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Abstract

In this paper we use tools from differential topology to give a geometric description of cohomology
for Hilbert manifolds. Our model is Quillen’s geometric description of cobordism groups for finite-
dimensional smooth manifolds [Quillen, ‘Elementary proofs of some results of cobordism theory
using steenrod operations’, Adv. Math., 7 (1971)]. Quillen stresses the fact that this construction
allows the definition of Gysin maps for ‘oriented’ proper maps. For finite-dimensional manifolds
one has a Gysin map in singular cohomology which is based on Poincaré duality, hence it is
not clear how to extend it to infinite-dimensional manifolds. But perhaps one can overcome this
difficulty by giving a Quillen type description of singular cohomology for Hilbert manifolds. This
is what we do in this paper. Besides constructing a general Gysin map, one of our motivations was a
geometric construction of equivariant cohomology, which even for a point is the cohomology of the
infinite-dimensional space BG, which has a Hilbert manifold model. Besides that, we demonstrate
the use of such a geometric description of cohomology by several other applications. We give a
quick description of characteristic classes of a finite-dimensional vector bundle and apply it to a
generalized Steenrod representation problem for Hilbert manifolds and define a notion of a degree
of proper oriented Fredholm maps of index 0.
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1. Introduction

Quillen [32] has given a geometric description of cobordism groups for finite-
dimensional smooth manifolds M . Those were originally defined in terms of the
Thom spectrum. His description is, roughly, in terms of bordism classes of proper
maps from manifolds to M . This looks almost identical to the description of the
corresponding homology groups which are given as bordism classes of maps from
compact manifolds to M . Quillen [32, page 30], gives a motivation for his work:
‘I have been strongly influenced by Grothendieck’s theory of motives in algebraic
geometry and like to think of a cobordism theory as a universal contravariant
functor on the category of C∞ manifolds endowed with a Gysin homomorphism
for a class of proper “oriented” maps, instead of as the generalized cohomology
theory given by a specific Thom spectrum.’ In singular cohomology, a Gysin map
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A geometric description of cohomology for Hilbert manifolds 3

for ‘oriented’ proper maps between finite-dimensional manifolds can be defined
using Poincaré duality to locally finite homology. Can one extend this to infinite-
dimensional manifolds?

Even before Quillen, the idea of a geometric description of special cohomology
classes in a Hilbert manifold X came up in a paper by Eells ([8], page 801 (D)):
‘Alexander–Pontrjagin duality suggests that a p-codimensional submanifold A of
X should represent some sort of homology class of X of dimension∞− p . . . We
are now not in the possession of a definite theorem of that kind.’ A different
answer to this was given by [11] for closed bounded subsets of normed linear
spaces.

These two statements are our main motivation to look for a geometric
description of singular cohomology for Hilbert manifolds. The idea is to give
a Quillen type construction of singular cohomology for Hilbert manifolds.
Baker and Özel have studied the generalization of Quillen’s construction of
complex cobordism to Hilbert manifolds [2]. For finite-dimensional manifolds
the first author [18] has given a geometric description of singular cohomology
using bordism classes of certain stratified spaces, called stratifolds, instead of
manifolds. Our idea is to generalize this to infinite dimensions.

The obvious thing to do would be to define Hilbert stratifolds generalizing
the finite-dimensional stratifolds. We do not see a straightforward way to do
this. For the description of cohomology groups of finite-dimensional manifolds
we do not need to define stratifolds on their own. The cocycles of our theory
are singular stratifolds, these are proper maps f : S → M from a stratifold
to M . The concept of singular stratifolds in M can be generalized to oriented
singular Hilbert stratifolds f : S → M , where M is a Hilbert manifold. Then
one can consider cobordism groups SH k(M) as in the finite-dimensional setting
and obtain a contravariant functor. As in the finite-dimensional setting Gysin
maps are only defined for certain maps f : M → N , in our situation these are
proper oriented Fredholm maps. We also define a nonoriented version, which
leads to cohomology groups SH k(M,Z/2). We explain the details later. Our main
theorems are:

THEOREM 1. The functors SH k(M) on Hilbert manifolds M together with the
coboundary operator d form a cohomology theory on Hilbert manifolds, by which
we mean that those are homotopy functors, the coboundary operator d is natural
and the Mayer–Vietoris sequence is exact.

If f : M → N is a proper oriented Fredholm map of index r , then composition
with f defines a Gysin map

f! : SH k(M)→ SH k−r (N ).

The analogous statements hold for SH k(M;Z/2).
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M. Kreck and H. Tene 4

THEOREM 2. There are natural isomorphisms of multiplicative cohomology
theories

H k(M;Z)→ SH k(M),

and

H k(M;Z/2)→ SH k(M;Z/2).

There are other reasons for looking for a geometric theory. The geometric
nature of singular homology (one catches a hole by a chain of simplices) is
very useful both in theory and in computations. One would like to use similar
methods for the more ‘abstract’ singular cohomology. For example, representing
cohomology classes by submanifolds can be useful for computing cup products
by intersection or for computing induced maps. Also characteristic classes have
a simple description in this language. Since not all cohomology classes are
represented by submanifolds, or even by proper maps from a manifold, one needs,
in general, singular objects like stratified spaces. Given this one can compute cup
products and similar pairings geometrically by taking transversal intersections.

Another motivation for our work is an extension of the geometric description
of singular cohomology to equivariant cohomology (in terms of the Borel
construction) for compact Lie group G actions. In the case of equivariant
homology such an extension is very simple. The groups are given by bordism
classes of equivariant maps from compact stratifolds with a free G-action
to M [36]. Similar groups were constructed by MacPherson [24] using
pseudomanifolds instead of stratifolds. As in the nonequivariant case, one
could consider the corresponding theory given by proper equivariant maps from
stratifolds with a free G-action to M . This is a cohomology theory (which was
studied in [36]), but it is not the cohomology of the Borel construction. The
modification needed is to replace M by M × EG, as expected from the Borel
construction. Since EG is not a finite-dimensional manifold (unless G is trivial)
we can no longer work in the finite-dimensional setting. To solve this, we note
that there is a model for EG as a Hilbert manifold. If one considers M × EG, it
is clear that also the stratifolds have to be replaced by stratifolds whose strata are
Hilbert manifolds.

Besides the geometric description of equivariant cohomology with the main
application of the construction of a general Gysin map, we demonstrate the use
of a geometric description in some examples. We give a quick description of
characteristic classes of finite-dimensional vector bundles and define a notion of
degree for proper Fredholm maps of index 0.
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A geometric description of cohomology for Hilbert manifolds 5

2. Hilbert manifolds and Fredholm maps

In this part we discuss some basic properties of Hilbert manifolds and Fredholm
maps. We refer to [23] regarding Hilbert manifolds and to the appendix in [1]
regarding Fredholm maps.

2.1. Definitions and fundamental properties. A smooth Hilbert manifold is
a manifold modeled on a real Hilbert space with smooth transition maps. We
always assume that the Hilbert spaces H are infinite-dimensional and separable
and the manifolds are Hausdorff and admit a countable basis. From now
on we refer to smooth Hilbert manifolds just as Hilbert manifolds. A pair (M,
∂M) is called a Hilbert manifold with boundary if it has an atlas modeled on the
upper half space - [0,∞) × H . The boundary ∂M is the set of points which are
mapped onto H×{0} by some chart. It can be shown that the boundary is a Hilbert
manifold and has a collar.

The theory of Hilbert manifolds enjoys many nice properties, we state a few:

(1) [9, Theorem 1A] Every infinite-dimensional smooth Hilbert manifold is
diffeomorphic to an open subset of the Hilbert space.

(2) [22, Theorem 2] Let H be an infinite-dimensional (real respectively complex)
Hilbert space then the general linear group GL(H) (over R respectively C)
is contractible. This implies that every vector bundle with structure group
GL(H) over a space which has the homotopy type of a CW complex is
trivial.

(3) [3, Theorem 0.1] Any homotopy equivalence of pairs f : (N , ∂N ) →
(M, ∂M) between smooth infinite-dimensional Hilbert manifolds with
boundary is homotopic to a diffeomorphism of pairs.

Let V and W be two Hilbert spaces. A bounded linear operator f : V → W
having both finite-dimensional kernel and cokernel is called a Fredholm operator.
The index of f is defined to be:

index( f ) = dim(ker f )− dim(coker f ).

