
BRACES AND POISSON ADDITIVITY

PAVEL SAFRONOV

Abstract. We relate the brace construction introduced by Calaque and Willwacher to
an additivity functor. That is, we construct a functor from brace algebras associated to
an operad O to associative algebras in the category of homotopy O-algebras. As an ex-
ample, we identify the category of Pn+1-algebras with the category of associative algebras
in Pn-algebras. We also show that under this identification there is an equivalence of two
definitions of derived coisotropic structures in the literature.

Introduction

This paper is devoted to a proof of an equivalence of symmetric monoidal ∞-categories

AlgPn+1
∼= Alg(AlgPn)

between the ∞-category of Pn+1-algebras and the ∞-category of associative algebras in the
∞-category of Pn-algebras. Here Pn+1 is the operad which controls dg commutative algebras
together with a Poisson bracket of degree −n.

Braces. Let O be a dg operad and C its Koszul dual cooperad which is assumed to be
Hopf. Following Tamarkin’s work [Tam00] on the deformation complex of a Pn-algebra,
Calaque and Willwacher [CW15] introduced an operad BrC of brace algebras which acts on
the deformation complex of any homotopy O-algebra. Moreover, they have remarked that
the brace construction is an analogue of the Boardman–Vogt tensor product E1 ⊗ ΩC of
operads. This is suggested by the following examples:

• If 1 is the trivial cooperad, Br1 ∼= E1.
• If coAss is the cooperad of coassociative coalgebras, BrcoAss{1} ∼= E2.
• If coComm is the cooperad of cocommutative coalgebras, BrcoComm

∼= Lie.
• If coPn is the cooperad of Pn-coalgebras, BrcoPn{n} ∼= Pn+1.

In this paper we explain to what extent this is true. Namely, suppose C is a Hopf cooperad
satisfying a minor technical assumption. We construct a functor of ∞-categories

(1) AlgBrC
−→ Alg(AlgO)

from the ∞-category of BrC-algebras to the ∞-category of associative algebras in the ∞-
category of O-algebras. Let us note that we did not assume that O is a Hopf operad and the
symmetric monoidal structure on AlgO comes from the Koszul dual side.

Unfortunately, we do not know if (1) is an equivalence in general, but we do show that it
is an equivalence in two examples of interest: namely, Lie algebras and Poisson algebras.

Suppose C = coComm. As we have mentioned, BrcoComm
∼= Lie and so we get a functor

add: AlgLie −→ Alg(AlgLie).
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2 PAVEL SAFRONOV

We show that it is an equivalence and in fact coincides with the functor which sends a Lie
algebra g to the associative algebra object in the category of Lie algebras 0×g 0 (see Propo-
sition 2.13). We also show that the same functor can be constructed as follows. Given a Lie
algebra g, the universal enveloping algebra U(g) is a cocommutative bialgebra, i.e. an asso-
ciative algebra object in cocommutative coalgebras. Identifying cocommutative coalgebras
with Lie algebras using Koszul duality we obtain the same functor (see Proposition 2.11).
Let us mention that the underlying Lie algebra structure on add(g) is canonically trivial by
Proposition 2.15.

Note that BrcoComm is an important operad in itself and appears for instance in the de-
scription of the Atiyah bracket of vector fields, see Section 2.1.1.

Poisson additivity. The additivity functor is more interesting in the case of Pn+1-algebras.
So, take C = coPn. Since BrcoPn{n} ∼= Pn+1, we obtain a functor

add: AlgPn+1
−→ Alg(AlgPn).

The following statement combines Propositions 2.19 - 2.21 and Theorem 2.22.

Theorem. The additivity functor

AlgPn+1
−→ Alg(AlgPn)

is an equivalence of symmetric monoidal ∞-categories.
Moreover, the diagrams

AlgPn+1

��

// Alg(AlgPn)

��
AlgComm AlgPn

oo

and

AlgPn+1
//

��

Alg(AlgPn)

��
AlgLie

//

Sym

OO

Alg(AlgLie)

Sym

OO

commute.

Nick Rozenblyum has given an independent proof of this result in the language of fac-
torization algebras. This statement is a Poisson version of the additivity theorem [Lur17,
Theorem 5.1.2.2] for En-algebras proved by Dunn and Lurie: one has an equivalence

AlgEn+1
∼= Alg(AlgEn)

of symmetric monoidal ∞-categories, where En is the operad of little n-disks.
One has the following explicit description of the additivity functor for Poisson algebras

which uses some ideas of Tamarkin (see [Tam00] and [Tam07]). For simplicity, we describe
the construction in the case of non-unital Pn+1-algebras. In the case of unital Pn+1-algebras
one has to take care of the natural curving appearing on the Koszul dual side, but otherwise
the construction is identical (see Section 2.5). If A is a commutative algebra, we can consider
its Harrison complex coLie(A[1]) which is a Lie coalgebra. If A is moreover a Pn+1-algebra,
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then the Harrison complex coLie(A[1])[n − 1] has a natural structure of an (n − 1)-shifted
Lie bialgebra (Definition 2.16) which defines a functor

AlgPn+1
−→ BiAlgLien−1

.

Given a Lie algebra g, its universal enveloping algebra U(g) is a cocommutative bialgebra.
If g is moreover an (n − 1)-shifted Lie bialgebra, then U(g) acquires a natural cobracket
making it into an associative algebra object in Pn-coalgebras. Thus, we get a functor

BiAlgLien−1
−→ Alg(CoAlgcoPn).

Applying Koszul duality we identify CoAlgcoPn with the category of Pn-algebras thus giving
the required additivity functor.

An important point we have neglected in this discussion is that at the very end one
has to pass from the localization of the category of associative algebras in Pn-coalgebras
to the ∞-category of (homotopy) associative algebras in the localization of the category of
Pn-coalgebras. That is, we have a natural functor

Alg(CoAlgcoPn)[W−1
Kos] −→ Alg(CoAlgcoPn [W−1

Kos])

where WKos is a certain natural class of weak equivalences we define in the paper, Alg is
the 1-category of associative algebras and Alg is the ∞-category of (homotopy) associative
algebras. The fact that this functor is an equivalence is not automatic: the corresponding
rectification statement was proved in [Lur17, Theorem 4.1.8.4] under the assumption that
the model category in question is a monoidal model category while the monoidal structure
on CoAlgcoPn does not even preserve colimits. Furthermore, if we do not pass to the Koszul
dual side, the localization functor (where Wqis is the class of quasi-isomorphisms)

Alg(AlgPn)[W−1
qis ] −→ Alg(AlgPn [W−1

qis ])

is not an equivalence. Indeed, Alg(AlgPn) is equivalent to the category of commutative
algebras while we prove that Alg(AlgPn [W−1

qis ]) is equivalent to the ∞-category of Pn+1-
algebras.

Let us note that the underlying commutative structure on add(A) for a Pn+1-algebra A
coincides with the commutative structure on A and the underlying Lie structure on add(A)
is trivial. However, the underlying Pn-structure on add(A) is not necessarily commutative.

One motivation for developing Poisson additivity is the recent work of Costello and
Gwilliam [CG16] that formalizes algebras of observables in quantum field theories. In that
work a topological quantum field theory is described by a locally-constant factorization al-
gebra on the spacetime manifold valued in E0-algebras. Since locally-constant factorization
algebras on Rn are the same as En-algebras, we see that observables in an n-dimensional
topological quantum field theory are described by En ⊗ E0 = En-algebras. Similarly, classi-
cal topological field theories are described by locally-constant factorization algebras valued
in P0-algebras, which in the case of Rn are the same as En-algebras in P0-algebras. Our
result thus shows that observables in an n-dimensional classical topological field theory are
described by a Pn-algebra (a natural result one expects by extrapolating from the case of
topological quantum mechanics which is n = 1).
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Coisotropic structures. Another motivation is given by the theory of shifted Poisson
geometry developed by Calaque–Pantev–Toën–Vaquié–Vezzosi and, more precisely, derived
coisotropic structures. Recall that an n-shifted Poisson structure on an affine scheme SpecA
for A a commutative dg algebra is described by a Pn+1-algebra structure on A. Now suppose
f : SpecB → SpecA is a morphism of affine schemes. In [CPTVV17] the following notion of
derived coisotropic structures was introduced. Assume the statement of Poisson additivity.
Then one can realize A as an associative algebra in Pn-algebras and a coisotropic structure
on f is a lift of the natural action of A on B in commutative algebras to Pn-algebras. Let
us denote by CoisCPTV V (f, n) the space of such coisotropic structures.

A more explicit definition of derived coisotropic structures was given in [Saf17] and [MS16]
which does not rely on Poisson additivity. An action of a Pn+1-algebra A on a Pn-algebra
B was modeled by a certain colored operad P[n+1,n] and a derived coisotropic structure
was defined to be the lift of the natural action of A on B in commutative algebras to an
algebra over the operad P[n+1,n]. Let us denote by CoisMS(f, n) the space of such coisotropic
structures.

In this paper we show that these two notions coincide. The following statement is Corollary
3.9.

Theorem. Suppose f : A→ B is a morphism of commutative dg algebras. One has a natural
equivalence

CoisMS(f, n) ∼= CoisCPTV V (f, n)

of spaces of n-shifted coisotropic structures.

This statement is proved by developing a relative analogue of the Poisson additivity func-
tor. Namely, Theorem 3.8 asserts that the ∞-category of P[n+1,n]-algebras is equivalent to
the∞-category of pairs (A,M), where A is an associative algebra and M is an A-module in
the ∞-category of Pn-algebras.

Notations.

• Given a relative category (C,W ) we denote by C[W−1] the underlying ∞-category.
• We work over a field k of characteristic zero; Ch denotes the category of chain com-

plexes of k-modules and Ch the underlying ∞-category.
• Given a topological operad O, we denote by AlgO(C) the category of O-algebras in a

symmetric monoidal category C and by AlgO(C) the ∞-category of O-algebras in a
symmetric monoidal ∞-category C. If O is a dg operad, the category of O-algebras
in complexes is simply denoted by AlgO.
• All operads are non-unital unless specified otherwise. We denote by Oun the operad

of unital O-algebras.
• All non-counital coalgebras are conilpotent.

Acknowledgements. The author would like to thank D. Calaque, B. Hennion and N.
Rozenblyum for useful conversations and V. Hinich for pointing out a mistake in the previous
version. The main theorem (Theorem 2.22) was first announced by Nick Rozenblyum in 2013,
who has given several talks about it. Unfortunately, his proof is not yet publicly available.
This article presents another proof of the result which is different from Rozenblyum’s.
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1. Operads

1.1. Relative categories. In the paper we will extensively use relations between relative
categories and ∞-categories, so let us recall the necessary facts.

Definition 1.1. A relative category (C,W ) consists of a category C and a subcategory
W ⊂ C which has the same objects as C and contains all isomorphisms in C.

We will call morphisms belonging to W weak equivalences . A functor of relative cate-
gories (C,WC)→ (D,WD) is a functor that preserves weak equivalences.

Recall that given a category C its nerve N(C) is an∞-category. Similarly, if C is a relative
category, the nerve N(C) is an ∞-category equipped with a system of morphisms W and we
intoduce the notation

C[W−1] = N(C)[W−1],

where the localization functor on the right is defined in [Lur17, Proposition 4.1.7.2]. In
particular, C[W−1] is an ∞-category which we call the underlying ∞-category of the
relative category (C,W ).

We will also need a construction of symmetric monoidal∞-categories from ordinary sym-
metric monoidal categories. We say that C is a relative symmetric monoidal category
if the functor x⊗− : C→ C preserves weak equivalences for every object x ∈ C.

Proposition 1.2. Let C be a relative symmetric monoidal category. Then the localization
C[W−1] admits a natural structure of a symmetric monoidal ∞-category.

If F : C1 → C2 is a (lax) symmetric monoidal functor of relative symmetric monoidal
categories, then its localization induces a (lax) symmetric monoidal functor of ∞-categories

F : C1[W−1] −→ C2[W−1].

Proof. Given a symmetric monoidal category C we can construct the symmetric monoidal∞-
category C⊗ as in [Lur17, Construction 2.0.0.1]. The class of weak equivalences W defines a
system in the underlying∞-category of C⊗ which is compatible with the tensor product and
hence by [Lur17, Proposition 4.1.7.4] we can construct a symmetric monoidal ∞-category
(C′)⊗[W−1] whose underlying ∞-category is equivalent to C[W−1].

A (lax) symmetric monoidal functor C1 → C2 gives rise to a (lax) symmetric monoidal
functor C⊗1 → C⊗2 of ∞-categories. Consider the composite

C⊗1 −→ C⊗2 −→ C⊗2 [W−1].

Since F : C1 → C2 preserves weak equivalences, by the universal property of the localization
we obtain a (lax) symmetric monoidal functor

F : C⊗1 [W−1] −→ C⊗2 [W−1].

�

For instance, let Ch be the symmetric monoidal category of chain complexes of k-vector
spaces. Let Wqis ⊂ Ch be the class of quasi-isomorphisms. Since M ⊗ − preserves quasi-
isomorphisms for any M ∈ Ch, we obtain a natural symmetric monoidal structure on the
∞-category

Ch = Ch[W−1
qis ]
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of chain complexes.
We will repeatedly use the following method to prove that a functor between∞-categories

is an equivalence. Consider a commutative diagram of ∞-categories

C1

G1   

F // C2

G2~~
D

Assuming G1 and G2 have left adjoints GL
1 and GL

2 respectively, we obtain a natural trans-
formation GL

2 → FGL
1 of functors D → C2. We say that the original diagram satisfies the

left Beck–Chevalley condition if this natural transformation is an equivalence. The
following is a corollary of the ∞-categorical version of the Barr–Beck theorem proved in
[Lur17, Corollary 4.7.3.16].

