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Abstract

We show that there is no Diophantine quadruple, that is, a set
of four positive integers {a1, a2, a3, a4} such that aiaj +1 is a square
for all 1 ≤ i < j ≤ 4, consisting of Fibonacci numbers.

1 Introduction

A set of m positive integers {a1, . . . , am} is called a Diophantine m-tuple

if aiaj + 1 is a perfect square for all i, j with 1 ≤ i < j ≤ m. In the
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century after Fermat gave the first example {1, 3, 8, 120} of an Diophantine

quadruple, Euler found that any Diophantine pair {A,B} can be extended

to a Diophantine triple {A,B,C} with C = A+B+2r, where r =
√
AB + 1,

and further to a Diophantine quadruple {A,B,C,D}, where D = 4r(A +

r)(B + r). A Diophantine triple of the form {A,B,A + B + 2r} with r =√
AB + 1 is called regular.

The set {1, 3, 8} of the first three elements in Fermat’s quadruple has

been showed to be uniquely extended to a Diophantine quadruple, namely

{1, 3, 8, 120}, by Baker and Davenport (see [3]). This result has been gener-

alized to several directions. For example, if {k−1, k+1, 4k,D} is a Diophan-
tine quadruple with k ≥ 2 an integer, then D = 16k3−4k (see [11, Theorem

1]), and if {F2k, F2k+2, F2k+4, D} is a Diophantine quadruple with k a posi-

tive integer and Fk the kth Fibonacci number, then D = 4F2k+1F2k+2F2k+3

(see [12, Theorem 1]). In fact, these results have been further generalized

to results concerning extensions of the Diophantine pairs {k− 1, k+1} (see

[5, Theorem 1], [15, Theorem 1]) and {F2k, F2k+2} (see [14, Theorem 1.7])

to Diophantine quadruples.

The largest elements in all the quadruples mentioned above are of the

form

D = A+B + C + 2ABC + 2
√

(AB + 1)(AC + 1)(BC + 1).

Such a Diophantine quadruple is called regular. It is conjectured that any

Diophantine quadruple is regular (see [2], [18]). Although this conjecture

has not been settled yet, the weaker conjecture stating that there is no

Diophantine quintuple has recently been proved by He, Togbé and Ziegler

(see [20]).

Our interest in this paper is in how large Diophantine m-tuples of Fi-

bonacci numbers can be. In this direction, He, Togbé and the second author

proved the following.

Theorem 1.1. ([19, Theorem 1]) Assume that n and k are positive integers

and {F2n, F2n+2, Fk} is a Diophantine triple. Then k = 2n+4 or k = 2n−2

(when n > 1) except when n = 2, in which case k = 1 is also possible.

They also conjectured the following in [19].

Conjecture 1.2. There are no four positive integers a, b, c, d such that

{Fa, Fb, Fc, Fd} is a Diophantine quadruple.

In our recent work [16], we did not quite prove Conjecture 1.2 above,

but got close to it by proving the following result.
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Theorem 1.3. There are only finitely many Diophantine quadruples con-

sisting of Fibonacci numbers.

The method of proof from [16] uses the Subspace theorem so it is not ef-

fective. Here, we use a different strategy and we solve completely Conjecture

1.2.

Theorem 1.4. There is no Diophantine quadruple consisting of Fibonacci

numbers.

This paper is organized as follows. In Section 2, we give a restriction for

regular Diophantine triples of Fibonacci numbers, and show that there is

no regular Diophantine quadruple of Fibonacci numbers by using Theorem

1.1 and by finding integral points on certain quartic elliptic curves. Section

3 is devoted to showing that there is no irregular Diophantine quadruple

of Fibonacci numbers. The proof of this result goes along a similar line

to the proof of [19, Theorem 1] for part of the way. To be more precise,

let {Fa, Fb, Fc, Fd} be an irregular Diophantine quadruple with a < b <

c < d. Firstly, we give an upper bound for the index m of the sequence

{vm}m≥0 expressing the solutions z to certain simultaneous Pellian equations

involving Fa, Fb, Fc as coefficients, in terms of b (see Proposition 3.3) by

using Baker’s method on linear forms in three logarithms (see Theorem 3.2).

Secondly, we use Baker’s method on linear forms in two logarithms (see

Theorem 3.5) to give an upper bound for a in terms of m (see Proposition

3.6). In the proof of [19, Theorem 1] a similar procedure to the above gave

an upper bound for b in terms of the index of some recurrence sequence, and

hence an absolute upper bound for b. In contrast, by the end of this step, we

do not yet obtain an absolute upper bound for b. Therefore, as a third step,

we apply yet again of Baker’s theory on linear forms in two logarithms. At

the end of this step we are able to get absolute upper bounds for b and m

(see Proposition 3.8). Finally, using continued fraction expansions “twice”,

we obtain a much smaller upper bound for b, namely b ≤ 540. Together

with c ≤ 4b + 10 which follows from [10, Theorem 1.4], we are in a range

where we can perform the actual computations and prove that the quadruple

{Fa, Fb, Fc, Fd} cannot be irregular.

2 Regular Diophantine triples and quadru-

ples

The goal in this section is to prove the following propositions.
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Recall that a Diophantine triple {A,B,C} with A < B < C is called

regular if C = A + B + 2
√
AB + 1. In this section, we prove the following

results.

