Diophantine quadruples with values in k-generalized Fibonacci numbers

Carlos Alexis Gómez Ruiz * and Florian Luca ${ }^{\dagger}$

February 20, 2017

Abstract

We consider for integers $k \geq 2$ the k-generalized Fibonacci sequences $F^{(k)}:=\left(F_{n}^{(k)}\right)_{n \geq 2-k}$, whose first k terms are $0, \ldots, 0,1$ and each term afterwards is the sum of the preceding k terms. In this paper, we show that there does not exist a quadruple of positive integers $a_{1}<a_{2}<a_{3}<a_{4}$ such that $a_{i} a_{j}+1(i \neq j)$ are all members of $F^{(k)}$.

Key words and phrases. Generalized Fibonacci numbers, Diophantine quadruples.

2010 Mathematics Subject Classification. 11B39, 11D61.

1 Introduction

A Diophantine m-tuple is a set $\left\{a_{1}, \ldots, a_{m}\right\}$ of m positive rational numbers or integers, with the property that the product of any two of its distinct elements plus one is a square; i.e., such that $a_{i} a_{j}+1$ is a square for all $1 \leq i<j \leq m$. Diophantus presented the first known rational quadruple

$$
\left\{\frac{1}{16}, \frac{33}{16}, \frac{17}{4}, \frac{105}{16}\right\}
$$

and long after Fermat found the integer quadruple $\{1,3,8,120\}$. There are infinitely many Diophantine quadruples of integers, one such parametric family being known to Euler:

$$
\{a, b, a+b+2 t, 4 t(t+a)(t+b)\}, \text { where } a b+1=t^{2} .
$$

[^0]On the other hand, Arkin, Hoggatt and Strauss [1] observed that any Diophantine triple can be extended to a Diophantine quadruple. More precisely, if $\{a, b, c\}$ is a Diophantine triple with $a b+1=t^{2}, a c+1=u^{2}, \quad b c+1=v^{2}$, where t, u, v are positive integers, then setting $d:=a+b+c+2 a b c+2 t u v$, the set $\{a, b, c, d\}$ is a Diophantine quadruple. Regarding Diophantine m-tuples with $m \geq 5$, Dujella [8], proved that there is no Diophantine sextuple and that there can be at most finitely many Diophantine quintuples. In [9], he showed that 10^{1930} is an upper bound on the number of Diophantine quintuples. This bound has been recently reduced to 5.441×10^{26} by Cipu and Trudgian in [6].

A natural generalization of the problem described above is to replace the squares by the members of some interesting sequence of integers. So, let $\mathbf{U}:=\left(U_{n}\right)_{n \geq 0}$ be a sequence of integers. We say that a finite set $\left\{a_{1}, \ldots, a_{m}\right\}$ of positive integers is a Diophantine m-tuple with values in \mathbf{U} if $a_{i} a_{j}+1$ is a member of \mathbf{U} for all $1 \leq i<j \leq m$. We assume that $m \geq 3$ to avoid trivialities. Diophantine m-tuples associated to the sequences of higher (than 2) powers of integers of fixed or variable exponents were studied in $[4,5,16,17,19]$, while Diophantine m-tuples with members in nondegenerate binary recurrences were studied by Fuchs, Luca and Szalay in [13]. Later, Luca and Szalay showed that there are no Diophantine triples with values in the Fibonacci sequence (see [20]) and that the only Diophantine triple with values in the Lucas companion $\left(L_{n}\right)_{n \geq 0}$ of the Fibonacci sequence is $(a, b, c)=(1,2,3)$ (see [21]). Very little is known about Diophantine m^{-} tuples with values in linear recurrences of order greater than two. The current authors worked with the Tribonacci sequence $\left(T_{n}\right)_{n \geq 0}$ proving in [15] the following theorem.

Theorem 1. There do not exist positive integers $a_{1}<a_{2}<a_{3}<a_{4}$ such that $a_{i} a_{j}+1=T_{n_{i, j}}$, with $1 \leq i<j \leq 4$, for some integers positive $n_{i, j}$.

The above result was complimented by Fuchs, Hutle, Irmak, Luca and Szalay [12], who showed that there are at most finitely many Diophantine triples with values in the Tribonacci sequence. At the referee's suggestion, we did a computational search with Mathematica which showed that in fact there are no Diophantine triples $\left\{a_{1}, a_{2}, a_{3}\right\}$ with values in k-generalized Fibonacci numbers in the range

$$
3 \leq k \leq 20, \quad 1 \leq a_{1} \leq 2000, \quad a_{2} \leq 10^{5} \quad \text { and } \quad a_{3} \leq 10^{6} .
$$

We propose the following conjecture.
Conjeture 1. There are no Diophantine triples with values in $F^{(k)}$ for any integer $k \geq 2$.

In this paper, we extend the conclusion of Theorem 1 from Tribonacci numbers to k-generalized Fibonacci sequences $F^{(k)}$ for any $k \geq 3$.

Our main result is the following theorem.

Theorem 2. Let $k \geq 2$ be a fixed integer. There do not exist positive integers $a_{1}<a_{2}<a_{3}<a_{4}$ such that

$$
a_{i} a_{j}+1 \in F^{(k)} \quad \text { for all } \quad 1 \leq i<j \leq 4
$$

2 Preliminary results on k-Fibonacci numbers

For an integer $k \geq 2$, the k-generalized Fibonacci sequence $F^{(k)}:=\left(F_{n}^{(k)}\right)_{n \geq 2-k}$, satisfies the k-th order linear recurrence

$$
F_{n+k}^{(k)}=F_{n+k-1}^{(k)}+\cdots+F_{n}^{(k)} \quad(n \geq 2-k),
$$

with $F_{2-k}^{(k)}=F_{1-k}^{(k)}=\cdots=F_{0}^{(k)}=0$ and $F_{1}^{(k)}=1$. We note that some authors work with a shift of the above sequence, namely the one for which $F_{i}^{(k)}=0$ for $0 \leq i \leq k-2$ and $F_{k-1}^{(k)}=1$. We prefer to work with our version for which the first nonzero value is $F_{1}^{(k)}=1$.