Note that if V and W are finite-dimensional then the index is independent of f :

index( f ) = dim(V )− dim(W ).

This definition can be extended to smooth maps between Hilbert manifolds.
Let M and N be two Hilbert manifolds. A smooth map f : M → N is called a
Fredholm map if the differential at each point is Fredholm. The index of f at a
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M. Kreck and H. Tene 6

point x ∈ M is given by ind(d fx), and it is locally constant. If {ind(d fx)|x ∈ M}
is bounded from above then we call the upper bound the index of f and denote it
by ind( f ).

3. Singular Hilbert stratifolds

We now define Hilbert stratifolds. We first repeat the definition of finite-
dimensional stratifolds from [18] since the basic structure is the same, although
the setting is different. We consider a topological space S together with its
sheaf of continuous functions, considered as a sheaf of R-algebras. We consider
subsheaves F of the sheaf of continuous functions, where F(U ) is a subalgebra
for each open subset U . Without extra mentioning, all sheaves in the following
are of this type. This is the only datum we need for the definition of stratifolds;
the stratifolds are given by such a sheaf F which fulfills certain properties.

To formulate the properties we introduce certain notations. If (S, F) and
(S ′, F ′) are as before we call a continuous map f : S → S ′ a smooth map
from (S, F) to (S ′, F ′) if ρ f ∈ F( f −1(U )) for all ρ ∈ F ′(U ). A bijective map
f , such that f and f −1 are smooth, is called a diffeomorphism. If M is a smooth
manifold and F is the sheaf of smooth functions then this definition of smooth
functions and diffeomorphisms agrees with the ordinary definition in terms of
local coordinates. In turn, a pair (S, F) which is locally diffeomorphic to (Rn,

C∞(Rn)) induces a natural structure of a smooth manifold on S where the smooth
atlas is given by all local diffeomorphisms to (Rn,C∞(Rn)).

There are seven conditions a stratifold has to fulfill. In particular, these
conditions will imply that S is the union of pairwise disjoint subsets called
strata, such that these subsets, together with the restriction of the sheaf F , are
smooth manifolds. To define these subsets we recall that given the sheaf F we
can consider at a point x ∈ S the stalk Γ (F)x of smooth functions and define the
tangent space Tx(S) at x as the vector space of derivations of Γ (F)x . If (S, F)
is a smooth manifold this is one of the definitions of the tangent space. We define
the r -stratum as

Sr
:= {x ∈ S| dim Tx(S) = r},

and the r -skeleton as
Σ r
:=

⋃
i6r

S i .

DEFINITION 1. An n-dimensional stratifold is a pair (S, F) such that the
following conditions are fulfilled:

(I) S is a Hausdorff space admitting a countable basis.
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A geometric description of cohomology for Hilbert manifolds 7

(II) Sr is empty for r > n.

(III) The skeleta are closed subspaces.

(IV) For each x ∈ S and open neighborhood U there is a function ρ : S → R>0

in F such that supp ρ ⊆ U and ρ(x) 6= 0.

(V) The strata together with the restriction of F are smooth manifolds.

(VI) For each x ∈ Sr the restriction of germs is an isomorphism:

Γ (F)x → Γ (F |Sr )x .

(VII) If f1, f2, . . . , fn are smooth functions in F and g : Rn
→ R is smooth, then

g( f1, . . . , fn) is a smooth function in F .

REMARK 1. Condition IV implies that S is a regular topological space, which
together with the fact that it is second countable (by I), implies it is paracompact.
It is easy to see that using paracompactness and the functions in IV, one can obtain
a smooth partition of unity with respect to every open covering.

For more details about stratifolds see [18]. In this book bordism classes of
certain stratifolds were used to define a homology theory for topological spaces,
which for CW -complexes agrees with singular homology, and a cohomology
theory for smooth manifolds, which agrees with singular cohomology. In
this paper we study the generalization of the cohomology theory to infinite-
dimensional manifolds.

It is natural to ask how this relates to other concepts of stratified spaces in
differential topology, in particular Mather’s abstract prestratified spaces [25].
Anna Grinberg has analyzed this carefully and proved that an abstract prestratified
space has the structure of a stratifold. But Mather has additional data, which we
do not need for our purpose, namely a certain control function ρ. He also uses
the language of tubular neighborhoods and retracts, whereas we use the sheaf
language in which we formulate conditions which give Mather’s neighborhoods
and retracts. For details we refer to Grinberg’s paper [13].

To define singular cohomology groups for finite-dimensional manifolds M of
dimension m we consider pairs (S, f ), where (S, F) is a stratifold of dimension
m − n and f : S → M is a proper map. The condition ‘proper’ is essential since
this reflects Poincaré duality. Namely, if M is compact, it forces S to be compact
and so Poincaré duality is a tautology. On the other hand it allows to consider the
class given by the identity, which represents 1 in H 0(M).
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M. Kreck and H. Tene 8

There is an obvious problem with a generalization of the concept of stratifolds
to infinite dimensions, since the dimension of the tangent spaces cannot be used
to distinguish the strata. For that reason, we have to pass to singular Hilbert
stratifolds in a Hilbert manifold M . For our purpose this is enough since the
singular Hilbert stratifolds in M will be the cocycles of our cohomology theory –
as in the finite-dimensional setting.

Let M be a Hilbert manifold which we equip with the sheaf of smooth functions.
We consider a topological space S together with a subsheaf F of the sheaf of
continuous functions as before together with a smooth map f : S → M . Now we
can consider for each x ∈ S the differential d fx : TxS → Tx M of f at x . We call
f a Fredholm map if d fx has finite kernel and cokernel for each x ∈ S . At each
point x ∈ S we consider the index ind d fx := dim ker(d fx)− dim coker(d fx). We
note that if M is a point, then if f : S → pt is a Fredholm map, this implies that
all strata as defined above are finite-dimensional and the dimension is the index
of d fx at a point x in the stratum. Thus the following is a direct generalization of
the concept of strata to the infinite-dimensional setting, if we consider the case
where M is a point.

We define the r -stratum as

Sr
:= {x ∈ S| ind d fx = r},

and the r -skeleton as
Σ r
:=

⋃
i6r

S i .

With these concepts the definition of a singular Hilbert stratifold is a
generalization of the finite-dimensional setting:

DEFINITION 2. A singular Hilbert n-stratifold in a Hilbert manifold M is given
by a space S together with a sheaf F of continuous functions as before and a
proper Fredholm map

f : S → M

such that the conditions (I)–(VII) are fulfilled. Two singular Hilbert n-stratifolds
(S, f ) and (S ′, f ′) are isomorphic if there is an homeomorphism g : S → S ′
which induces an isomorphism of sheaves and such that f ′g = f .

For the definition of cohomology classes we need – as in the finite-dimensional
setting – the concept of a regular singular Hilbert stratifold, which is a pair (S,
f ) such that for each x ∈ S in the kth stratum Sk there is an open neighborhood V
in S and a finite-dimensional stratifold F whose 0th stratum consists of a single
point ∗ such that the restriction to V is isomorphic to (V ∩ Sk) × F , and the
restriction of f to (V ∩ Sk)× {∗} is given by the projection on the first factor.
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A geometric description of cohomology for Hilbert manifolds 9

The constructions made in [18] generalize without any change to the infinite-
dimensional setting. In particular the construction of the product of two singular
Hilbert stratifolds using local retractions works in our context. This was used
above when we defined regular stratifolds and will later be used for the cross
product in cohomology.

REMARK 2. For finite-dimensional stratifolds the number of nonempty strata is
automatically finite. In the infinite-dimensional setting this is not implied and we
do not require it. The reason is that otherwise the theory we get is, a priory, not
an additive cohomology theory in the sense of Milnor, that is the cohomology of
a disjoint union is the product of the cohomology of the components.

Simple examples of singular Hilbert stratifolds are given by the product of a
finite-dimensional singular stratifold f : S → P (S and P finite-dimensional)
with a Hilbert manifold M to obtain an infinite-dimensional singular stratifold in
P × M :

f × id : S × M → P × M.

