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Abstract

We consider for integers k ≥ 2 the k–generalized Fibonacci se-

quences F (k) := (F
(k)
n )n≥2−k, whose first k terms are 0, . . . , 0, 1 and

each term afterwards is the sum of the preceding k terms. In this pa-
per, we show that there does not exist a quadruple of positive integers
a1 < a2 < a3 < a4 such that aiaj + 1 (i 6= j) are all members of F (k).
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quadruples.
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1 Introduction

A Diophantine m–tuple is a set {a1, . . . , am} of m positive rational numbers
or integers, with the property that the product of any two of its distinct
elements plus one is a square; i.e., such that aiaj + 1 is a square for all
1 ≤ i < j ≤ m. Diophantus presented the first known rational quadruple{

1

16
,
33

16
,
17

4
,
105

16

}
and long after Fermat found the integer quadruple {1, 3, 8, 120}. There are
infinitely many Diophantine quadruples of integers, one such parametric fam-
ily being known to Euler:

{a, b, a+ b+ 2t, 4t(t+ a)(t+ b)}, where ab+ 1 = t2.
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On the other hand, Arkin, Hoggatt and Strauss [1] observed that any Dio-
phantine triple can be extended to a Diophantine quadruple. More precisely,
if {a, b, c} is a Diophantine triple with ab+ 1 = t2, ac+ 1 = u2, bc+ 1 = v2,
where t, u, v are positive integers, then setting d := a+b+c+2abc+2tuv, the
set {a, b, c, d} is a Diophantine quadruple. Regarding Diophantine m–tuples
with m ≥ 5, Dujella [8], proved that there is no Diophantine sextuple and
that there can be at most finitely many Diophantine quintuples. In [9], he
showed that 101930 is an upper bound on the number of Diophantine quin-
tuples. This bound has been recently reduced to 5.441 × 1026 by Cipu and
Trudgian in [6].

A natural generalization of the problem described above is to replace the
squares by the members of some interesting sequence of integers. So, let
U := (Un)n≥0 be a sequence of integers. We say that a finite set {a1, . . . , am}
of positive integers is a Diophantine m–tuple with values in U if aiaj + 1
is a member of U for all 1 ≤ i < j ≤ m. We assume that m ≥ 3 to
avoid trivialities. Diophantine m–tuples associated to the sequences of higher
(than 2) powers of integers of fixed or variable exponents were studied in
[4, 5, 16, 17, 19], while Diophantine m–tuples with members in nondegenerate
binary recurrences were studied by Fuchs, Luca and Szalay in [13]. Later,
Luca and Szalay showed that there are no Diophantine triples with values
in the Fibonacci sequence (see [20]) and that the only Diophantine triple
with values in the Lucas companion (Ln)n≥0 of the Fibonacci sequence is
(a, b, c) = (1, 2, 3) (see [21]). Very little is known about Diophantine m–
tuples with values in linear recurrences of order greater than two. The current
authors worked with the Tribonacci sequence (Tn)n≥0 proving in [15] the
following theorem.

Theorem 1. There do not exist positive integers a1 < a2 < a3 < a4 such
that aiaj + 1 = Tni,j

, with 1 ≤ i < j ≤ 4, for some integers positive ni,j.

The above result was complimented by Fuchs, Hutle, Irmak, Luca and
Szalay [12], who showed that there are at most finitely many Diophantine
triples with values in the Tribonacci sequence. At the referee’s suggestion,
we did a computational search with Mathematica which showed that in fact
there are no Diophantine triples {a1, a2, a3} with values in k–generalized
Fibonacci numbers in the range

3 ≤ k ≤ 20, 1 ≤ a1 ≤ 2000, a2 ≤ 105 and a3 ≤ 106.

We propose the following conjecture.

Conjeture 1. There are no Diophantine triples with values in F (k) for any
integer k ≥ 2.

In this paper, we extend the conclusion of Theorem 1 from Tribonacci
numbers to k–generalized Fibonacci sequences F (k) for any k ≥ 3.