We shall refer in general to $F_{n}^{(k)}$ as the nth k-Fibonacci number. For $k=2$, we have $F_{n}^{(2)}=F_{n}$, the familiar nth Fibonacci number. For $k=3$ such numbers are called Tribonacci numbers. They are followed by the Tetranacci numbers for $k=4$, and so on.

The first direct observation is that the first $k+1$ non-zero terms in $F^{(k)}$ are powers of two, namely

$$
\begin{equation*}
F_{1}^{(k)}=1 \quad \text { and } \quad F_{n}^{(k)}=2^{n-2} \quad \text { for all } \quad 2 \leq n \leq k+1 \tag{1}
\end{equation*}
$$

while the next term is $F_{k+2}^{(k)}=2^{k}-1$. In fact, $F_{n}^{(k)}<2^{n-2}$ for all $n \geq k+2$ (see [2]). Cooper and Howard given the following nice formula for $F_{n}^{(k)}$ valid for all $n \geq k+2$ (see [7]):

Lemma 1. For $k \geq 2$ and $n \geq k+2$,

$$
F_{n}^{(k)}=2^{n-2}+\sum_{j=1}^{\left\lfloor\frac{n+k}{k+1}\right\rfloor-1} C_{n, j} 2^{n-(k+1) j-2}
$$

where

$$
C_{n, j}=(-1)^{j}\left[\binom{n-j k}{j}-\binom{n-j k-2}{j-2}\right] .
$$

Here, we used the convention that $\binom{a}{b}=0$ if either $a<b$ or if one of a or b is negative and denote $\lfloor x\rfloor$ the greatest integer less than or equal to x.

2.1 Known properties of $F^{(k)}$

We recall some known results concerning $F^{(k)}$. Clearly, $F^{(k)}$ is a linearly recurrent sequence of characteristic polynomial

$$
\begin{equation*}
\Psi_{k}(X)=X^{k}-X^{k-1}-\cdots-X-1 . \tag{2}
\end{equation*}
$$

Note that by putting

$$
\begin{equation*}
\psi_{k}(X)=(X-1) \Psi_{k}(X)=X^{k+1}-2 X^{k}+1 \tag{3}
\end{equation*}
$$

we get a new polynomial which has the same roots that $\Psi_{k}(X)$ together with an additional root at $X=1$.

The polynomial $\Psi_{k}(X)$ has only one positive real zero $\alpha:=\alpha(k)$ which is located in the interval [1, 2]. In fact, in Lemma 2.3 in [18], it was shown

$$
\begin{equation*}
2\left(1-2^{-k}\right)<\alpha(k)<2, \quad \text { for all } \quad k \geq 2, \tag{4}
\end{equation*}
$$

a fact rediscovered by Wolfram [24]. In particular, $(\alpha(k))_{k \geq 2}$ converges to 2 as k tends to infinity. Miles [22] and Miller [23] showed that $\Psi_{k}(X)$ has only simple roots and all roots different from $\alpha(k)$ are inside the unit circle. In particular, $\Psi_{k}(X)$ is an irreducible polynomial over $\mathbb{Q}[X]$.

To simplify notation, we omit the dependence on k of α. We consider for $k \geq 2$, the function $f_{k}(z):=(z-1) /(2+(k+1)(z-2))$. With this notation, Dresden and Du proved in [10] that

$$
\begin{equation*}
F_{n}^{(k)}=\sum_{i=1}^{k} f_{k}\left(\alpha_{i}\right) \alpha_{i}^{n-1} \quad \text { and } \quad\left|F_{n}^{(k)}-f_{k}(\alpha) \alpha^{n-1}\right|<\frac{1}{2} \tag{5}
\end{equation*}
$$

where $\alpha=: \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are all the zeros of $\Psi_{k}(X)$. The expression on the left-hand side is known as the Binet formula for $F_{n}^{(k)}$. Furthermore, the inequality on the right-hand side in (5) shows that the contribution of the zeros of $\Psi_{k}(X)$ which are inside the unit circle to $F_{n}^{(k)}$ is very small. Also, it is easy to prove that the numbers $f_{k}(\alpha)$ and $f_{k}\left(\alpha_{i}\right)$ for $i=2, \ldots, k$ satisfy the inequalities

$$
\begin{equation*}
\left.1 / 2 \leq f_{k}(\alpha) \leq 3 / 4 \quad \text { and } \quad \mid f_{k}\left(\alpha_{i}\right)\right) \mid<1, \quad \text { for } \quad i=2, \ldots, k, \tag{6}
\end{equation*}
$$

for all $k \geq 2$.
Finally, it was proved in [3] that

$$
\begin{equation*}
\alpha^{n-2} \leq F_{n}^{(k)} \leq \alpha^{n-1} \quad \text { holds for all } \quad n \geq 1 \tag{7}
\end{equation*}
$$

