cyclotomic MZVs ζ ( n1, n2, ..., nr
σ1, σ2, ..., σr ).

Again, consistency of the constant-term procedure with Fay relations among teMZVs has
been checked up to weights five and three at lengths three and four, respectively.

G.3 teMZV relations for the string amplitude

The simplification of the string amplitude in section 4.3 requires several relations among teMZVs
and eMZVs. The subsequent identities involving teMZVs can be proven by comparing both the
constant terms encoded in eq. (3.18) and the τ -derivatives eq. (3.5) of both sides. The relations
among eMZVs follow from a combination of Fay and shuffle identities [10] and are listed at
https://tools.aei.mpg.de/emzv/. At the second order in α′, we make use of

2ω
(

1, 1, 0
0, 0, 0

)
− ω

(
1, 0
0, 0

)2
= ω

(
2, 0, 0
0, 0, 0

)
+ 5ζ2

6 (G.11)

2ω
(

1, 1, 0
τ/2, τ/2, 0

)
− ω

(
1, 0
τ/2, 0

)2
= ω

(
2, 0, 0
0, 0, 0

)
+ ζ2

3 , (G.12)

while the simplifications at the order α′3 are based on the relations

ω
(

1, 0
0, 0

)3
− 3ω

(
1, 0
0, 0

)
ω
(

1, 1, 0
0, 0, 0

)
+ 3ω

(
1, 1, 1, 0
0, 0, 0, 0

)
= 1

6 ω
(

0, 3, 0, 0
0, 0, 0, 0

)
− 1

4 ζ3 − 4 ζ2 ω
(

0, 1, 0, 0
0, 0, 0, 0

)
(G.13)

ω
(

1, 0
τ/2, 0

)3
− 3ω

(
1, 0
τ/2, 0

)
ω
(

1, 1, 0
τ/2, τ/2, 0

)
+ 3ω

(
1, 1, 1, 0
τ/2, τ/2, τ/2, 0

)
= 1

6 ω
(

0, 3, 0, 0
0, 0, 0, 0

)
− 1

4 ζ3 + 2 ζ2 ω
(

0, 1, 0, 0
0, 0, 0, 0

)
. (G.14)
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G.4 q-expansions for the string amplitude

The eMZVs seen in the final results eqs. (4.55) and (H.26) for the integrals in the string amplitude
have the following q-expansions

ω(0, 0, 2) = −ζ2
3 + 2

∞∑
n,m=1

m

n2 q
mn

ω(0, 1, 0, 0) = 3ζ3
4π2 + 3

2π2

∞∑
n,m=1

1
n3 q

mn (G.15)

ω(0, 3, 0, 0) = −3
∞∑

n,m=1

m2

n3 q
mn .

These expressions follow from repeatedly integrating the Eisenstein series eq. (3.6) in the τ -
derivatives eq. (3.5) of the eMZVs in question. Analogous q-expansions for teMZVs with twists
bi ∈ {0, τ/2} can be determined based on

f (k) (τ/2) =


2k−1 − 1

2k−2 ζk −
2(2πi)k

(k − 1)!

∞∑
n,m=1

(
n− 1

2

)k−1
qm(n−1/2) : k even

0 : k odd
. (G.16)

H The non-planar integral along with Tr(t1t2t3)Tr(t4)

In this appendix, we investigate the low-energy expansion of the integral eq. (4.6) associated
with the color factor Tr(t1t2t3)Tr(t4) in the one-loop four-point open-string amplitude. The
representations eqs. (4.12) and (4.13) of the Green functions allow to cast the integral into the
form

I123|4(q) =
∫ 4

123

3∏
1≤i<j

∞∑
nij=0

(sij Γ ( 1
0 ;xij))nij
nij !

3∏
j=1

∞∑
nj4=0

(
sj4 Γ

(
1
τ/2 ;xj4

))nj4

nj4! (H.1)

analogous to eq. (4.23), where c(q) cancels by momentum conservation eq. (4.5), and the inte-
gration measure is defined by∫ 4

123
=
∫ 1

0
dx4

∫ 1

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1 δ(x1) (H.2)

=
∫ 1

0
dx4 δ(x4)

(∫ 1

0
dx3

∫ x3

0
dx2

∫ x2

0
dx1 + cyc(x1, x2, x3)

)
.