We also define Hilbert stratifolds with boundary. We do it in an analogous way
to the way it is done for finite-dimensional stratifolds. A singular Hilbert stratifold
with boundary in a Hilbert manifold M is given by the following data:

(1) A topological space T and a closed subspace ∂T .

(2) A continuous map f : T → M , whose restrictions to ∂T and T − ∂T are
singular Hilbert stratifolds.

(3) A homeomorphism c : ∂T × [0, ε) → U ⊆ T , the collar of T , for some
ε > 0, where U is an open neighborhood of ∂T in T , whose restriction
to the boundary is the identity and to the complement of the boundary an
isomorphism of stratifolds.

(4) The map f has to commute with the retract given by the collar c, that is
f c(x, t) = f (x).

There are two things which relate singular Hilbert stratifolds and singular
Hilbert stratifolds with boundary. First, the boundary of a singular Hilbert
stratifold with boundary is itself a singular Hilbert stratifold (without boundary).
Secondly, one can glue two singular Hilbert stratifolds with boundary along an
isomorphism between their boundary components to obtain a singular Hilbert
stratifold. This is done using the collar of the boundary in the same way as in
the case of finite-dimensional stratifolds as described in [18].
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M. Kreck and H. Tene 10

A singular Hilbert k-stratifold is called orientable if its −(k + 1) stratum is
empty and the restriction of the map to the −k stratum is orientable in the sense
of [21] (that is, an orientation of the determinant line bundle). In this case, an
orientation is a choice of an orientation of the restriction to the −k stratum. Note,
that the −k stratum is the top stratum. We want to define induced orientations
on the boundary. If F |T−∂T is a singular Hilbert stratifold with boundary with
an orientation in the interior of T , then there is an induced orientation on the
boundary by requiring that the collar c is compatible with the product orientation
on the cylinder as explained in [21] and the orientation of F |T−∂T . By construction,
an orientation of the cylinder induces opposite orientations on the two ends.

4. Stratifold cohomology for Hilbert manifolds

With these definitions, all concepts and theorems for the stratifold cohomology
of finite-dimensional manifolds can be generalized to Hilbert manifolds.

For the sake of brevity, we give the following definition.

DEFINITION 3. A geometric k-cocycle is an oriented, regular, singular Hilbert
k-stratifold, and a nonoriented geometric k-cocycle is a regular, singular Hilbert
k-stratifold.

DEFINITION 4. We define SH k(M) to be the set of geometric k-cocycles in M
modulo cobordism. Here we also require that the bordisms are oriented, regular
singular Hilbert stratifolds. Addition is given by disjoint union, the inverse is
given by reversing the orientation.

REMARK 3. To see that SH k(M) is a set, note that all Hilbert stratifolds are
of bounded cardinality (continuum) and topologies and sheaves of real functions
defined on a given set is again a set.

4.1. Induced maps. In the finite-dimensional setting, for a map f : M → N
which is transversal to a map from a stratifold g : S → N the pullback is a
singular stratifold in M , which gives a cohomology class in M . In general, we
approximate f by a map which is transversal to g to define the induced map.

The pullback of transversal intersection of Hilbert manifolds has a natural
structure of a Hilbert manifold, and similarly for Hilbert stratifolds. It is also easy
to see that the pullback of the orientation line bundle is naturally isomorphic to
the orientation line bundle of the pullback. These facts imply that in the case of a
submersion the pullback induces a well-defined homomorphism in cohomology.
It is also known that every continuous map between Hilbert manifolds is
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A geometric description of cohomology for Hilbert manifolds 11

homotopic to a submersion (even an open embedding) by Theorem 8.4 in [4].
The problem is that it is not clear why the induced maps given by two homotopic
submersions are equal. Therefore, we give an alternative description for induced
maps for general maps.

We start with a definition for submersions, where induced maps are defined
using pullback. We reduce the induced map for a general map f : M → N to the
case of submersions by the standard trick factoring f over N × M . The trick of
extending induced maps from submersions to continuous maps is useful in other
contexts, hence the details appear in a separate note [20]. To carry this out we
need the following proposition, whose proof, which is technical, we postpone to
the end of this subsection:

PROPOSITION 1. Let π : E → M be the projection of a vector bundle with fibers
finite-dimensional or Hilbert space H over a Hilbert manifold M. Then

π∗ : SH k(M)→ SH k(E)

is an isomorphism.

Assuming that, we define induced maps for the inclusion i of a closed (as
topological space) submanifold M ⊆ N of infinite codimension. To do that,
choose a tubular neighborhood U of M in N with projection π . Given a class
in the cohomology of N , restrict it to U using the fact that the inclusion of U in N
is a submersion. Then apply (π∗)−1

: SH k(U )→ SH k(M) using Proposition 1.
By the uniqueness theorem for tubular neighborhoods this is independent of the
choice of U . In general, we define induced maps as follows

f ∗ := i∗ p∗ : SH k(N )→ SH k(M),

where p is the projection M×N → N and i is the inclusion of M to M×N given
by (id, f ). Note, that a homotopy between f and f ′ induces an isotopy between
(id, f ) and (id, f ′) and between their tubular neighborhoods. This implies that
the induced map depends only on the homotopy class of f .

This definition is a bit unsatisfactory since it uses the inverse of the map induced
by the retraction of the tubular neighborhood. For concrete computations it is
better to consider the map

i∗ : SH k(M)→ SH k(U )

instead. We later see, after we have defined the Kronecker product and the linking
pairing, how to decide whether two classes in SH k(U ) agree.

As usual, one can define induced maps for arbitrary continuous maps f : M →
N by approximating f by a homotopic smooth map g.
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M. Kreck and H. Tene 12

In the note [20] we show (in a more general setting) that this definition for
a submersion agrees with the original one given by the pullback. In particular,
id∗ = id, and ( f g)∗ = g∗ f ∗. Thus, we have a contravariant homotopy functor on
the category of Hilbert manifolds and continuous maps.

We would like to relate this definition to the standard definition using
transversality. We first prove the following lemma.

LEMMA 1. Let M be a Hilbert manifold and H the Hilbert space, and consider
the inclusion of the zero section i : M → M × H. If α ∈ SH k(M × H) is
represented by a geometric cocycle g : S → M × H which is transversal to the
zero section, then i∗(α) is represented by the pullback g′ : S ′→ M.

Proof. Let ρ : [0, 1] → [0, 1] be a smooth function which is 0 near 0 and 1 near
1. The map h : M × H × [0, 1] → M × H given by (m, h, t) 7→ (m, ρ(t) · h)
is transversal to g, since for ρ(t) 6= 0 it is a submersion and for ρ(t) = 0 we use
that g is transversal to the zero section. Thus we can consider the pullback of g
under h to obtain a cobordism between g : S → M × H and S ′ × H → M × H ,
which implies the lemma.

COROLLARY 1. Let f : M → N be a smooth map between Hilbert manifolds.
If α ∈ SH k(N ) is represented by a geometric cocycle g : S → N which is
transversal to f then f ∗(α) is represented by the pullback along f .

Proof. Let πN : M × N → N be the projection and j : U → M × N be the
inclusion of the tubular neighborhood of the image of M in M × N under the
embedding (id, f ). Then f ∗ = (id, f )∗ ◦ j∗ ◦ π∗N . j and πN are submersions,
hence j∗ ◦ π∗N is represented by the pullback h : T → U , which is transversal
to (id, f ) since g : S → N is transversal to f . The fact that (id, f )∗ is given
by pullback follows from Lemma 1. Since the composition of pullbacks is the
pullback of the composition we are done.

The proof of Proposition 1.

LEMMA 2. Let M be Hilbert manifold which is diffeomorphic to the product
M ′× H, where M ′ is a smooth, finite-dimensional manifold. Then the projections
M × H → M and M × R→ M induce isomorphisms in cohomology.

Proof. It is enough to prove the statement for M = M ′ × H . Given an element
[ f : S → M ′ × H ] ∈ SH k(M ′ × H), then the composition with the projection
π ◦ f : S → H is Fredholm, so by Smale’s Theorem [34], π ◦ f has a regular
value, say 0 ∈ H (compose with a translation, if necessary), and its preimage is
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A geometric description of cohomology for Hilbert manifolds 13

a (finite-dimensional) stratifold S ′. Let ρ : [0, 1] → [0, 1] be a smooth function
which is 0 near 0 and 1 near 1. The map h : M ′× H ×[0, 1] → M ′× H given by
(m, r, t) 7→

(
m, ρ(t) · r

)
is transversal to f , since for ρ(t) 6= 0 it is a submersion

and for ρ(t) = 0 we use that 0 is a regular value of π ◦ f . Thus we can consider the
pullback of f under h to obtain a cobordism between [ f ] and [S ′×H → M ′×H ].
Using the fact that Hilbert manifolds are stable (M is diffeomorphic to M × H ) it
is easy to see that this implies that both induced maps are isomorphisms.