Our main result is the following theorem.
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Theorem 2. Let k ≥ 2 be a fixed integer. There do not exist positive integers
a1 < a2 < a3 < a4 such that

aiaj + 1 ∈ F (k) for all 1 ≤ i < j ≤ 4.

2 Preliminary results on k–Fibonacci num-

bers

For an integer k ≥ 2, the k–generalized Fibonacci sequence F (k) := (F
(k)
n )n≥2−k,

satisfies the k–th order linear recurrence

F
(k)
n+k = F

(k)
n+k−1 + · · ·+ F (k)

n (n ≥ 2− k),

with F
(k)
2−k = F

(k)
1−k = · · · = F

(k)
0 = 0 and F

(k)
1 = 1. We note that some authors

work with a shift of the above sequence, namely the one for which F
(k)
i = 0

for 0 ≤ i ≤ k−2 and F
(k)
k−1 = 1. We prefer to work with our version for which

the first nonzero value is F
(k)
1 = 1.

We shall refer in general to F
(k)
n as the nth k−Fibonacci number. For

k = 2, we have F
(2)
n = Fn, the familiar nth Fibonacci number. For k = 3 such

numbers are called Tribonacci numbers. They are followed by the Tetranacci
numbers for k = 4, and so on.

The first direct observation is that the first k + 1 non–zero terms in F (k)

are powers of two, namely

F
(k)
1 = 1 and F (k)

n = 2n−2 for all 2 ≤ n ≤ k + 1, (1)

while the next term is F
(k)
k+2 = 2k − 1. In fact, F

(k)
n < 2n−2 for all n ≥ k + 2

(see [2]). Cooper and Howard given the following nice formula for F
(k)
n valid

for all n ≥ k + 2 (see [7]):

Lemma 1. For k ≥ 2 and n ≥ k + 2,

F (k)
n = 2n−2 +

bn+k
k+1
c−1∑

j=1

Cn,j 2n−(k+1)j−2,

where

Cn,j = (−1)j
[(
n− jk
j

)
−
(
n− jk − 2

j − 2

)]
.

Here, we used the convention that
(
a
b

)
= 0 if either a < b or if one of a or

b is negative and denote bxc the greatest integer less than or equal to x.
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2.1 Known properties of F (k)

We recall some known results concerning F (k). Clearly, F (k) is a linearly
recurrent sequence of characteristic polynomial

Ψk(X) = Xk −Xk−1 − · · · −X − 1. (2)

Note that by putting

ψk(X) = (X − 1)Ψk(X) = Xk+1 − 2Xk + 1, (3)

we get a new polynomial which has the same roots that Ψk(X) together with
an additional root at X = 1.

The polynomial Ψk(X) has only one positive real zero α := α(k) which is
located in the interval [1, 2]. In fact, in Lemma 2.3 in [18], it was shown

2(1− 2−k) < α(k) < 2, for all k ≥ 2, (4)

a fact rediscovered by Wolfram [24]. In particular, (α(k))k≥2 converges to 2
as k tends to infinity. Miles [22] and Miller [23] showed that Ψk(X) has only
simple roots and all roots different from α(k) are inside the unit circle. In
particular, Ψk(X) is an irreducible polynomial over Q[X].

To simplify notation, we omit the dependence on k of α. We consider
for k ≥ 2, the function fk(z) := (z − 1)/ (2 + (k + 1)(z − 2)). With this
notation, Dresden and Du proved in [10] that

F (k)
n =

k∑
i=1

fk(αi)α
n−1
i and

∣∣F (k)
n − fk(α)αn−1

∣∣ < 1

2
, (5)

where α =: α1, α2, . . . , αk are all the zeros of Ψk(X). The expression on

the left–hand side is known as the Binet formula for F
(k)
n . Furthermore, the

inequality on the right–hand side in (5) shows that the contribution of the

zeros of Ψk(X) which are inside the unit circle to F
(k)
n is very small. Also,

it is easy to prove that the numbers fk(α) and fk(αi) for i = 2, . . . , k satisfy
the inequalities

