
ar
X

iv
:1

70
1.

06
47

9v
1 

 [
m

at
h.

A
G

] 
 2

3 
Ja

n 
20

17

THE ACTION OF THE ÉTALE FUNDAMENTAL GROUP SCHEME ON THE CONNECTED

COMPONENT OF THE ESSENTIALLY FINITE ONE

PHÙNG HÔ HAI AND JOÃO PEDRO P. DOS SANTOS

ABSTRACT. We follow the pattern in [Ota15, Section 4] to define an action of the étale fundamen-

tal group scheme πét(X) on the local component of the essentially finite fundamental group scheme

πEF(X) of Nori. We show that the associated representation is faithful when X is a curve of genus

> 2.

1. INTRODUCTION

Let X be a connected, proper and reduced algebraic scheme over a perfect field k, and x a
k-rational point of X. In his seminal work [Nor76], M. V. Nori detected that a full subcategory of
the category of vector bundles on X can be used to produce, via the Tannakian correspondence,
an affine group scheme πEF(X, x) over kwhich, colloquially speaking, classifies torsors with finite
structural group. If the characteristic of k is positive, πEF(X, x) possesses two relevant canonical

quotients: πét(X, x), which is the largest pro-étale one, and πloc(X, x), which is the largest local

one. By considering the kernel of the morphism πEF(X, x) → πét(X, x), we then obtain another
local affine group scheme, call it πEF(X, x)o, and the question concerning the relation between

πEF(X, x)o and πloc(X, x) naturally arises.

In [EHS08], the authors explained that πloc(X, x) in fact only accounts for a small portion

of πEF(X, x)o by showing that the latter actually contains information about πloc(X ′) for all
“geometric” étale coverings X ′ → X (see Theorem 3.5 of op. cit. for a precise statement).
Further, in [EH10] it was noticed that πEF(X, x) is a semi-direct product of πEF(X, x)o with

πét(X, x), and, when X is a smooth projective curve, the action of πét(X, x) on πEF(X, x)o is
trivial if and only if X has genus at most 1 (see Corollary 2.3 and Propostion 2.4 of op. cit.).

The work [EHS08] inspired Otabe [Ota15] to show that, in case k is of characteristic zero,
his “semi-finite fundamental group scheme” πEN(X, x) [Ota15, Section 2.4] produces a faithful

action of πét(X, x) on its unipotent radical provided X is a smooth curve of genus at least two
(see [Ota15, Theorem 4.12]).

We wish to demonstrate here that Otabe’s point of view can give interesting information in

the case of positive characteristic. Our main finding is that the action of πét(X, x) on π(X, x)o

is faithful if X is a geometrically connected, smooth and projective curve of genus at least two.
See Section 4, specially Theorem 4.7.
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2 P. H. HAI AND J. P. DOS SANTOS

We now briefly describe the contents of this article. In Section 2 we review Nori’s theory
and some of its later developments. In Section 3 we slightly modify the presentation leading to
Theorem 3.5 of [EHS08] so that we can easily state and prove our main result, Theorem 4.3 of
Section 4. It is perhaps useful to note that Theorem 4.3 has a more portable consequence, which
we present as Theorem 4.7. The proof of Theorem 4.3 requires an exercise which is carried out
on Section 5.

Notations, conventions and generalities.

1.1. Conventions.

On vector bundles. A vector bundle is a locally free coherent sheaf of finite rank. If x : SpecK→ X
is a point of a scheme X and V is a vector bundle on X, we write V |x for the K-vector space x∗V .

A vector bundle V over X is said to be trivial if it is isomorphic to some O⊕r
X .

On group schemes. For an affine group schemeG over a field k, we write k[G] instead of Γ(G,OG).
Given an affine group scheme G, the category of all its finite dimensional representations is
denoted by Repk(G). An arrow q : G→ H of affine group schemes is called a quotient morphism
if it is faithfully flat. We use constantly the fact that q : G → H is a quotient morphism if and
only if the associated arrow k[H]→ k[G] is injective [Wa70, Chapter 14].