COROLLARY 2. For a smooth, oriented, finite-dimensional manifold M ′ the
natural transformation SH k(M ′) → SH k(M ′ × H) given by [S ′ → M ′] →
[S ′ × H → M ′ × H ] is an isomorphism. In particular, the coefficients of our
theory (which are the cohomology groups of H) are given by

SH k(H) = 0 f or k 6= 0

and
SH 0(H) ∼= Z.

Proof. In Lemma 2, we showed that this map is surjective. To show it is injective,
just note that the same method will show that if S ′ × H → M ′ × H bounds,
then it is also the boundary of a stratifold of the form T ′ × H → M ′ × H with
∂T ′ = S ′.

We now define a coboundary operator and prove the exactness of the Mayer–
Vietoris sequence in the following setting: Let M be a Hilbert manifold and U, V
an open cover, together with a diffeomorphism ψ : N×R→ U ∩V , such that the
image of the zero section is a closed submanifold of M , and N is diffeomorphic to
a product of a finite-dimensional smooth manifold and H . In this case, we define
a coboundary operator d : SH k(U ∩ V )→ SH k(M) to be the composition

SH k(U ∩ V )
ψ∗

−→ SH k(N × R) (π∗)−1

−−−→ SH k(N )
i!
−→ SH k+1(M)

where the second map is defined using Lemma 2, and the last map is the Gysin
map given by composition [S → N ] 7→ [S → M]. Here we use the fact that the
inclusion of N in M is proper (its image is a closed submanifold) and Fredholm
and oriented (its normal bundle is finite-dimensional and oriented).

LEMMA 3. The Mayer–Vietoris sequence in this special case is exact.

Proof. The proof of the exactness of the Mayer–Vietoris sequence was worked
out for stratifold cohomology in [18, page 202ff], and the same arguments apply
here.
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M. Kreck and H. Tene 14

We now prove Proposition 1.

Proof. (Proposition 1) We start with the case of infinite dimensional fibers. In
this case the bundle is trivial. By [9, Theorem 3E], there exists a sequence of open
subsets Zn ⊆ M (n ∈ N) such that the following conditions hold: (1) Zn ⊆ Zn+1

for every n. (2)∪Zn = M . (3) For every n, Zn is diffeomorphic to the product of an
n-dimensional manifold with the Hilbert space. (They prove it in a more general
setting, where M is a Banach manifolds which satisfies certain conditions).

Following Milnor, we look at the telescope T =
⋃
∞

n=1 Zn × (n,∞) which
has the structure of a Hilbert manifold. The projection map to M is a weak
homotopy equivalence, hence by Whitehead’s theorem together with the fact that
Hilbert manifolds have the homotopy type of CW complexes, it is a homotopy
equivalence. This implies that T is actually diffeomorphic to M . We decompose
T into two open subsets

U = T ∩
(

M ×
∞⋃

n=0

(2n, 2n + 2)
)
, U = T ∩

(
M ×

∞⋃
n=0

(2n + 1, 2n + 3)
)
.

Note that U has the homotopy type (and hence diffeomorphic to)
⋃
∞

n=0 Z2n+1, V
has the homotopy type (and hence diffeomorphic to)

⋃
∞

n=0 Z2n+2 and U ∩ V has
the homotopy type (and hence diffeomorphic to)

⋃
∞

n=0 Z2n+1. Since for every n,
Zn is diffeomorphic to the product of the Hilbert space with a finite-dimensional
manifold, by Lemma 2 and additivity, the statement is true for U, V and U ∩ V .
Using the Mayer–Vietoris and the five Lemma, the statement is also true for T ,
and hence for M . The case where the fibers are finite-dimensional follows from
the first one by looking at the maps E × H → E → M .

4.2. A generalized Gysin map. For finite-dimensional closed oriented
manifolds M and N of dimension m and n, and a map f : M → N one defines
the Gysin map f! : H k(M)→ H n−m+k(N ) as the conjugation of f∗ by the maps
given by Poincaré duality. If M and N are not closed one can define the Gysin
map for proper maps in a similar way using locally finite homology groups. If M
and N are not oriented but the map f is oriented one can also define the Gysin
map by using twisted locally finite homology groups.

If M is a smooth closed (as topological space) submanifold in N with oriented
normal bundle, then the Gysin map has a different description as the composition
of the Thom isomorphism and the push forward. This description extends to the
case of Hilbert manifolds. If M is a Hilbert submanifold of N with k-dimensional
oriented normal bundle, then one obtains the Gysin map

i! : H l(M;Z)→ H k+l(N ;Z)
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A geometric description of cohomology for Hilbert manifolds 15

by applying the Thom isomorphism and the push forward map.
This is an important tool. Although simple to define computations are not

easy since the Thom class is not constructed but a class which is uniquely
characterized by certain properties and the push forward is constructed using a
tubular neighborhood. In our context the Thom class is just the class represented
by the zero section and push forward is composition with the inclusion. Thus the
Gysin map has a simple description, it is just the composition with the inclusion.
This description allows an immediate generalization to proper oriented Fredholm
maps f : M → N .

DEFINITION 5. For a proper oriented Fredholm map f : M → N of index k we
define the Gysin map

f! : SH l(M)→ SH l−k(N )

[g : S → M] 7→ [ f g : S → N ].

Here are some properties of the Gysin map. The Gysin map is functorial:

PROPOSITION 2. If f : M → N and g : N → P are proper oriented Fredholm
maps, then g! ◦ f! = (g ◦ f )!

Proof. This is clear, since in both cases the maps are defined by composition with
the composed orientation, which are associative.

The following proposition relates the Gysin maps and the induced maps:

PROPOSITION 3. Suppose that the following is a (topological) pullback diagram
of Hilbert manifolds such that the maps into N are transversal and the horizontal
maps are proper oriented Fredholm maps

Q
f̃ //

g̃
��

P

g

��
M

f // N .

Then,
g∗ ◦ f! = f̃! ◦ g̃∗.

Proof. We prove it in a few steps.
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M. Kreck and H. Tene 16

(1) There are two cases where the statement is clear. The first is when g is a
submersion, then it follows from the fact that the composition of pullbacks is
the pullback of the composition. The second is for diagrams of the form

Q
f̃ //

id×0
��

P

id×0
��

Q × V
f̃×id // P × V,

where V is a vector space, simply because every element in SH k(Q × V ) is
represented by a map S × V → Q × V .

(2) If the statement holds true for two diagrams, where the bottom map of the
first is the top map of the second one then it also holds true for the diagram
obtained by concatenating the two.

(3) Assume that there is a technical homotopy ht between g and a submersion
g′, such that for each t ∈ R ht is either g or a submersion (in particular
transversal to f ). Let Q0 = Q, Q1 the pullback of the diagram which
involves g′ and Qh the pullback of the diagram which involves the homotopy,
with the inclusions i0 : Q0 → Qh and i1 : Q1 → Qh:

Q0
f̃ //

g̃
��

P

g

��

Q1
f̃ ′ //

g̃′

��

P

g′

��

Qh
f̃h //

h̃
��

P × R

h
��

M
f // N M

f // N M
f // N .

Since g ∼ g′ we know that g′∗ = g∗. The map g′ is a submersion, hence
f̃ ′! ◦ g̃′

∗

= g′∗ ◦ f! = g∗ ◦ f!, hence in order to show that g∗ ◦ f! = f̃! ◦ g̃∗

it is enough to show that f̃! ◦ g̃∗ = f̃ ′! ◦ g̃′
∗

. Note that both g̃ and g̃′ factor
through Qh , hence it is enough to show that f̃! ◦ i∗0 = f̃ ′! ◦ i∗1 . Look at the
corresponding diagrams

Q0
f̃ //

i0

��

P

id×0
��

Q1
f̃ ′ //

i1

��

P

id×1
��

Qh
f̃h // P × R Qh

f̃h // P × R.