Proposition 2.1. Assume that {Fa, Fb, Fc} is a regular Diophantine triple

with a < b < c. Then b = a+ 2 and c = a+ 4.

Proposition 2.2. There does not exist a regular Diophantine quadruple of

Fibonacci numbers.

Before beginning to prove the propositions, we recall some proprieties of

the Fibonacci numbers. Let (α, β) = ((1 +
√
5)/2, (1 −

√
5)/2) be the two

roots of the characteristic equation of the Fibonacci sequence x2−x−1 = 0.

Then the Binet formula for Fn is

(2.1) Fn =
αn − βn

α− β
for all n ≥ 0.

The Binet formula allows us perform various calculations in algebraic ex-

pressions involving Fibonacci numbers. It also allows us to estimate the size

of Fn via the inequality

(2.2) αn−2 ≤ Fn ≤ αn−1 valid for all n ≥ 1.

The Fibonacci sequence has a Lucas companion {Ln}n≥0 given by L0 =

2, L1 = 1 and Ln+2 = Ln+1 + Ln for all n ≥ 0. Its Binet formula is

(2.3) Ln = αn + βn for all n ≥ 0.

There are many formulas involving Fibonacci and Lucas numbers. One

which is useful to us is

(2.4) L2
n − 5F 2

n = 4(−1)n for all n ≥ 0.

The following easy result is also useful.

Lemma 2.3. If n > 2 and FnFn+2 +1 or FnFn+4 +1 is a square, then n is

even.

Proof. If n is odd, then FnFn+2 − 1 = F 2
n+1 and FnFn+4 − 1 = F 2

n+2. If

additionally one of FnFn+2 + 1 or FnFn+4 + 1 is also a square, then we

would get two squares which differ by 2, a contradiction.

In order to prove Proposition 2.1, we need the following lemma in addi-

tion to Theorem 1.1.
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Lemma 2.4. Let k ∈ {1, 3}. If FnFn+k+1 is a square for a positive integer

n, then k = 1 and n = 4.

Proof. Using formulas (2.1) and (2.3), we get

FnFn+k + 1 =
1

5
(αn − βn)(αn+k − βn+k) + 1 =

1

5
(L2n+k − (−1)nLk + 5) .

Thus, if (n, k) satisfy FnFn+k+1 = x2 for a positive integer x, then L2n+k =

5x2 + ((−1)nLk − 5). Inserting this into formula (2.4) (with n replaced by

2n+ k) and setting y := F2n+k, we get

(2.5)

5y2 = L2
2n+k−4(−1)k = 25x4+10 ((−1)nLk − 5)x2+((−1)nLk − 5)2−4(−1)k.

Assume first that k = 1. If n is even, then the above equation (2.5) re-

duces to y2 = 5x4 − 8x2 + 4. It is easy to find from the Magma func-

tion “IntegralQuarticPoints” (cf. [6]) that all the positive integer solu-

tions to the above Diophantine equation are (x, y) = (1, 1), (4, 34). Since

y = F2n+1 = 1 implies n = 0 which is not convenient, it follows that

y = F2n+1 = 34, so n = 4. If n is odd, then equation (2.5) reduces to

y2 = 5x4 − 12x2 + 8, which has only the positive solution (x, y) = (1, 1).

This implies n = 0, which again is not convenient for us.

Assume next that k = 3. Then the equation (2.5) is one of 5y2 = 25x4 −
20x2+8, or 5y2 = 25x4−80x2+68, depending on whether n is even or odd,

respectively. However, these equations are impossible modulo 5, so there are

no solutions in this case.

The following lemma is useful in the proof of Proposition 2.2.

Lemma 2.5. If Fn +1 is a square for a positive integer n, then n ∈ {4, 6}.

Proof. Let Fn + 1 = x2 for a positive integer x. Inserting Fn = x2 − 1 into

formula (2.4) and setting y := Ln, we get

y2 = 5F 2
n + 4(−1)n = 5x4 − 10x2 + (5± 4).(2.6)

Magma shows that the Diophantine equation (2.6) has only the positive

solutions (x, y) = (1, 2), (2, 7), (3, 18) when the sign is plus, and has no

solutions when the sign is minus. Since n is positive, this means that Fn =

3, 8 corresponding to n = 4, 6.

Remark. The result of Lemma 2.5 is certainly now new. It can be deduced,

for example, from the main result of [7]. We included a short proof of it here

for the convenience of the reader.
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Proof of Proposition 2.1. Since Fc = Fa + Fb + 2
√
FaFb + 1, one has Fb <

Fc < 4Fb < Fb+4. Thus, c = b + k with k ∈ {1, 2, 3}. Since FbFc + 1 is a

square, if k ̸= 2, then Lemma 2.4 shows that k = 1 and b = 4; that is,

Fb = 3 and Fc = 5. However, neither of A ∈ {1, 2} satisfies the property

that {A, 3, 5} is a Diophantine triple. Hence, we must have k = 2. In this

case, since b > 2, Lemma 2.3 shows that b is even. Now Theorem 1.1 shows

that a = b− 2, except if b = 4 for which a = 1 is also possible. At any rate,

this completes the proof of Proposition 2.1.