One can check through the change of variables xi → 1 − xi and symmetry properties of the
Green function that the measure

∫ 4
132 with x2 and x3 interchanged yields the same result for

the integral eq. (H.1). Hence, one can equivalently employ the simpler measure eq. (4.22) with
xi ∈ [0, 1] tailored to the color structure Tr(t1t2)Tr(t3t4) and rewrite

I123|4(q) = 1
2

∫ 34

12

3∏
1≤i<j

∞∑
nij=0

(sij Γ ( 1
0 ;xij))nij
nij !

3∏
j=1

∞∑
nj4=0

(
sj4 Γ

(
1
τ/2 ;xj4

))nj4

nj4! . (H.3)

In the remainder of this appendix, we will follow the steps of subsection 4.3 to expand the
integral I123|4(q) to the order α′3, where the representation eq. (H.3) is most convenient for
practical purposes. While the elliptic iterated integrals in this expansion lead to teMZVs for
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each monomial in sij , the final results for the orders α′≤3 turn out to comprise eMZVs only.

H.1 Structure of the leading orders α′≤3

We start by classifying the inequivalent integrals w.r.t. the cycle structure of Tr(t1t2t3) Tr(t4)
which occur at the orders α′≤3 of eq. (H.1): With the shorthands Pij = P (xij) and

Q̂ij = Q(xij)− c(q) = Γ
(

1
τ/2 ;xij

)
, (H.4)

we have two inequivalent cases at the first order,

e1
1 =

∫ 4

123
P12 , e1

2 =
∫ 4

123
Q̂14 , (H.5)

six cases at the second order,

e2
1 = 1

2

∫ 4

123
P 2

12 , e2
3 =

∫ 4

123
P12P13 , e2

5 =
∫ 4

123
P12Q̂34 (H.6)

e2
2 = 1

2

∫ 4

123
Q̂2

14 , e2
4 =

∫ 4

123
Q̂14Q̂24 , e2

6 =
∫ 4

123
P12Q̂14 ,

and fourteen cases at the third order:

e3
1 = 1

6

∫ 4

123
P 3

12 , e3
6 = 1

2

∫ 4

123
Q̂2

14Q̂24 , e3
11 =

∫ 4

123
P12P13Q̂14

e3
2 = 1

6

∫ 4

123
Q̂3

14 , e3
7 = 1

2

∫ 4

123
P 2

12Q̂14 , e3
12 =

∫ 4

123
P12P13Q̂24

e3
3 = 1

2

∫ 4

123
P 2

12P13 , e3
8 = 1

2

∫ 4

123
P 2

12Q̂34 , e3
13 =

∫ 4

123
P12Q̂14Q̂24 (H.7)

e3
4 =

∫ 4

123
P12P13P23 , e3

9 = 1
2

∫ 4

123
P12Q̂

2
14 , e3

14 =
∫ 4

123
P12Q̂14Q̂34

e3
5 =

∫ 4

123
Q̂14Q̂24Q̂34 , e3

10 = 1
2

∫ 4

123
P12Q̂

2
34 .

H.2 teMZVs at orders α′≤3

As a next step, we evaluate the above eij in terms of teMZVs, using the equivalence of the
measures