The vertical maps factor through the tubular neighborhoods, giving us two
diagrams such that by (1) the statement holds true, hence by (2) the statement
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A geometric description of cohomology for Hilbert manifolds 17

holds true for those diagrams. Since id× 0 ∼ id× 1, their induced maps are
equal. Altogether, we get that f̃! ◦ i∗0 = f̃ ′! ◦ i∗1 , and the statement holds true
for g.

(4) Consider the following diagram

Q × H
f̃×id //

g̃◦π
��

P × H

g◦π

��
M

f // N ,

where H is the Hilbert space and π : P × H → P is the projection. Let

U ⊆ P × N be a tubular neighborhood of P
id×g
−−→ P × N , and U

l
−→ N the

restriction of the projection. There is a diffeomorphism U ∼= P × H , under

which the map P → U corresponds to the zero section P
id×{0}
−−−→ P × H . Let

ρ : R→ R be a smooth, nondecreasing map, with ρ(x) = 0 for all x 6 0.1
and ρ(x) = 1 for all x > 0.9. Define a homotopy h : P × H × R→ N by

ht(p, v) = h(p, v, t) = l(p, ρ(t) · v).

Note that ht fulfills the conditions in (3), hence the statement holds true for
this diagram.

(5) Concatenating the diagram in (1) with the one in (4) we obtain the original
diagram. Then, by (2), the statement holds true in general.

4.3. Multiplicative structure. Let M and N be two Hilbert manifolds, we
define an exterior product:

SH k(M)⊗ SH l(N )→ SH k+l(M × N )

by setting [S → M] ⊗ [T → N ] → (−1)kl
[S × T → M × N ]. We set the

orientation of the product using the product orientation (see [21]). With our
convention for the product orientation one checks as in [18, page 135], that the
product is graded commutative. Note that this agrees with the sign of the product
in the finite-dimensional case when dim M is even. If dim M is odd we cannot use
T M as η(ξ), since we simplified the signs occurring thereby assuming that η(ξ) in
the definition of the determinant line bundle is always even. Nevertheless, in order
to prove that the natural transformation is multiplicative it is enough to prove it
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M. Kreck and H. Tene 18

for the case where M is even-dimensional, using the fact that both products are
natural and that every odd-dimensional manifold M is homotopy equivalent to the
even-dimensional manifold M × R.

The cup product is defined in the standard way using pullback along
the diagonal map. Clearly, with this definition, the induced map is a ring
homomorphism. From Corollary 1 one can prove the following.

PROPOSITION 4. If two classes are represented by transversal cocycles then their
cup product is represented by their transversal intersection.

We also have the relation with the Gysin map:

PROPOSITION 5. For a proper oriented Fredholm map f : M → N the Gysin
map is a map of SH ∗(N ) modules.

Proof. This follows from Proposition 3 when looking at the following diagram

M

(id, f )
��

f // N

(id,id)
��

M × N
( f,id) // N × N .

4.4. The cohomology axioms. By a cohomology theory h on the category
of Hilbert manifolds and smooth maps we mean a sequence of contravariant
homotopy functors hk(M) together with a natural exact Mayer–Vietoris sequence
for open subsets.

We now define the coboundary operator. This is done by a trick following
Dold [6]. For open subsets U and V of M one replaces the triple (M;U, V )
by its thickening (M ′;U ′, V ′). Namely, we replace:

M by M ′ := (U × (−∞,−1)) ∪ (U ∩ V × (−∞,∞)) ∪ (V × (1,∞)),
U by U ′ := (U × (−∞,−1)) ∪ (U ∩ V × (−∞,∞)) and
V by V ′ := (U ∩ V × (−∞,∞)) ∪ (V × (1,∞)).

Then U ′ ∩ V ′ = (U ∩ V )× (−∞,∞). The advantage is that there is a separating
submanifold, namely (U ∩ V ) × {0}. Then the coboundary operator is defined
as

d := SH k((U ∩ V )× {0})
i!
−→SH k+1(U ′ ∪ V ′)

(π∗)−1

−→ SH k+1(U ∪ V ),
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A geometric description of cohomology for Hilbert manifolds 19

where π is the projection and i! is the Gysin map given by composition. The fact
that π∗ is an isomorphism follows from the fact that π is a homotopy equivalence.

THEOREM 3. The Mayer–Vietoris sequence is exact

· · · → SH k−1(U ∩ V )
d
−→ SH k(U ∪ V )→ SH k(U )⊕ SH k(V )

→ SH k(U ∩ V )→ · · ·

Proof. This follows from the fact that for the thickened triple the coboundary
coincides with the coboundary we had before, and we already know that in this
case the Mayer–Vietoris sequence is exact.

We show that this cohomology theory is isomorphic to singular cohomology
by constructing a natural transformation and applying the comparison theorem.
Besides the cohomology axioms we need to know the coefficients of the theory,
which in the case of a cohomology theory defined only for Hilbert manifolds
means to know SH ∗(H), the cohomology of the Hilbert space, which was
done in Corollary 2. This completes the proof of Theorem 1, showing that
SH k(M) is a cohomology theory with Gysin maps. The construction and proof
for SH k(M;Z/2) is analogous.

5. Relation to singular (co)homology

In this section we construct a natural isomorphism from singular cohomology
to stratifold cohomology which commutes with all our structures. Before we do
this, we introduce relative cohomology groups which are useful, for example, to
formulate the Thom isomorphism Theorem. We also relate stratifold cohomology
to singular homology via a cap product which is used to define the Kronecker
product.

5.1. Relative cohomology groups and the Thom isomorphism. In the
earlier sections we have defined an absolute cohomology theory, rather than
cohomology for pairs. We find this more natural since in the world of manifolds,
a priori, only pairs of a manifold and a submanifold make sense. Nevertheless, in
certain situations relative groups are useful, for example if we consider the Thom
isomorphism. Thus we define relative cohomology groups, but only for a Hilbert
manifold and a closed (as topological subspace) submanifold. This was done
by Dold for finite-dimensional manifolds and singular cobordism [6]. The same
constructions and arguments work in infinite dimensions and singular Hilbert
stratifolds. Thus we can be rather short and refer to Dold for details.
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M. Kreck and H. Tene 20

Let A be a closed (as a topological subspace) smooth submanifold of a Hilbert
manifold M , of finite or infinite dimension. We define the relative cohomology
groups SH k(M, A) as the cobordism classes of geometric cocycles f : S →
M \ A, such that f is proper when considered as map to M .

Now we construct the long exact sequence of the pair (M, A). The restriction
map

i∗ : SH k(M, A)→ SH k(M)

is given by considering for f : S → M \ A the map f as a map to M . The
coboundary operator is defined using a tubular neighborhood U of A in M .
Denote by SE the sphere bundle with π its projection to A and i its inclusion
to M , then we define δ = i! ◦ π∗. This is independent of the choices and gives a
well-defined homomorphism

δ : SH k(A)→ SH k+1(M, A).

Following the arguments of Dold, one proves that one obtains a long exact
sequence of the pair (M, A).

The definition of induced maps is similar to the one in the absolute case, but
one has to be a bit more careful. We first define induced maps for submersions
f : M → N mapping A ⊆ M to B ⊆ N . Here f ∗ : SH k(N , B)→ SH k(M, A) is
given by pullback. In the special case where f = p : E → M is a smooth vector
bundle, one can look at the sequences of the pairs (M, A) and (E, E |A), then by
the 5-lemma we deduce that the induced map p∗ : SH r (M, A)→ SH r (E, E |A) is
an isomorphism. Using this we define induced maps for arbitrary smooth maps f :
(M, A)→ (N , B) as in the absolute case. To do this we consider a cohomology
class represented by a geometric cocycle g : S → N . Since g is proper and N
is metrizable, g is a closed map [30]. Thus there is an open neighborhood V
of B which is disjoint from the image of g. Using this one can choose an open
tubular neighborhood ν → M × N of (id, f )(M) in M × N , with projection p,
which is small enough such that the image of p−1(A) under the projection map
π : M × N → N is disjoint from the image of g. Therefore, the pullback of g
represents a class in (ν, p−1(A)) and we can apply p∗−1 to get a class in SH k(M,
A). By standard arguments this is well defined and independent on the choice of
the neighborhood V . Summarizing we have constructed an induced map for a
map of pairs f : (M, A)→ (N , B), where A and B are closed (as topological
spaces) submanifolds:

f ∗ : SH k(N , B)→ SH k(M, A).