1/2 ≤ fk(α) ≤ 3/4 and |fk(αi))| < 1, for i = 2, . . . , k, (6)

for all k ≥ 2.
Finally, it was proved in [3] that

αn−2 ≤ F (k)
n ≤ αn−1 holds for all n ≥ 1. (7)

3 The proof of Theorem 2

Let a1 < a2 < a3 < a4 be a Diophantine quadruple associated to the k–
generalized Fibonacci sequence F (k). Here, we assume that k ≥ 2. Then

a1a2 + 1 = F (k)
x , a2a3 + 1 = F (k)

y , a3a4 + 1 = F (k)
z , a1a4 + 1 = F (k)

w , (8)
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hold for some integers positive x, y, z and w. Combining the above equalities
(8), we obtain that

(F (k)
x − 1)(F (k)

z − 1) = (F (k)
y − 1)(F (k)

w − 1), (9)

where is easy see that

4 ≤ x < min{y, w} ≤ max{y, w} < z. (10)

From inequalities (7), we deduce that

αn−2.5 < F (k)
n − 1 < αn−1, for all n ≥ 4.

Hence, it is plain that

αx+z−5 < (F (k)
x − 1)(F (k)

z − 1) < αx+z−2;

αy+w−5 < (F (k)
y − 1)(F (k)

w − 1) < αy+w−2.

Considering the above two inequalities and equality (9), we get

|(x+ z)− (y + w)| ≤ 2. (11)

We analyze the Diophantine equation (9), subjected to the conditions given
in (10) and (11). We distinguish two cases, namely:

|(x+ z)− (y + w)| = 1 or 2 and x+ z = y + w.

3.1 The case |(x+ z)− (y + w)| = 1 or 2

We use formula (5) to write

F (k)
n = fk(α)αn−1 + ek(n), where |ek(n)| < 1/2. (12)

Using (12), we can rewrite equation (9) as

fk(α)2αx+z−2 − fk(α)2αy+w−2 = fk(α)(1− ek(z))αx−1 + fk(α)(1− ek(x))αz−1

+ fk(α)(ek(w)− 1)αy−1 + fk(α)(ek(y)− 1)αw−1

+ ek(x) + ek(z)− ek(y)− ek(w)

− ek(x)ek(z) + ek(y)ek(w).

Dividing both sides of above equation by fk(α)2αx+z−2 and taking absolute
values, we get∣∣1− α−(x+z−y−w)∣∣ <

1.5

fk(α)

(
1

αz−1
+

1

αx−1
+
αy−z

αx−1
+
αw−z

αx−1

)
+

2.5fk(α)−2

αx+z−2

<
1

αx−1

(
3

fk(α)

(
1 +

1

α

)
+

5

2fk(α)2α6

)
<

10

αx−1
, (13)
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where we have used (10), and the facts that |ek(n)−1| < 3/2 and fk(α) > 1/2.
By inequality (11) and the fact that x+ z 6= y + w, we obtain

min
|x+z−y−w|≤2

|1− α−(x+z−y−w)| = 1− α−1 > 0.46. (14)

Thus, by (10), (13) and (14), we get x = 4.
Hence, equation (9) becomes

3F (k)
z − F

(k)
λ F

(k)
δ = 4− F (k)

λ − F
(k)
δ , λ := min{y, w} ≤ δ := max{y, w}.

(15)

Replacing F
(k)
z , F

(k)
λ , F

(k)
δ according to the equation (12) in the above equa-

tion (15), we conclude that

3fk(α)αz−1 − fk(α)2αλ+δ−2 = fk(α)(ek(δ)− 1)αλ−1 + fk(α)(ek(λ)− 1)αδ−1

− ek(λ)− ek(δ) + ek(λ)ek(δ)− 3(ek(z)− 1) + 1.