3 The proof of Theorem 2

Let $a_{1}<a_{2}<a_{3}<a_{4}$ be a Diophantine quadruple associated to the $k-$ generalized Fibonacci sequence $F^{(k)}$. Here, we assume that $k \geq 2$. Then

$$
\begin{equation*}
a_{1} a_{2}+1=F_{x}^{(k)}, \quad a_{2} a_{3}+1=F_{y}^{(k)}, \quad a_{3} a_{4}+1=F_{z}^{(k)}, \quad a_{1} a_{4}+1=F_{w}^{(k)}, \tag{8}
\end{equation*}
$$

hold for some integers positive x, y, z and w. Combining the above equalities (8), we obtain that

$$
\begin{equation*}
\left(F_{x}^{(k)}-1\right)\left(F_{z}^{(k)}-1\right)=\left(F_{y}^{(k)}-1\right)\left(F_{w}^{(k)}-1\right), \tag{9}
\end{equation*}
$$

where is easy see that

$$
\begin{equation*}
4 \leq x<\min \{y, w\} \leq \max \{y, w\}<z \tag{10}
\end{equation*}
$$

From inequalities (7), we deduce that

$$
\alpha^{n-2.5}<F_{n}^{(k)}-1<\alpha^{n-1}, \quad \text { for all } \quad n \geq 4 .
$$

Hence, it is plain that

$$
\begin{aligned}
\alpha^{x+z-5} & <\left(F_{x}^{(k)}-1\right)\left(F_{z}^{(k)}-1\right)<\alpha^{x+z-2} ; \\
\alpha^{y+w-5} & <\left(F_{y}^{(k)}-1\right)\left(F_{w}^{(k)}-1\right)<\alpha^{y+w-2} .
\end{aligned}
$$

Considering the above two inequalities and equality (9), we get

$$
\begin{equation*}
|(x+z)-(y+w)| \leq 2 . \tag{11}
\end{equation*}
$$

We analyze the Diophantine equation (9), subjected to the conditions given in (10) and (11). We distinguish two cases, namely:

$$
|(x+z)-(y+w)|=1 \text { or } 2 \quad \text { and } \quad x+z=y+w .
$$

3.1 The case $|(x+z)-(y+w)|=1$ or 2

We use formula (5) to write

$$
\begin{equation*}
F_{n}^{(k)}=f_{k}(\alpha) \alpha^{n-1}+e_{k}(n), \quad \text { where } \quad\left|e_{k}(n)\right|<1 / 2 . \tag{12}
\end{equation*}
$$

Using (12), we can rewrite equation (9) as

$$
\begin{aligned}
f_{k}(\alpha)^{2} \alpha^{x+z-2}-f_{k}(\alpha)^{2} \alpha^{y+w-2} & =f_{k}(\alpha)\left(1-e_{k}(z)\right) \alpha^{x-1}+f_{k}(\alpha)\left(1-e_{k}(x)\right) \alpha^{z-1} \\
& +f_{k}(\alpha)\left(e_{k}(w)-1\right) \alpha^{y-1}+f_{k}(\alpha)\left(e_{k}(y)-1\right) \alpha^{w-1} \\
& +e_{k}(x)+e_{k}(z)-e_{k}(y)-e_{k}(w) \\
& -e_{k}(x) e_{k}(z)+e_{k}(y) e_{k}(w) .
\end{aligned}
$$

Dividing both sides of above equation by $f_{k}(\alpha)^{2} \alpha^{x+z-2}$ and taking absolute values, we get

$$
\begin{align*}
\left|1-\alpha^{-(x+z-y-w)}\right| & <\frac{1.5}{f_{k}(\alpha)}\left(\frac{1}{\alpha^{z-1}}+\frac{1}{\alpha^{x-1}}+\frac{\alpha^{y-z}}{\alpha^{x-1}}+\frac{\alpha^{w-z}}{\alpha^{x-1}}\right)+\frac{2.5 f_{k}(\alpha)^{-2}}{\alpha^{x+z-2}} \\
& <\frac{1}{\alpha^{x-1}}\left(\frac{3}{f_{k}(\alpha)}\left(1+\frac{1}{\alpha}\right)+\frac{5}{2 f_{k}(\alpha)^{2} \alpha^{6}}\right) \\
& <\frac{10}{\alpha^{x-1}} \tag{13}
\end{align*}
$$

where we have used (10), and the facts that $\left|e_{k}(n)-1\right|<3 / 2$ and $f_{k}(\alpha)>1 / 2$. By inequality (11) and the fact that $x+z \neq y+w$, we obtain

$$
\begin{equation*}
\min _{|x+z-y-w| \leq 2}\left|1-\alpha^{-(x+z-y-w)}\right|=1-\alpha^{-1}>0.46 \tag{14}
\end{equation*}
$$

Thus, by (10), (13) and (14), we get $x=4$.
Hence, equation (9) becomes

$$
\begin{equation*}
3 F_{z}^{(k)}-F_{\lambda}^{(k)} F_{\delta}^{(k)}=4-F_{\lambda}^{(k)}-F_{\delta}^{(k)}, \quad \lambda:=\min \{y, w\} \leq \delta:=\max \{y, w\} . \tag{15}
\end{equation*}
$$

Replacing $F_{z}^{(k)}, F_{\lambda}^{(k)}, F_{\delta}^{(k)}$ according to the equation (12) in the above equation (15), we conclude that

$$
\begin{aligned}
3 f_{k}(\alpha) \alpha^{z-1}-f_{k}(\alpha)^{2} \alpha^{\lambda+\delta-2} & =f_{k}(\alpha)\left(e_{k}(\delta)-1\right) \alpha^{\lambda-1}+f_{k}(\alpha)\left(e_{k}(\lambda)-1\right) \alpha^{\delta-1} \\
& -e_{k}(\lambda)-e_{k}(\delta)+e_{k}(\lambda) e_{k}(\delta)-3\left(e_{k}(z)-1\right)+1 .
\end{aligned}
$$