Given induced maps one can define the cup product. If f : S → M represents
a class in SH k(M, A) and f ′ : S ′ → M ′ represents a class in SH r (M ′), then
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A geometric description of cohomology for Hilbert manifolds 21

f × f ′ : S ×S ′→ M ×M ′ represents a class in SH k+r (M ×M ′, A×M ′). This
induces a product

× : SH k(M, A)⊗ SH r (M ′)→ SH k+r (M × M ′, A × M ′).

If M = M ′ the composition with the map induced by the diagonal gives the
relative cup product

∪ : SH k(M, A)⊗ SH r (M)→ SH k+r (M, A).

Now we consider the Thom isomorphism. Let p : E → M be a finite-
dimensional oriented smooth vector bundle equipped with a Riemannian metric.
We denote the disc bundle by DE and the sphere bundle by SE . We observe
that the pair of topological spaces (DE, SE) is homotopy equivalent to the pair
(E, SE). Thus we can consider the Thom class of (E, SE) instead of (DE,
SE). The Thom class in singular cohomology is not explicitly constructed, one
proves that there is a unique class compatible with the local orientation of E .
In stratifold cohomology the situation is much easier. The 0-section is a proper
oriented Fredholm map and so it represents a cohomology class

θ(E) ∈ SH k(E, SE),

where k is the dimension of E . This is our definition of the Thom class.
Restricting it to open balls B around a point x ∈ M one obtains Thom classes
of B × Rn , which are determined by the local orientation of E at x . Thus our
Thom class agrees with the Thom class mentioned above. The cup product with
the Thom class gives an isomorphism SH r (M) → SH r+k(E, SE). With our
definition of the Thom class this map has a very simple explicit interpretation, it
maps a geometric cocycle f : S→ M to the composition with the 0-section. And
with this interpretation of the cup product the proof of the Thom isomorphism
Theorem is an observation:

THEOREM 4 (Thom isomorphism). Let p : E → M be a k-dimensional oriented
vector bundle. Then the cup product with the Thom class

SH n(M)→ SH n+k(E, SE)

is equal to the composition

[ f : S → M] 7→ [s f : S → E],

where s is the 0-section, and it is an isomorphism.
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Proof. Let α ∈ SH k(M) be an element represented by a geometric cocycle g :
S → M . Since p is a submersion, p∗ is given by pullback, which is transversal to
the zero section, hence by Lemma 4 their cup product is given by their intersection,
which is given by the composition S g

−→ M
s
−→ E .

To see it is an isomorphism, note that every class in SH n+k(E, SE) can be
represented by a geometric cocycle whose image lies in the open disc bundle E0.
The reason is that every cocycle is the sum of a geometric cocycle whose image
lies E0, and a geometric cocycle whose image lies E∞, the complement of the disc
bundle, and the latter is null bordant, since a null bordism can be taken to be the
open cylinder pushing the cocycle to∞. For this reason, one can define a Gysin
map SH k+n(E, SE)→ SH k(M), which is the inverse of the Thom map.

This gives a description of the Gysin map, in the case of embeddings f : M →
N of a closed (as a topological space) submanifold of finite codimension with
oriented normal bundle, in terms of the Thom isomorphism:

COROLLARY 3. The Gysin map i! : SH n(M) → SH n+k(N ) is equal to the
composition

SH n(M)
π∗

−→ SH n(E)
−∪τ
−−→ SH n+k(E, SE)

φ
−→ SH n+k(N , SE)→ SH n+k(N )

where E is the tubular neighborhood of M in N, SE is the sphere bundle and the
map φ is given by composition, using the fact that classes in SH n+k(E, SE) can
be represented by maps whose image lies in E0.

5.2. A natural isomorphism with singular cohomology. In this subsection
we prove a generalization of Theorem 2 to the case of relative cohomology
groups.

THEOREM 5. There are natural isomorphisms

Φk : H k(M, A)→ SH k(M, A)

commuting with the exterior product, the coboundary in the exact pair sequence
and in the absolute case with the coboundary in the Mayer–Vietoris sequence and
the Gysin map of an embedding of a closed (as a subspace) submanifold of finite
codimension with an oriented normal bundle.

Proof. We interpret H k(M, A;Z) as the group of homotopy classes of maps of
pairs into the pointed Eilenberg–MacLane space K (Z, k) which has a Hilbert
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manifold model. For each K (Z, k) we construct a class ιk ∈ SH k(K (Z, k), ∗),
and Φk will be given by pulling ιk back.

For k = 0, a model for K (Z, 0) is Z× H . We describe ι0. Let S =
⋃

r∈Z Sr be
the disjoint union of Sr = N|r |× H where N|r | is a set with |r | elements. The map
S → Z × H is the one induced by the projections Sr → {r} × H . (This means
that there are |r | copies of H which are mapped to {r} × H .) The orientation is
the positive one when r > 0 and negative one when r < 0.

For k > 0, consider K (Z, k) as a Hilbert manifold by starting with Sk
×H×[0,

1] and attaching handles to kill all higher homotopy groups. The interior of this
Hilbert manifold is our model for K (Z, k). Using the Mayer–Vietoris sequence
the restriction to Sk

× H × (0, 1) induces an isomorphism SH k(K (Z, k)) →
SH k(Sk

×H×(0, 1)). By the Mayer–Vietoris sequence we obtain an isomorphism
SH k(Sk

×H× (0, 1)) ∼= SH 0(H) ∼= Z, where a generator is given by the identity
map H → H . We denote the corresponding class in SH k(K (Z, k), ∗) by ιk (we
may assume that the image of this geometric cocycle does not contain ∗).

With this we construct a map Φk : [(M, A), (K (Z, k), ∗)] → SH k(M, A) by

Φk([ f : M → K (Z, k)]) = f ∗(ιk).

By construction, Φk commutes with induced maps. To see it is a homomorphism,
note that the map induced by K (Z, k)×K (Z, k)→ K (Z, k)maps ιk to (p∗1(ιk)+
p∗2(ιk)) by the standard trick. To show it commutes with the exterior product one
only has to show this in the universal case. There it can be reduced to the case of
the product of two spheres where the statement is clear.

Let f : M → N be an embedding of a closed (as a subspace) submanifold
of finite codimension with an oriented normal bundle. In Corollary 3 the Gysin
map in stratifold cohomology was shown to be equal to composition of induced
maps, Thom isomorphism and push forward SH n+k(E, SE)

φ
−→ SH n+k(N , SE).

A similar description holds for singular cohomology, where the push forward
is given by mapping the complement of the disc bundle to ∗. To show that Φ
commutes with the Gysin map, it is enough to prove that Φ commutes with
induced maps, with the Thom isomorphism and with the push forward. We
already proved the naturality of Φ. The fact that Φ commutes with the Thom
isomorphism follows from the fact that it is multiplicative, and maps the Thom
class to the Thom class, because the Thom class in stratifold cohomology satisfies
the characterization of the Thom class. Commuting with the push forward is clear
by construction.

Since the coboundary operator d in the Mayer–Vietoris can be obtained by the
composition of induced maps and Gysin maps for embeddings it follows that Φ
also commutes with d .
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Thus we have, in the absolute case, a natural transformation of cohomology
theories. A similar argument to the one used in Proposition 1, using the telescope
construction, shows that it is an isomorphism, since this holds true for X = H
(Proposition 2). Here we use Milnor’s additivity axiom [26] that the cohomology
of a disjoint union of manifolds Mi is the direct product of the cohomology groups
of the Mi ’s.

From the fact that Φ is an isomorphism in the absolute case, the statement for
relative cohomology groups follows by the 5-Lemma if Φ commutes with the
coboundary operator in the exact pair sequence. A similar argument to the one
used for d in the Mayer–Vietoris shows that Φ commutes with the coboundary
of the pair sequence when those are defined. In stratifold cohomology we defined
δ to be the composition of the pullback to the sphere bundle and the Gysin map,
which is also true in singular cohomology.