On Abelian varieties. For an abelian variety A, we let [m] : A→ A stand for multiplication by m.
The kernel of [m] is denoted by A[m].

1.2. Generalities on adjunctions in the category of affine group schemes. Let G be the
category of affine group schemes. In this section, we explain how to treat in more robust fashion
the process of “taking the largest quotient having a certain property”.

We first note that

(⋆) G is stable under all small limits (use the standard criterion [Mac98, V.2, Corollary 2]),
(⋆⋆) and that each arrow f : G→ H can be decomposed uniquely as

G
q
−→ I

i
−→ H,

where i is a closed embedding and q is a quotient morphism.

Let u : A→ G be a full subcategory of G enjoying the ensuing properties:

P1. The category A is small complete and u preserves all small limits.
P2. If A belongs to A and i : H→ A is a closed embedding, then H also belongs to A.
P3. If A belongs to A and q : A→ H is a quotient morphism, then H also belongs to A.

Under such conditions, it is a direct consequence of Freyd’s theorem [Mac98, V.6, Theorem
2] that u has a left adjoint G 7→ GA. Furthermore:

Lemma 1.1. The unit morphism ηG : G→ u(GA) is always a quotient morphisms while the co-unit

εA : (uA)A → A is always an isomorphism.

Proof. Let G
q
→ I

i
→ u(GA) be the decomposition of ηG predicted by (⋆⋆). Then, I ∈ A and it

follows that q : G → I is universal from G to u, so that i is an isomorphism. The second claim
follows immediately from [Mac98, V.3, Theorem 1]. �

This justifies the following standard terminology:
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Definition 1.2. If G is an affine group scheme, then the arrow G → GA is called the largest
quotient of G in A.

Let now v : B → G be a second subcategory enjoying P1–P3. From Lemma 1.1 and stability
under quotients, we conclude that BA ∈ B for all B ∈ B; one easily sees that (−)A : B→ A ∩ B is
left adjoint to the inclusion A ∩ B→ B. This being so, the composition

G
(−)B

−→ B
(−)A

−→ A ∩ B

is adjoint to the inclusion A ∩ B → G since “left adjoint of a composition is the composition of
the left adjoints” [Mac98, V.8, Theorem 1]. Consequently, employing [Mac98, V.1, Corollary 1]
we have

Lemma 1.3. Let A and B be categories as above. Then, the compositions

G
(−)A

// A
(−)B

// A ∩ B and G
(−)B

// B
(−)A

// A ∩ B

are naturally isomorphic. Moreover, they are also naturally isomorphic to

G
(−)A∩B

// A ∩ B

�

As is customary, if A is the category of abelian affine group schemes, respectively local affine

group schemes, then GA is denoted by Gab, respectively Gloc. They are then, in the spirit of
Definition 1.2 above, called the largest abelian quotient, respectively the largest local quotient,
of G.

2. THE ESSENTIALLY FINITE FUNDAMENTAL GROUP SCHEME

In this section, we make a leisurely introduction to the essentially finite group scheme; it
serves mainly to help us establish notation and to introduce the reader to our mode of thought.
Besides the seminal text [Nor76], the reader should consult [EHS08] for detailled information.

In what follows, k stands for a perfect field of characteristic p > 0. Let X be a proper, reduced
and connected algebraic scheme over k. In [Nor76], Nori introduced two important classes of
vector bundles: the (now called) Nori-semistables and the finite. A vector bundle V on X is said
ot be Nori-semistable if it becomes semistable and of degree zero when pulled back along any
non-constant morphism γ : C→ X from a smooth and projective curve (see the Definition after
Proposition 3.4 in [Nor76]). The second class, the finite vector bundles, are those V for which
the set

{

isomorphism classes of indecomposable

direct summands of V⊗1,V⊗2, . . .