Dividing both sides of above equation by $3 f_{k}(\alpha) \alpha^{z-1}$, and taking absolute values, we get

$$
\begin{align*}
\left|1-3^{-1} f_{k}(\alpha) \alpha^{\lambda+\delta-z-1}\right| & <\frac{1 / 2}{\alpha^{z-\lambda}}+\frac{1 / 2}{\alpha^{z-\delta}}+\frac{27 /\left(12 f_{k}(\alpha) \alpha^{5}\right)}{\alpha^{z-5}} \\
& <\frac{1.4}{\alpha^{z-\delta}}, \tag{16}
\end{align*}
$$

where we used the fact that $z-5 \geq z-\lambda \geq z-\delta$ (by (10)). However, by inequality (11) and the fact that $x=4$, we obtain that $|\lambda+\delta-z-1| \leq 5$. We check that

$$
\begin{equation*}
\min _{|\lambda+\delta-z-1| \leq 5}\left|1-3^{-1} f_{k}(\alpha) \alpha^{\lambda+\delta-z-1}\right|>0.09863 . \tag{17}
\end{equation*}
$$

Thus, combining (10), (16) and (17) we conclude that $z-\delta=1,2,3$ or 4. Returning to inequality (11), we get that $5 \leq \lambda \leq 10$.

Going back to equality (9), we rewrite it as

$$
\begin{equation*}
3 F_{z}^{(k)}-\left(F_{\lambda}^{(k)}-1\right) F_{\delta}^{(k)}=3-\left(F_{\lambda}^{(k)}-1\right) . \tag{18}
\end{equation*}
$$

Replacing $F_{z}^{(k)}, F_{\delta}^{(k)}$ according to (12) in (18), dividing by $\left(F_{\lambda}^{(k)}-1\right) f_{k}(\alpha) \alpha^{\delta-1}$ and taking value absolutes, we get

$$
\begin{equation*}
\left|1-3\left(F_{\lambda}^{(k)}-1\right)^{-1} \alpha^{z-\delta}\right|<\frac{3}{\alpha^{\delta-1}} \tag{19}
\end{equation*}
$$

By analyzing the minimum value of the left-hand side in (19), we get

$$
\begin{equation*}
\min _{\substack{5 \leq \lambda \leq 10 \\ 1 \leq z-\delta \leq 4}}\left|1-3\left(F_{\lambda}^{(k)}-1\right)^{-1} \alpha^{z-\delta}\right|>0.127 \tag{20}
\end{equation*}
$$

Hence, from inequalities (19) and (20) we conclude that $\delta \leq 6$ and, in particular, that $6 \leq z \leq 10$.

Let us record what we have proved so far.

Lemma 2. Let $4 \leq x<\min \{y, w\} \leq \max \{y, w\}<z$ be positive integers such that $|x+z-y-w|=1,2$ and $\left(F_{x}^{(k)}-1\right)\left(F_{z}^{(k)}-1\right)=\left(F_{y}^{(k)}-1\right)\left(F_{w}^{(k)}-1\right)$, for all $k \geq 4$. Then

$$
x=4, \quad 5 \leq y, \quad w \leq 6 \quad \text { and } \quad 6 \leq z \leq 10
$$

To conclude this section, we show that there are no Diophantine quadruples associated to $F^{(k)}$, under the current assumptions. We first list the values of $F_{x}^{(k)}, F_{y}^{(k)}, F_{z}^{(k)}, F_{w}^{(k)}$, with $4 \leq k \leq 9$ and x, y, z, w in the range given by Lemma 2, which leads us to the conclusion that (9) has no solutions. So, there are no Diophantine quadruples with values in $F^{(k)}$, with $4 \leq k \leq 9$. Now, when $k \geq 10$, we note that $F_{t}^{(k)}=2^{t-2}$, for $t \in\{x, y, z, w\}$. But a quick verification in equation

$$
\left(2^{x-2}-1\right)\left(2^{z-2}-1\right)=\left(2^{y-2}-1\right)\left(2^{w-2}-1\right)
$$

with x, y, z, w distinct integers in the ranges given by the previous lemma allows us to conclude that there are no Diophantine quadruples associated to $F^{(k)}$ in the case $k \geq 10$ either.

3.2 The case $x+z=y+w$

We first prove the following result:
Lemma 3. Inequality

$$
\begin{equation*}
\left(F_{n+2}^{(k)}-1\right)\left(F_{n}^{(k)}-1\right) \leq\left(F_{n+1}^{(k)}-1\right)^{2} \tag{21}
\end{equation*}
$$

holds for all $n \geq 0$ and $k \geq 2$. Equality is obtained only for $n=0,1, k+1$.
Remark 1. The above result says (a little bit more than) that the sequence $F^{(k)}$ is "log-concave".

Proof. Let $k=2$. One checks that inequality (21) is an equality for $n=0,1,3$ and it is strict for $n=2$. Assume $n \geq 4$. Then inequality (21) is equivalent to

$$
\begin{equation*}
F_{n+2} F_{n}-F_{n+1}^{2} \leq F_{n+2}+F_{n}-2 F_{n+1} . \tag{22}
\end{equation*}
$$

The right-hand side of (22) is

$$
\begin{aligned}
F_{n+2}+F_{n}-2 F_{n+1} & =\left(F_{n+1}+F_{n}\right)+F_{n}-2 F_{n+1} \\
& =2 F_{n}-F_{n+1} \\
& =2 F_{n}-\left(F_{n}+F_{n-1}\right) \\
& =F_{n}-F_{n-1} \\
& =F_{n-2},
\end{aligned}
$$

while the left-hand side of (22) is $(-1)^{n+1}$. So, we get that inequality (22) is equivalent to

$$
(-1)^{n+1} \leq F_{n-2}
$$

which holds with strict for all $n \geq 4$.
From now on we assume that $k \geq 3$. We note by Lemma 1 that

$$
F_{n}^{(k)}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ 2^{n-2} & \text { if } 2 \leq n \leq k+1 \\ 2^{n-2}-(n-k) 2^{n-k-3} & \text { if } k+2 \leq n \leq 2 k+2\end{cases}
$$