Proof of Proposition 2.2. Assume that {Fa, Fb, Fc, Fd} is a regular Diophan-
tine quadruple with a < b < c < d. By Lemma 2.5, we may assume that

Fa ≥ 2; that is, a ≥ 3. It follows from Theorem 1.1 and Lemma and 2.4

that b ≥ a+ 4 ≥ 7 and c ≥ b+ 4 ≥ 11. Since

Fc(4FaFb + 1) < Fd < 4Fc(FaFb + 1),

one has d ≥ a+ b+ c− 2 ≥ 19 and

4

5

(
1− 1

α2c

)(
1 +

1

α2d

)−1((
1− 1

α2a

)(
1− 1

α2b

)
+

5

4
α−a−b

)
< αd−a−b−c <

4

5

(
1 +

1

α2c

)(
1− 1

α2d

)−1((
1 +

1

α2a

)(
1 +

1

α2b

)
+ 5α−a−b

)
,

which implies that 0.76 < αd−a−b−c < 0.88. However, since α−1 < 0.62, such

inequalities cannot hold for any integers a, b, c, d. This completes the proof

of Proposition 2.2.

3 Irregular Diophantine quadruples

Assume that {Fa, Fb, Fc} is an irregular Diophantine triple and that {Fa, Fb, Fc, Fd}
is an irregular Diophantine quadruple with a < b < c < d. Lemma 2.5 al-

lows us to assume that a ≥ 3. By [9, Lemma 3.4] one has Fb > 4000, which

implies b ≥ 19, and by [21, Lemma 4], one gets that Fc > 4FaFb + Fa + Fb,

which yields Fc > Fa+2Fb, so c ≥ a + b + 1. Furthermore, [17, Theorem

1.4] shows that Fc < 200F 4
b < F13F4b−2 < F4b+11, which yields c ≤ 4b+ 10.

Finally, we assume for technical reasons that b ≥ a + 5 until the final step

of the proof. To sum up, we assume the following:

a ≥ 3, b ≥ max{a+ 5, 19}, a+ b+ 1 ≤ c ≤ 4b+ 10.
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Let A := Fa, B := Fb, C := Fc, D := Fd, and let r, s, t, x, y, z be the

positive integers satisfying

AB + 1 = r2, AC + 1 = s2, BC + 1 = t2,

AD + 1 = x2, BD + 1 = y2, CD + 1 = z2.

Eliminating D from the last three equations, one has the following system

of Pellian equations:

Az2 − Cx2 = A− C,(3.1)

Bz2 − Cy2 = B − C.(3.2)

By the standard method (see, e.g., [13]), one can write z = vm = wn, where

{vm}m≥0 and {wn}n≥0 are the binary recurrences defined by

v0 = z0, v1 = sz0 + Cx0, vm+2 = 2svm+1 − vm, for all m ≥ 0,

w0 = z1, w1 = tz1 + Cy1, wn+2 = 2twn+1 − wn, for all n ≥ 0,

where (z0, x0) and (z1, y1) are some some integer solutions to (3.1) and (3.2),

respectively. Thus, it suffices to solve the following system of equations:

vm = wn,(3.3)

v2m − 1

C
= D = Fd.(3.4)

Consider first equation (3.3). In view of [17, Theorem 1.3] and [10, Lemma

2.3], one may assume that either

(z0, x0, z1, y1) = (±1, 1,±1, 1) with both m and n even,

or

(z0, x0, z1, y1) = (±t, r,±s, r) with both m and n odd,

where in either case we have z0z1 > 0. Moreover, since

v4 = (8A2C2 + 8AC + 1)z0 + 4(2AC + 1)Csx0,

w2 = (2BC + 1)z1 + 2Cty1,

it follows that if (z0, x0, z1, y1) = (±1, 1,±1, 1), then v4 > 8C2 > w2. Fur-

thermore, from [10, Lemmas 2.5, 2.6], it follows that

min{m,n} ≥ 4

in all cases.
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Secondly, consider equation (3.4). Equation (3.4) can be expressed as

1

4AC

{
(x0

√
C + z0

√
A)2(s+

√
AC)2m + (x0

√
C − z0

√
C)2(s+

√
AC)−2m − 2(C − A)

}
=

αd − βd

√
5

.(3.5)

Define now the linear form Λ in logarithms by

Λ := 2m log(s+
√
AC)− d logα+ log

(√
5(x0

√
C + z0

√
A)2

4AC

)
.

Lemma 3.1. 0 < Λ < 8.1AC(t+
√
AC)−2m.

Proof. Putting

P :=
1

4AC
(x0

√
C + z0

√
A)2(s+

√
AC)2m, and Q :=

1√
5
αd,

one can transform equation (3.5) into the equation

P +
(C − A)2

16A2C2
P−1 − C − A

2AC
= Q− (−1)d

5
Q−1.

Since C > 4AB + A+B, (x0, |z0|) ∈ {(1, 1), (r, t)} and m ≥ 4, one has

P −Q >
2B

C
− (x0

√
C − z0

√
A)2

4AC(t+
√
AC)2m

− 1√
5αd

>
1

C
− AB + 1

A(4AC)m
− 1√

5αd
> 0,

which together with x0 ≤ r and C > 4AB > 4 · 3 · 4000 shows that

0 <
P −Q

P
<

C − A

2AC
P−1 <

2(2x0

√
C)2

C − A
(s+

√
AC)−2m

≤ 8

(
1 +

1

AB

)(
1 +

A

C − A

)
AB(s+

√
AC)−2m < 0.01.

It follows that

0 < log

(
P

Q

)
= − log

(
1− P −Q

P

)
<

1.01(P −Q)

P
< 8.1AB(s+

√
AC)−2m.