Proposition 1.3. Suppose

C1

G1   

// C2

G2~~
D

is a commutative diagram of ∞-categories such that

(1) The functors G1 and G2 admit left adjoints.
(2) The diagram satisfies the left Beck–Chevalley condition.
(3) The ∞-categories Ci admit and Gi preserve geometric realizations of simplicial ob-

jects.
(4) The functors Gi are conservative.

Then the functor C1 → C2 is an equivalence.

1.2. Operads. Our definitions and notations for operads follows those of Loday and Vallette
[LV12]. Unless specified otherwise, by an operad we mean an operad in chain complexes.

Given a symmetric sequence V , we define the shift V [n] to be the symmetric sequence
with

(V [n])(m) = V (m)[n].

Let sgnm be the one-dimensional sign representation of Sm. We will also use the notation
V {n} to denote the symmetric sequence with

(V {n})(m) = V (m)⊗ sgn⊗nm [n(m− 1)].

If V is an operad or a cooperad, so is V {n}.
Let 1 be the trivial operad. Recall that an augmentation on an operad O is a morphism

of operads
O −→ 1.

In particular, one obtains a splitting of symmetric sequences

O ∼= O⊕ 1.

Similarly, one has a notion of a coaugmentation on a cooperad C.
Given an augmented operad O, its bar construction BO is defined to be the cofree cooperad

on O[1] equipped with the bar differential which consists of two terms: one coming from the
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differential on O and one coming from the product on O. Similarly, given a coaugmented
cooperad C we have its cobar construction ΩC. We refer to [LV12, Section 6.5] for details.
In particular, one has a quasi-isomorphism of operads

ΩBO
∼−→ O.

Most of the operads of interest that control non-unital algebras satisfy O(0) = 0 and
O(1) ∼= k and hence possess a unique augmentation. However, operads controlling unital
algebras tend not to have an augmentation, so, following Hirsh and Millès [HM12], we relax
the condition a bit.

Definition 1.4. A semi-augmentation on an operad O is a morphism of the underly-
ing graded symmetric sequences ε : O → 1 which is not necessarily compatible with the
differential and the product such that the composite

1 −→ O
ε−→ 1

is the identity.

Given a semi-augmented operad O, one can still consider the bar construction BO, but
the corresponding differential no longer squares to zero. Instead, we obtain a curved coop-
erad equipped with a curving θ : C(1) → k[2] (see [HM12, Definition 3.2.1] for a complete
definition).

We refer to [HM12, Section 3.3] for explicit formulas for the differential and the curving
on the bar construction of a semi-augmented operad. Moreover, it is also shown there that
the cobar construction ΩC on a coaugmented curved cooperad C is a dg operad equipped
with a natural semi-augmentation.

Finally, we refer to [LV12, Section 7] for Koszul duality for augmented operads and to
[HM12, Section 4] for Koszul duality for semi-augmented operads. The important point that
we will use in the paper is that the Koszul dual cooperad C of O is naturally equipped with
a quasi-isomorphism

ΩC
∼−→ O

which gives a semi-free resolution of the operad O. Such a quasi-isomorphism is equivalently
given by a degree 1 (curved) Koszul twisting morphism C→ O.

1.3. Operadic algebras. Given an operad O we denote by AlgO the category of O-algebras
in chain complexes. Similarly, for a cooperad C we denote by CoAlgC the category of conilpo-
tent C-coalgebras. To simplify the notation, we let

Alg = AlgAssun

be the category of unital associative algebras.
If C is a curved cooperad, we denote by CoAlgC the category of curved conilpotent C-

coalgebras (see [HM12, Definition 5.2.1]) which are cofibrant. Note that morphisms strictly
preserve the differential.

Remark 1.5. Positselski in [Pos11, Section 9] considers a closely related category of curved
coassociative coalgebras k−coalgcdg whose morphisms do not strictly preserve the differential.
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If A is an O-algebra, then A[−n] is an O{n}-algebra; similarly, if C is a C-coalgebra, then
C[−n] is a C{n}-coalgebra.

Now consider a (curved) cooperad C equipped with a (curved) Koszul twisting morphism
C→ O. Given an O-algebra A we define its bar construction to be

B(A) = C(A) =
∞⊕
n=0

(C(n)⊗ A⊗n)Sn

equipped with the bar differential (see [HM12, Section 5.2.3]). Given a curved C-coalgebra
C we define its cobar construction to be

Ω(C) = O(C) =
∞⊕
n=0

(O(n)⊗ C⊗n)Sn

equipped with the cobar differential (see [HM12, Section 5.2.5]). Note that the cobar differ-
ential squares to zero. In particular, we get a bar-cobar adjunction

Ω: CoAlgC
// AlgO : Boo

such that for any O-algebra A the natural projection

ΩBA −→ A

is a quasi-isomorphism.
Let us denote by Wqis ⊂ AlgO the class of morphisms of O-algebras which are quasi-

isomorphisms of the underlying complexes. Let us also denote by WKos ⊂ CoAlgC the class
of morphisms of (curved) C-coalgebras which become quasi-isomorphisms after applying the
cobar functor Ω. The class of weak equivalences WKos is independent of the choice of the
operad O as shown by the following statement. Let us denote by ΩO : CoAlgC → AlgO the
cobar construction associated to the operad O.

Proposition 1.6. Suppose C → O1 is a (curved) Koszul twisting morphism and O1 → O2

a quasi-isomorphism of operads. Consider a morphism of (curved) C-coalgebras C1 → C2.
Then

ΩO1(C1) −→ ΩO1(C2)

is a quasi-isomorphism iff

ΩO2(C1) −→ ΩO2(C2)

is a quasi-isomorphism.

Proof. Consider a commutative diagram

ΩO1(C1) //

��

ΩO1(C2)

��
ΩO2(C1) // ΩO2(C2).

The morphisms

ΩO1(Ci) −→ ΩO2(Ci)
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are filtered quasi-isomorphisms where the filtration is defined as in [Val14, Proposition 2.3].
The filtration is also complete and bounded below and hence the morphisms ΩO1(Ci) →
ΩO2(Ci) are quasi-isomorphisms.

Therefore, the top morphism is a quasi-isomorphism iff the bottom morphism is a quasi-
isomorphism. �

Proposition 1.7. Suppose C → O is a (curved) Koszul twisting morphism. Then the ad-
junction

Ω: CoAlgC
// AlgO : Boo

descends to an adjoint equivalence of ∞-categories

Ω: CoAlgC[W−1
Kos]

// AlgO[W−1
qis ] : Boo .

Proof. First of all, we have to show that B and Ω preserve weak equivalences. Indeed, by
definition Ω creates weak equivalences. Now suppose A1 → A2 is a quasi-isomorphism and
consider the morphism BA1 → BA2. We have a commutative diagram

ΩBA1

��

// ΩBA2

��
A1

// A2

where the two vertical morphisms are quasi-isomorphisms by [HM12, Proposition 5.2.8] and
the bottom morphism is a quasi-isomorphism by assumption. Therefore, ΩBA1 → ΩBA2 is
also a quasi-isomorphism and hence by definition BA1 → BA2 is a weak equivalence.

Therefore, we get an adjunction Ω a B of the underlying ∞-categories. To show that it is
an adjoint equivalence we have to show that the unit and the counit of the adjunction are
weak equivalences. Indeed, again by [HM12, Proposition 5.2.8] the counit of the adjunction
is a weak equivalence. Next, suppose C is a (curved) C-coalgebra and consider the unit of
the adjunction C → BΩC. To show that it is a weak equivalence, consider the morphisms

ΩC −→ ΩBΩC −→ ΩC.

By construction the composite morphism is the identity; the second morphism is the counit
of the adjunction hence is a quasi-isomorphism. Therefore, the first morphism is a quasi-
isomorphism and hence C → BΩC is a weak equivalence. �

We introduce the notation

AlgO = AlgO[W−1
qis ]

for the ∞-category of O-algebras and by the previous proposition it can also be modeled by
the relative category (CoAlgC,WKos).

Suppose O1 → O2 is a morphism of operads which is a quasi-isomorphism in each arity.
The forgetful functor

AlgO2
−→ AlgO1

automatically preserves quasi-isomorphisms and hence induces a functor on the level of ∞-
categories.
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u m

Figure 1. Generating operations of Assun.

m

m

= m

m

m

u

= m

u

=

Figure 2. Relations in Assun.

Proposition 1.8. Let O1 → O2 be a quasi-isomorphism of operads. Then the forgetful
functor

AlgO2
−→ AlgO1

induces an equivalence of ∞-categories

AlgO2
−→ AlgO1

Proof. Indeed, by [BM07, Theorem 4.1] and [Hin97, Theorem 4.7.4] the induction/restriction
functors provide a Quillen equivalence between AlgO1

and AlgO2
and hence induce an equiv-

alence of the underlying ∞-categories. �

Finally, recall that the forgetful functor AlgO → Ch creates sifted colimits since the
category AlgO can be written as the category of algebras over a monad which preserves
sifted colimits. The same statement is true on the level of ∞-categories.

Proposition 1.9. Let I be a set and O an I-colored dg operad. The forgetful functor

AlgO −→ Fun(I,Ch)

creates sifted colimits.

Proof. By [Lur17, Proposition 1.3.4.24] we just need to show that the forgetful functor
AlgO → Fun(I,Ch) creates homotopy sifted colimits which follows by [PS14, Proposition
7.8]. �

1.4. Examples. Let us show how the bar-cobar duality works for unital algebras over the
associative and Poisson operads to compare it to the classical bar-cobar duality.

We begin with the case of the associative operad considered in [HM12, Section 6]. Let
O = Assun be the operad governing unital associative algebras. The operad Assun is quadratic
and is generated by the symmetric sequence V with V (0) = k and V (2) = k[S2] whose
elements are shown on Figure 1.
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∆

u

∆

u

Figure 3. Curving on (Assun)¡.

The relations in Assun have the form shown on Figure 2. This gives an inhomogeneous
quadratic-linear-constant presentation of the operad Assun. Given such an operad O, we
denote by qO the operad with the same generators and where we only keep the quadratic
part of the relations. Recall that the underlying graded cooperad of the Koszul dual is
defined from the quadratic part of the relations, the differential uses the linear part and the
curving comes from the constant part. In the relations we have there are no linear terms, so
the Koszul dual cooperad coincides with the Koszul dual cooperad of the quadratic operad
qAssun equipped with a curving. From the relations we see that

qAssun ∼= Ass⊕ E0,

where E0 is the operad governing complexes together with a distinguished vector and where
⊕ refers to the product in the category of operads.

By [HM12, Proposition 6.1.4] the Koszul dual of qAssun is given by

(qAssun)¡ = Ass¡ ⊕ coE0{−1},

where coE0
∼= E0 is the cooperad of complexes together with a functional and ⊕ now de-

notes the product in the category of conilpotent cooperads, i.e. the conilpotent cooperad
cogenerated by Ass¡ and coE0. We define

(Assun)¡ = (qAssun)¡

as graded cooperads. The degree −2 part of (Assun)¡(1) is the two-dimensional vector space
spanned by trees shown in Figure 3 and we define the curving θ : (Assun)¡(1)→ k[2] to take
value −1 on both of these. Let us denote

coAssθ{1} = (Assun)¡.

The cooperad coAssθ governs coassociative coalgebras C together with a coderivation d: C →
C of degree 1 and a curving θ : C → k[2] satisfying the equations

d2x = θ(x(1))x(2) − x(1)θ(x(2))

θ(dx) = 0

where

∆(x) = x(1) ⊗ x(2).

Given a unital associative dg algebra A, its bar complex is

B(A) = T•(A[1]⊕ k[2])
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equipped with the following differential. Let us denote elements of the bar complex by
[x1|...|xn] with elements of k[2] denoted by ∗. Then

d[x1|...|xn] =
n∑
i=1

(−1)
∑i−1
q=1(|xq |+1)[x1|...|dxi|...|xn]

+
n−1∑
i=1

(−1)
∑
q=1i(|xq |+1)[x1|...|xixi+1|...|xn]

with d∗ = 1 ∈ A and ∗ · x = x · ∗ = 0. The curving is given by θ([∗]) = 1.

Remark 1.10. Given a unital associative dg algebra A equipped with a semi-augmentation,
Positselski in [Pos11, Section 6.1] considers the bar construction to be T•(A[1]) equipped
with a natural curving and the standard bar differential.

Similarly, given a curved coalgebra C, its cobar complex is

Ω(C) = T•(C[−1])

whose elements we denote by [x1|...|xn] for xi ∈ C such that the differential is

d[x1|...|xn] =
n∑
i=1

(−1)
∑i−1
q=1(|xq |+1)[x1|...|dxi|...|xn]

+
n∑
i=1

(−1)
∑i−1
q=1(|xq |+1)[x1|...|θ(xi)xi+1|...|xn]

+
n∑
i=1

(−1)
∑i−1
q=1(|xq |+1)+|xi

(1)
|+1[x1|...|xi(1)|xi(2)|...|xn]

Let us similarly work out the Koszul dual of the operad of unital Pn-algebras. Recall that
a Pn-algebra is a dg Poisson algebra whose Poisson bracket has degree 1− n. We denote by
O = Pun

n the operad controlling such algebras. It is generated by the symmetric sequence V
with V (0) = k · u and V (2) = k ·m⊕ sgn⊗n2 · {} with the following relations:

a(bc) = (ab)c

{{a, b}, c} = (−1)n+|b||c|+1{{a, c}, b}+ (−1)|a|(|b|+|c|)+1{{b, c}, a}
{a, bc} = {a, b}c+ (−1)|b||c|{a, c}b

1 · a = a

{1, a} = 0.