We now start with the cases where (21) is an equality. For $n=0,1$, both sides of inequality (21) are zero so Lemma 3 holds with equality. For $n=k+1$, we have

$$
F_{n}^{(k)}=F_{k+1}^{(k)}=2^{k-1}, \quad F_{n+1}^{(k)}=F_{k+2}^{(k)}=2^{k}-1, \quad F_{n+2}^{(k)}=F_{k+3}^{(k)}=2^{k+1}-3,
$$

so inequality (21) asserts that

$$
\left(2^{k+1}-4\right)\left(2^{k-1}-1\right) \leq\left(2^{k}-2\right)^{2},
$$

which is again an equality.
For $n=2, \ldots, k-1$, we have that

$$
\begin{aligned}
\left(F_{n+1}^{(k)}-1\right)^{2}-\left(F_{n}^{(k)}-1\right)\left(F_{n+2}^{(k)}-1\right) & =\left(2^{n-1}-1\right)^{2}-\left(2^{n-2}-1\right)\left(2^{n}-1\right) \\
& =\left(2^{2 n-2}-2^{n}+1\right)-\left(2^{2 n-2}-5 \cdot 2^{n-2}+1\right) \\
& =2^{n-2}>0,
\end{aligned}
$$

so inequality (21) is strict. For $n=k$, we have

$$
\begin{aligned}
\left(F_{n+1}^{(k)}-1\right)^{2}-\left(F_{n}^{(k)}-1\right)\left(F_{n+2}^{(k)}-1\right) & =\left(2^{k-1}-1\right)^{2}-\left(2^{k-2}-1\right)\left(2^{k}-2\right) \\
& =\left(2^{2 k-2}-2^{k}+1\right)-\left(2^{2 k-2}-6 \cdot 2^{k-2}+2\right) \\
& =2^{k-1}-1>0,
\end{aligned}
$$

so inequality (21) is strict.
For $n=k+2, \ldots, 2 k$, we have

$$
\begin{gathered}
F_{n}^{(k)}=2^{n-2}-(n-k) 2^{n-k-3}, \quad F_{n+1}^{(k)}=2^{n-1}-(n-k+1) 2^{n-k-2}, \\
F_{n+2}^{(k)}=2^{n}-(n-k+2) 2^{n-k-1},
\end{gathered}
$$

so

$$
\begin{aligned}
& \left(F_{n+1}^{(k)}-1\right)^{2}-\left(F_{n}^{(k)}-1\right)\left(F_{n+2}^{(k)}-1\right) \\
= & \left(2^{n-1}-(n-k+1) 2^{n-k-2}-1\right)^{2} \\
- & \left(2^{n-2}-(n-k) 2^{n-k-3}-1\right)\left(2^{n}-(n-k+2) 2^{n-k-1}-1\right) \\
= & 2^{2 n-2}-2^{n}\left((n-k+1) 2^{n-k-2}+1\right)+\left((n-k+1) 2^{n-k-2}+1\right)^{2} \\
& -2^{2 n-2}+2^{n-2}\left((n-k+2) 2^{n-k-1}+4(n-k) 2^{n-k-3}+5\right) \\
& -\left((n-k) 2^{n-k-3}+1\right)\left((n-k+2) 2^{n-k-1}+1\right) \\
= & 2^{n-2}+(n-k+1)^{2} 2^{2 n-2 k-4}+(n-k+1) 2^{n-k-1}+1 \\
& -(n-k)(n-k+2) 2^{2 n-2 k-4}-(5 n-5 k+8) 2^{n-k-3}-1 \\
= & 2^{n-2}-2^{2 n-2 k-4}-(n-k+4) 2^{n-k-3} \\
= & 2^{n-2}+2^{n-k-3}\left(2^{n-k-1}-((n-k-1)+5)\right) .
\end{aligned}
$$

Let $t:=n-k-1 \geq 1$. The inequality

$$
2^{t}-(t+5) \geq 0 \quad \text { holds for all } \quad t \geq 3
$$

So, if $t \geq 3$, then $n-2=t+k-1 \geq k+2$, so the inequality

$$
\begin{equation*}
\left(F_{n+1}^{(k)}-1\right)^{2}-\left(F_{n}^{(k)}-1\right)\left(F_{n+2}^{(k)}-1\right) \geq 2^{n-2} \geq 2^{k+2} \geq 32 \tag{23}
\end{equation*}
$$

holds. If $t=2$, then $2^{t}-(t+5)=-3, n=k+3$, so we get that the inequality

$$
\begin{equation*}
\left(F_{n+1}^{(k)}-1\right)^{2}-\left(F_{n}^{(k)}-1\right)\left(F_{n+2}^{(k)}-1\right)=2^{k+1}+2(-3)=2^{k+1}-6 \geq 10 \tag{24}
\end{equation*}
$$

holds. Finally, if $t=1$, then $2^{t}-(t+5)=-4, n=k+2$, so we get that the inequality

$$
\begin{equation*}
\left(F_{n+1}^{(k)}-1\right)^{2}-\left(F_{n}^{(k)}-1\right)\left(F_{n+2}^{(k)}-1\right)=2^{n-2}-4=2^{k}-4 \geq 4 \tag{25}
\end{equation*}
$$

holds.
We record the weaker conclusion of what we have done so far namely that

$$
\begin{equation*}
\left(F_{n+1}^{(k)}-1\right)^{2}-\left(F_{n}^{(k)}-1\right)\left(F_{n+2}^{(k)}-1\right) \geq 4 \tag{26}
\end{equation*}
$$

holds for all $n=k+2, k+3, \ldots, 2 k$, which follows from (23), (24) and (25). We let $n=2 k+1$. Then

$$
\begin{aligned}
F_{n}^{(k)} & =F_{2 k+1}^{(k)}=2^{2 k-1}-(k+1) 2^{k-2} \\
F_{n+1}^{(k)} & =F_{2 k+2}^{(k)}=2^{2 k}-(k+2) 2^{k-1} \\
F_{n+2}^{(k)} & =F_{2 k+3}^{(k)}=2^{2 k+1}-(k+3) 2^{k}+1 .
\end{aligned}
$$