Let

α1 := s+
√
AC, α2 := α, α3 :=

√
5(x0

√
C + z0

√
A)2

4AC
.

Our immediate goal is to prove that α1, α2, α3 are multiplicatively indepen-

dent. We write AC = gX2 for some squarefree integer g and some integer

X and distinguish the following cases:
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(i) g = 1. In this case, X2 + 1 = AC + 1 = s2, a contradiction since no

two squares of positive integers are consecutive.

(ii) g = 5. In this case, 5X2+1 = AC+1 = s2. Thus, (2s)2−5(2X)2 = 4. It

is known that all the positive integer solutions (U, V ) of the equation

V 2 − 5U2 = ±4 are of the form (U, V ) = (Fk, Lk) for some positive

integer k. We thus get that 2X = Fk for some positive integer k.

Hence, 5F 2
k = 4 · 5X2 = 4FaFc. Clearly, k < c, for if k ≥ c, then

5F 2
k ≥ 5F 2

c > 4FaFc. This shows that every prime factor p of Fc is

either 5 (so, it divides F5), or it divides Fk. However, more than 100

years ago Carmichael [8] (see also [4] for a more general result) proved

that any Fibonacci number Fn with n > 12 has a primitive prime

factor, that is a prime factor p which does not divide Fm for anym < n.

Since from what we have said above Fc does not have primitive divisors

although c ≥ 23, we get a contradiction with Carmichael’s theorem.

Thus, this case is not possible.

Hence, g ̸∈ {1, 5}. Note next that α2
3 ∈ L := Q(

√
g). Further, computing

the norm of α2
3 from L to Q, we get

NL/Q(α
2
3) =

52(x2
0C − z20A)

4

(4AC)4
=

52(C − A)4

(4AC)4
.

Since C = Fc and c ≥ 23, it follows, again by Carmichael’s theorem, that

C has a primitive prime factor p. This prime factor divides neither A = Fa,

nor 5 = F5. Thus, NL/Q(α
2
3) is a rational number whose denominator (in

reduced form) is a multiple of p. Thus, α3 is not an algebraic integer.

We are now ready to prove that α1, α2, α3 are multiplicatively indepen-

dent. Assume, by contradiction, that they are not. Then there exist integers

x, y, z not all 0 such that

(3.6) αx
1α

y
2α

z
3 = 1.

If z ̸= 0, then we may assume that z > 0, and write αz
3 = α−x

1 α−y
2 . Since α1

and α2 are units (that is, αi and α−1
i are algebraic integers for both i = 1, 2),

it would follow that αz
3 is an algebraic integer. Since z > 0, we get that α3

is an algebraic integer, which is false. Thus, in (3.6), we must have z = 0.

Thus, αx
1 = α−y

2 . However, αx
1 ∈ L, while α−y

2 ∈ K := Q(
√
5). Since g ̸= 5,

it follows that K ∩ L = Q. Thus, αx
1 = α−y

2 ∈ Q, showing that x = y = 0.

This is a contradiction because in multiplicative dependence relation (3.6)

we cannot have all exponents x, y, z equal to zero.
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Thus, indeed α1, α2, α3 are multiplicatively independent.

Therefore, we can appeal to the following theorem due to Aleksentsev to

obtain a lower bound for Λ.

Theorem 3.2. (cf. [1, Theorems 1 and 2]) Let Λ be a linear form in loga-

rithms of nonzero multiplicatively independent totally real algebraic numbers

α1, . . . , αN with nonzero integer coefficients b1, . . . , bN . Let h(αj) denote the

absolute logarithmic height of αj for 1 ≤ j ≤ N , and D the degree of the

number field Q(α1, . . . , αN). Then,

log |Λ| ≥ −5.3eN1/2(N+1)(N+8)2(N+5)(31.44)ND2A1A2A3(logE) log(3ND),

where

Aj := max {Dh(αj), | logαj|, 1} for 1 ≤ j ≤ N and E := max

{
max

1≤i, j≤N

{
|bi|
Aj

+
|bj|
Ai

}
, 3

}
.

We apply Theorem 3.2 with N := 3, D := 4, b1 := 2m, b2 := −d, b3 :=

1. One has

A1 = 2 logα1 = 2 log(s+
√
AC)

> (a+ c) logα+ log

(
4

5

(
1− 1

α2a

)(
1− 1

α2c

))
> (a+ c− 1) logα,

(3.7)

A2 = 2 logα.
(3.8)

Put γ := α3/
√
5. Since γ is a root of the equation

16A2C2X2 − 8AC(Cx2
0 + Az20)X + (C − A)2 = 0,

the leading coefficient a0 of the minimal polynomial of γ satisfies

16A2C2

(C − A)2
≤ a0 ≤ 16A2C2.(3.9)

If (x0, z0) = (1,±1), then

0 < γ ≤ (
√
C +

√
A)2

4AC
=

1

4

(
1√
A

+
1√
C

)2

< 1,

which together with (3.9) shows that

log(4A) < h(γ) ≤ log(4AC).
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Since h(γ)− h(
√
5) ≤ h(α3) ≤ h(γ) + h(

√
5), and

4 log(4A)− 2 log 5 ≥ 4a logα + 4 log

(
4

5

(
1− 1

α2a

))
> (4a− 4) logα;

4 log(4AC) + 2 log 5 ≤ 4(a+ c) logα + 4 log

(
4√
5

(
1 +

1

α2a

)(
1 +

1

α2c

))
< (4a+ 4c+ 6) logα,

one obtains that

(4a− 4) logα < A3 < (4a+ 4c+ 6) logα.(3.10)

If (x0, z0) = (r,−t), then

0 < γ =
1

4AC
· C − A

r
√
C + t

√
A

<
1

8At
√
A

< 1.