∫ 4
123 and 1

2
∫ 34

12 noted in eqs. (H.1) and (H.3). By largely recycling the results of
section 4.3, we obtain the following expressions at the first order,

e1
1 = 1

2d
1
1 = 1

2 ω
(

1, 0
0, 0

)
, e1

2 = 1
2d

1
2
∣∣
c(q)→0 = 1

2 ω
(

1, 0
τ/2, 0

)
, (H.8)

the following ones at the second order,

e2
1 = 1

2d
2
1
∣∣
c(q)→0 = 1

2 ω
(

1, 1, 0
0, 0, 0

)
, e2

3 = 1
2d

2
4
∣∣
c(q)→0 = 1

2 ω
(

1, 0
0, 0

)2
(H.9)

e2
2 = 1

2d
2
2
∣∣
c(q)→0 = 1

2 ω
(

1, 1, 0
τ/2, τ/2, 0

)
, e2

4 = 1
2d

2
5
∣∣
c(q)→0 = 1

2 ω
(

1, 0
τ/2, 0

)2
(H.10)

e2
5 = 1

2d
2
3
∣∣
c(q)→0 = 1

2 ω
(

1, 0
0, 0

)
ω
(

1, 0
τ/2, 0

)
= e2

6 , (H.11)
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and the following ones at the third order:

e3
1 = 1

2d
3
1 = 1

2 ω
(

1, 1, 1, 0
0, 0, 0, 0

)
(H.12)

e3
2 = 1

2d
3
2
∣∣
c(q)→0 = 1

2 ω
(

1, 1, 1, 0
τ/2, τ/2, τ/2, 0

)
(H.13)

e3
3 = 1

2d
3
5 = 1

2 ω
(

1, 1, 0
0, 0, 0

)
ω
(

1, 0
0, 0

)
(H.14)

e3
4 = 1

2 ω
(

1, 0
0, 0

)3
− ζ2 ω

(
0, 1, 0, 0
0, 0, 0, 0

)
+ 1

6 ω
(

0, 3, 0, 0
0, 0, 0, 0

)
(H.15)

e3
5 = 1

2d
3
12
∣∣
c(q)→0 = 1

2 ω
(

1, 0
τ/2, 0

)3
(H.16)

e3
6 = 1

2d
3
7
∣∣
c(q)→0 = 1

2 ω
(

1, 1, 0
τ/2, τ/2, 0

)
ω
(

1, 0
τ/2, 0

)
(H.17)

e3
7 = 1

2d
3
3
∣∣
c(q)→0 = 1

2 ω
(

1, 1, 0
0, 0, 0

)
ω
(

1, 0
τ/2, 0

)
= e3

8 (H.18)

e3
9 = 1

2d
3
4
∣∣
c(q)→0 = 1

2 ω
(

1, 1, 0
τ/2, τ/2, 0

)
ω
(

1, 0
0, 0

)
= e3

10 (H.19)

e3
11 = 1

2d
3
8
∣∣
c(q)→0 = 1

2 ω
(

1, 0
0, 0

)2
ω
(

1, 0
τ/2, 0

)
= e3

12 (H.20)

e3
13 = 1

2d
3
11
∣∣
c(q)→0 = 1

2 ω
(

1, 0
τ/2, 0

)2
ω
(

1, 0
0, 0

)
+ 1

6 ω
(

0, 3, 0, 0
0, 0, 0, 0

)
(H.21)

e3
14 = 1

2d
3
9
∣∣
c(q)→0 = 1

2 ω
(

1, 0
τ/2, 0

)2
ω
(

1, 0
0, 0

)
. (H.22)

Expressions for d3
11 (cf. eq. (4.45)) and e3

4 are derived in appendix I.

H.3 Assembling the orders α′≤3

Similar to eq. (4.47), momentum conservation18 leaves the following contributions to the integral
eq. (H.1) at the orders α′≤3,

I123|4(q) = 1
2 + (s2

12 + s12s23 + s2
23)(2e2

1 + 2e2
2 − e2

3 − e2
4) (H.23)

+ s12s23(s12 + s23) (−3e3
1 − 3e3

2 + 3e3
3 − e3

4 − e3
5 + 3e3

6 − 3e3
13 + 3e3

14) + O(α′4) ,

in agreement with the α′≤1 results of ref. [31]. The combinations of eij can be expressed in terms
of eMZVs

I123|4(q)
∣∣
s2

12+s12s23+s2
23

= ω
(

1, 1, 0
0, 0, 0

)
− 1

2 ω
(

1, 0
0, 0

)2
+ ω

(
1, 1, 0
τ/2, τ/2, 0

)
− 1

2 ω
(

1, 0
τ/2, 0

)2

= 7ζ2
12 + ω(0, 0, 2) (H.24)