Computing we get

$$
\left(F_{n+1}^{(k)}-1\right)^{2}-\left(F_{n}^{(k)}-1\right)\left(F_{n+2}^{(k)}-1\right)=\left(2^{k-1}-1\right)^{2} \geq 9
$$

In particular, inequality (26) holds for $n=2 k+1$ as well.
Now we rewrite identity (12), according to (5), as

$$
F_{n}^{(k)}=c_{1} \alpha^{n}+e_{k}(n), \text { with } e_{k}(n)=c_{2} \alpha_{2}^{n}+\cdots+c_{k} \alpha_{k}^{n}
$$

where $\alpha=: \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are the zeros of characteristic polynomial $\Psi_{k}(x)$ and $c_{i}=f_{k}\left(\alpha_{i}\right) / \alpha_{i}$ for $i=1, \ldots, k$. We use the following facts:
(i) $\left|e_{k}(n)\right| \leq 1 / 2$ for all $n \geq 0$ (by inequality (5));
(ii) $F_{n+2}^{(k)}=2 F_{n+1}^{(k)}-F_{n+1-k}^{(k)}$ holds for all $n \geq k+1$ (which follows from (3)).

We write

$$
\begin{align*}
& \left(F_{n+1}^{(k)}-1\right)^{2}-\left(F_{n}^{(k)}-1\right)\left(F_{n+2}^{(k)}-1\right) \\
= & \left(F_{n+1}^{(k)}\right)^{2}-F_{n}^{(k)} F_{n+2}^{(k)}+\left(F_{n+2}^{(k)}+F_{n}^{(k)}-2 F_{n+1}^{(k)}\right) \\
= & \left(c_{1} \alpha^{n+1}+e_{k}(n+1)\right)^{2}-\left(c_{1} \alpha^{n}+e_{k}(n)\right)\left(c_{1} \alpha^{n+2}+e_{k}(n+2)\right)+F_{n}^{(k)}-F_{n+1-k}^{(k)} \\
= & 2 c_{1} \alpha^{n+1} e_{k}(n+1)-c_{1} \alpha^{n} e_{k}(n+2)-c_{1} \alpha^{n+2} e_{k}(n)+c_{1}\left(1-\alpha^{1-k}\right) \alpha^{n} \\
+ & \left(e_{k}(n+1)^{2}-e_{k}(n) e_{k}(n+2)+e_{k}(n)-e_{k}(n+1-k)\right) \\
:= & W_{n}^{(k)}+\Delta_{n}^{(k)}, \tag{27}
\end{align*}
$$

where

$$
\begin{aligned}
W_{n}^{(k)} & :=2 c_{1} \alpha^{n+1} e_{k}(n+1)-c_{1} \alpha^{n} e_{k}(n+2)-c_{1} \alpha^{n+2} e_{k}(n)+c_{1}\left(1-\alpha^{1-k}\right) \alpha^{n} ; \\
\Delta_{n}^{(k)} & :=e_{k}(n+1)^{2}-e_{k}(n) e_{k}(n+2)+e_{k}(n)-e_{k}(n+1-k) .
\end{aligned}
$$

The important observation is that

$$
W_{n}^{(k)}=C_{1} \alpha^{n}+\sum_{i=2}^{k} C_{i}\left(\alpha \alpha_{i}\right)^{n},
$$

where

$$
C_{1}:=c_{1}\left(1-\alpha^{1-k}\right) \text { and } C_{i}:=-c_{1} c_{i}\left(\alpha-\alpha_{i}\right)^{2} ; \text { for } 2 \leq i \leq k .
$$

Therefore $\left(W_{n}^{(k)}\right)_{n \geq 0}$ is a linearly recurrent sequences of real numbers of order k whose characteristic polynomial is

$$
\Psi_{W}(X)=(X-\alpha) \prod_{i=2}^{k}\left(X-\alpha \alpha_{i}\right)
$$

Additionally $\left|\Delta_{n}^{(k)}\right| \leq 1.5$ (by (i)). So, since we want that

$$
\left(F_{n+1}^{(k)}-1\right)^{2}-\left(F_{n}^{(k)}-1\right)\left(F_{n+2}^{(k)}-1\right)>0,
$$

it follows, by calculation (27), that is suffices that the inequality

$$
W_{n}^{(k)}>1.5
$$

holds for all $n \geq k+2$. However, from (26), we know that the inequality

$$
W_{n}^{(k)}+\Delta_{n}^{(k)} \geq 4
$$

holds for $n=k+2, \ldots, 2 k+1$, therefore

$$
\begin{equation*}
W_{n}^{(k)} \geq 2.5>1.5 \quad \text { holds for } \quad n=k+2, \ldots, 2 k+1 \tag{28}
\end{equation*}
$$