}

is finite (see the Definition after Lemma 3.1 in [Nor76]). It turns out that all finite vector bundles
are Nori-semistable and that the category of Nori-semistables – any morphism of vector bundle
being an arrow – is abelian. This fact allows one to consider all the Nori-semistables of the form
W/W ′, where W ′ ⊂ W are both subobjects of a common finite V , and show that the resulting
category, with the evident tensor product, is a tensor category over k in the sense of [Del90,
1.2]. This is the category of essentially finite vector bundles, which is denoted in what follows
by CEF(X).
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Given a k-point x of X, the functor V 7→ V |x (see section 1.1) from CEF(X) to k-vect is exact
and faithful, so that the main result of Tannakian theory [DM82, 2.11, p.130] constructs an
affine group scheme over k, usually called the Nori or essentially finite fundamental group scheme
π(X, x), and an equivalence of tensor categories

CEF(X)
∼
−→ Repk(π(X, x)), V 7−→ V |x.

Let us now elaborate on an useful notion. Given V ∈ CEF(X), let 〈V〉⊗ stand for the full
subcategory of CEF(X) whose objects are subquotients of finite direct sums of vector bundles of

the form V⊗a ⊗ V∗⊗b. Then,

•|x : 〈V〉⊗ −→ Repk(π(X, x))

defines an equivalence between 〈V〉⊗ and the category Repk(π(X,V , x)) of a certain quotient
π(X,V , x) of π(X, x) [DM82, 2.21,p.139]. This quotient turns out to be a finite group scheme,
a fact which can be grasped by looking at the definition of a finite vector bundle and [DM82,
2.20(a), p.138].

The full subcategory of CEF(X) consisting of those V for which π(X,V , x) is étale, respectively

local, will be denoted by Cét(X), respectively Cloc(X). Accordingly, objects of Cét(X), respectively

of Cloc(X), are called étale, respectively local, vector bundles. By means of the criterion [DM82,
Proposition 2.21, p.139] and the fact that étale and local finite group schemes are stable under

quotient morphism, the functor •|x induces an equivalence between Cét(X), respectively Cloc(X),

and a quotient πét(X, x), respectively πloc(X, x), of π(X, x). Needless to say, the affine group

scheme πloc(X, x), respectively πét(X, x), is a projective limit of finite and local group schemes,
respectively finite and étale group schemes.

The relation between πét(X, x) and its celebrated predecessor, the étale fundamental group of

[SGA1] is quite simple: Let k be an algebraic closure of k, and write X = X ⊗k k. Then, using
the obvious geometric point x : Speck → X, we construct the geometric fundamental group
π1(X, x) of X. Since x actually comes from a k-rational point, π1(X, x) has a continuous action

of Gal(k/k), and by the construction of [DG70, II, §5, no. 1.7] we can associate to π1(X, x)

a profinite group scheme. This is πét(X, x). As we shall have no use for this characterization
here, we omit the verifications. (Note that this relation is incorrectly stated in [DM82, 2.34] and
partially explained in [EHS08, Remarks 2.10].)

We end this section with a result which is left implicit in most works on the subject.

Lemma 2.1. Let E be a vector bundle over X, and K be a finite and separable extension of k. Then E
is essentially finite if and only if E⊗K is essentially finite over X⊗K. Moreover, the same statement
is true if we replace “essentially finite” by “local” or “étale”.