In particular, we see again that

qPun
n
∼= Pn ⊕ E0.

Note that the Koszul dual of the operad of non-unital Pn-algebras is P¡
n
∼= coPn{n}.

Therefore, by [HM12, Proposition 6.1.4] the Koszul dual of Pun
n is

(Pun
n )¡ ∼= coPn{n} ⊕ coE0{−1}

equipped with the curving θ : (Pun
n )¡(1)→ k[2] which sends the tree
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δ

u

to −1, where δ is the cobracket in coPn{n}. We denote

coPθn{n} = (Pun
n )¡.

A curved coalgebra C over the cooperad coPθn is given by the following data:

• A cocommutative comultiplication on C.
• A cobracket δ : C → C ⊗ C[1− n] for which we use Sweedler’s notation

δ(x) = xδ(1) ⊗ xδ(2)

which satisfies the coalgebraic version of the Jacobi identity.
• A coderivation d: C → C of degree 1.
• A curving θ : C → k[1 + n].

Together these satisfy the relations

d2x = θ(xδ(1))x
δ
(2)

θ(dx) = 0.

1.5. Hopf operads. Recall that a Hopf operad is an operad in counital cocommutative
coalgebras. Dually, a Hopf cooperad is a cooperad in unital commutative algebras. Al-
ternatively, recall that the category of symmetric sequences has two tensor structures: the
composition product which is merely monoidal and which we use to define operads and co-
operads and the Hadamard product which is symmetric monoidal. The Hadamard tensor
product defines a symmetric monoidal structure on the category of cooperads and one can
define a Hopf cooperad to be a unital commutative algebra in the category of cooperads.

One can similarly define a notion of a curved Hopf cooperad to be a unital commutative
algebra in the category of curved cooperads.

Given a Hopf operad O and two O-algebras A1, A2 the tensor product of the underlying
complexes is also an O-algebra using

O(n)⊗ (A⊗B)⊗n → O(n)⊗ A⊗n ⊗ O(n)⊗B⊗n → A⊗B.
Dually, one defines the tensor product of two (curved or dg) C-coalgebras for a Hopf cooperad
C to be the tensor product of the underlying chain complexes.

The operads Assun and Pun
n we are interested in are Hopf operads. For instance, for Pun

n

we have
∆(m) = m⊗m ∆({}) = {} ⊗m+m⊗ {}.

By duality we get Hopf cooperad structures on coAsscu = (Assun)∗ and coPcu
n = (Pun

n )∗, the
cooperads of counital coassociative coalgebras and counital Pn-coalgebras respectively.

Note, however, that the curved cooperad coAssθ admits no Hopf structure. Indeed, the
degree zero part of coAssθ(0) is trivial and hence one cannot define a unit. To remedy
this problem, we introduce the following modification. Given an operad O we denote by
Oun = O⊕ k the symmetric sequence which coincides with O in arities at least 1 and which
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is O(0) ⊕ k in arity zero. Similarly, we define the symmetric sequence Ccu = C ⊕ k for a
cooperad C.

Definition 1.11. A Hopf unital structure on an operad O is the structure of a Hopf
operad on Oun such that the natural inclusion O→ Oun is a morphism of operads and such
that the counit on Oun(0) = O(0)⊕ k is given by the projection on the second factor.

Definition 1.12. A Hopf counital structure on a (curved) cooperad C is the structure
of a (curved) Hopf cooperad on Ccu such that the natural projection Ccu → C is a morphism
of (curved) cooperads and such that the unit on Ccu(0) = C(0)⊕ k is given by inclusion into
the second factor.

For instance, Ass and Pn have Hopf unital structures given by the Hopf operads Assun and
Pun
n . Similarly, the curved cooperads coAssθ and coPθn have Hopf counital structures given

by the cooperads coAssθ,cu and coPθ,cu
n respectively, where, for instance, coAssθ,cu governs

curved counital coassociative coalgebras.
Given a Hopf operad Oun, the counits assemble to give a map of operads Oun → Commun.

We can equivalently define a Hopf unital structure on an operad O to be a Hopf operad Oun

together with an isomorphism of operads

O ∼= Oun ×Commun Comm.

Using the morphism Oun → Commun we see that the unital commutative algebra k admits
a natural Oun-algebra structure.

Definition 1.13. Let Oun be a Hopf operad. An augmented Oun-algebra is an Oun-algebra
A together with a morphism of Oun-algebras A→ k.

Dually, for a Hopf cooperad Ccu we define the notion of a coaugmented Ccu-coalgebra. We
denote by Algaug

Oun the category of augmented Oun-algebras and by CoAlgcoaug
Ccu the category of

coaugmented Ccu-coalgebras. Note that a coaugmented Ccu-coalgebra C → k is automatically
assumed to be conilpotent in the sense that the non-counital coalgebra C is conilpotent.

Lemma 1.14. Let O be an operad with a Hopf unital structure. Then we have an equivalence
of categories

AlgO
∼= Algaug

Oun .

Dually, if C is a dg cooperad with a Hopf counital structure, then we have an equivalence
of categories

CoAlgC
∼= CoAlgcoaug

Ccu .

Proof. Given an Oun-algebra A, we have the unit

k −→ A

coming from the inclusion k → Oun(0) ∼= O(0)⊕k into the second factor. The coaugmentation
A→ k splits the unit and hence one has an isomorphism of complexes

A ∼= A⊕ k.
The Oun-algebra structure on A gives rise to the operations

O(0) −→ A, O(n)⊗ A⊗m −→ A
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where m ≤ n.
The morphism O(0) → A → k is zero by the definition of the counit on Oun(0). The

morphisms O(n) ⊗ A⊗m → A of m < n are uniquely determined from the ones for m = n.
But since A→ k is a morphism of Oun-algebras, the diagram

O(n)⊗ A⊗n

0

��

// A

��
O(n) // k

is commutative which implies that the composite

O(n)⊗ A⊗m → A→ k

factors through A. Therefore, the augmented Oun-algebra structure on A is uniquely deter-
mined by the O-algebra structure on A.

The statement for coalgebras is proved similarly. �

The same construction works for a curved cooperad C. Note that since Ccu is a Hopf
cooperad, the category CoAlgC inherits a natural symmetric monoidal structure. Explicitly,
given two C-coalgebras C1, C2, the underlying graded vector space of their tensor product is
defined to be C1 ⊗ C2 ⊕ C1 ⊕ C2.

Remark 1.15. The cooperads coAss and coPn are already Hopf cooperads and this gives a
different symmetric monoidal structure on the category CoAlgcoPn which we will not consider
in the paper.

We will need a certain compatibility between the Hopf structure on Ccu and weak equiva-
lences.

Definition 1.16. A Hopf unital structure on a (curved) cooperad C is admissible if the
tensor product functor

C ⊗− : CoAlgcoaug
Ccu −→ CoAlgcoaug

Ccu

preserves weak equivalences for any C ∈ CoAlgcoaug
Ccu .

We are now going to show that some standard examples of Hopf cooperads are admissible.

Proposition 1.17. One has the following quasi-isomorphisms of O-algebras for any pair
C1, C2 of (curved) conilpotent C-coalgebras:

(1) For O = Ass{−1} and C = coAss

Ω(C1 ⊕ C2 ⊕ C1 ⊗ C2) −→ Ω(C1)⊕ Ω(C2)⊕ Ω(C1)⊗ Ω(C2)[−1].

(2) For O = Lie{−1} and C = coComm

Ω(C1 ⊕ C2 ⊕ C1 ⊗ C2) −→ Ω(C1)⊕ Ω(C2).

(3) For O = Pn{−n} and C = coPn
Ω(C1 ⊕ C2 ⊕ C1 ⊗ C2) −→ Ω(C1)⊕ Ω(C2)⊕ Ω(C1)⊗ Ω(C2)[−n].

(4) For O = Assun{−1} and C = coAssθ

Ω(C1 ⊕ C2 ⊕ C1 ⊗ C2) −→ Ω(C1)⊗ Ω(C2)[−1].
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(5) For O = Pun
n {−n} and C = coPθn

Ω(C1 ⊕ C2 ⊕ C1 ⊗ C2) −→ Ω(C1)⊗ Ω(C2)[−n].

Proof. For simplicity in cases (1) and (3) we add units and augmentations using Lemma
1.14.

In the case C = coAss a morphism of associative algebras

p : A = T•(C1[−1]⊕ C2[−1]⊕ C1 ⊗ C2[−1]) −→ T•(C1[−1])⊗ T•(C2[−1])

is uniquely specified on the generators and we define it to be zero on C1 ⊗ C2[−1] and the
obvious inclusions on the first two summands. It is clear that p is compatible with the cobar
differentials.

Elements of A are given by words

[x1|...|yk|...|(xi, yi)|...],

where xn ∈ C1, yn ∈ C2 and (xn, yn) ∈ C1 ⊗ C2. The coproduct on C1 ⊗ C2 is given by

∆(x, y) = x⊗ y + (−1)|x||y|y ⊗ x+ (−1)|x(2)||y(1)|(x(1), y(1))⊗ (x(2), y(2)) + (x, y(1))⊗ y(2)

+ (−1)|x||y(1)|y(1) ⊗ (x, y(2)) + x(1) ⊗ (x(2), y) + (−1)|y||x(2)|(x(1), y)⊗ x(2).

We define a splitting

i : T•(C1[−1])⊗ T•(C2[−1]) −→ A

to be the multiplication, e.g.

i([x1|x2]⊗ [y1|y2|y3]) = [x1|x2|y1|y2|y3].

It is again clear that i is compatible with the cobar differentials and that p ◦ i = id. Note,
however, that i is merely a morphism of chain complexes and is not compatible with the
multiplication.

Let {FnCi}n≥1 be the coradical filtrations on Ci which satisfy

∆(FnCi) ⊂
⊕
a+b=n

FaCi ⊗ FbCi.

We introduce a filtration on the coalgebra C1 ⊕ C2 ⊕ C1 ⊗ C2 by declaring that

FnC1 ⊗ FmC2 ⊂ Fn+m−1(C1 ⊗ C2).

It induces a filtration on the algebra A by declaring that [x1|...|xn] with xi ∈ Fni lies in
F∑

ni−nA and similarly for T•(C1[−1])⊗T•(C2[−1]). The filtrations are bounded below (by
zero) and complete. Moreover, the morphism p is clearly compatible with the filtrations, so
it is enough to prove that p is a quasi-isomorphism after passing to the associated graded
algebras with respect to the filtration. This allows us to assume that the coproducts on Ci
are zero.

We are now going to construct a homotopy id
h∼ i ◦ p such that

(2) a− i(p(a)) = dh(a) + h(da).

The homotopy h on monomials a ∈ A is constructed by the following algorithm akin to
bubble sort:
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• Suppose a has no factors in C1 ⊗ C2. If a has no elements in the wrong order (i.e.
elements of C2 followed by an element of C1), then h(a) = 0. Otherwise, write
a = b · [y|x] · c, where c has no elements in the wrong order and define inductively

(3) h(a) = (−1)|x||y|+|y|+1+|b|b · [(x, y)] · c+ (−1)(|x|+1)(|y|+1)h(b · [x|y] · c).
• If a has factors in C1 ⊗ C2, we define it recursively by the formula

(4) h(a) = (−1)|b|+|x|+|y|+1b · [(x, y)] · h(c),

where a = b · [(x, y)] · c such that b has no factors in C1 ⊗ C2.

Clearly, the second step reduces the number of elements in C1 ⊗ C2, so in finite time we
arrive at an expression without factors in C1 ⊗ C2. Given a monomial a without factors in
C1 ⊗ C2 we define the number of inversions to be the number of elements of C2 left of
an element of C1. For instance, the expression [y1|x1|x2|y2] with xi ∈ C1 and yi ∈ C2 has
two inversions. It is immediate that the first step of the algorithm reduces the number of
inversions by 1 and hence it also terminates in finite time.

Let us make a preliminary observation that the equation

b · [(x, y)]ip(c) = (−1)|y|b · [x|y] · h(c) + (−1)|x|(|y|+1)b · [y|x] · h(c)

+ (−1)|b|+|x|+1h(b · [x|y] · c) + (−1)|b|+|x||y|+|y|+1h(b · [y|x] · c)(5)

holds if b does not contain elements of C1 ⊗ C2. Indeed, if c contains elements of C1 ⊗ C2,
both sides are zero by equation (4). Otherwise, it is enough to assume that c is ordered. In
that case

(−1)|b|+|x||y|+|y|+1h(b · [y|x] · c) = b · [(x, y)] · c+ (−1)|x|+|b|h(b · [x|y] · c)
by equation (3) and hence equation (5) holds in this case. Let us now show that thus
constructed homotopy h satisfies equation (2).