Hence, one also obtains estimate (3.10). If (x0, z0) = (r, t), then

γ =
1

4

(√
AB + 1

A
+

√
BC + 1

C

)2

> B ≥ 1,

and γ < (AB + 1)/A = B + 1/A. It follows, from (3.9), that

log(4A
√
B) < h(γ) < log(4.01AC

√
B).

Hence,

(4a+ 2b− 1) logα < A3 < (4a+ 4c+ 2b− 3) logα.(3.11)

Moreover, in each case one has

αd−2 < Fd =
v2m − 1

C
<

1

4AC
(x0

√
C + z0

√
A)2(s+

√
AC)2m

<
1

4AC
· 4C(AB + 1)(4AC + 4)m =

(
B +

1

A

)
(4AC + 4)m .

Since

B +
1

A
< αb−1

(
α + α1−2b

√
5

+
1

αa+b−3

)
< αb−1,

4AC + 4 ≤ 4αa+c−2

(
α + α3−2a−2c

√
5

+
1

αa+c−2

)
< αa+c+1,

one can deduce that αd−2 < αm(a+c+1)+b−1, which yields

d ≤ m(a+ c+ 1) + b.(3.12)
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Now we are ready to bound the value of E. It is clear that

E = max

{
d

A1

+
2m

A2

,
1

A2

+
d

A3

}
.

From (3.7), (3.8) and (3.12), one has

d

A1

+
2m

A2

<
m(a+ c+ 1) + b

(a+ c− 1) logα
+

m

logα

=

(
2 +

2

a+ c− 1
+

b

m(a+ c− 1)

)
m

logα
< 5m,(3.13)

where we further used the inequalities a ≥ 3 and c ≥ a+ b+ 1. If (x0, z0) ∈
{(1,±1), (r,−t)}, then, noting the inequality c ≤ 4b + 10, one sees from

(3.8), (3.10) and (3.12), that

1

A2

+
d

A3

<
1

2 logα
+

m(a+ c+ 1) + a

4(a− 1) logα

<

(
1

2m
+

a+ 11

4(a− 1)
+

b

4m(a− 1)

)
m

logα
< 1.3bm.(3.14)

If (x0, z0) = (r, t), then (3.8), (3.11) and (3.12) together show that

1

A2

+
d

A3

<
1

2 logα
+

m(a+ c+ 1) + b

(4a+ 2b− 1) logα

≤
(

1

2m
+

5a+ 11

4a+ 2b− 1
+

b

m(4a+ 2b− 1)

)
m

logα
< 5m.(3.15)

It follows from (3.13), (3.14) and (3.15) that E < 1.3bm holds in all cases.

Therefore, by Theorem 3.2, one has

logΛ > −1.722 · 1011A1A2A3 logE

> −2 · 2.21 · 1012b log(s+
√
AC) log(1.3bm).(3.16)

Comparing (3.16) with the inequality

logΛ < −2m log(s+
√
AC) + log(8.1AB)

(a direct consequence of Lemma 3.1), one obtains the following proposition.

Proposition 3.3. If (3.4) has a solution with (x0, z0) ∈ {(1,±1), (r,±t)},
then

m < 1.3 · 1012b log(1.3bm).
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In order to get an upper bound for a, we rewrite the logarithms in Λ in

terms of α whenever possible. Since

s+
√
AC = 2

√
AC

(
1 +

1

2
√
AC(

√
AC + 1 +

√
AC)

)
=

2√
5
α(a+c)/2δ1

with

δ1 =

(
1− 1

(−α2)a

)1/2(
1− 1

(−α2)c

)1/2(
1 +

1

2
√
AC(

√
AC + 1 +

√
AC)

)
,

we get

log(s+
√
AC) = log

(
2√
5

)
+

(
a+ c

2

)
logα + log δ1.

One has the estimate

| log δ1| <
1

2

∣∣∣∣log(1− 1

(−α2)b

)∣∣∣∣+ 1

2

∣∣∣∣log(1− 1

(−α2)c

)∣∣∣∣+ log

(
1 +

1

4AC

)

<
1

2
· 1.03α−2a +

1

2
· 1.01α−2c +

1

4AC
< α−2a,

(3.17)

where we used the inequalities a ≥ 3 and c−a ≥ b+1 ≥ 20. We now rewrite

the third logarithm in Λ separately according to the values of x0 and z0. If

(x0, z0) = (1,±1), then

√
5(
√
C ±

√
A)2

4AC
=

5

4
α−a

(
1− 1

(−α2)a

)−1
(
1±

√
A

C

)2

.

If (x0, z0) = (r, t), then

√
5(r

√
C + t

√
A)2

4ac
=

√
5B

4

(√
1 +

1

AB
+

√
1 +

1

BC

)2

= αb

(
1− 1

(−α2)b

)
√
1 + 1

AB
+
√

1 + 1
BC

2

2

.