Proof. Only the “if” statement needs attention, so assume that E⊗K is essentially finite. We can
therefore find a finite group scheme G (over K), a G-torsor P → X ⊗ K, and a monomorphism
E ⊗ K → O⊕r

P . Now, according to [No82, Chapter II, Propsoition 5, p.89], P can be chosen to
come from X, that is, P = P0 ⊗ K, where P0 → X is a torsor under a certain finite group scheme.
Consequently, we obtain a monomorphism of OX-modules E→ O⊕r

P0
⊗ K; as E is certainly Nori-

semistable, we conclude that E is essentially finite. The proof of the last claim follows the same
method, since we can replace G with a local, or étale finite group scheme. �



ACTION OF πét ON πo 5

3. THE KERNEL OF π(X)→ πét(X)

We maintain the notations and terminology of section 2, but omit reference to the base point
x in speaking about fundamental group schemes. In what follows we briefly review some results
of [EHS08], including one of its main outputs, Theorem 3.5 on p. 389. In fact, we shall, with
an eye to future applications, use a different path to arrive at [EHS08, Theorem 3.5]; see the
discussion after Definition 3.3 below.

We begin with generalities and remind the reader that we ignore in notation the dependence
of the chosen base point x. Given V ∈ CEF(X), an inverse of the equivalence

•|x : 〈V〉⊗ −→ Repk(π(X,V))

constructed on Section 2 produces a principal π(X,V)-bundle

ψV : XV −→ X

together with a k-point xV on the fibre of ψV above x. Moreover, our inverse equivalence is just
the contracted product functor

(3.1) LXV : Repk(π(X,V)) −→ 〈V〉⊗.

(See [Sa74, I.4.4.2] for the existence an inverse to •|x which is a tensor functor and [Nor76,
11ff] for the construction of XV .)

Let us fix V ∈ Cét(X) and simplify notations by writing

X ′ := XV , ψ = ψV , G = π(X,V), x ′ = xV .

Two simple features of X ′ are immediately remarked: X ′ is reduced and proper (ψ is finite and
étale), and X ′ is “Nori”-reduced, that is, Γ(X ′,OX ′) = k, see [No82, Proposition 3, p. 87]. We

are then allowed to consider Cloc(X ′), and set out to investigate its relation to CEF(X). Using the
proof of Theorem 2.9 in [EHS08] (see also the paragraph preceding Lemma 2.8 on p. 384), we
can say the following.

Theorem 3.2. For each E ′ ∈ CEF(X ′), the vector bundle ψ∗(E
′) is also essentially finite on X. �

Hence, we obtain a functor

ψ∗ : Cloc(X ′) −→ CEF(X)

which, it turns out, allow us to understand the category of representations of the kernel

Kerπ(X, x) −→ πét(X, x).

Until now, this is exactly the point of view in [EHS08]; let us start making minor changes.

Definition 3.3. Given any finite set S of objects in CEF(X), we let 〈S〉⊗ stand for the full subcat-
egory

〈⊕W∈SW〉⊗

of CEF(X). If S is an arbitrary set of objects in CEF(X), we let 〈S〉⊗ stand for the full subcategory
having

⋃

s ⊂ S finite

〈s〉
⊗

as objects.
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We now apply the above definition to the set of objects of ψ∗C
loc(X ′). Let

π(X,Cloc(X ′))

stand for the quotient of π(X) obtained by means of the category

〈ψ∗C
loc(X ′)〉⊗

and the fibre functor •|x through the basic result [DM82, 2.21, p.139].

Proposition 3.4. The following claims are true.

(1) A vector bundle E ∈ CEF(X) belongs to 〈ψ∗C
loc(X ′)〉⊗ if and only if ψ∗E belongs to Cloc(X ′).

(2) The vector bundle V belongs to 〈ψ∗C
loc(X ′)〉⊗ and the resulting morphism

π(X ; Cloc(X ′)) −→ π(X,V) = G

is a quotient morphism.

(3) Each E ∈ Cloc(X) belongs to 〈ψ∗C
loc(X ′)〉⊗ and the resulting morphism

π(X ; Cloc(X ′)) −→ πloc(X)

is a quotient morphism. In particular, πloc(X) is the largest local quotient of π(X ; Cloc(X ′)).