Dividing both sides of above equation by 3fk(α)αz−1, and taking absolute
values, we get∣∣1− 3−1fk(α)αλ+δ−z−1

∣∣ < 1/2

αz−λ
+

1/2

αz−δ
+

27/(12fk(α)α5)

αz−5

<
1.4

αz−δ
,

(16)

where we used the fact that z − 5 ≥ z − λ ≥ z − δ (by (10)). However, by
inequality (11) and the fact that x = 4, we obtain that |λ + δ − z − 1| ≤ 5.
We check that

min
|λ+δ−z−1|≤5

|1− 3−1fk(α)αλ+δ−z−1| > 0.09863. (17)

Thus, combining (10), (16) and (17) we conclude that z − δ = 1, 2, 3 or 4.
Returning to inequality (11), we get that 5 ≤ λ ≤ 10.

Going back to equality (9), we rewrite it as

3F (k)
z − (F

(k)
λ − 1)F

(k)
δ = 3− (F

(k)
λ − 1). (18)

Replacing F
(k)
z , F

(k)
δ according to (12) in (18), dividing by (F

(k)
λ −1)fk(α)αδ−1

and taking value absolutes, we get∣∣∣1− 3(F
(k)
λ − 1)−1αz−δ

∣∣∣ < 3

αδ−1
. (19)

By analyzing the minimum value of the left–hand side in (19), we get

min
5≤λ≤10
1≤z−δ≤4

|1− 3(F
(k)
λ − 1)−1αz−δ| > 0.127. (20)

Hence, from inequalities (19) and (20) we conclude that δ ≤ 6 and, in par-
ticular, that 6 ≤ z ≤ 10.

Let us record what we have proved so far.
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Lemma 2. Let 4 ≤ x < min{y, w} ≤ max{y, w} < z be positive integers

such that |x+z−y−w| = 1, 2 and (F
(k)
x −1)(F

(k)
z −1) = (F

(k)
y −1)(F

(k)
w −1),

for all k ≥ 4. Then

x = 4, 5 ≤ y, w ≤ 6 and 6 ≤ z ≤ 10.

To conclude this section, we show that there are no Diophantine quadru-
ples associated to F (k), under the current assumptions. We first list the
values of F

(k)
x , F

(k)
y , F

(k)
z , F

(k)
w , with 4 ≤ k ≤ 9 and x, y, z, w in the range

given by Lemma 2, which leads us to the conclusion that (9) has no solutions.
So, there are no Diophantine quadruples with values in F (k), with 4 ≤ k ≤ 9.
Now, when k ≥ 10, we note that F

(k)
t = 2t−2, for t ∈ {x, y, z, w}. But a quick

verification in equation

(2x−2 − 1)(2z−2 − 1) = (2y−2 − 1)(2w−2 − 1),

with x, y, z, w distinct integers in the ranges given by the previous lemma
allows us to conclude that there are no Diophantine quadruples associated
to F (k) in the case k ≥ 10 either.

3.2 The case x+ z = y + w

We first prove the following result:

Lemma 3. Inequality

(F
(k)
n+2 − 1)(F (k)

n − 1) ≤ (F
(k)
n+1 − 1)2 (21)

holds for all n ≥ 0 and k ≥ 2. Equality is obtained only for n = 0, 1, k + 1.

Remark 1. The above result says (a little bit more than) that the sequence
F (k) is “log-concave”.

Proof. Let k = 2. One checks that inequality (21) is an equality for n = 0, 1, 3
and it is strict for n = 2. Assume n ≥ 4. Then inequality (21) is equivalent
to

Fn+2Fn − F 2
n+1 ≤ Fn+2 + Fn − 2Fn+1. (22)

The right–hand side of (22) is

Fn+2 + Fn − 2Fn+1 = (Fn+1 + Fn) + Fn − 2Fn+1

= 2Fn − Fn+1

= 2Fn − (Fn + Fn−1)

= Fn − Fn−1
= Fn−2,

while the left–hand side of (22) is (−1)n+1. So, we get that inequality (22)
is equivalent to

(−1)n+1 ≤ Fn−2
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which holds with strict for all n ≥ 4.
From now on we assume that k ≥ 3. We note by Lemma 1 that

F (k)
n =


0 if n = 0,

1 if n = 1,

2n−2 if 2 ≤ n ≤ k + 1,

2n−2 − (n− k)2n−k−3 if k + 2 ≤ n ≤ 2k + 2.