It remains to write down explicitly the characteristic equation of $\left(W_{n}^{(k)}\right)_{n \geq 0}$. By equality (3)

$$
(X-1) \Psi_{k}(X)=X^{k+1}-2 X^{k}+1=(X-1)(X-\alpha) \cdots\left(X-\alpha_{k}\right),
$$

it follows, upon making the substitution $Y:=X / \alpha$, that

$$
Y^{k+1}-2 \alpha Y^{k}+\alpha^{k+1}=(Y-\alpha) \prod_{i=1}^{k}\left(Y-\alpha \alpha_{i}\right) .
$$

Hence,

$$
\Psi_{W}(Y)=\frac{Y^{k+1}-2 \alpha Y^{k}+\alpha^{k+1}}{Y-\alpha^{2}}=Y^{k}+r_{1} Y^{k-1}+\cdots+r_{k} .
$$

Thus,

$$
\left(Y-\alpha^{2}\right)\left(Y^{k}+r_{1} Y^{k-1}+\cdots+r_{k}\right)=Y^{k+1}-2 \alpha Y^{k}+\alpha^{k+1} .
$$

Identifying coefficients we get

$$
r_{1}-\alpha^{2}=-2 \alpha, \quad r_{2}-r_{1} \alpha^{2}=0, \quad r_{3}-r_{2} \alpha^{2}=0, \ldots, \quad-r_{k} \alpha^{2}=\alpha^{k+1}
$$

Hence,

$$
r_{1}=\alpha^{2}-2 \alpha<0, \quad r_{2}=a_{1} \alpha^{2}<0, \quad r_{3}=a_{2} \alpha^{2}<0, \ldots, \quad r_{k}=-\alpha^{k-1}<-1 .
$$

Thus,

$$
\begin{equation*}
W_{n+k}^{(k)}=\left(-r_{1}\right) W_{n+k-1}^{(k)}+\left(-r_{2}\right) W_{n+k-2}^{(k)}+\cdots+\left(-r_{k}\right) W_{n}^{(k)} \tag{29}
\end{equation*}
$$

holds for all $n \geq 0$, where all coefficients $-r_{1},-r_{2}, \ldots,-r_{k}$ are positive and the last one is larger than 1 . Well, but then, since $W_{n}^{(k)}>1.5$ for the values $n=k+2, \ldots, 2 k+1$, which are k consecutive values for n, it follows, by recurrence (29), that

$$
W_{n+k}^{(k)} \geq\left(-r_{k}\right) W_{n} \geq W_{n}^{(k)} \quad \text { for all } \quad n \geq 0
$$

so, by induction on n, we have that

$$
W_{n}^{(k)}>1.5 \quad \text { holds for all } \quad n \geq k+2 .
$$

As we have seen by calculation (27), this implies that (21) holds for all $n \geq k+2$ with strict, which finishes the proof of the lemma.

Let us now finish the proof of our theorem. We assume that there are integers x, y, z, w, k, as in inequalities (10) and $k \geq 2$, and

$$
\left(F_{x}^{(k)}-1\right)\left(F_{z}^{(k)}-1\right)=\left(F_{y}^{(k)}-1\right)\left(F_{w}^{(k)}-1\right), \quad \text { with } \quad x+z=y+w .
$$

Let $\lambda:=\min \{y, w\}$ and $\delta:=\max \{y, w\}$. Write $\lambda=x+h$. Then $z=\delta+h$, and we have

$$
\begin{equation*}
\frac{F_{x+h}^{(k)}-1}{F_{x}^{(k)}-1}=\frac{F_{\lambda}^{(k)}-1}{F_{x}^{(k)}-1}=\frac{F_{z}^{(k)}-1}{F_{\delta}^{(k)}-1}=\frac{F_{\delta+h}^{(k)}-1}{F_{\delta}^{(k)}-1} . \tag{30}
\end{equation*}
$$

We thus get

$$
\begin{aligned}
\left(\frac{F_{x+1}^{(k)}-1}{F_{x}^{(k)}-1}\right) & \left(\frac{F_{x+2}^{(k)}-1}{F_{x+1}^{(k)}-1}\right) \cdots\left(\frac{F_{x+h}^{(k)}-1}{F_{x+h-1}^{(k)}-1}\right) \\
& =\left(\frac{F_{\delta+1}^{(k)}-1}{F_{\delta}^{(k)}-1}\right)\left(\frac{F_{\delta+2}^{(k)}-1}{F_{\delta+1}^{(k)}-1}\right) \cdots\left(\frac{F_{\delta+h}^{(k)}-1}{F_{\delta+h-1}^{(k)}-1}\right) .
\end{aligned}
$$

By our Lemma 3,

$$
\begin{equation*}
\frac{F_{x+1}^{(k)}-1}{F_{x}^{(k)}-1} \geq \frac{F_{x+2}^{(k)}-1}{F_{x+1}^{(k)}-1} \geq \cdots \geq \frac{F_{\delta+1}^{(k)}-1}{F_{\delta}^{(k)}-1} . \tag{31}
\end{equation*}
$$

Further, the above string of inequalities implies

$$
\begin{equation*}
\frac{F_{x+1}-1}{F_{x}-1}>\frac{F_{\delta+1}-1}{F_{\delta}-1} . \tag{32}
\end{equation*}
$$