Proof. (1) The proof goes as that of [EHS08, Lemma 2.8, p.384]. Let E = ψ∗(E
′), where E ′ is a

local vector bundle. Using the cartesian square

X ′ ×G

pr

��

α // X ′

ψ

��
X ′

ψ
// X,

where α is the action morphisms, we conclude that ψ∗E ≃ pr∗α
∗E ′. But, after a possible

extension of the base field, X ′×G becomes a disjoint sum of copies of X ′ while pr∗α
∗E ′ becomes

a sum of vector bundles of the shape g∗E ′, where g ∈ Aut(X ′). Hence, ψ∗E ∈ Cloc(X ′). (Here

we have implicitly used Lemma 2.1.) For a general E ∈ 〈ψ∗C
loc(X ′)〉⊗, the definition says that

E ∈ 〈ψ∗(E
′)〉⊗ for some E ′ ∈ Cloc(X ′). But then, as ψ∗ : CEF(X) → CEF(X ′) is an exact tensor

functor, ψ∗E belongs to 〈ψ∗(ψ∗E
′)〉⊗, which is a subcategory of Cloc(X ′), as π(X)→ πloc(X) is a

quotient morphism.

Now let E ∈ CEF(X) be such that ψ∗E belongs to Cloc(X ′). Since ψ is faithfully flat, the “unit”
E → ψ∗ψ

∗(E) is a monomorphism, and consequently E belongs to 〈ψ∗(ψ
∗E)〉⊗. By definition,

this says that E lies in 〈ψ∗C
loc(X ′)〉⊗.

(2) The first claim is a consequence of (1) and the fact that ψ∗V is trivial. Since 〈ψ∗C
loc(X ′)〉⊗

is a full subcategory of CEF(X ′) which is stable under subquotients, the standard criterion [DM82,
2.21, p.139] guarantees the veracity of the second statement once applied to the inclusion

〈V〉⊗ ⊂ 〈ψ∗C
loc(X ′)〉⊗.

(3) This is again a simple application of (1) and the criterion [DM82, 2.21, p.139]. �

At this point, we wish to describe the kernel of

π(X ; Cloc(X ′)) −→ G = π(X,V),
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which is the statement paralleling [EHS08, Theorem 3.5]. From Proposition 3.4-(1), we obtain
from ψ∗ a morphism

(3.5) ψ# : πloc(X ′) −→ π(X ; Cloc(X ′)).

(Recall that X ′ has a k-point x ′ above x.) The translation of [EHS08, Theorem 3.5] in our setting
is:

Theorem 3.6. The morphism ψ# of (3.5) is in fact that kernel of π(X ; Cloc(X ′)) → G. Put
differently, we have an exact sequence

1 −→ πloc(X ′) −→ π(X ; Cloc(X ′)) −→ G −→ 1.

Proof. Firstly, we note that ψ# is a closed embedding. So let E ′ ∈ Cloc(X ′); by definition ψ∗(E
′)

belongs to 〈ψ∗C
loc(X ′)〉⊗ and since the “co-unit”ψ∗(ψ∗E

′)→ E ′ is an epimorphism, the criterion
[DM82, 2.21(b), p.139] immediately proves the statement.

We then verify that conditions (iii-a) to (iii-c) of Theorem A.1 on p. 396 of [EHS08] are true.
In fact, only (iii-a) and (iii-b) need attention, since the argument above already shows that (iii-c)
holds.

Let E ∈ CEF(X) become trivial when pulled back to X ′. Then, faithfully flat descent shows that
E lies in the image of the contracted product LX ′ of (3.1). Hence, E belongs to 〈V〉⊗. This is
condition (iii-a) of [EHS08, Theorem A1].

Let A be the OX-coherent algebra ψ∗(OX ′) and let E be an object of 〈ψ∗C
loc(X ′)〉⊗. Let H be

the space H0(X,A⊗OX
E), δ ∈ H0(X,A⊗A∨) be the global section associated to idA, and

ev : H⊗k A
∨ −→ E

the evaluation. Since each h ∈ H is the image of h⊗ δ under

ev⊗ idA : (H⊗k A
∨)⊗OX

A −→ E⊗A,

we conclude that ev ⊗ idA induces a surjection on global sections. This means that ψ∗(ev)
induces a surjection on global sections. A fortiori, ψ∗(Im(ev)) → ψ∗E induces a surjection on
global sections, which implies that any morphism from OX ′ to ψ∗E factors through ψ∗(Im(ev)).