If (x0, z0) = (r,−t), then

√
5(r

√
C − t

√
A)2

4AC
=

√
5

4AC
· (C − A)2

(r
√
C + s

√
A)2

=

√
5

4AB2

(
1− A

C

)2
(√

1 +
1

AB
+

√
1 +

1

BC

)−2

=
25

16
α−2a−b

(
1− 1

(−α2)a

)−2(
1− 1

(−α2)b

)−1(
1− A

C

)2

√
1 + 1

AB
+
√

1 + 1
BC

2

−2

.
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Let Λ1 be the linear form in logarithms given by

Λ1 :=


( (a+ c)n− d− a ) logα− (m− 1) log (5/4) , if (x0, z0) = (1,±1);

( (a+ c)n− d+ b ) logα−m log (5/4) , if (x0, z0) = (r, t);

( (a+ c)n− d− 2a− b ) logα− (m− 2) log (5/4) , if (x0, z0) = (r,−t).

Lemma 3.4. |Λ1| < 2.2mα−a′, where a′ := min{2a, b/2}.

Proof. Put Λ0 := Λ− Λ1 − 2m log δ1. If (x0, z0) = (1,±1), then

|Λ0| ≤
∣∣∣∣log(1− 1

(−α2)a

)∣∣∣∣+ 2

∣∣∣∣∣log
(
1±

√
A

C

)∣∣∣∣∣
< 1.03α−2a + 2 · 1.01 1√

4B
< 2.67αa′ ,

where a′ := min{2a, b/2}. If (x0, z0) = (r, t), then

|Λ0| <
∣∣∣∣log(1− 1

(−α2)b

)∣∣∣∣+ 2 log

√
1 +

1

AB

< 1.01α−2b +
1

AB
< 6.95α−a−b.

If (x0, z0) = (r,−t), then

|Λ0| < 2

∣∣∣∣log(1− 1

(−α2)a

)∣∣∣∣+ ∣∣∣∣log(1− 1

(−α2)b

)∣∣∣∣+ 2

∣∣∣∣log(1− A

C

)∣∣∣∣+ 2 log

√
1 +

1

AB

< 2 · 1.03α−2a + 1.01α−2b + 2 · 1.01 · 1
4
α−b+2 + α−a−c+4 < 4.06αa′′ ,

where a′′ := min{2a, b}. Moreover, Lemma 3.1 together with m ≥ 4 and

b ≤ c− a− 1 ≤ c− 4 shows that

0 < Λ <
8.1B

4mAm−1Cm
<

8.1

44α3+4(c−2)−c+5
< 0.01α−3c.

Since |Λ1| ≤ Λ + |Λ0| + 2n| log δ1|, the desired inequalities can be deduced

from the above inequalities with (3.17).

We continue with a linear form in two logarithms due to Laurent, Mignotte,

Nesterenko (see Corollaire 2 in [22]).

Theorem 3.5. Assume that α1, α2 are real, positive and multiplicatively

independent algebraic numbers in field K of degree D. Put

Λ := b2 logα2 − b1 logα1,
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where b1, b2 are positive integers. Let A1, A2 be real numbers > 1 such that

(3.18) logAi ≥ max

{
h(αi),

| logαi|
D

,
1

D

}
(i = 1, 2).

Put

b′ =
b1

D logA2

+
b2

D logA1

.

Then,

logΛ > −24.34D4

(
max

{
log b′ + 0.14,

21

D
,
1

2

})2

logA1 logA2.

We apply Theorem 3.5 to Λ1 in order to find a lower bound for its

absolute value. Assume that a′ > 2.1 log(2.2m). Then, |Λ1| < 1 by Lemma

3.4. It then follows that if we write

Λ1 = b2 logα2 − b1 logα1 with (α2, α1) := (α, 5/4),

then b2 ≤ m − 1 for otherwise, since b1 ∈ {n− 2, n− 1, n}, we would have

that

Λ1 ≥ m logα−m log(5/4) = m log(α/(1.25)) > 1 since m ≥ 4,

in contradiction with the fact that |Λ1| < 1. Note that α1 and α2 are real,

positive and multiplicatively independent. Thus, max{b1, b2} ≤ m. Further,

K = Q(
√
5) contains α1, α2 and has D = 2. We take logA1 = logA2 = 1/2

and then inequalities (3.18) hold. Finally,

b′ =
b1

D logA2

+
b2

D logA1

= b1 + b2 < 2m.

Then Theorem 3.5 says that

(3.19) log |Λ1| > −24.34 · 22 (max{log(2m) + 0.14, 10.5})2 .

Comparing (3.19) with the inequality in Lemma 3.4, we get the inequality

(3.20) a′ logα− log(2.2m) < 93.36(max{log(2.4m), 10.5})2.

If log(2.4m) < 10.5, then m < 16000. Furthermore, in this case

a′ logα < 93.36× 10.52 + log(38400),

so a′ < 21500. Assume next that log(2.4m) > 10.5. Then m > 15000, and

thus,

a′ <
(93.36(log(2.4m))2 + log(2.2m))

logα
≤ (log(2.4m))2

logα

(
93.36 +

log(2.2 · 15000)
(log(2.4 · 15000))2

)
< 195(log(2.4m))2.

Combining the above inequality with the inequality from Proposition 3.3,

we get the following.
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Proposition 3.6. a′ < 195 {log(5.6 · 1012b log(1.6bm))}2, where a′ := min{2a, b/2}.