We now start with the cases where (21) is an equality. For n = 0, 1, both sides
of inequality (21) are zero so Lemma 3 holds with equality. For n = k + 1,
we have

F (k)
n = F

(k)
k+1 = 2k−1, F

(k)
n+1 = F

(k)
k+2 = 2k − 1, F

(k)
n+2 = F

(k)
k+3 = 2k+1 − 3,

so inequality (21) asserts that

(2k+1 − 4)(2k−1 − 1) ≤ (2k − 2)2,

which is again an equality.
For n = 2, . . . , k − 1, we have that

(F
(k)
n+1 − 1)2 − (F (k)

n − 1)(F
(k)
n+2 − 1) = (2n−1 − 1)2 − (2n−2 − 1)(2n − 1)

= (22n−2 − 2n + 1)− (22n−2 − 5 · 2n−2 + 1)

= 2n−2 > 0,

so inequality (21) is strict. For n = k, we have

(F
(k)
n+1 − 1)2 − (F (k)

n − 1)(F
(k)
n+2 − 1) = (2k−1 − 1)2 − (2k−2 − 1)(2k − 2)

= (22k−2 − 2k + 1)− (22k−2 − 6 · 2k−2 + 2)

= 2k−1 − 1 > 0,

so inequality (21) is strict.
For n = k + 2, . . . , 2k, we have

F (k)
n = 2n−2 − (n− k)2n−k−3, F

(k)
n+1 = 2n−1 − (n− k + 1)2n−k−2,

F
(k)
n+2 = 2n − (n− k + 2)2n−k−1,

so

(F
(k)
n+1 − 1)2 − (F (k)

n − 1)(F
(k)
n+2 − 1)

= (2n−1 − (n− k + 1)2n−k−2 − 1)2

− (2n−2 − (n− k)2n−k−3 − 1)(2n − (n− k + 2)2n−k−1 − 1)

= 22n−2 − 2n((n− k + 1)2n−k−2 + 1) + ((n− k + 1)2n−k−2 + 1)2

−22n−2 + 2n−2
(
(n− k + 2)2n−k−1 + 4(n− k)2n−k−3 + 5

)
−((n− k)2n−k−3 + 1)((n− k + 2)2n−k−1 + 1)

= 2n−2 + (n− k + 1)222n−2k−4 + (n− k + 1)2n−k−1 + 1

−(n− k)(n− k + 2)22n−2k−4 − (5n− 5k + 8)2n−k−3 − 1

= 2n−2 − 22n−2k−4 − (n− k + 4)2n−k−3

= 2n−2 + 2n−k−3(2n−k−1 − ((n− k − 1) + 5)).
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Let t := n− k − 1 ≥ 1. The inequality

2t − (t+ 5) ≥ 0 holds for all t ≥ 3.

So, if t ≥ 3, then n− 2 = t+ k − 1 ≥ k + 2, so the inequality

(F
(k)
n+1 − 1)2 − (F (k)

n − 1)(F
(k)
n+2 − 1) ≥ 2n−2 ≥ 2k+2 ≥ 32 (23)

holds. If t = 2, then 2t−(t+5) = −3, n = k+3, so we get that the inequality

(F
(k)
n+1 − 1)2 − (F (k)

n − 1)(F
(k)
n+2 − 1) = 2k+1 + 2(−3) = 2k+1 − 6 ≥ 10 (24)

holds. Finally, if t = 1, then 2t− (t+ 5) = −4, n = k+ 2, so we get that the
inequality

(F
(k)
n+1 − 1)2 − (F (k)

n − 1)(F
(k)
n+2 − 1) = 2n−2 − 4 = 2k − 4 ≥ 4 (25)

holds.
We record the weaker conclusion of what we have done so far namely that

(F
(k)
n+1 − 1)2 − (F (k)

n − 1)(F
(k)
n+2 − 1) ≥ 4 (26)

holds for all n = k + 2, k + 3, . . . , 2k, which follows from (23), (24) and (25).
We let n = 2k + 1. Then

F (k)
n = F

(k)
2k+1 = 22k−1 − (k + 1)2k−2,

F
(k)
n+1 = F

(k)
2k+2 = 22k − (k + 2)2k−1,

F
(k)
n+2 = F

(k)
2k+3 = 22k+1 − (k + 3)2k + 1.