Now, 〈ψ∗C
loc(X ′)〉⊗ is stable under quotients and A is an object of it; this shows that Im(ev)

lies in 〈ψ∗C
loc(X ′)〉⊗. Then, since ψ∗(A∨) is a trivial vector bundle, we can say that ψ∗(Im(ev))

is equally trivial. In conclusion, ψ∗(Im(ev)) is the largest trivial subobject of ψ∗E, which is
condition (iii-b) of [EHS08, Theorem A1].

�

Now let us order Cét(X) in the following way: W < W ′ if W ∈ 〈W ′〉⊗. Using the direct sum
of vector bundles, we see that the resulting partially ordered set is directed, and we obtain a
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directed system of exact sequences

...

��

...

��

...

��
1 // πloc(XW ′)

��

// π(X ; Cloc(XW ′))

��

// π(X,W ′) //

��

1

1 // πloc(XW) // π(X ; Cloc(XW)) // π(X,W) // 1.

Taking the limit and using that

πloc(XW ′) −→ πloc(XW)

is always a quotient morphism [EHS08, Proposition 3.6, p.390], we arrive at an exact sequence

1 −→ lim
←−
W

πloc(XW) −→ lim
←−
W

π(X ; Cloc(XW)) −→ lim
←−
W

π(X,W) −→ 1.

Note that the rightmost term is a proetale affine group scheme, while the leftmost is a local
affine group scheme. In addition, by looking at the categories of representations, we see that
the natural morphisms

π(X) −→ lim
←−
W

π(X ; Cloc(XW)) and πét(X) −→ lim
←−
W

π(X,W)

are isomorphisms. Hence, borrowing the notation of [Wa70, Ch. 6, Exercise 7], we conclude
that

π(X)o := connected component of π(X)

= lim
←−

πloc(XW).
(3.7)

This is precisely [EHS08, Theorem 3.5], as the category D appearing on [EHS08, Definition 3.3]

is just the representation category of lim
←−W

πloc(XW).

4. THE ACTION OF πét(X) ON π(X)o

We work in the setting described in the beginning of section 3; in particular, k is a perfect
field of characteristic p > 0, X is a proper, reduced and connected algebraic k-scheme, and
ψ : X ′ → X is a torsor under the finite and étale group scheme G.

Since the kernel of the morphism π(X ; Cloc(X ′)) → G appearing in Theorem 3.6 is the local

affine group scheme πloc(X ′), it is not hard to see, using [Wa70, 6.8, Lemma], that

π(X ; Cloc(X ′))red
∼
−→ G.

We then obtain an action of G on πloc(X ′) by group automorphisms. Our next goal is to under-
stand under which circumstances this action is “faithful.”

Proposition 4.1. Let H ⊂ G be a subgroup scheme acting trivially on πloc(X ′). Then the natural
morphism

πloc(X ′) −→ πloc(X ′/H)

is an isomorphism. (We use the image of x ′ on X ′/H as base-point for constructing πloc(X ′/H).)
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Proof. We adopt the notations implied by the following diagram:

X ′

ψ

��

ρ

��
X ′/H

σ

��
X.

Note that ρ : X ′ → X ′/H is an H-torsor so that we can apply Proposition 3.4-(1) to conclude

that σ takes objects of 〈ψ∗C
loc(X ′)〉⊗ to 〈ρ∗C

loc(X ′)〉⊗.

There are now two exact sequence in sight (see Theorem 3.6),

(∗) 1 −→ πloc(X ′) −→ π(X ′/H ; Cloc(X ′)) −→ H −→ 1

and

(∗∗) 1 −→ πloc(X ′) −→ π(X ; Cloc(X ′)) −→ G −→ 1.