Note that the right-hand side of the inequality in Proposition 3.6 is larger

than 21500, since b ≥ 19 and m ≥ 4. One can rewrite log(s+
√
AC) as

log(s+
√
AC) =

1

2
log

(
A√
5

)
+

c

2
logα + log δ2,

where

δ2 =

√
1− 1

(−α2)c

(
1 +

1

2
√
AC(

√
AC + 1 +

√
AC)

)
.

Since c ≥ a+ b+ 1 ≥ a+ 9, one has

| log δ2| ≤
1

2

∣∣∣∣log(1− 1

(−α2)c

)∣∣∣∣+ log

(
1 +

1

4AC

)
<

1

2
· 1.01α−2c +

1

4
α−a−c+4 < 1.72α−a−c.(3.21)

If (x0, z0) = (1,±1), then

√
5(
√
C ±

√
A)2

4AC
=

√
5

2
· (2A)−1

(
1±

√
A

C

)2

.

If (x0, z0) = (r, t), then

√
5(r

√
C + t

√
A)2

4AC
= αb

(
1− 1

(−α2)b

)
√

1 + 1
AB

+
√

1 + 1
BC

2

2

.

If (x0, z0) = (r,−t), then

√
5(r

√
C − t

√
A)2

4AC
=

5

4
· (2A)−2α−b

(
1− 1

(−α2)b

)−1(
1− A

C

)2

√
1 + 1

AB
+
√
1 + 1

BC

2

−2

.

Now, let

Λ′
1 =


(m− 1) log(4A/

√
5)− (d− cm) logα if (x0, z0) = (1,±1);

m log(4A/
√
5)− (d− cm− b) logα if (x0, z0) = (r, t);

(m− 2) log(4A/
√
5)− (d− cm+ b) logα if (x0, z0) = (r,−t).

Lemma 3.7. |Λ′
1| < mα−b/2.
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Proof. Put Λ′
0 = Λ′ − Λ′

1 − 2m log δ2. If (x0, z0) = (1,±1), then

|Λ′
0| ≤ 2 · 1.01(4B)−1/2 < 1.64α−b/2.

If (x0, z0) = (r, t), then

|Λ′
0| <

∣∣∣∣log(1− 1

(−α2)b

)∣∣∣∣+ 2 log

√
1 +

1

AB

< 1.01α−2b +
1

AB
< 4.33α−a−b.

If (x0, z0) = (r,−t), then

|Λ′
0| <

∣∣∣∣log(1− 1

(−α2)b

)∣∣∣∣+ 2

∣∣∣∣log(1− A

C

)∣∣∣∣+ 2 log

√
1 +

1

AB

< 1.01α−2b + 2 · 1.01 · 1
4
α−b+2 + α−a−b+4 < 2.95α−b.

Since Lemma 3.1 together with m ≥ 4 and = Fb ≤ Fc−3 < αc−4 implies

0 < Λ′ <
8.1B

4mAm−1Cm
<

8.1

44 · 33 · C3 · 4 · 3
< 0.01α−3c,

the desired estimates follow from |Λ′
1| ≤ Λ′+ |Λ′

0|+2m| log δ2| together with
the above inequalities and (3.21).

Let α1 := α and α2 := 4A/
√
5. We claim that α1 and α2 are mul-

tiplicatively independent. Assume that αx
1α

y
2 = 1 for some integers x, y

not both zero. Taking norms in Q(
√
5), and using that NQ(

√
5)/Qα1 = −1,

NQ(
√
5)/Qα2 = −16A2/5, we get (−16A2/5)y = (−1)x. If y ̸= 0, we get

16A2 = 5, a contradiction. Thus, y = 0, therefore αx
1 = 1, which implies

that x = 0 as well, a contradiction since (x, y) ̸= (0, 0). Hence, α1 and α2

are multiplicatively independent.

Assume that b > 5 logm. Let us express Λ′
1 as

Λ′
1 = b2 logα2 − b1 logα1 with (α2, α1) := (4A/

√
5, α).

Then, Lemma 3.7 implies that |Λ′
1| < mα−b/2 < 1, which shows that b2 ≤

m− 1, for otherwise, since b1 ∈ {m− 2,m− 1,m}, we would have

Λ′
1 > m log

(
4A√
5

)
−m logα > m log

(
4 · 3
α
√
5

)
> 1,

which contradicts |Λ′
1| < 1. Thus, max{b1, b2} ≤ m in all cases. It is clear

that K = Q(
√
5) contains α1, α2 and has D = 2. We also have

h(α1) =
1

2
logα,

h(α2) =
1

2
log

(
16A

5

)
< 1.03 logA,
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which enable us to take logA1 = 0.5 logα, logA2 = 1.03 logA. Hence,

b′ =
b1

D logA2

+
b2

D logA1

≤ m

2.06 logA
+

m

logα
< 2.52m.

It follows from Theorem 3.5 that

log |Λ1| > 24.34 · 24 (max{log(2.52m) + 0.14, 10.5})2 · 0.5(logα) · 1.03 logA

> 201 (max{log(2.9m), 10.5})2 (logα) logA.
(3.22)

Comparing (3.22) with the inequality in Lemma 3.7, we get the inequality

b

2
logα− logm < 201 (max{log(2.9m), 10.5})2 (logα) logA.