An element a with 0 inversions is completely ordered and by definition h annihilates it.
da also has 0 inversions, so h(da) = 0, but we also have a = i(p(a)). Next, suppose a has
no factors in C1 ⊗ C2. Suppose we have checked the formula (2) for all monomials with at
most k inversions and consider a monomial a = b · [y|x] · c with k + 1 inversions. We have

dh(a) = (−1)|x||y|+|y|+1+|b|db · [(x, y)] · c+ (−1)|x||y|+|y|+1b · [(dx, y)] · c
+ (−1)(|x|+1)(|y|+1)b · [(x, dy)] · c+ (−1)|x||y|+|x|+|y|b · [x|y] · c
+ b · [y|x] · c+ (−1)|x|(|y|+1)b · [(x, y)] · dc+ (−1)(|x|+1)(|y|+1)dh(b · [x|y] · c),

da = db · [y|x] · c+ (−1)|b|b · [dy|x] · c+ (−1)|b|+|y|+1b · [y|dx] · c
+ (−1)|b|+|x|+|y|b · [y|x] · dc

and

h(da) = (−1)|x||y|+|y|+|b|db · [(x, y)] · c+ (−1)(|x|+1)(|y|+1)h(db · [x|y] · c)
+ (−1)|x||y|+|x|+|y|b · [(x, dy)] · c+ (−1)(|x|+1)|y|+|b|h(b · [x|dy] · c)
+ (−1)(|x|+1)|y|b · [(dx, y)] · c+ (−1)(|x|+1)(|y|+1)+|b|h(b · [dx|y] · c)
+ (−1)|x|(|y|+1)+1b · [(x, y)] · dc+ (−1)|x||y|+|b|h(b · [x|y] · dc)
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We also have
ip(b · [x|y]c) = (−1)(|x|+1)(|y|+1)ip(a)

and by inductive assumption

h(d(b · [x|y] · c)) + dh(b · [x|y] · c) = b · [x|y] · c− (−1)(|x|+1)(|y|+1)ip(a).

Combining these equations we get

dh(a) + h(da) = (−1)|x||y|+|x|+|y|b · [x|y] · c+ a+ (−1)(|x|+1)(|y|+1)b · [x|y] · c− ip(a)

= a− ip(a).

So far we have proved equation (2) for monomials with no factors in C1⊗C2. Now suppose
we know the formula holds for monomials with at most k factors in C1 ⊗ C2 and consider a
monomial a with k + 1 factors in C1 ⊗ C2. Then

dh(a) = (−1)|b|+|x|+|y|+1db · [(x, y)] · h(c) + (−1)|x|+|y|+1b · [(dx, y)] · h(c)

+ (−1)|y|+1b · [(x, dy)] · h(c) + b · [(x, y)] · dh(c) + (−1)|y|b · [x|y] · h(c)

+ (−1)|x|(|y|+1)b · [y|x] · h(c),

da = db · [(x, y)] · c+ (−1)|b|b · [(dx, y)] · c+ (−1)|b|+|x|b · [(x, dy)] · c
+ (−1)|b|+|x|+1b · [x|y] · c+ (−1)|b|+|x||y|+|y|+1b · [y|x] · c
+ (−1)|b|+|x|+|y|+1b · [(x, y)] · dc

and

h(da) = (−1)|b|+|x|+|y|db · [(x, y)] · h(c) + (−1)|x|+|y|b · [(dx, y)] · h(c) + (−1)|y|b · [(x, dy)] · h(c)

+ (−1)|b|+|x|+1h(b · [x|y] · c) + (−1)|b|+|x||y|+|y|+1h(b · [y|x] · c) + b · [(x, y)] · h(dc).

Therefore,
h(da) + dh(a) = a

by using equation (5). This finishes the proof for C = coAss.
Observe now that the morphism p is compatible with the shuffle coproducts on both

sides by looking at the generators. If C1 and C2 are both cocommutative, then the shuffle
coproduct is compatible with the differentials. Therefore, passing to the primitives we obtain
the statement for C = coComm.

In the case C = coPn we can assume that the cobar differential involving the cobrackets are
absent exactly as in the case of C = coAss. But then the statement is obtained by applying
the symmetric algebra to the statement for C = coComm.

Finally, the curved cases C = coAssθ and C = coPθn are reduced to the uncurved cases
C = coAss and C = coPn after passing to the associated gradeds. �

The statement has the following important corollaries.

Corollary 1.18. The natural Hopf counital structures on the following cooperads are ad-
missible:

• C = coAss,
• C = coAssθ,
• C = coComm,
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• C = coPn,
• C = coPθn.

Proof. Suppose C,D,E are three (curved) conilpotent C-coalgebras with a morphism D → E
such that ΩD → ΩE is a quasi-isomorphism. We have to show that

Ω(C ⊗D) −→ Ω(C ⊗ E)

is a quasi-isomorphism as well.
If C = coComm, the statement follows from the commutative diagram

Ω(C ⊗D)

∼
��

// Ω(C ⊗ E)

∼
��

Ω(C)⊕ Ω(D)
∼ // Ω(C)⊕ Ω(E)

with vertical weak equivalences provided by Proposition 1.17.
If C = coAss or C = coPn, the statement follows from the commutative diagram

Ω(C ⊗D)

∼
��

// Ω(C ⊗ E)

∼
��

Ω(C)⊕ Ω(D)⊕ Ω(C)⊗ Ω(D)[−1]
∼ // Ω(C)⊕ Ω(E)⊕ Ω(C)⊗ Ω(E)[−1]

with vertical weak equivalence given by the same proposition.
Finally, if C = coAssθ or C = coPθn, the statement follows from the commutative diagram

Ω(C ⊗D)

∼
��

// Ω(C ⊗ E)

∼
��

Ω(C)⊕ Ω(D)
∼ // Ω(C)⊕ Ω(E)

In all these cases we are using the fact that the tensor product of complexes preserves
quasi-isomorphisms. �

Consider the symmetric monoidal structure on the category of non-unital algebras AlgAss

where the tensor product of A1 and A2 is

A1 ⊗ A2 ⊕ A1 ⊕ A2.

One also has a symmetric monoidal structure on the category of non-counital coalgebras
CoAlgcoAss where the tensor product of C1 and C2 is

C1 ⊗ C2 ⊕ C1 ⊕ C2.

Similarly, one introduces the symmetric monoidal structures on the categories AlgPn and
CoAlgcoPn . Finally, consider the Cartesian symmetric monoidal structure on the category of
Lie algebras AlgLie.

Corollary 1.19. The adjoint equivalences

CoAlgcoAss[W
−1
Kos]

// AlgAss[W
−1
qis ]oo ,
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1 ... k

1

2 ... k

Figure 4. Generating operations of BrC.

CoAlgcoComm[W−1
Kos]

// AlgLie[W
−1
qis ]oo

and

CoAlgcoPn [W−1
Kos]

// AlgPn [W−1
qis ]oo

are symmetric monoidal.

Proof. By Corollary 1.18 the cooperads coAss, coComm and coPn have Hopf admissible
structures. Therefore, by Proposition 1.2 we obtain a lax symmetric monoidal equivalence

CoAlgcoAss[W
−1
Kos]

// AlgAss[W
−1
qis ]oo

and similarly for the other cooperads. But by Proposition 1.17 these are in fact symmetric
monoidal functors. �

Therefore, we can use the relative symmetric monoidal category (CoAlgcoPn ,WKos) as a
model for the symmetric monoidal ∞-category AlgPn .

2. Brace bar duality

2.1. Brace construction. Suppose C is a (curved) cooperad equipped with a Hopf counital
structure (see Definition 1.12). Let us briefly recall from [CW15] the definition of the associ-
ated operad of braces BrC. Its operations are parametrized by rooted trees with “external”
vertices that are colored white in our pictures and “internal” vertices that are colored black.
An external vertex with r children is labeled by elements of Ccu(r) while an internal vertex
with r children is labeled by elements of C(r)[−1].

The coproduct on Ccu defines a morphism

Ccu(r) −→ Ccu(r + r′)⊗ Ccu(1)⊗r ⊗ Ccu(0)⊗r
′ −→ Ccu(r + r′),

where in the second morphism we use Ccu(1) → k given by the counit on the cooperad Ccu

and Ccu(0) ∼= C(0) ⊕ k → k given by projection on the second summand. The operadic
composition is given by grafting rooted trees with labels obtained by applying the coproduct
on Ccu and combining different labels using the Hopf structure. The differential on internal
vertices coincides with the cobar differential (in particular, if C is curved, it contains an extra
curving term); the differential of an external vertex splits it into an internal and an external
vertex. We refer to [DW15, Formula 8.14] for an explicit description of the differential.

The operad BrC is generated by trees shown in Figure 4, where the leaves are labeled by
the unit element of Ccu(0). For a BrC-algebra A we denote the operation given by the corolla
with an internal vertex by m(c|x1, ..., xr) where c ∈ C(r)[−1] and xi ∈ A. The operation
given by the corolla with an external vertex is denoted by x{c|y1, ..., yr}, where c ∈ Ccu(r).
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We denote by ΩC → BrC the natural morphism which sends a generator in C[−1] to the
corresponding corolla with an internal vertex.

The generating operations satisfy the following three relations.

(1) (Associativity).

(6)

0

z ... z

◦0 x

y ... y

=
∑
± x

y z ... y

z ... z z

(2) (Higher homotopies).

(7)

d 0

1 ... n

=
∑n

i=0 0

1 ... n

◦i( 1 +

1

)

(3) (Distributivity).

(8)

0

y ... y

◦0

x ... x

=
∑
±

x y ... x

y ... y y

Let us give some examples of the brace construction that we will use. Note that the second
corolla in Figure 4 with k = 2 gives rise to a pre-Lie structure on any BrC-algebra. However,
in general the pre-Lie operation is not compatible with the differential.

The simplest example is the case C = 1, the trivial cooperad. In this case C = 0 and
hence the only operations are given by braces. However, since C(n) = 0 for n ≥ 2, we can
only have vertices of valence 1 and 0, i.e. the operations of Br1 are parametrized by linear
chains and hence Br1(n) ∼= k[Sn]. It is immediate to see that the pre-Lie operation in this
case gives rise to an associative multiplication.

Proposition 2.1. One has an isomorphism of operads

Ass ∼= Br1.

For C = coAss we obtain an A∞ structure of degree 1 together with degree 0 brace
operations x{y1, ..., yn}. Recall the brace operad Br introduced by Gerstenhaber and Voronov
[GV95] and let A∞ be the operad controlling A∞ algebras.
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1 ... k

Figure
5. Image of
x1...xk.

1

2

−(−1)n 2

1

Figure
6. Image of
x1 ∧ x2.

1

2 ... k

Figure
7. Image of
x1 ∧ x2...xk

Proposition 2.2. We have a pushout of operads

A∞ //

��

BrcoAss{1}

��
Ass // Br

Now consider C = coPn. Calaque–Willwacher [CW15] following some ideas of Tamarkin
[Tam00] introduced a morphism of operads

(9) Ω(coPn+1{1}) −→ BrcoPn ,

on generators by the following rule:

• The generators

x1...xk ∈ coLie{1− n}(k) ⊂ coPn+1{1}(k)

are sent to the tree drawn in Figure 5 with the root labeled by the element

x1...xk ∈ coLie{1− n}(k) ⊂ coPn(k).

Here x1...xk is the image of the k-ary comultiplication under the projection

coAss{1− n} → coLie{1− n}.

• The generator

x1 ∧ x2 ∈ coComm{1}(2) ⊂ coPn+1{1}(2)

is sent to the linear combination of trees shown in Figure 6.
• The generators

x1 ∧ x2...xk ∈ coPn+1{1}(k)

for k > 2 are sent to the tree shown in Figure 7 with the root labeled by the element

x2...xk ∈ coLie{1− n}(k − 1) ⊂ coPn(k − 1).

• The rest of the generators are sent to zero.

Proposition 2.3 (Calaque–Wilwacher). The morphism of operads

Ω(coPn+1{1}) −→ BrcoPn

is a quasi-isomorphism.
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Note that we have a quasi-isomorphism of operads

Ω(coPn+1{n+ 1}) −→ Pn+1

and hence we get a zig-zag of quasi-isomorphisms between the operads BrcoPn{n} and Pn+1.
One can similarly define a morphism of operads

Ω(coPθn+1{1})→ BrcoPθn

in the following way:

• The generators y ∈ coLieθ{1− n} ⊂ coPθn+1{1} are sent to the tree drawn in Figure

5 with the root labeled by x ∈ coLieθ{1− n} ⊂ coPθn.
• The generator

x1 ∧ x2 ∈ coComm{1}(2) ⊂ coPθn+1{1}(2)

is sent to the linear combination of trees shown in Figure 6.
• Suppose y ∈ coLieθ{1− n}(k− 1) ⊂ coPθn+1{1}(k− 1) for k > 2 and let x∧ y be the

image of y under coPθn+1{1}(k − 1)→ coPθn+1{1}(k).
The generators x ∧ y ∈ coPθn+1{1}(k) are sent to the tree shown in Figure 7 with

the root labeled by the element y ∈ coLieθ{1− n}(k − 1) ⊂ coPθn(k − 1).
• The rest of the generators are sent to zero.

The following statement is a version of Proposition 2.3.

Proposition 2.4. The morphism of operads

Ω(coPθn+1{1})→ BrcoPθn

is a quasi-isomorphism.

This proposition implies that we have a zig-zag of weak equivalences between the operads
BrcoPθn{n} and Pun

n+1.
Finally, consider the case C = coComm. By construction we have a morphism of operads

Lie→ BrC

given by sending the Lie bracket to the combination

1

2

−

1

2

Proposition 2.5. The morphism of operads Lie→ BrcoComm is a quasi-isomorphism.