I123|4(q)
∣∣
s12s23(s12+s23) = 3

2 ω
(

1, 0
0, 0

)
ω
(

1, 1, 0
0, 0, 0

)
− 3

2 ω
(

1, 1, 1, 0
0, 0, 0, 0

)
− 1

2 ω
(

1, 0
0, 0

)3

18We have already exploited the equalities e2
5 = e2

6 , e3
7 = e3

8 , e3
9 = e3

10 and e3
11 = e3

12 in simplifying I123|4(q)
to the expression in eq. (H.23).
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+ 3
2 ω

(
1, 0
τ/2, 0

)
ω
(

1, 1, 0
τ/2, τ/2, 0

)
− 3

2 ω
(

1, 1, 1, 0
τ/2, τ/2, τ/2, 0

)
− 1

2 ω
(

1, 0
τ/2, 0

)3

+ ζ2 ω(0, 1, 0, 0)− 2
3 ω(0, 3, 0, 0)

= 2 ζ2 ω(0, 1, 0, 0)− 5
6 ω(0, 3, 0, 0) + ζ3

4 , (H.25)

where we have used the teMZV relations of appendix G.3.

H.4 Summary of the orders α′≤3

Once we insert the simplified expressions eqs. (H.24) and (H.25) for the combinations of eij , the
leading low-energy orders of the integral eq. (H.23) boil down to the following eMZVs:

I123|4(q) = 1
2 + (s2

12 + s12s23 + s2
23)
(7ζ2

12 + ω(0, 0, 2)
)

+ s12s23(s12 + s23)
(
2 ζ2 ω(0, 1, 0, 0)− 5

6 ω(0, 3, 0, 0) + ζ3
4
)

+O(α′4) . (H.26)

From the constant terms of the eMZVs gathered in eq. (G.3), our result eq. (H.26) is consistent
with the tree-level expression

I123|4(q) = − 1
π2

[ Γ(s12)Γ(s23)
Γ(1 + s12 + s23) + cyc(1, 2, 3)

]
+O(q) (H.27)

= 1
2 + 1

4ζ2(s2
12 + s12s23 + s2

23) + 1
2ζ3s12s23(s12 + s23) +O(q, α′4) ,

which is known to arise at the q0 order of the integral I123|4(q) [32].

I Sample integrals in non-planar string amplitudes

In this appendix, we will derive the results eqs. (4.45) and (H.15) for d3
11 and e3

4, respectively.
These integrals are the most difficult cases at the orders α′≤3 because the Green functions form
closed subcycles such as PijPikPjk and PijQikQjk. Identities between elliptic iterated integrals
will be seen to yield answers in terms of teMZVs, and the extensions of these manipulations to all
weights and lengths [30] guarantee that each term in the low-energy expansion of the integrals
eqs. (4.23) and (H.1) can be expressed in terms of teMZVs.

I.1 The d3
11 integral from PijQikQjk

The contributions to d3
11 with at least one factor of c(q) are equivalent to those in d3

9, so it is
sufficient to study∫ 34

12
P34Q13Q14

∣∣
c(q)→0 = 2

∫ 1

0
dx4

∫ x4

0
dx3 Γ

(
1
τ/2 ;x3

)
Γ
(

1
τ/2 ;x4

) (
−
∫ x4

x3
du f (1)(u− x4)

)
= −2

∫ 1

0
dx4 Γ

(
1
τ/2 ;x4

) ∫ x4

0
du f (1)(u− x4)

∫ u

0
dx3 Γ

(
1
τ/2 ;x3

)
(I.1)

= −2
∫ 1

0
dx4 Γ

(
1
τ/2 ;x4

)
Γ
(

1 0 1
x4 0 τ/2 ;x4

)
.