Computing we get

(F
(k)
n+1 − 1)2 − (F (k)

n − 1)(F
(k)
n+2 − 1) = (2k−1 − 1)2 ≥ 9.

In particular, inequality (26) holds for n = 2k + 1 as well.
Now we rewrite identity (12), according to (5), as

F (k)
n = c1α

n + ek(n), with ek(n) = c2α
n
2 + · · ·+ ckα

n
k

where α =: α1, α2, . . . , αk are the zeros of characteristic polynomial Ψk(x)
and ci = fk(αi)/αi for i = 1, . . . , k. We use the following facts:

(i) |ek(n)| ≤ 1/2 for all n ≥ 0 (by inequality (5));

(ii) F
(k)
n+2 = 2F

(k)
n+1−F

(k)
n+1−k holds for all n ≥ k+1 (which follows from (3)).

We write

(F
(k)
n+1 − 1)2 − (F (k)

n − 1)(F
(k)
n+2 − 1)

=
(
F

(k)
n+1

)2
− F (k)

n F
(k)
n+2 + (F

(k)
n+2 + F (k)

n − 2F
(k)
n+1)

= (c1α
n+1 + ek(n+ 1))2 − (c1α

n + ek(n))(c1α
n+2 + ek(n+ 2)) + F (k)

n − F
(k)
n+1−k

= 2c1α
n+1ek(n+ 1)− c1αnek(n+ 2)− c1αn+2ek(n) + c1(1− α1−k)αn

+ (ek(n+ 1)2 − ek(n)ek(n+ 2) + ek(n)− ek(n+ 1− k))

:= W (k)
n + ∆(k)

n , (27)
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where

W (k)
n := 2c1α

n+1ek(n+ 1)− c1αnek(n+ 2)− c1αn+2ek(n) + c1(1− α1−k)αn;

∆(k)
n := ek(n+ 1)2 − ek(n)ek(n+ 2) + ek(n)− ek(n+ 1− k).

The important observation is that

W (k)
n = C1α

n +
k∑
i=2

Ci(ααi)
n,

where

C1 := c1(1− α1−k) and Ci := −c1ci(α− αi)2; for 2 ≤ i ≤ k.

Therefore (W
(k)
n )n≥0 is a linearly recurrent sequences of real numbers of order

k whose characteristic polynomial is

ΨW (X) = (X − α)
k∏
i=2

(X − ααi).

Additionally |∆(k)
n | ≤ 1.5 (by (i)). So, since we want that

(F
(k)
n+1 − 1)2 − (F (k)

n − 1)(F
(k)
n+2 − 1) > 0,

it follows, by calculation (27), that is suffices that the inequality

W (k)
n > 1.5

holds for all n ≥ k + 2. However, from (26), we know that the inequality

W (k)
n + ∆(k)

n ≥ 4

holds for n = k + 2, . . . , 2k + 1, therefore

W (k)
n ≥ 2.5 > 1.5 holds for n = k + 2, . . . , 2k + 1. (28)

It remains to write down explicitly the characteristic equation of (W
(k)
n )n≥0.

By equality (3)

(X − 1)Ψk(X) = Xk+1 − 2Xk + 1 = (X − 1)(X − α) · · · (X − αk),

it follows, upon making the substitution Y := X/α, that

Y k+1 − 2αY k + αk+1 = (Y − α)
k∏
i=1

(Y − ααi).

Hence,

ΨW (Y ) =
Y k+1 − 2αY k + αk+1

Y − α2
= Y k + r1Y

k−1 + · · ·+ rk.
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Thus,

(Y − α2)(Y k + r1Y
k−1 + · · ·+ rk) = Y k+1 − 2αY k + αk+1.

Identifying coefficients we get

r1 − α2 = −2α, r2 − r1α2 = 0, r3 − r2α2 = 0, . . . , − rkα2 = αk+1.