Proof. Introduce a grading on coPn by setting the cobracket to be of weight 1 and the comul-
tiplication of weight 0. In this way coPcu

n becomes a graded Hopf cooperad, i.e. a cooperad in
graded commutative dg algebras. This induces a grading on the brace construction BrcoPn ,
where the weight of a tree is given by the sum of the weights of the labels. The morphism
(9) is compatible with the gradings if we introduce the grading on coPn+1 where again the
cobracket has weight 1 and the comultiplication has weight 0.
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Let L∞ = Ω(coComm{1}) be the operad controlling L∞ algebras. Passing to weight 0
components and using Proposition 2.3, we obtain a quasi-isomorphism

L∞ −→ BrcoComm

which by construction factors as

L∞
∼−→ Lie→ BrcoComm

and the claim follows. �

2.1.1. Aside: the operad BrcoComm. Let us explain the role the operad BrcoComm plays in Lie
theory (see also Proposition 2.11).

Suppose that g is a Lie algebra with a lift of the structure to a BrcoComm-algebra. That is,
g has a pre-Lie structure x ◦ y and degree L∞ brackets {x1, ..., xn} such that

[x, y] = x ◦ y − (−1)|x||y|y ◦ x
{x, y} = d(x ◦ y)− (dx) ◦ y − (−1)|x|x ◦ dy,

where [x, y] is the original degree 0 Lie bracket. Note that the degree 1 L∞ brackets are
uniquely determined from the pre-Lie operation. Then the BrcoComm-algebra structure allows
one to replace the morphism of Lie algebras 0→ g by a fibration in the following way.

Consider the complex

(10) g̃ = g⊕ g[−1]

with the identity differential. We define an L∞ algebra structure on g̃ as follows:

• The bracket on the first term is the original bracket [−,−].
• The L∞ structure on the second term is given by the operations {−, ...,−}.
• The L∞ brackets [x, sy1, ..., syn] where x ∈ g and syi ∈ g[−1] land in g[−1] and are

given by the symmetric braces g⊗ Sym(g)→ g.

It is immediate that g̃→ g is a fibration of L∞ algebras (i.e. it is a degreewise surjective
morphism) and, moreover, that the morphism 0→ g̃ is a quasi-isomorphism.

In particular, we see that the L∞ algebra structure on

Ωg = 0⊕g 0 ∼= g[−1]

is given by the degree 1 L∞ brackets {−, ...,−}.

Example 2.6. Let A be a commutative dg algebra over a field k and denote by TA =
Derk(A,A) the complex of derivations. Suppose ∇ is a flat torsion-free connection on the
underlying graded algebra, i.e. it defines a morphism of graded vector spaces

∇ : TA ⊗k TA → TA

such that

[v, w] = ∇vw − (−1)|v||w|∇wv(11)

∇[v,w] = ∇v∇w − (−1)|v||w|∇w∇v(12)

for two vector fields v, w ∈ TA.
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Then the Lie algebra structure on TA given by the commutator of derivations is lifted to
a BrcoComm-algebra structure, where the pre-Lie structure is given by the connection:

v ◦ w = ∇vw.

Indeed, equation (11) implies that ∇vw lifts the Lie bracket of vector fields and equation
(12) implies that it is indeed a pre-Lie bracket.

Therefore, we see that the L∞ structure on

ΩTA = TA[−1]

is given by
{v, w} = d(∇vw)−∇dvw − (−1)|v|∇v(dw).

In this way we discover exactly the Atiyah bracket of vector fields as defined by Kapranov,
see [Kap99, Section 2.5].

2.2. Additivity for brace algebras. Recall that we have a morphism of operads ΩC →
BrC. In particular, a brace algebra has a bar complex which is a C-coalgebra. Now we are
going to introduce an associative multiplication on the bar complex making the diagram

AlgBrC
//

B
��

AlgΩC

B

��
Alg(CoAlgC) // CoAlgC

commute.

Remark 2.7. Consider a bialgebra C ∈ Alg(CoAlgcoaug
Ccu ). The unit of the symmetric monoidal

structure on CoAlgcoaug
Ccu is given by k with the identity coaugmentation. Therefore, the unit

morphism for C is a morphism of coaugmented Ccu-coalgebras

k → C.

Compatibility with the coaugmentation on C implies that the unit morphism k → C coin-
cides with the coaugmentation k → C.

Let A be a BrC-algebra and consider Ccu(A), the cofree conilpotent Ccu-coalgebra, equipped
with the bar differential. It is naturally coaugmented using the decomposition

Ccu(0) ∼= C(0)⊕ k.
We introduce the unit on Ccu(A) to be given by the coaugmentation k → Ccu(A). The

multiplication
Ccu(A)⊗ Ccu(A)→ Ccu(A)

is uniquely specified on the cogenerators by a morphism

Ccu(A)⊗ Ccu(A)→ A.

In turn, it is defined via the composite

Ccu(A)⊗ Ccu(A)→ A⊗ Ccu(A)→ A,

where the first morphism is induced by the counit on Ccu and the second morphism is given
by braces, i.e. the morphism

Ccu(n)⊗ A⊗ A⊗n → A
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is given by applying the second corolla in Figure 4 with the root labeled by the element of
Ccu(n) and the leaves labeled by the unit k → Ccu(0). The following statement is shown in
[MS16, Proposition 3.4].

Proposition 2.8. This defines a unital dg associative multiplication on Ccu(A) compatible
with the Ccu-coalgebra structure.

For a BrC-algebra A we denote by BA = Ccu(A) the bar complex equipped with the bar
differential and the above associative multiplication. This defines a functor

B: AlgBrC
−→ Alg(CoAlgcoaug

Ccu ).

Now suppose the Hopf unital structure on C is admissible. Then the symmetric monoidal
structure on CoAlgcoaug

Ccu preserves weak equivalences and hence CoAlgcoaug
Ccu [W−1

Kos] is a sym-
metric monoidal ∞-category.

Since the bar functor preserves weak equivalences, the composite functor

AlgBrC
[W−1

qis ] −→ Alg(CoAlgC)[W−1
Kos] −→ Alg(CoAlgC[W−1

Kos])

gives rise to the additivity functor

(13) add: AlgBrC
−→ Alg(AlgΩC).

We do not know if the functor (13) is an equivalence in general, but we prove that it is
the case for Lie and Poisson algebras. Note that in the case C = coAss we obtain a functor

AlgE2
∼= AlgBr −→ Alg(Alg)

which we expect coincides with the Dunn–Lurie equivalence [Lur17, Theorem 5.1.2.2].

2.3. Additivity for Lie algebras. In this section we work out how the additivity functor
(13) looks like for Lie algebras and prove that it is an equivalence. We consider the cooperad
C = coComm.

We have a functor

U: AlgLie −→ Alg(CoAlgcoaug
coCommcu)

which sends a Lie algebra to its universal enveloping algebra. The following is proved e.g.
in [Car07, Theorem 3.8.1].

Theorem 2.9 (Cartier–Milnor–Moore). The universal enveloping algebra

U: AlgLie −→ Alg(CoAlgcoaug
coCommcu)

is an equivalence of categories.

Lemma 2.10. The equivalence of categories

U: AlgLie
∼−→ Alg(CoAlgcoaug

coCommcu)

preserves weak equivalences.

Proof. Recall that weak equivalences in Alg(CoAlgcoaug
coCommcu) are created by the forgetful

functor to CoAlgcoComm. Given a dg Lie algebra g, the PBW theorem gives an identification
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of cocommutative coalgebras U(g) ∼= Sym(g), hence for a morphism of dg Lie algebras
g1 → g2 we have a commutative diagram

ΩU(g1)

∼
��

// ΩU(g2)

∼
��

g1[−1] // g2[−1]

where the vertical morphisms are quasi-isomorphisms. Therefore, the bottom morphism is
a quasi-isomorphism iff the top morphism is a quasi-isomorphism. �

We get two functors

AlgBrcoComm
−→ Alg(CoAlgcoComm)

where one is given by the brace bar construction B and the other one is given by the composite

AlgBrcoComm

forget−−−→ AlgLie
U−→ Alg(CoAlgcoComm)

where the forgetful functor is given by Proposition 2.5. In fact, these are equivalent.

Proposition 2.11. There is a natural weak equivalence

U ◦ forget
∼−→ B

of functors

AlgBrcoComm
−→ Alg(CoAlgcoComm).

Proof. Suppose g is a BrcoComm-algebra. In particular, g is a pre-Lie algebra and we have to
produce a natural isomorphism of dg cocommutative bialgebras

U(g)
∼−→ Sym(g),

where Sym(g) is equipped with the associative product using the pre-Lie structure and the
differential uses the shifted L∞ brackets on g.

The morphism U(g)→ Sym(g) is uniquely determined by a map

g→ Sym(g)

on generators which we define to be the obvious inclusion. We refer to [OG08, Theorem 2.12]
for the claim that it extends to an isomorphism of cocommutative bialgebras U(g)→ Sym(g).
The compatibility with the differential is obvious as the differential on g ∼= coComm(1)⊗ g
is simply given by the differential on g. �

The ∞-category of Lie algebras is pointed, i.e. the initial and final objects coincide.
Therefore, we can consider the loop functor

Ω: AlgLie −→ Alg(AlgLie)

given by sending a Lie algebra g to its loop object 0×g 0. More explicitly, since the monoidal
structure on AlgLie is Cartesian, by [Lur17, Proposition 4.1.2.10] we can identify Alg(AlgLie)
with the ∞-category of Segal monoids, i.e. simplicial objects M• of AlgLie such that M0 is
contractible and the natural maps Mn →M1 ×M0 ×...×M0 M1 are equivalences. Under this
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identification the loop object of g is defined to be the simplicial object underlying the Cech
nerve of 0→ g:

0 0×g 0oooo 0×g 0×g 0oooo
oo

...

Its left adjoint is the classifying space functor

B: Alg(AlgLie) −→ AlgLie

which sends a Segal monoid in Lie algebras to its geometric realization. The following is
proved in [Toë13, Lemma 5.3] and [GH16, Corollary 2.7.2].

Proposition 2.12. The adjunction

B: Alg(AlgLie)
//
AlgLie : Ωoo

is an equivalence of symmetric monoidal ∞-categories.

Since the operads BrcoComm and Lie are quasi-isomorphic, the additivity functor (13)
becomes

add: AlgLie −→ Alg(AlgLie).

Observe that now we have constructed two functors AlgLie −→ Alg(AlgLie): the loop functor
Ω and the additivity functor add.

Proposition 2.13. The additivity functor add: AlgLie → Alg(AlgLie) is equivalent to the
loop functor Ω.

Proof. Since the classifying space functor B is an inverse to the loop functor Ω by Proposition
2.12, we have to prove that we have an equivalence B◦ add ∼= id of functors AlgLie → AlgLie.
By Proposition 2.11 we can write add as the composite

AlgLie[W
−1
qis ]

U−→ Alg(CoAlgcoComm)[W−1
Kos]

−→ Alg(CoAlgcoComm[W−1
Kos])

∼= Alg(AlgLie),

where the last equivalence is given by the Chevalley–Eilenberg complex which realizes the
bar construction for Lie algebras.

Therefore, the statement will follow once we show that the composite

AlgLie[W
−1
qis ]

U−→ Alg(CoAlgcoComm)[W−1
Kos]

−→ Alg(CoAlgcoComm[W−1
Kos])

B−→ CoAlgcoComm[W−1
Kos](14)

is equivalent to the Chevalley-Eilenberg complex functor

C• : AlgLie[W
−1
qis ] −→ CoAlgcoComm[W−1

Kos].

For an algebra A in a symmetric monoidal ∞-category C, a right A-module M and a
left A-module N let us denote by Bar•(M,A,N) the simplicial object of C underlying the
two-sided bar construction whose n-simplices are given by M ⊗ A⊗n ⊗ N . The composite
(14) applied to a Lie algebra g is then by definition |Bar•(k,Ug, k)| ∼= k ⊗L

Ug k and is a
cocommutative coalgebra since k and Ug are.
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For a dg Lie algebra g we define following [Lur11, Section 2.2] the Lie algebra Cn(g) which
as a graded vector space is Cn(g) = g ⊕ g[1] equipped with the following dg Lie algebra
structure:

• The differential is given by the identity differential from the second term to the first
term and the internal differentials on the two summands of g.
• The Lie bracket on the first term is the original Lie bracket on g.
• The Lie bracket between s−1x ∈ g[1] and y ∈ g lands in g[1] and is given by

[s−1x, y] = s−1[x, y].

• The Lie bracket on the last term is zero.

We have a quasi-isomorphism of g-modules 0 → Cn(g). Therefore, after taking the uni-
versal enveloping algebra we obtain a weak equivalence of left Ug-modules in cocommutative
coalgebras

k −→ U(Cn(g)) ∼= Ug⊗ Sym(g[1]),

where on the right we have used the PBW isomorphism.
Therefore, we have a weak equivalence of Segal monoids

Bar•(k,Ug, k)→ Bar•(k,Ug,U(Cn(g))).

The homotopy colimit of Bar•(k,Ug,U(Cn(g))) is a strict colimit since U(Cn(g)) is a semi-
free left Ug-module. But its strict colimit is

k ⊗Ug U(Cn(g)) ∼= C•(g)

as dg cocommutative coalgebras. Therefore, we obtain a natural equivalence |Bar•(k,Ug, k)| ∼=
C•(g) and the claim follows. �

Combining the previous proposition with Proposition 2.12 we obtain the following corol-
lary.

Corollary 2.14. The additivity functor

add: AlgLie −→ Alg(AlgLie)

is an equivalence of symmetric monoidal ∞-categories.