5.3. The ∩-product and the Gysin map in homology, the Kronecker pairing
and the linking form. The cap product plays an important role relating
homology and cohomology. We construct it by considering also a geometric
version of singular homology using stratifolds. We also describe the linking
form, which together with the Kronecker product gives a way of comparing
(co)homology classes. The same technique is used later to describe a Gysin map in
homology for proper oriented Fredholm maps between Hilbert manifolds. Such
a Gysin map in bordism was constructed by Morava [27]. He then speculated
the existence of such a map in singular homology. Later Mukherjea [28] has
constructed a Gysin map in the setting of Fredholm manifolds (Banach manifolds
with some extra structure), though he was not able to show that it is independent
of the Fredholm filtration.

We start by describing singular homology groups via stratifolds. More precisely
we use p-stratifolds [18, page 23]. In [18] we have used general stratifolds but for
the transversality theorem we are proving below we do not see a simple way to
get it for general stratifolds. Both sorts of stratifolds describe singular homology
of spaces which have the homotopy type of a CW -complex, as we show below.
The p-stratifolds are stratifolds, which are inductively constructed starting with a
zero-dimensional manifold, which is the 0-stratum, and attaching k-dimensional
manifolds W to the (k−1)-skeleton via smooth proper maps. The sheaf of smooth
functions is also constructed inductively after distinguishing a germ of a collar of
∂W in W . It is given by the functions, whose restriction to the (k − 1)-skeleton
is contained in the sheaf and whose restriction to the interior of W is smooth
and commute with the retract given by a fixed choice of a collar of ∂W in W . In
addition we assume, like we did it in our description of cohomology, that S is a
regular stratifold. Bordism classes of closed k-dimensional regular p-stratifolds
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with oriented top stratum and empty (k − 1)-stratum together with a continuous
map to a topological space X form a homology theory SHk(X). The fact that
it is a homology theory was carried out for general stratifolds in [18] and the
same arguments apply for p-stratifolds. The relative fundamental class of the top
stratum of a closed p-stratifold S induces a fundamental class [S] ∈ Hk(S;Z).
Assigning to a class [ f : S → X ] the image of [S] gives a natural isomorphism

SHk(X)
∼= // Hk(X;Z).

Now we give the construction of the cap product in a Hilbert manifold M

∩ : SH k(M)⊗ SHl(M) // SHl−k(M).

Let f : S → M be a representative of a class in SH k(M) and g : P → M
a representative of a class in SHl(M). We say that g is transversal to f , if
the restriction of both maps to all strata are pairwise transversal, and also each
stratum of S is transversal to the composition of g with the attaching map
∂W k
→ P → M . In this case, the transversal intersection is a compact, oriented

(l − k)-dimensional stratifold.

PROPOSITION 6. Let f : S → M be a geometric cocycle and g : P → M be
a map from a finite-dimensional regular p-stratifold P to M, which on a closed
subset A of P is transversal to f . Then g is homotopic to g′ rel. A, such that g′ is
transversal to f .

Proof. The key is the transversality theorem by Smale [34, Theorem 3.1], which
says that if f : N → M is a Fredholm map and g : V → M is a smooth embedding
of a finite-dimensional manifold, that g can be approximated by a map transversal
to f . There is also a relative version, where one assumes g is already transversal
to f on a closed subset A. We first weaken the assumptions a bit. In the absolute
case we do not need to assume that the map g is an embedding since we can
approximate all maps from a finite-dimensional manifold to a Hilbert manifold
by an embedding. In the relative case we restrict ourselves to the case, where A
is the boundary of V and g is transversal on the boundary. Now we approximate
g|∂V by an embedding and use a collar to approximate g by a map g′, which on
∂V agrees with g and outside an open neighborhood is an embedding. Then we
use Smale to approximate g′ by a transversal map which on ∂V agrees with g.

We apply this to the case, where N is the disjoint union of all strata of S ,
which is itself a Hilbert manifold. Then we proceed inductively over the manifolds
W n . Suppose that g restricted to the n-skeleton of P is already transversal to f .
Since P is regular, this implies that the composition with the attaching map on
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∂W n+1 is also transversal to f . Then we apply our version of Smale’s Theorem
to approximate g on the (n + 1)-skeleton by a transversal map. We extend this
homotopy inductively to a smooth map on P as follows. Suppose that we have
extended this homotopy to the n + r skeleton then consider the attaching map of
the n + r + 1 stratum compose it with the already constructed homotopy and use
a collar to extend it to the n + r + 1 skeleton. This is the inductive step for the
extension of the homotopy. Using the relative version of Smale’s Theorem one
can also prove a relative version of this approximation result.

The cap product of a k-dimensional cohomology class [ f : S → M] and an
l-dimensional homology class g : P → M is the homology class represented
by the transversal intersection which is a (l − k)-dimensional oriented compact
stratifold. This is well defined by Proposition 6, since if we apply transversality
to a bordism of the (co)homology classes we obtain a (l − k + 1)-dimensional
compact oriented stratifold whose boundary is the (l−k)-dimensional transversal
intersection.

The Kronecker product

< · · · , · · · >: SH k(M)× SHk(M)→ Z

is defined by the cap product followed by the map SH0(M) → SH0(pt) ∼= Z.
This agrees with the ordinary Kronecker product in singular (co)homology under
our isomorphism. The reason is that this holds by construction in the universal
case, where we evaluate ik ∈ SH k(K (Z, k)) on the generator in homology given
by the inclusion of Sk into K (Z, k).

We also have a linking pairing between a torsion class α ∈ SH k(M) and a
torsion class β in SHk−1(M), which is obtained by taking a zero bordism of a
multiple rα, taking the Kronecker product with β, dividing by r and considering
the result in Q/Z. Thus we obtain the linking pairing

l : tor SH k(M)⊗ tor SHk−1(M)→ Q/Z.

The linking pairing together with the Kronecker product allows (by the Universal
Coefficient Theorem) to compare cohomology classes. Let α and β be classes
in SH k(M) where M is a Hilbert manifold, then α = β if and only if for all
homology classes x ∈ SHk(M) the Kronecker product < α, x >=< β, x >

agrees, which implies that α − β is a torsion class, and for all torsion classes
y ∈ SHk−1(M) we have l(α − β, y) = 0. This has the following application:

PROPOSITION 7. Let f : M → N be a homotopy equivalence. Then for α and β
in SH k(N ) we have

( f ∗)−1(α) = ( f ∗)−1(β),
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if and only if for all homology classes x ∈ SHk(M) the Kronecker product < α,

f∗(x) >=< β, f∗(x) > agree, and for all torsion classes y ∈ SHk−1(M) we have
l(α − β, f∗(y)) = 0.

REMARK 4. This proposition is useful, when one computes induced maps f ∗ :
SH k(N ) → SH k(M), and instead considers i∗(p2)

∗
: SH k(N ) → SH k(U ),

where U is a tubular neighborhood of (id, f )(M) ⊆ M × N .

For a proper oriented Fredholm map f : M → N of index k we define the
Gysin map in homology

f ! : Hl(N )→ Hl+k(M)

using transversal intersection. To be more precise, we represent a class α ∈ Hl(N )
by a map g : P → N from a closed oriented p-stratifold S of dimension l + k.
We may assume that g is transversal to f , then we look at the pullback, which is
map from a closed oriented p-stratifold P ′ of dimension l + k to M . As before,
this is independent of the choice of P and g, thus it is well defined.

6. Equivariant cohomology

As noted before, one of our motivations for this construction was a geometric
description of equivariant cohomology for smooth actions of compact Lie groups
on finite-dimensional smooth manifolds and on Hilbert manifolds. We now
describe it explicitly: Let M be a Hilbert manifold (or finite-dimensional smooth
manifold) with a smooth action of a compact Lie group G. We construct a
Hilbert manifold model for EG, a contractible Hilbert manifold with free G-
action as follows. Since G can be embedded into O(n) for some n, it is enough
to construct E(O(n)). This is more or less the same as the standard construction
of E(O(n)) as limit of Stiefel manifolds, or even easier. Namely, we can take the
Stiefel manifold Vn(H) of orthonormal n-frames in the Hilbert space H (see [7,
page 53]). Such a model is unique up to equivariant diffeomorphism. Given this,
we consider geometric cocycles with an orientation preserving, free G-action in
M × EG, that is a geometric cocycle f : S → M × EG, with a free, smooth
action of G on S such that f is equivariant and proper, and G acts orientation
preserving on the orientation bundle L( f ). We denote the bordism classes of
equivariant, oriented, free, G-geometric k-cocycle f : S → M × EG, where
G acts orientation preserving on L( f ), by

SH k
G(M),

the kth equivariant stratifold cohomology group of M . The addition is given by
disjoint union.
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THEOREM 6. Let G be a compact Lie group. There is a natural isomorphism of
multiplicative equivariant cohomology theories

SH ∗G(M)→ H ∗G(M;Z)

for Hilbert (or finite-dimensional) smooth G-manifolds M.