Hence,

r1 = α2 − 2α < 0, r2 = a1α
2 < 0, r3 = a2α

2 < 0, . . . , rk = −αk−1 < −1.

Thus,

W
(k)
n+k = (−r1)W (k)

n+k−1 + (−r2)W (k)
n+k−2 + · · ·+ (−rk)W (k)

n (29)

holds for all n ≥ 0, where all coefficients −r1,−r2, . . . ,−rk are positive and
the last one is larger than 1. Well, but then, since W

(k)
n > 1.5 for the values

n = k + 2, . . . , 2k + 1, which are k consecutive values for n, it follows, by
recurrence (29), that

W
(k)
n+k ≥ (−rk)Wn ≥ W (k)

n for all n ≥ 0,

so, by induction on n, we have that

W (k)
n > 1.5 holds for all n ≥ k + 2.

As we have seen by calculation (27), this implies that (21) holds for all
n ≥ k + 2 with strict, which finishes the proof of the lemma.

Let us now finish the proof of our theorem. We assume that there are
integers x, y, z, w, k, as in inequalities (10) and k ≥ 2, and

(F (k)
x − 1)(F (k)

z − 1) = (F (k)
y − 1)(F (k)

w − 1), with x+ z = y + w.

Let λ := min{y, w} and δ := max{y, w}. Write λ = x + h. Then z = δ + h,
and we have

F
(k)
x+h − 1

F
(k)
x − 1

=
F

(k)
λ − 1

F
(k)
x − 1

=
F

(k)
z − 1

F
(k)
δ − 1

=
F

(k)
δ+h − 1

F
(k)
δ − 1

. (30)

We thus get(
F

(k)
x+1 − 1

F
(k)
x − 1

)(
F

(k)
x+2 − 1

F
(k)
x+1 − 1

)
· · ·

(
F

(k)
x+h − 1

F
(k)
x+h−1 − 1

)

=

(
F

(k)
δ+1 − 1

F
(k)
δ − 1

)(
F

(k)
δ+2 − 1

F
(k)
δ+1 − 1

)
· · ·

(
F

(k)
δ+h − 1

F
(k)
δ+h−1 − 1

)
.
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By our Lemma 3,

F
(k)
x+1 − 1

F
(k)
x − 1

≥
F

(k)
x+2 − 1

F
(k)
x+1 − 1

≥ · · · ≥
F

(k)
δ+1 − 1

F
(k)
δ − 1

. (31)

Further, the above string of inequalities implies

Fx+1 − 1

Fx − 1
>
Fδ+1 − 1

Fδ − 1
. (32)

Indeed, for if that would not be the case, then in (31) all intermediate ine-
qualities are equalities. Assume first that δ ≥ x + 2 and consider the first
two equalities in the left–hand side in (31):

(F
(k)
x+2 − 1)(F (k)

x − 1) = (F
(k)
x+1 − 1)2, (F

(k)
x+3 − 1)(F

(k)
x+1 − 1) = (F

(k)
x+2 − 1)2.

However, both equalities cannot be satisfied for the same value x (by Lemma
3, we must have x = k + 1 for the first equality and x = k for the second
equality). So, (32) holds unless δ = x + 1. But this would mean that
w = x+ 1, so

a1a2 + 1 = Fx, a1a4 + 1 = Fx+1,

a2a3 + 1 = Fx+1, a3a4 + 1 = Fx+2,

but then Fx = a1a2 + 1 < a1a3 + 1 < a2a3 + 1 = Fx+1, showing that a1a3 + 1
cannot be in F (k). So, indeed we must have δ ≥ x + 2 therefore (32) holds.
A similar argument shows that

Fx+i − 1

Fx+i−1 − 1
>

Fδ+i − 1

Fδ+i−1 − 1
holds for i = 1, 2, . . . , h, (33)

and multiplying (33) for i = 1, 2, . . . , h, we contradict (30) (in fact, we get
that in (30), the left–hand side is larger than the right–hand side).

Thus, Theorem 2 is proved.
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