Indeed, for if that would not be the case, then in (31) all intermediate inequalities are equalities. Assume first that $\delta \geq x+2$ and consider the first two equalities in the left-hand side in (31):
$\left(F_{x+2}^{(k)}-1\right)\left(F_{x}^{(k)}-1\right)=\left(F_{x+1}^{(k)}-1\right)^{2}, \quad\left(F_{x+3}^{(k)}-1\right)\left(F_{x+1}^{(k)}-1\right)=\left(F_{x+2}^{(k)}-1\right)^{2}$.
However, both equalities cannot be satisfied for the same value x (by Lemma 3 , we must have $x=k+1$ for the first equality and $x=k$ for the second equality). So, (32) holds unless $\delta=x+1$. But this would mean that $w=x+1$, so

$$
\begin{aligned}
& a_{1} a_{2}=F_{x}, \quad a_{1} a_{4}+1=F_{x+1}, \\
& a_{2} a_{3}+1=F_{x+1}, \quad a_{3} a_{4}+1=F_{x+2},
\end{aligned}
$$

but then $F_{x}=a_{1} a_{2}+1<a_{1} a_{3}+1<a_{2} a_{3}+1=F_{x+1}$, showing that $a_{1} a_{3}+1$ cannot be in $F^{(k)}$. So, indeed we must have $\delta \geq x+2$ therefore (32) holds. A similar argument shows that

$$
\begin{equation*}
\frac{F_{x+i}-1}{F_{x+i-1}-1}>\frac{F_{\delta+i}-1}{F_{\delta+i-1}-1} \quad \text { holds for } \quad i=1,2, \ldots, h \tag{33}
\end{equation*}
$$

and multiplying (33) for $i=1,2, \ldots, h$, we contradict (30) (in fact, we get that in (30), the left-hand side is larger than the right-hand side).

Thus, Theorem 2 is proved.

Acknowledgement.

We thank the referee for comments which improved the quality of this paper.

References

[1] J. Arkin, V. E. Hoggatt and E. G. Strauss, On Euler's solution of a problem of Diophantus, Fibonacci Quarterly 17 (1979), 333-339.
[2] J. J. Bravo and F. Luca, Powers of two in generalized Fibonacci sequences, Rev. Colombiana Mat. 46 (2012), 67-79.
[3] J. J. Bravo and F. Luca, On a conjecture about repdigits in k-generalized Fibonacci sequences, Publ. Math. Debrecen 82 (2013), 623-639.
[4] Y. Bugeaud and A. Dujella, On a problem of Diophantus for higher powers, Math. Proc. Cambridge Philos. Soc. 135 (2003), 1-10.
[5] Y. Bugeaud and K. Gyarmati, On generalizations of a problem of Diophantus, Illinois J. Math. 48 (2004), 1105-1115.
[6] M. Cipu and T. Trudgian, Searching for Diophantine quintuples, Acta Arithmetica 173 (2016), 365-382.
[7] C. Cooper and F. T. Howard, Some identities for r-Fibonacci numbers, Fibonacci Quarterly 49 (2011), 231-243.
[8] A. Dujella, There are only finitely many Diophantine quintuples, J. reine angew. Math. 566 (2004), 183-214.
[9] A. Dujella, On the number of Diophantine m-tuples, Ramanujan J. 15 (2008), 37-46.
[10] G. P. Dresden and Zhaohui Du, A simplified Binet formula for k-generalized Fibonacci numbers, J. Integer Sequences 17 (2014), Article 14.4.7.
[11] G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence sequences, Mathematical Surveys and Monographs, 104 American Mathematical Society, Providence, RI, 2003.
[12] C. Fuchs, C. Hutle, N. Irmak, F. Luca and L. Szalay, Only finitely many Tribonacci Diophantine triples, Math. Slovaca, to appear.
[13] C. Fuchs, F. Luca and L. Szalay, Diophantine triples with values in binary recurrences, Ann. Sc. Norm. Super. Pisa Cl. Sc. (5), 7 (2008), 579-608.
[14] P. Gibbs, Some rational Diophantine sextuples, Glas. Mat. Ser. III 41(61) (2006), 195-203.
[15] C. A. Gómez Ruiz and F. Luca, Tribonacci Diophantine Quadruples, Glas. Mat. Ser. III 50(70) (2015), 17-24.
[16] K. Gyarmati, A. Sarkozy and C.L. Stewart, On shifted products which are powers, Mathematika 49 (2002), 227-230.
[17] K. Gyarmati and C. L. Stewart, On powers in shifted products, Glas. Mat. Ser. III 42 (62) (2007), 273-279.
[18] L. K. Hua and Y. Wang, Applications of number theory to numerical analysis, Translated from Chinese. Springer-Verlag, Berlin-New York; Kexue Chubanshe (Science Press), Beijing, 1981.
[19] F. Luca, On shifted products which are powers, Glas. Mat. Ser. III 40(60) (2005), 13-20.
[20] F. Luca and L. Szalay, Fibonacci Diophantine Triples, Glas. Mat. Ser. III 43 (63) (2008), 253-264.
[21] F. Luca and L. Szalay, Lucas Diophantine Triples, Integers 9 (2009), 441-457.
[22] E. P. Miles, Jr., Generalized Fibonacci numbers and associated matrices, Amer. Math. Monthly 67 (1960), 745-752.
[23] M. D. Miller, Mathematical Notes: On Generalized Fibonacci Numbers, Amer. Math. Monthly 78 (1971), 1108-1109.
[24] D. A. Wolfram, Solving generalized Fibonacci recurrences, Fibonacci Quarterly 36 (1998), 129-145.

[^0]: *Departamento de Matemáticas, Universidad del Valle, 25360 Cali, Calle 13 No 100-00, Colombia. e-mail: carlos.a.gomez@correounivalle.edu.co
 ${ }^{\dagger}$ School of Mathematics, University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa; Max Planck Institute for Mathematics Vivatgasse 7, 53111 Bonn, Germany, Department of Mathematics Faculty of Sciences University of Ostrava 30. Dubna 22, 701 03 Ostrava 1, Czech Republic, e-mail: florian.luca@wits.ac.za