The above observation assures that they are related by the commutative diagram

1 // πloc(X ′) //

∼

��

π(X ′/H ; Cloc(X ′)) //

σ#

��

H

inclusion

��

// 1

1 // πloc(X ′) // π(X ; Cloc(X ′)) // G // 1,

where the arrow σ# is constructed from the functor σ∗ : 〈ψ∗C
loc(X ′)〉⊗ → 〈ρ∗C

loc(X ′)〉⊗. The

relevance of this relation is that it shows that the action of H on πloc(X ′) stemming from the

sequence (∗) coincides, once all identifications are unraveled, with the action of H on πloc(X ′)

derived from (∗∗). (The reader wishing to run a careful verification should profit from the

fact that the action of G, respectively of H, is really an action of π(X ; Cloc(X ′))red, respectively

π(X ′/H ; Cloc(X ′))red.) The assumption on the statement then implies that the action of H on

πloc(X ′) arising from (∗) is trivial. From this, we derive a retraction

r : π(X ′/H ; Cloc(X ′)) −→ πloc(X ′)

which exhibits πloc(X ′) as the largest local quotient of π(X ′/H ; Cloc(X ′)). But by Proposition

3.4(b), the largest local quotient of π(X ′/H ; Cloc(X ′)) is πloc(X ′/H), and therefore

πloc(X ′) ≃ πloc(X ′/H).

(It is not hard to see that this morphism is in fact the canonical one.) �

We now want to show that the conclusion in the statement of Proposition 4.1 cannot take
place if X is a “hyperbolic curve”. For that, we only need to study the largest commutative
quotient of the local fundamental group scheme and apply the following result.

Proposition 4.2. Let C be a smooth, geometrically connected and projective one dimensional k-
scheme (a “curve”), c a k-rational point on C, m a positive integer, and Jac(C) the Jacobian of

C. Then, the largest quotient of πloc(C, c) which is commutative, finite and annihilated by pm is

isomorphic to Jac(C)[pm]loc.
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Proof. To ease notation, we write J in place of Jac(C). Let

ϕ : C −→ J

be the Abel-Jacobi (or Albanese) morphism sending c to the origin e. Then, we arrive at a
commutative diagram

π(C, c)
ϕ# //

q

��

π(J, e)

π(C, c)ab,

α

99sssssssss

in which the arrow α is an isomorphism [An11, Corollary 3.8]. Hence, as explained in Section
1.2,

[

π(C, c)loc
]ab

≃
[

π(C, c)ab
]loc

≃ π(J, e)loc.

Now let K be the full subcategory of the category of affine group schemes defined by those which
are commutative, finite and annihilated by pm. Then, using Lemma 5.1 below and the notations
of Section 1.2, we see that

[

π(J, e)loc
]K

=
[

π(J, e)K
]loc
≃ J[pm]loc.

�

Theorem 4.3. If our X is a smooth, geometrically connected and projective curve of genus at least

two, then no non-trivial subgroup scheme of G acts trivially on πloc(X ′).

Proof. LetH be as in the statement of Proposition 4.1. Then, the fact that πloc(X ′) and πloc(X ′/H)
are isomorphic implies, via Proposition 4.2, that

Tangent space
at the origin

Jac(X ′) ≃
Tangent space
at the origin

Jac(X ′/H).

Therefore, X ′ and X ′/H have the same genus (which is the dimension of the tangent space to
the Jacobian [Mi86b, Proposition 2.1]). The Riemann-Hurwitz formula then shows that H is
trivial. �

We now wish to obtain from Theorem 4.3 a statement which is easier to carry.