In the first step, we have exploited that the integration regions with 0 ≤ x3 ≤ x4 ≤ 1 and
0 ≤ x4 ≤ x3 ≤ 1 yield the same contributions by the symmetry of the integrand P34Q13Q14
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under exchange of x3 and x4. Moreover, we have used the integral representation P34 =
−
∫ x4
x3

du f (1)(u − x4) of the Green function, reparametrized the integration domain with 0 ≤
x3 ≤ u ≤ x4 and applied the definition eq. (2.1) of elliptic iterated integrals.

The elliptic iterated integral Γ
(

1 0 1
x4 0 τ/2 ;x4

)
in the last line of eq. (I.1) is not yet suitable for

integration over x4 in its present form due to the twofold appearance of the integration variable.
As explained in [30], Fay relations among the weighting functions allow to derive a differential
equation in x4 whose integration yields the alternative representation

Γ
(

1 0 1
x4 0 τ/2 ;x4

)
= Γ ( 0 0 2

0 0 0 ;x4) + Γ
(

0 0 2
0 0 τ/2 ;x4

)
+ Γ

(
0 2 0
0 τ/2 0 ;x4

)
− Γ

(
0 1 1
0 τ/2 τ/2 ;x4

)
− Γ

(
0 1 1
0 τ/2 0 ;x4

)
. (I.2)

After shuffle multiplication with Γ
(

1
τ/2 ;x4

)
, the integral over x4 in eq. (I.1) can be readily

performed, e.g.∫ 1

0
dx4 Γ

(
1
τ/2 ;x4

)
Γ
(

0 1 1
0 τ/2 0 ;x4

)
=
∫ 1

0
dx4

[
Γ
(

1 0 1 1
τ/2 0 τ/2 0 ;x4

)
+ 2 Γ

(
0 1 1 1
0 τ/2 τ/2 0 ;x4

)
+ Γ

(
0 1 1 1
0 τ/2 0 τ/2 ;x4

) ]
= Γ

(
0 1 0 1 1
0 τ/2 0 τ/2 0 ; 1

)
+ 2 Γ

(
0 0 1 1 1
0 0 τ/2 τ/2 0 ; 1

)
+ Γ

(
0 0 1 1 1
0 0 τ/2 0 τ/2 ; 1

)
= ω

(
1
τ/2

)
ω
(

1, 1, 0, 0
0, τ/2, 0, 0

)
− ω

(
1, 1, 0, 0, 1
0, τ/2, 0, 0, τ/2

)
(I.3)

for the rightmost term in eq. (I.2). The shuffle operation in the last step of eq. (I.3) together
with ω

(
1
τ/2

)
= 0 reduces the number of terms and leads to the following end result

∫ 34

12
P34Q13Q14

∣∣
c(q)→0 = 2ω

(
2, 0, 0, 0, 1
0, 0, 0, 0, τ/2

)
+ 2ω

(
2, 0, 0, 0, 1
τ/2, 0, 0, 0, τ/2

)
+ 2ω

(
0, 2, 0, 0, 1
0, τ/2, 0, 0, τ/2

)
− 2ω

(
1, 1, 0, 0, 1
0, τ/2, 0, 0, τ/2

)
− 2ω

(
1, 1, 0, 0, 1
τ/2, τ/2, 0, 0, τ/2

)
. (I.4)

Finally, the expression for d3
11 in eq. (4.45) results from the eMZV relation

2ω
(

2, 0, 0, 0, 1
0, 0, 0, 0, τ/2

)
+ 2ω

(
2, 0, 0, 0, 1
τ/2, 0, 0, 0, τ/2

)
+ 2ω

(
0, 2, 0, 0, 1
0, τ/2, 0, 0, τ/2

)
(I.5)

− 2ω
(

1, 1, 0, 0, 1
0, τ/2, 0, 0, τ/2

)
− 2ω

(
1, 1, 0, 0, 1
τ/2, τ/2, 0, 0, τ/2

)
= ω

(
1, 0
0, 0

)
ω
(

1, 0
τ/2, 0

)2
+ 1

3 ω
(

0, 3, 0, 0
0, 0, 0, 0

)
.