Note that the underlying Lie algebra of Alg(AlgLie) is canonically trivial. Indeed, let
Ch −→ AlgLie be the functor which sends a complex g to the trivial Lie algebra g[−1].

Proposition 2.15. The diagram

AlgLie
add //

��

Alg(AlgLie)

��
Ch // AlgLie

is commutative.
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Proof. Indeed, the PBW theorem implies that we have a commutative diagram of categories

AlgLie
U //

��

Alg(CoAlgcoComm)

��
Ch

Sym // CoAlgcoComm

i.e. the underlying cocommutative coalgebra of U(g) is isomorphic to Sym(g). But Sym(g)
coincides with the bar construction of a trivial Lie algebra g[−1] and the claim follows. �

2.4. Additivity for Poisson algebras. This section is devoted to an explicit description
of the additivity functor (13) in the case of Pn-algebras and to showing that it is a symmetric
monoidal equivalence of ∞-categories.

Consider the cooperad C = coPn. Since we have a zig-zag of quasi-isomorphisms between
the operads Pn+1 and BrcoPn{n}, the additivity functor (13) becomes

(15) add: AlgPn+1
−→ Alg(AlgPn).

Now we are going to give a different perspective on this functor closer to Tamarkin’s papers
[Tam00] and [Tam07]. This new perspective will elucidate the formulas for the morphism
(9) and allow us to show that the additivity functor is a symmetric monoidal equivalence.

We are going to introduce yet another version of the bar-cobar duality for Poisson algebras,
this time the dual object will be a Lie bialgebra.

Definition 2.16. An n-shifted Lie bialgebra is a dg Lie algebra g together with a degree
−n Lie coalgebra structure δ : g→ g⊗ g[−n] satisfying the cocycle relation

(16) δ([x, y]) = (adx ⊗ id + id⊗ adx)δ(y)− (−1)n+|x||y|(ady ⊗ id + id⊗ ady)δ(x).

We will say an n-shifted Lie bialgebra is conilpotent if the underlying Lie coalgebra is
so and we denote the category of n-shifted conilpotent Lie bialgebras by BiAlgLien . Weak
equivalences in BiAlgLien are created by the forgetful functor

BiAlgLien −→ CoAlgcoLie.

The commutative bar-cobar adjunction

Ω: CoAlgcoLie
// AlgComm : Boo

extends to a bar-cobar adjunction

(17) Ω: BiAlgLien−1

// AlgPn+1
: Boo

so that the diagram

AlgPn+1

//

��

BiAlgLien−1

��

oo

AlgComm
// CoAlgcoLieoo

commutes where the vertical functors are the forgetful functors.



BRACES AND POISSON ADDITIVITY 31

Explicitly, if A is a Pn+1-algebra, consider g = coLie(A[1])[n − 1], the cofree conilpotent
shifted Lie coalgebra equipped with the bar (i.e. Harrison) differential. By the cocycle
equation a Lie bracket on g is uniquely determined by its projection to cogenerators and the
map

coLie(A[1])[n− 1]⊗ coLie(A[1])[n− 1] −→ coLie(A[1])[n− 1] −→ A[n]

is defined to be the Lie bracket

A[n]⊗ A[n] −→ A[n].

The Jacobi identity is obvious. Compatibility of the bracket on g with the bar differential
follows from the Leibniz rule for A.

Conversely, if g is an (n − 1)-shifted Lie bialgebra, consider A = Sym(g[−n]) equipped
with the cobar differential using the Lie coalgebra structure on g. The Lie bracket on A
by the Leibniz rule is defined on generators to be the Lie bracket on g. The compatibility
of the cobar differential on A with the Lie structure can be checked on generators where it
coincides with the cocycle equation (16).

By the definition of weak equivalences it is clear that the adjunction (17) induces an
adjoint equivalence on ∞-categories since the unit and counit of the adjunction are weak
equivalences after forgetting down to commutative algebras and Lie coalgebras.

By the Cartier–Milnor–Moore theorem (Theorem 2.9) the universal enveloping algebra
functor induces an equivalence of categories

U: AlgLie
∼−→ Alg(CoAlgcoComm).

If g is an (n − 1)-shifted Lie bialgebra, we can define a Pn-coalgebra structure on U(g)
as follows. By construction U(g) is a cocommutative bialgebra and we define the cobracket
on the generators to be the cobracket on g. The coproduct on U(g) is conilpotent and the
cobracket on U(g) is conilpotent if the cobracket on g is so. In this way we construct a
commutative diagram

BiAlgLien−1

∼ //

��

Alg(CoAlgcoPn)

��
AlgLie

∼ // Alg(CoAlgcoComm)

Note that if A ∈ Alg(CoAlgcoaug
coPcu

n
) has an associative multiplication and a compatible Pn-

coalgebra structure, then the space of primitive elements is closed under the cobracket by
the Leibniz rule for the Pn-coalgebra structure. Thus, the inverse functor in both cases is
simply given by the functor of primitive elements.

Now we are going to show that the brace bar construction for C = coPn is compatible
with the bar-cobar duality between Pn+1-algebras and (n − 1)-shifted Lie bialgebras in the
following sense.
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Proposition 2.17. The composite functor

AlgBrcoPn
−→ Alg(CoAlgcoPn)

−→ BiAlgLien−1

−→ AlgPn+1

forget−→ AlgΩ(coPn+1{1})

is weakly equivalent to the forgetful functor

AlgBrcoPn
−→ AlgΩ(coPn+1{1})

given by equation (9).

Proof. Let A be a BrcoPn-algebra. The functor

AlgBrcoPn
−→ Alg(CoAlgcoPn)

sends A to coPn(A) equipped with the bar differential using the homotopy Pn-algebra struc-
ture on A.

We can identify coPn ∼= coComm ◦ coLie{1− n} as symmetric sequences and hence after
passing to primitives in coPn(A) we obtain g = coLie(A[1 − n])[n − 1] equipped with the
bar differential using the homotopy commutative algebra structure on A. The Lie bracket
on g is obtained by antisymmetrizing the associative multiplication on coPn(A) and from
the explicit description of the multiplication on coPn(A) given in Section 2.2 we see that the
projection of the bracket on the cogenerators

coLie(A[1− n])[n− 1]⊗ coLie(A[1− n])[n− 1] −→ A

is defined by the morphism

A⊗ coLie(A[1− n])[n− 1] −→ A

given by the brace operations x{c|y1, ..., ym} where x, yi ∈ A and c ∈ coLie{1− n}(m).
We conclude that coLie(A[1−n])[n− 1] is the Koszul dual of a homotopy Pn+1-algebra A

whose homotopy commutative multiplication is encoded in the differential on g which comes
from the homotopy commutative multiplication in the BrcoPn-algebra structure. The rest
of the homotopy Pn+1 structure on A coincides with the one given by the morphism (9) by
inspection. �

By the previous proposition the two functors of ∞-categories

AlgPn+1
−→ Alg(AlgPn)

given either by localizing the brace bar functor for C = coPn or by localizing the bar-cobar
duality between Pn+1-algebras and shifted Lie bialgebras coincide.

Proposition 2.18. The functor

AlgPn+1
−→ Alg(AlgPn)

has a natural symmetric monoidal structure.
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Proof. The functor Ω: BiAlgLien−1
→ AlgPn+1

is symmetric monoidal, so its right adjoint
B: AlgPn+1

→ BiAlgLien−1
has a lax symmetric monoidal structure. Moreover, by Proposi-

tion 1.17, B becomes strictly symmetric monoidal after localization. Finally, the universal
enveloping algebra functor

U: BiAlgLien−1
−→ Alg(CoAlgcoPn)

has an obvious symmetric monoidal structure and the claim follows. �

As a corollary, we get a sequence of functors

AlgPn+2
−→ Alg(AlgPn+1

) −→ Alg(Alg(AlgPn)).

But Alg(Alg(C)) ∼= AlgE2
(C) for any symmetric monoidal ∞-category C by the Dunn–Lurie

additivity theorem [Lur17, Theorem 5.1.2.2]. Iterating this construction, we get a symmetric
monoidal functor

AlgPn+m −→ AlgEm(AlgPn).

The additivity functor (15) interacts in the obvious way with the commutative and the
Lie structures on a Pn-algebra as shown by the next three propositions.

Proposition 2.19. The diagram

AlgPn+1
//

��

Alg(AlgPn)

��
AlgComm AlgPn

oo

is commutative.

Proof. The claim immediately follows from the commutative diagram of operads

Ω(coPn+1{1}) // BrcoPn

Ω(coLie{1− n})

OO

// Ω(coPn)

OO

�

Let us denote by

Sym: AlgLie −→ AlgPn

the functor which sends a Lie algebra g to the non-unital Pn-algebra Sym(g[1 − n]), the
reduced symmetric algebra on g[1 − n] with the Poisson bracket induced by the Leibniz
rule from the bracket on g. Recall that the symmetric monoidal structure on AlgPn we
consider is the one transferred under the equivalence AlgPn

∼= Algaug
Pun
n

from the usual tensor

product of augmented Pn-algebras. In particular, under this equivalence the functor Sym
corresponds to g 7→ Sym(g[1−n]) which is symmetric monoidal. The functor Sym preserves
weak equivalences, so we obtain a symmetric monoidal functor of ∞-categories

Sym: AlgLie −→ AlgPn .
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Proposition 2.20. The diagram

AlgLie

Sym

��

∼ // Alg(AlgLie)

Sym
��

AlgPn+1
// Alg(AlgPn).

is commutative.

Proof. Let us denote by
ΩLie : CoAlgcoComm −→ AlgLie

the cobar complex for Lie algebras and by

ΩPn : CoAlgcoPn −→ AlgPn

the cobar complex for Pn-algebras which we can factor as

CoAlgcoPn
ΩLie−−→ BiAlgLien−2

−→ AlgPn .

Consider the symmetric monoidal functors

triv : CoAlgcoComm −→ CoAlgcoPn

and
triv : AlgLie −→ BiAlgLien−2

which assign trivial cobrackets. We have a commutative diagram

CoAlgcoComm

ΩLie //

triv

��

AlgLie

triv

��

Sym

&&
CoAlgcoPn

ΩLie // BiAlgLien−2

Ω // AlgPn

Therefore, the claim will follow once we show that the diagram

AlgLie

Sym

��
Sym

��

AlgLie
U //

triv

��

Alg(CoAlgcoComm)

triv
��

AlgPn+1
// BiAlgLien−1

U // Alg(CoAlgcoPn)

commutes up to a weak equivalence. It is clear that the square on the right commutes strictly
and we are reduced to showing commutativity of the square on the left.

We can factor the functor
Sym: AlgLie −→ AlgPn+1

as
AlgLie

triv−−→ BiAlgLien−1

Ω−→ AlgPn+1
.

Therefore, the composite

AlgLie
triv−−→ BiAlgLien−1

Ω−→ AlgPn+1

B−→ BiAlgLien−1

is weakly equivalent to triv : AlgLie → BiAlgLien−1
and hence the remaining square commutes

up to a weak equivalence. �
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The functor Sym: AlgLie → AlgPn+1
has a right adjoint forget : AlgPn+1

→ AlgLie given by

forgetting the commutative algebra structure. Since Sym is symmetric monoidal, the right
adjoint forget is lax symmetric monoidal and hence sends associative algebras to associative
algebras. Therefore, the commutativity data of Proposition 2.20 gives rise to a diagram of
right adjoints

AlgLie
∼ //

"*

Alg(AlgLie)

AlgPn+1
//

forget

OO

Alg(AlgPn)

forget

OO

which commutes up to a natural transformation.

Proposition 2.21. The diagram of right adjoints

AlgLie
∼ // Alg(AlgLie)

AlgPn+1
//

forget

OO

Alg(AlgPn)

forget

OO

commutes.

Proof. Since the functor forget : AlgPn → AlgLie is lax monoidal, we have a commutative
diagram

Alg(AlgLie) // AlgLie

Alg(AlgPn) //

forget

OO

AlgPn

forget

OO

where the horizontal functors are given by forgetting the associative algebra structure.
Forgetting the algebra structure is conservative, so it will be enough to prove that the

outer square in

AlgBrcoPn
//

��

AlgLie

��
Alg(CoAlgcoPn) //

��

Alg(CoAlgcoComm)

��
CoAlgcoPn

//

��

CoAlgcoComm

��
AlgPn

forget // AlgLie

commutes up to a weak equivalence. That is, suppose A is a BrcoPn-algebra. Then we have
show that the natural morphism of dg Lie algebras

ΩLieBLieA −→ ΩPnBPnA



36 PAVEL SAFRONOV

is a quasi-isomorphism, where Ω... and B... are the respective cobar and bar constructions.
Let us note that BLieA is the bar complex with respect to the L∞ structure on A underlying
the homotopy Pn-structure on A.

But this is a quasi-isomorphism since the diagram

ΩLieBLieA //

∼
$$

ΩPnBPnA

∼
zz

A

commutes. �

We will end this section by proving that the additivity functor for Pn-algebras is an
equivalence.

Theorem 2.22. The additivity functor

add: AlgPn+1
−→ Alg(AlgPn)

is an equivalence of symmetric monoidal ∞-categories.

Proof. By Proposition 2.18 the additivity functor is symmetric monoidal, so we just have to
show that it is an equivalence of ∞-categories.