Let G be an affine group scheme over k and M a vector space affording a representation of G.
If M is finite dimensional and G is algebraic, we say that M is faithful if the obvious morphism
G → GL(M) is a closed embedding or, equivalently, its kernel is trivial [Wa70, 15.3, Theorem].
We now translate this last condition in terms of the coaction ρ :M→M⊗ k[G] for future usage.
Define a modified coefficient of the representation M as any element of the form

(u⊗ id) ◦ ρ(m) − u(m) · 1 ∈ k[G],

where m ∈ M and u ∈ Hom(M,k). (We leave to the reader the simple task of justifying the
term “modified coefficient”.) Then, the kernel of G→ GL(M) is trivial if and only if the modified
coefficients generate the augmentation ideal of k[G].
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Note that the definition of modified coefficient makes perfect sense for a general represen-
tation, finite or infinite dimensional, of a general affine group scheme G. Hence, the following
encompasses the above definition.

Definition 4.4. Let G be an affine group scheme andM a vector space affording a representation
of G. We say that M is faithful if the modified coefficient of M generate the augmentation ideal
of k[G].

Remark 4.5. The concept “faithful representation” is not really well established in the literature
on group schemes. On the other hand, a representation M of G is faithful if and only if no
closed non-trivial subgroup scheme of G acts trivially. (This is because, quite generally, the ideal
generated by the modified coefficients is a Hopf-ideal.)

Let A be a directed set and {Gα;qβα} a projective system indexed by A. We assume that the
transition morphisms, qβα are all faithfully flat and let G stand for the limit lim

←−
Gα.

Lemma 4.6. Let M be a vector space affording a representation of the affine group scheme G.
Assume that for each α ∈ A, there exists some β > α, and a faithful representation Mβ of Gβ
which can be G-equivariantly embedded in M. Then M is a faithful representation of G. �

Proof. Let f be an element of the augmentation ideal of k[G]. Clearly f belongs to the augmen-
tation ideal of some k[Gα]. Let Mβ be as in the statement. It then follows that f, which also
belongs to the augmentation ideal of k[Gβ], can be expressed as a sum

∑

xifi, where fi is a
modified coefficient of Mβ. Since Mβ embeds G-equivariantly in M, it is easy to see that each
fi is also a modified coefficient of M. �

Employing this language and the identification (3.7), we can translate Theorem 4.3 as follows.

Theorem 4.7. Let our X be a smooth, geometrically connected and projective curve of genus at least

two. Then, the representation of πét(X) on k[π(X)o] is faithful. �

5. AN EXERCISE ON THE FUNDAMENTAL GROUP SCHEME OF AN ABELIAN VARIETY

Let A be an abelian variety over k. If m and q are positive integers, then multiplication by
q on A[n] induces a morphism A[qm] → A[m] which is in fact faithfully flat. This allows us
to define the affine group scheme TA := lim

←−
A[n]. Paralleling the Lang-Serre theorem [SGA1,

Exposé XI, 2.1], Nori showed in [No83] that the essentially finite fundamental group scheme
π(A) of A based at the identity is just TA. The following is a very simple consequence of this
fact.

Lemma 5.1. Let m be a positive integer. The obvious arrow π(A) = TA → A[pm] is universal
from π(A) to the category of finite, commutative group schemes which are annihilated by pm.

Proof. To ease notation, let π stand for π(A) = TA. Let α : π→ H be an arrow to some H which
is finite, commutative and annihilated by pm. We then have a commutative diagram

π //

α
!!❉

❉
❉
❉❉

❉
❉
❉
❉ A[pν]

β

��
H,
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where ν > m and the horizontal arrow is the obvious one. As pm annihilates H and [pm] :

A[pν] → A[pν−m] is a quotient morphism (see [Mi86a, §8] for details), we conclude that
A[pν−m] ⊂ Kerβ. Using the exact sequence

0 −→ A[pν−m] −→ A[pν] −→ A[pm] −→ 0,

we obtain an arrow
A[pν] //

��

A[pm]

zzt
t
t
t
t

H.

This arrow is unique since π→ A[pm] is a quotient morphism. �
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