I.2 The e3
4 integral from PijPikPjk

A similar strategy applies to e3
4 in eq. (H.7),∫ 4

123
P12P13P23 =

∫ 1

0
dx3

∫ x3

0
dx2 Γ ( 1

0 ;x2) Γ ( 1
0 ;x3)

(
−
∫ x3

x2
du f (1)(u− x3)

)
= −

∫ 1

0
dx3 Γ ( 1

0 ;x3) Γ
( 1 0 1
x3 0 0 ;x3

)
, (I.6)

where the relevant identity among elliptic iterated integrals reads

Γ
( 1 0 1
x3 0 0 ;x3

)
= 2 Γ ( 0 0 2

0 0 0 ;x3) + Γ ( 0 2 0
0 0 0 ;x3)− 2 Γ ( 0 1 1

0 0 0 ;x3) + ζ2 Γ ( 0
0 ;x3) . (I.7)
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Note the extra term ζ2 Γ ( 0
0 ;x3) in comparison to the analogous identity eq. (I.2). Upon insertion

into eq. (I.6), we obtain∫ 4

123
P12P13P23 = 2ω(2, 0, 0, 0, 1) + ω(0, 2, 0, 0, 1)− 2ω(1, 1, 0, 0, 1)− 1

2ζ2 ω(1, 0) , (I.8)

which translates into the expression eq. (H.15) for e3
4 by the eMZV relation

2ω(2, 0, 0, 0, 1) + ω(0, 2, 0, 0, 1)− 2ω(1, 1, 0, 0, 1)− 1
2ζ2 ω(1, 0)

= 1
2 ω(1, 0)3 − ζ2 ω(0, 1, 0, 0) + 1

6 ω(0, 3, 0, 0) . (I.9)

J Some all-order contributions

For certain contributions to the integral eq. (4.3) in the non-planar open-string amplitude,
closed-form expressions in terms of teMZVs can be given to all orders in the α′-expansion. In
the context and notation of subsection 4.3, we find

dn;1 = 1
n!

∫ 34

12
P (x12)n = 1

n!

∫ 1

0
dx2

n∏
i=1

∫ x2

0
dyi f (1)(yi) = ω

(
1, ..., 1, 0
0, ..., 0, 0

)
︸ ︷︷ ︸
n times

(J.1)

dn;2 = 1
n!

∫ 34

12
Q(x13)n = 1

n!

∫ 34

12

(
n∑
r=0

(
n

r

)
c(q)n−r Γ

(
1
τ/2 ;x3

)r)

=
n∑
r=0

1
(n− r)!c(q)

n−r ω
(

1, ..., 1, 0
τ/2, ..., τ/2, 0

)
︸ ︷︷ ︸
r times

(J.2)

dn,m;1 = 1
n!m!

∫ 34

12
P (x12)nP (x34)m = dn;1dm;1

= ω
(

1, ..., 1, 0
0, ..., 0, 0

)
︸ ︷︷ ︸
n times

ω
(

1, ..., 1, 0
0, ..., 0, 0

)
︸ ︷︷ ︸
m times

(J.3)

dn,m;2 = 1
n!m!

∫ 34

12
P (x12)nQ(x13)m = dn;1dm;2

= ω
(

1, ..., 1, 0
0, ..., 0, 0

)
︸ ︷︷ ︸
n times

m∑
r=0

1
(m− r)!c(q)

m−r ω
(

1, ..., 1, 0
τ/2, ..., τ/2, 0

)
︸ ︷︷ ︸
r times

(J.4)

dn,m;3 = 1
n!m!

∫ 34

12
Q(x13)nQ(x14)m = dn;2dm;2 (J.5)

dn,m,p;1 = 1
n!m!p!

∫ 34

12
P (x12)nP (x34)mQ(x13)p = dn;1dm,p;2 = dn;1dm;1dp;2 (J.6)

dn,m,p;2 = 1
n!m!p!

∫ 34

12
P (x12)nQ(x13)mQ(x14)p = dn;1dm,p;3 = dn;1dm;2dp;2 . (J.7)
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