Proof. This is straight forward by passing to the quotients, and then using
Theorem 1.

In [36] more general theories along these lines were studied.

7. Degree

A notion of degree of proper Fredholm maps of index zero between Banach
manifolds was given by Smale [34]. His degree was an invariant in Z/2. A
more refined notion of degree for oriented maps laying in Z was given later by
Elworthy–Tromba [10] and others. In our language, a proper, oriented Fredholm
map of index zero f : M → N between Hilbert manifolds can be seen as a
cocycle representing a cohomology class in SH 0(N ). Assuming N is connected
this group is naturally isomorphic to Z, hence we can associate to such a map a
degree, which we denote by deg( f ). In this sense, associating to a proper oriented
Fredholm map f : M → N of index k an element in SH k(N ) is a generalization
of the notion of degree. This notion agrees with Morava’s definition [27]. We
apply this definition to extend some well-known interesting results to the setting
of Hilbert manifolds and proper oriented Fredholm maps.

LEMMA 4. Let f : M → N be a proper oriented Fredholm map of index k. Then
for every α ∈ SH l(N )

f! ◦ f ∗(α) = [ f ] ∪ α.

Proof. The following is a pullback diagram where the maps into N × N are
transversal

M
f //

( f,id)
��

N

(id,id)
��

N × M
(id, f ) // N × N .

This implies, by Proposition 3, that

(id, id)∗ ◦ (id, f )! = f! ◦ ( f, id)∗.
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Represent α by a map g : S→ N . Then, f!◦ f ∗(α) is equal to (id, id)∗([S×M →
M × M]) = α ∪ [ f ].

The following consequences are standard:

COROLLARY 4. If (− ∪ [ f ]) : SH ∗(N ) → SH ∗(N ) is injective then f ∗ is
injective. In particular, if k = 0 and deg( f ) is nonzero then f ∗ is injective modulo
deg( f )-torsion.

EXAMPLE 1. Let f : M → N be a proper oriented Fredholm map. If the
cohomology ring of M is an integral domain, for example a polynomial ring, and
the cohomology of N does not contain a subring isomorphic to the cohomology
of M then f represents the zero class.

PROPOSITION 8 (compare [28]). Let f : M → N be proper oriented Fredholm
map of index 0 between connected manifolds. If deg( f ) = ±1 then if M is
contractible then also N is contractible and so diffeomorphic to the Hilbert
space H.

Proof. By Lemma 4 we know that N is acyclic. Since N has the homotopy type
of a CW complex it is enough to show it is simply connected. Then we consider a
map g : S1

→ N representing an element of π1(N ). By the transversality Theorem
for maps from a finite-dimensional manifold we can assume that g is transversal
to f . We can further approximate it by an embedding which is transversal to f .
Then S := f −1(g(S1)) is a closed oriented submanifold of dimension 1, since f
has index 0 and f |S is a submersion. Thus f |S is a covering on each connected
component Si of S. The sum of the degrees di of these coverings Si → g(S1) is
the degree of f . If we restrict f to one of the components Si and use the fact that
M is simply connected we conclude that di [ f ] = 0. Since

∑
di = 1 we conclude

that [ f ] = 0.

8. Characteristic classes and Steenrod representation

Characteristic classes of n-dimensional smooth vector bundles p : E → M
over a Hilbert manifold M can be geometrically defined as in [18]. The Thom
class of an oriented vector bundle, which is a class in SH n(DE, SE), where DE
is the disc bundle and SE the sphere bundle, is simply given by the 0 section. To
see this is indeed the Thom class, just notice that it intersects each fiber in exactly
one point with the right orientation. This extends to an absolute class in the total
space, whose image under the map induced by the 0-section is the Euler class.
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For nonoriented bundles the same construction gives the n-th Stiefel–Whitney
class.

From these classes one constructs the Chern classes of a complex vector bundle
by considering the exterior tensor product of E with the tautological line bundle
over CP∞ considered as Hilbert manifold. One considers the Euler class of this
bundle to obtain the total Chern class

c(E) ∈ SH 2n(M × CP∞).

If one applies the Künneth Theorem to this class one obtains as coefficients the
Chern classes ck(E) ∈ SH 2k(M). By naturality the classes ck(E) can be directly
constructed as follows. Instead of taking the Euler class of the exterior tensor
product with the tautological line bundle over CP∞ we take the Euler class of
the exterior tensor product with the tautological line bundle over CPn−k . This is
a class in SH 2n(M ×CPn−k) and we obtain the Chern class ck(E) by composing
it with the projection to M (with other words we apply the Gysin map of the
projection to M). From the Chern classes one defines the Pontryagin classes. The
Stiefel–Whitney classes are constructed in the same way from the top Stiefel–
Whitney class by using the real projective spaces instead of the complex projective
spaces.

As in the finite-dimensional setting the proof that these classes agree with the
ordinary characteristic classes follows by showing that the characteristic classes
fulfill the axioms of characteristic classes. The proof is the same as in [18].

If one wants to use this definition for explicit computations one has a problem
already with the Euler class. The Thom class in SH k(DE, SE) is explicit, since it
is the class represented by the 0-section, but the Euler class is the pullback, which
in the infinite-dimensional setting is not given by the transversal self-intersection
unless one cam deform the inclusion of the 0-section to make it transversal. Thus
it is better to consider the Euler class sitting in SH k(E) represented by the 0-
section. Similarly one should consider the total Chern class as sitting in SH k(E⊗
L), where E ⊗ L is the exterior tensor product of E and the tautological bundle
over CP N for a large N .

This raises the question whether keeping the classes in the cohomology of the
total spaces is a disadvantage. Not really. We recommend for computations to
consider the characteristic classes sitting in the cohomology of E , in the case of
the Euler class, and in the cohomology of E⊗L in the case of the total Chern class.
Using the Kronecker product and the linking pairing one can then compare this
class with cohomology classes in M respectively M × CP N using Proposition 7.

For finite-dimensional oriented manifolds one studies the Steenrod
representation problem for (co)homology classes. This means for a cohomology
class x ∈ H k(M) to ask whether there is a map f : N → M from an oriented
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manifold such that f!(1) = α, where 1 means the unit class in H 0(N ). Using our
definition of singular cohomology one can generalize this in two ways: Instead
of looking for a closed oriented manifold one can look for a proper oriented
map f : N → M , such that the cohomology class represented by f in SH k(M)
corresponds to α. And verbally the same makes sense in infinite dimensions,
where M is a Hilbert manifold and we ask for a proper oriented Fredholm
map representing α. This is the Steenrod representation problem for Hilbert
manifolds.

Since the Euler class is represented by a manifold (even by a submanifold) we
see that the Chern classes (as well as the Stiefel–Whitney classes) are Steenrod
representable in the sense that there is a proper oriented Fredholm map from
a smooth Hilbert manifold to M representing the class in SH 2k(M). Since the
Pontryagin classes are derived from the Chern classes the same holds for them.

Thus we obtain the following result:

THEOREM 7. Let E be a k-dimensional vector bundle over a Hilbert manifold
M. Then all characteristic classes (Stiefel–Whitney classes, Euler class, if E is
oriented, Chern classes, if E is a complex vector bundle, and Pontryagin classes)
are in the sense above Steenrod representable.

REMARK 5. Probably one can prove a better result. Consider a Hilbert space
model for BO or BU (see for example [31]). Then one can ask for the existence
of Hilbert submanifolds representing the Stiefel–Whitney classes, the Pontryagin
classes or the Chern classes. In the context of Banach manifold models this was
studied by Koschorke [17].
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