Consider the diagram

AlgPn+1

forget

��

// Alg(AlgPn)

forget

��
AlgLie

// Alg(AlgLie)

By Corollary 2.14 the bottom functor is an equivalence. The forgetful functor

forget : AlgPn+1
−→ AlgLie

is conservative and preserves sifted colimits since they are created by the forgetful functor
to chain complexes by Proposition 1.9. Similarly, the forgetful functor

forget : Alg(AlgPn) −→ Alg(AlgLie)

is conservative. Let O = Pn or Lie. Sifted colimits in AlgO are created by the forgetful functor
to chain complexes and since sifted colimits in Alg(AlgO) are created by the forgetful functor
to AlgO, we conclude that sifted colimits in Alg(AlgO) are created by the forgetful functor
to chain complexes.

By Proposition 2.21 the diagram commutes and by Proposition 2.20 the diagram of left
adjoints commutes. Therefore, Proposition 1.3 applies and the claim follows. �

A natural question is whether the Dunn–Lurie additivity functor (see [Lur17, Theorem
5.1.2.2])

AlgEn+1

∼−→ Alg(AlgEn)

is compatible with the Poisson additivity functor in the following sense. Suppose that n ≥ 2.
Then we have an equivalence of Hopf operads Pn ∼= En provided by the formality of the
operad En which gives an equivalence of symmetric monoidal ∞-categories AlgEn

∼= AlgPn .
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Conjecture 2.23. Suppose n ≥ 2. Then the diagram

AlgPn+1

∼ //

∼
��

Alg(AlgPn)

∼
��

AlgEn+1

∼ // Alg(AlgEn)

is commutative.

2.5. Additivity for unital Poisson algebras. Let us explain the necessary modifications
one performs to construct the additivity functor for unital Poisson algebras. Recall from
Section 1.4 the bar-cobar adjunction for unital Poisson algebras

Ω: CoAlgcoPθn
// AlgPun

n
: Boo ,

where coPθn is the cooperad of curved Pn-coalgebras. One similarly has a bar-cobar adjunction

Ω: CoAlgcoLieθ
// AlgCommun : Boo ,

where coLieθ is the cooperad of curved Lie coalgebras, that is, graded Lie coalgebras g
together with a coderivation d of degree 1 satisfying

d2(x) = θ(xδ(1))x
δ
(2)

θ(dx) = 0,

where δ(x) = xδ(1) ⊗ xδ(2).
The cobar construction is given by the same formula as in the non-curved case except that

we add the curving to the differential. The bar construction of a unital commutative algebra
A is given by

coLie(A[1]⊕ k[2])

with a bar differential and the curving which is given by projecting to k[2].

Definition 2.24. An n-shifted curved Lie bialgebra is a curved Lie coalgebra g of degree
−n together with a degree 0 Lie bracket satisfying the cocycle relation (16).

We denote the category of n-shifted conilpotent curved Lie bialgebras by BiAlgθLien with
weak equivalences created by the forgetful functor

BiAlgθLien −→ CoAlgcoLieθ .

The commutative bar-cobar adjunction

Ω: CoAlgcoLieθ
// AlgCommun : Boo ,

extends to a bar-cobar adjunction

Ω: BiAlgθLien−1

// AlgPun
n+1

: Boo .

The only modification from the case of non-unital Poisson algebras is the formula for the
Lie bracket. Suppose A is a unital Pn+1-algebra. Then as a graded vector space

B(A) = coLie(A[1]⊕ k[2])[n− 1].
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By the cocycle equation (16), the Lie bracket on coLie(A[1] ⊕ k[2]) is uniquely determined
after projection to cogenerators and the morphism

coLie(A[1]⊕ k[2])[n− 1]⊗ coLie(A[1]⊕ k[2])[n− 1] −→ coLie(A[1]⊕ k[2])[n− 1]

−→ A[n]⊕ k[n+ 1]

has the zero component in k[n+ 1] and its A[n] component is defined to be the bracket

A[n]⊗ A[n] −→ A[n].

The universal enveloping algebra construction gives a functor

U: BiAlgθLien−1
−→ Alg(CoAlgcoPθn).

Therefore, we can define the additivity functor

addPun
n

: AlgPun
n+1
−→ Alg(AlgPun

n
)

to be given by the composite

AlgPun
n+1

[W−1
qis ] −→ BiAlgθLien1

[W−1
Kos]

−→ Alg(CoAlgcoPθn)[W−1
Kos]

−→ Alg(CoAlgcoPθn [W−1
Kos]).

The following statement is proved as for non-unital Poisson algebras by analyzing the
forgetful functor to Lie algebras.

Theorem 2.25. The additivity functor

AlgPun
n+1
−→ Alg(AlgPun

n
)

is an equivalence of symmetric monoidal ∞-categories.

3. Coisotropic structures

In this section we show that two definitions of derived coisotropic structures given in
[CPTVV17] and [MS16] are equivalent. Both definitions are given first in the affine setting
and then extended in the same way to derived stacks, so it will be enough to prove equivalence
on the affine level.

3.1. Two definitions. Let us introduce the following notations. Given a category C we
denote by Arr(C) the category of morphisms in C, i.e. the functor category Fun(∆1,C).
Given a symmetric monoidal category C we denote by LMod(C) the category of pairs (A,M),
where A is a unital associative algebra in C and M is a left A-module. Let us denote by
LMod(C) the same construction for a symmetric monoidal ∞-category C.

Introduce the notation
AlgP(n+1,n)

= LMod(AlgPn).

We have a forgetful functor AlgP(n+1,n)
→ Arr(AlgComm) which sends a pair (A,B) with the

action map A ⊗ B → B to the morphism of commutative algebras A → B given by the

composite A
id⊗1→ A⊗B → B.

The following definition of coisotropic structures is due to Calaque–Pantev–Toën–Vaquié–
Vezzosi [CPTVV17, Definition 3.4.3]:
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Definition 3.1. Let f : A→ B be a morphism of commutative dg algebras. The space of
n-shifted coisotropic structures CoisCPTV V (f, n) is defined to be the fiber of

AlgP(n+1,n)
−→ Arr(AlgComm)

at the given morphism f .

To relate this space of n-shifted coisotropic structures to the space of n-shifted Poisson
structures on A, one has to use the Poisson additivity functor

add: AlgPn+1
−→ Alg(AlgPn).

A more explicit definition of the space of coisotropic structures was given in [MS16] and
[Saf17] as follows. Let B be a Pn-algebra. We define its strict center to be the Pn+1-algebra

Zstr(B) = HomB(SymB(Ω1
B[n]), B)

with the differential twisted by [πB,−]. We refer to [Saf17, Section 1.1] for explicit formulas
for the Pn+1-structure. One can also consider its center

Z(B) = Homk(coPcu
n (B), B)[−n]

with the differential twisted by the Pn-structure on B. By results of [CW15], Z(B) is a
BrcoPn{n}-algebra and hence in particular a homotopy Pn+1-algebra. Moreover, the natural
inclusion

Zstr(B)→ Z(B)

is compatible with the homotopy Pn+1 structures on both sides and is a quasi-isomorphism
if B is cofibrant as a commutative algebra.

Let P[n+1,n] be the colored operad whose algebras consist of a pair (A,B, f) where A is
a Pn+1-algebra, B is a Pn-algebra and f : A → Zstr(B) is a Pn+1-morphism. The projection
Zstr(B)→ B is a morphism of commutative algebras, so we get a natural forgetful functor

AlgP[n+1,n]
→ Arr(AlgComm).

Definition 3.2. Let f : A→ B be a morphism of commutative dg algebras. The space of
n-shifted coisotropic structures CoisMS(f, n) is defined to be the fiber of

AlgP[n+1,n]
−→ Arr(AlgComm)

at the given morphism f .

Our goal will be to construct an equivalence of∞-categories AlgP[n+1,n]
→ AlgP(n+1,n)

which

is compatible with the forgetful functor to Arr(AlgComm) which will show that the spaces
CoisMS(f, n) and CoisCPTV V (f, n) are equivalent. We will construct the equivalence as a
relative version of the additivity functor (13).

3.2. Relative additivity for Lie algebras. We begin with the relative analog of the
additivity functor for Lie algebras.

Let us introduce a Swiss-cheese operad of Lie algebras. Given a dg Lie algebra h the
Chevalley–Eilenberg complex C•(h, h)[1] carries a convolution Lie bracket. We let Lie[1,0] be
the colored operad whose algebras consist of a pair of dg Lie algebras (g, h) together with a
map of dg Lie algebras g→ C•(h, h)[1].
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Remark 3.3. Following [MS16, Section 3.3], given the morphism of operads

ΩcoComm{1} → Lie→ BrcoComm,

one can consider the colored operad SC(coComm, coComm) whose algebras are given by
a pair (g, h) of L∞ algebras together with an ∞-morphism g → C•(h, h)[1]. The colored
operad Lie[1,0] is given by a quotient where we declare both g and h to be strict Lie algebras
and the morphism g→ C•(h, h)[1] to be a strict morphism.

Consider the morphism h→ Der(h) given by the adjoint action and denote by D̃er(h) its

cone. Note that we have an obvious inclusion D̃er(h) ⊂ C•(h, h)[1]. We denote by Liestr
[1,0] the

quotient operad of Lie[1,0] where we set all components of the map g → C•(h, h)[1] having
h-arity at least 2 to be zero. Thus, a Liestr

[1,0]-algebra is a pair (g, h) of dg Lie algebras together

with a map of Lie algebras g→ D̃er(h).
Given a pair (g, h) ∈ AlgLiestr[1,0]

we can construct a dg Lie algebra k as follows. As a graded

vector space we define k = g ⊕ h. The differential on k is the sum of the differentials on g
and h and the differential g→ h coming from the composite

g −→ C•(h, h)[1] −→ h[1].

The Lie bracket on k is the sum of Lie brackets on g and h and the action map of g on h
given by the map g → Der(h). In this way we see that a pair (g, h) ∈ AlgLiestr[1,0]

is the same

as a dg Lie algebra extension

0 −→ h −→ k −→ g −→ 0.

One can similarly construct an L∞ extension from the data of a general object of AlgLie[1,0]
.

Since every L∞ algebra is quasi-isomorphic to a dg Lie algebra, the following statement
should be obvious.

Proposition 3.4. The forgetful functor

AlgLiestr[1,0]
−→ AlgLie[1,0]

induces an equivalence on the underlying ∞-categories.

Proof. By Proposition 1.8 it is enough to show that the projection Lie[1,0] → Liestr
[1,0] is a

quasi-isomorphism.
Let coCommcu be the cooperad of counital cocommutative coalgebras. One can identify

the underling graded colored symmetric sequence Lie[1,0] with Lie ◦ (coCommcu ◦ Lie⊕ 1) so
that Lie[1,0](A

⊗n,B⊗m) has n operations in coCommcu and m operations in Lie or 1. The
projection

Lie[1,0](A
⊗0,B⊗m)→ Liestr(A⊗0,B⊗m)

is an isomorphism. To simplify the notation, we prove that the projection

(18) Lie[1,0](A
⊗1,B⊗m)→ Liestr(A⊗1,B⊗m)

is a quasi-isomorphism since the case of higher n is handled similarly. Thus, we can identify
the underlying graded symmetric sequence Lie[1,0](A

⊗1,B⊗−) wth Lie ◦(1) (coCommcu ◦ Lie),
where ◦(1) is the infinitesimal composite (see [LV12, Section 6.1]).
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Let V be a complex and consider Lie(V ), the free Lie algebra on V , and its homology
C•(Lie(V ),Lie(V )). Let C≤1(Lie(V ),Lie(V )) be the quotient of C•(Lie(V ),Lie(V )) where
we consider only components of weight ≤ 1 and mod out by the image of the Chevalley–
Eilenberg differential from weight 2 to weight 1. The projection

C•(Lie(V ),Lie(V ))→ C≤1(Lie(V ),Lie(V ))

is a quasi-isomorphism which can be seen as follows. The left-hand side by definition com-
putes the derived tensor product k ⊗L

T(V ) Lie(V ). But k has a two-term free resolution

(T(V )⊗ V → T(V ))
∼→ k

as a T(V )-module and computing the derived tensor product using this resolution one exactly
obtains C≤1(Lie(V ),Lie(V )).

To conclude the proof, observe that the coefficient of V ⊗m in C•(Lie(V ),Lie(V )) is iso-
morphic as a complex to Lie[1,0](A

⊗1,B⊗m) while its coefficient in C≤1(Lie(V ),Lie(V )) is
isomorphic to Liestr(A⊗1,B⊗m). �

Now we are going to introduce the bar construction

B: AlgLie[1,0]
−→ LMod(CoAlgcoComm)

Consider a pair (g, h) ∈ AlgLie[1,0]
. We send it to the pair (U(g),C•(h)) of a cocommutative

bialgebra and a cocommutative coalgebra. The action map

Ug⊗ C•(h) −→ C•(h)

is constructed as follows. Since U(g) is generated by g, it is enough to specify the action
g⊗ C•(h)→ C•(h) that we denote by x.c for x ∈ g and c ∈ C•(h) satisfying the equations

(x.c)(1) ⊗ (x.c)(2) = (x.c(1))⊗ c(2) + (−1)|x||c(1)|c(1) ⊗ (x.c(2)), x ∈ g, c ∈ C•(h)

[x, y].c = x.(y.c)− (−1)|x||y|y.(x.c) x, y ∈ g, c ∈ C•(h)

Since C•(h) is cofree, by the first equation it is enough to specify the map g⊗C•(h)→ h[1]
which we define to be adjoint to the given map g → C•(h, h)[1]. It is then easy to see that
since the map g→ C•(h, h)[1] is compatible with Lie brackets, the second equation is satisfied
and since it is compatible with the differentials, so is the map g⊗C•(h)→ C•(h). This defines
the functor

B: AlgLie[1,0]
−→ LMod(CoAlgcoComm).

We can also introduce the cobar construction

Ω: LMod(CoAlgcoComm) −→ AlgLiestr[1,0]
.

Consider an element (A,C) ∈ LMod(CoAlgcoComm) where A is an algebra and C is an
A-module. By Theorem 2.9 we can identify A ∼= U(g) for the Lie algebra g of primitive
elements. We send (U(g), C) to the pair (g, h = ΩC), where ΩC is the Harrison complex
Lie(C[−1]). Let us denote the action map Ug ⊗ C → C by x.c for x ∈ g and c ∈ C. The
morphism g −→ h[1] is defined by the composite

g −→ C[−1] −→ Lie(C[−1]) = h
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where the first map is given by the action map x.1. Since h is semi-free, the morphism
g→ Der(h) is uniquely determined by the map

g⊗ C[−1] −→ C[−1] −→ Lie(C[−1]),

where the first map is the action of g on C. The fact that thus constructed morphism

g → D̃er(h) is a morphism of Lie algebras follows from the associativity of the action map

Ug ⊗ C → C. The compatibility of the morphism g → D̃er(h) with the differential follows
from the compatibility of the action map U(g)⊗ C → C with coproducts. This defines the
functor

Ω: LMod(CoAlgcoComm) −→ AlgLiestr[1,0]
.

Note that in this way we obtain an adjunction

Ω: LMod(CoAlgcoComm) // Algstr
Lie[1,0]

: Boo .

Indeed, the counit and unit morphisms

ΩB(g, h) −→ (g, h) (A,C)→ BΩ(A,C)

are defined to be the identities in the first slot and the counit and unit of the usual bar-cobar
adjunction in the second slot.

Proposition 3.5. The adjunction

Ω: LMod(CoAlgcoComm) // AlgLiestr[1,0]
: Boo

induces an adjoint equivalence

LMod(CoAlgcoComm)[W−1
Kos]

// AlgLiestr[1,0]
[W−1

qis ]oo

on the underlying ∞-categories.

Proof. We have a commutative diagram

LMod(CoAlgcoComm)

��

// AlgLiestr[1,0]

��

oo

Alg(CoAlgcoComm)× CoAlgcoComm
// AlgLie × AlgLieoo

where the vertical functors are the obvious forgetful functors. Since they reflect weak equiva-
lences, it is enough to show the bottom adjunction induces an equivalence after localization.
Indeed,

Alg(CoAlgcoComm) // AlgLie
U
oo

is an equivalence by Theorem 2.9 and

CoAlgcoComm
// AlgLieoo

induces an ∞-categorical equivalence by Proposition 1.7. �
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The composite functor

AlgLie[1,0]
[W−1

qis ]
B−→ LMod(CoAlgcoComm)[W−1

Kos] −→ LMod(CoAlgcoComm[W−1
Kos])

defines a relative additivity functor for Lie algebras:

add: AlgLie[1,0]
−→ LMod(AlgLie).

Theorem 3.6. The additivity functor

AlgLie[1,0]
−→ LMod(AlgLie)

is an equivalence of ∞-categories.

Proof. Consider a commutative diagram

AlgLie[1,0]

B
��

LMod(CoAlgcoComm)[W−1
Kos]

G1 //

L1

��

Alg(CoAlgcoComm)[W−1
Kos]× CoAlgcoComm[W−1

Kos]

L2

��

LMod(CoAlgcoComm[W−1
Kos])

G2 // Alg(CoAlgcoComm[W−1
Kos])× CoAlgcoComm[W−1

Kos]

where the functors G1, G2 are the obvious forgetful functors.
The functor

B: AlgLie[1,0]
−→ LMod(CoAlgcoComm)[W−1

Kos]

is an equivalence by Proposition 3.5, so we just need to show that the functor L1 is an
equivalence. The localization functor

Alg(CoAlgcoComm)[W−1
Kos] −→ Alg(CoAlgcoComm[W−1

Kos])

is an equivalence by results of Section 2.3, so the functor L2 is an equivalence.
The functor G1 is conservative. Sifted colimits in AlgLie[1,0]

are created by the forgetful

functor to Ch × Ch by Proposition 1.9, so the functor G1 preserves sifted colimits. The
functor G2 is conservative; it preserves sifted colimits by [Lur17, Corollay 4.2.3.7].

The left adjoint to G1 post-composed with the forgetful functor to CoAlgcoComm[W−1
Kos] is

given by the functor (A, V ) 7→ (A,A⊗V ). By [Lur17, Corollary 4.2.4.4] the functor G2 also
admits a left adjoint given by the same formula, so the diagram of left adjoints commutes.
Therefore, Proposition 1.3 applies and thus L1 is an equivalence. �

Remark 3.7. One can also construct the relative additivity functor AlgLie[1,0]
∼= LMod(AlgLie)

as follows. The colored operad Liestr
[1,0] is quadratic whose Koszul dual is the cooperad of a

pair of cocommutative coalgebras C1, C2 together with a morphism C1 → C2. Finally, a
relative version of Proposition 2.12 gives an equivalence Arr(AlgLie)

∼= LMod(AlgLie).
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3.3. Relative additivity for Poisson algebras. We now proceed to the construction of
the additivity functor

add: AlgP[n+1,n]
−→ LMod(AlgPn).

Consider a pair (A,B) ∈ AlgP[n+1,n]
. Let g be the Koszul dual (n−1)-shifted Lie bialgebra

to A constructed in Section 2.4. As a graded vector space, we can identify g ∼= coLie(A[1])[n−
1]. Let us also denote by BB the Koszul dual coaugmented Pn-coalgebra; as a graded vector
space, we can identify BB ∼= coPcu

n (B[n]). Recall also that U(g) is an associative algebra in
Pn-coalgebras. Now we want to construct the action map

a : U(g)⊗ BB −→ BB

of Pn-coalgebras. Such a map by associativity is uniquely determined by the map

g⊗ BB −→ BB

and since BB is cofree as a graded Pn-coalgebra, this map is uniquely determined by pro-
jection to the cogenerators

g⊗ BB −→ B[n].

We define this map to be adjoint to the map

coLie(A[1])[n− 1] −→ A[n] −→ Z(B)[n].

Recall the description of the Koszul dual Lie bialgebra to a BrcoPn-algebra such as Z(B)
from the proof of Proposition 2.17. Using this description, we see that the associativity
of the action map a follows from the compatibility of the morphism A −→ Z(B) with Lie
brackets and the compatibility of a with the differential follows from the compatibility of
A −→ Z(B) with the C∞ structure. Compatibility with the Pn-coalgebra structures is
obvious by construction.

In this way we obtain a functor

AlgP[n+1,n]
−→ LMod(CoAlgPn)

and we let the additivity functor

AlgP[n+1,n]
−→ LMod(CoAlgPn [W−1

Kos])

be the composite

AlgP[n+1,n]
[W−1

qis ] −→ LMod(CoAlgPn)[W−1
Kos] −→ LMod(CoAlgPn [W−1

Kos]).

Theorem 3.8. The additivity functor

add: AlgP[n+1,n]
−→ LMod(AlgPn)

is an equivalence of ∞-categories.

Proof. Suppose B is a Pn-algebra. In particular, B[n − 1] is a Lie algebra and we have a
morphism

Z(B)[n] −→ C•(B[n− 1], B[n])

of Lie algebras induced by the morphism of cooperads coComm→ coPn. Compatibility with
the Lie algebra structures on both sides is clear as both are given by convolution brackets.
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This gives a forgetful functor

G1 : AlgP[n+1,n]
−→ AlgLie[1,0]

which sends a pair (A,B) with a morphism of Pn+1-algebras A −→ Zstr(B) to the pair of
Lie algebras (A[n], B[n− 1]) with a morphism of Lie algebras

A[n] −→ Zstr(B)[n] −→ C•(B[n− 1], B[n− 1])[1].

The forgetful functor G1 has a left adjoint

F1 : AlgLie[1,0]
−→ AlgPstr

[n+1,n]

which is constructed as follows. Consider a pair (g, h) ∈ AlgLie[1,0]
equipped with a morphism

g → C•(h, h)[1]. Then A = Sym(g[−n]) is a Pn+1-algebra and B = Sym(h[1 − n]) is a
Pn-algebra. We can identify

Zstr(B) ∼= C•(h, B)

as Lie algebras. Using this identification we obtain a morphism of Pn-algebras

A −→ Zstr(B)

defined to be the Lie map g → C•(h, h)[1] on the generators of A. This concludes the
construction of the functor F1.

Now consider the diagram

(19) AlgPstr
[n+1,n]

// LMod(CoAlgPn)

AlgLie[1,0]

B //

F1

OO

LMod(CoAlgcoComm).

triv

OO

Consider an object (g, h) ∈ AlgLie[1,0]
. Under the composite

AlgLie[1,0]
−→ AlgPstr

[n+1,n]
−→ LMod(CoAlgPn)

the underlying associative algebra can be identified with Ug with the trivial cobracket by
Proposition 2.20. Similarly, the underlying module can be identified with C•(h) with the
trivial cobracket using the weak equivalence

C•(h)
∼→ BPn(Sym(h[1− n])).

It is easy to see that the action of Ug on C•(h) under this equivalence coincides with the
action given by the composite

AlgLie[1,0]
−→ LMod(CoAlgcoComm) −→ LMod(CoAlgPn)

and hence the diagram (19) commutes up to a weak equivalence.
Denote by

F2 : AlgLie
//
AlgPn : G2oo



46 PAVEL SAFRONOV

the free-forgetful adjunction and consider a diagram of ∞-categories

(20) AlgP[n+1,n]

addPn //

G1

��

LMod(AlgPn)

G2

��
AlgLie[1,0]

addLie //

F1

OO

LMod(AlgLie)

F2

OO

By Theorem 3.6 the functor addLie is an equivalence. Moreover, the commutativity of dia-
gram (19) implies that

addPn ◦ F1
∼= F2 ◦ addLie.

To check that the natural morphism

addLie ◦G1 → G2 ◦ addPn

is an equivalence, it is enough to check it in Alg(AlgLie)×AlgLie since the forgetful functor

LMod(AlgLie) −→ Alg(AlgLie)×AlgLie

is conservative. By Proposition 2.21 the corresponding morphism in Alg(AlgLie) is an equiv-
alence. It is also obvious that the corresponding morphism in AlgLie is an equivalence since
the diagram (20) can be forgotten to the commutative diagram

AlgPn
id //

forget

��

AlgPn

forget

��
AlgLie

id //

Sym

OO

AlgLie

Sym

OO

The forgetful functor G1 is conservative and it preserves sifted colimits since they are
created by the forgetful functor to Ch × Ch by Proposition 1.9. Similarly, the forgetful
functor G2 is conservative and preserves sifted colimits since sifted colimits in LMod(AlgO)
are created by the forgetful functor to AlgO × AlgO and hence by the forgetful functor to
Ch× Ch. Therefore, by Proposition 1.3 the functor addPn is an equivalence. �

Corollary 3.9. Given a morphism f : A→ B of dg commutative algebras, there is a canon-
ical equivalence of spaces of n-shifted coisotropic structures

CoisMS(f, n)
∼−→ CoisCPTV V (f, n).

Proof. To prove the claim we have to show that we have a commutative diagram of ∞-
categories

AlgP[n+1,n]

addPn //

''

LMod(AlgPn)

vv
Arr(AlgComm)
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The forgetful functor AlgPn → AlgComm under Koszul duality corresponds to the functor
CoAlgcoPn → CoAlgcoLie which is given by taking primitive elements. We are going to show
that the diagram

AlgP[n+1,n]

//

��

LMod(CoAlgcoPn)

��
Arr(CoAlgcoPn)

��
Arr(AlgComm) // Arr(CoAlgcoLie)

strictly commutes which will prove the claim.
Consider an object (A,B) ∈ AlgP[n+1,n]

. Let g be the (n− 1)-shifted Lie bialgebra Koszul

dual to A and BPnB the coaugmented Pn-coalgebra Koszul dual to B. The functor

LMod(CoAlgcoPn) −→ Arr(CoAlgcoaug
coPcu

n
)

sends the action map Ug⊗ BPnB → BPnB to the morphism Ug → BPnB which is given by
the image of 1 ∈ B. After passing to primitives we obtain a morphism

(21) g −→ BCommB

of Lie coalgebras. But as a Lie coalgebra we can identify g ∼= BCommA and the morphism
(21) is the image of A→ B under the commutative bar construction. �

Remark 3.10. In [MS16] we construct a forgetful map from n-shifted Poisson structures to
(n− 1)-shifted Poisson structures on a commutative algebra A using the natural correspon-
dence

Pois(A, n− 1) CoisMS(id, n)oo ∼ // Pois(A, n).

We can relate it to the additivity functor as follows. Let A be a Pn+1-algebra and g the Koszul
dual (n− 1)-shifted Lie bialgebra. Then U(g) ∈ Alg(CoAlgcoPn) is naturally a module over
itself which by Corollary 3.9 gives a coisotropic structure on the identity A → A, i.e. an
element of CoisMS(id, n). The underlying Pn-algebra structure in Pois(A, n − 1) is then
the Koszul dual Pn-algebra to the Pn-coalgebra U(g). But this exactly coincides with the
forgetful functor

AlgPn+1

∼ // Alg(AlgPn) // AlgPn .
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