If log(2.9m) < 10.5, then

b < 402 · 10.52 logA+
2 logm

logα
< 21328a+ 4.16 logm.(3.23)

If log(2.9m) > 10.5, then

b < 402 (log(2.9m))2 logA+
2 logm

logα
< 194a (log(2.9m))2 .(3.24)

Consider first the case where a′ = b/2. By Proposition 3.6 one has

b < 390
{
log(3.2 · 1012b log(1.3bm))

}2
.(3.25)

If m ≥ 1020, then we deduce from Proposition 3.3 that

m < 1.3 · 1012b log(1.3b) logm.

Since logm < m1/12 in our range for m, one has

m <
{
1.3 · 1012b log(1.3b)

}12/11
.(3.26)

which together with (3.25) yields b < 8.5 · 105. However, Proposition 3.3

then implies m < 6.6 · 1019, which contradicts m ≥ 1020. Therefore, one

obtains m < 1020.

Consider second the case where a′ = 2a. Then, Proposition 3.6 shows

that

a < 97.5
{
log(3.2 · 1012b log(1.3bm))

}2
.

If log(2.9m) < 10.5, then m < 13000, and (3.23) implies that

b < 2.08 · 106
{
log(3.2 · 1012b log(1.3bm))

}2
+ 4.16 logm,(3.27)
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which together with m < 13000 yields b < 6.4 · 109. If log(2.9m) > 10.5,

then (3.24) implies that

b < 1.9 · 104
{
log(3.2 · 1012b log(1.3bm))

}2
(log(2.9m))2 .(3.28)

Assuming m > 1020 we obtain from (3.28) and (3.26) that b < 2.8 ·1011 and
m < 3.2 · 1025. We have thus proved the following result.

Proposition 3.8. Let a′ := min{2a, b/2}. If a′ = b/2, then m < 1020; if

a′ = 2a, then m < 3.2 · 1025.

We now return to the estimate in Lemma 3.4 on Λ1 = b2 logα2−b1 logα1

and divide both sides of it by b1 logα2, getting

(3.29)

∣∣∣∣b2b1 − logα1

logα2

∣∣∣∣ < m

(m− 2)(logα)αb/2
<

9.15

αb/2
,

where we used the fact that m ≤ 2(m − 2) because m ≥ 4. The number

b2/b1 is a rational number whose denominator in reduced form is at most

m.

Suppose first that a′ = b/2. Then, one has m < 1020 by Proposition 3.8.

Assume b ≥ 395. Then

αb/2

9.15
> 2.1 · 1040 > 2(1020)2 > 2b21,

so inequality (3.29) shows that∣∣∣∣b2b1 − logα1

logα2

∣∣∣∣ < 1

2b21
.(3.30)

By a well-known criterion of Legendre, we get that b2/b1 is a convergent of

η := logα1/ logα2. Denoting by pk/qk the kth convergent of η, we have that

q47 > 1021 > b1. Further, if η = [0, 2, 6, . . .] = [a0, a1, a2, . . .] is the continued

fraction expansion of η, then

max{ak : 0 ≤ k ≤ 46} = 49.

Thus, by the properties of continued fractions, we have that the inequality

(3.31)

∣∣∣∣b2b1 − η

∣∣∣∣ > 1

51b21
≥ 1

51m2

holds. Comparing (3.31) with (3.29), we get that αb/2 ≤ 9.15 · 51m2 ≤
467(1020)2, giving b ≤ 408. Hence, b ≤ 408 in the case where a′ = b/2.
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Suppose second that a′ = 2a. Then, one has m < 3.2·1025 by Proposition

3.8. If a ≥ 126, then

α2a

9.15
> 5(3.2 · 1025)2 > 2b21,

and inequality (3.30) follows from (3.29). Hence, b2/b1 is a convergent of

η := logα1/ logα2, and the kth convergent pk/qk of η satisfies q58 > 1026 >

b1. Since denoting η = [a1, a2, a3, . . .] one has max{ak; 0 ≤ k ≤ 57} = 49,

one obtains estimate (3.31). Combining (3.29) with (3.31) shows that α2a <

9.15 · 51m2 < 4.78 · 1053, which gives a ≤ 128.

Consider then the estimate in Lemma 3.7 on Λ′
1 = b2 logα2 − b1 logα1,

where (α2, α1) = (4A/
√
5, α). Dividing both sides of the estimate by b2 logα1

we get ∣∣∣∣b1b2 − logα2

logα1

∣∣∣∣ = m

(m− 2)(logα)αb/2
<

4.16

αb/2
.(3.32)

The denominator of the rational number b1/b2 in reduced form is at most

m. We know by Proposition 3.8 that m < 3.2 · 1025. Assuming b ≥ 497, one

has
αb/2

4.16
> 20.6 · 1050 > 2(3.2 · 1025)2 > 2b22,

which implies that b1/b2 is a convergent of η := logα2/ logα1. For 3 ≤ a ≤
128, let l be the minimal integer such that the denominator ql of the lth

convergent of η satisfies ql > 3.2 · 1025 > b2. Denoting η = [a0, a1, a2, . . .],

one sees that the maximum of ak with 0 ≤ k ≤ l for all a with 3 ≤ a ≤ 128

is 67091, which is attained by a34 in the case of a = 61. Hence, one has∣∣∣∣b1b2 − η

∣∣∣∣ > 1

67093(b2)2
≥ 1

67093m2
.(3.33)

From (3.32) and (3.33), one deduces that αb/2 < 4.16 ·67093m2 < 2.86 ·1056,
which yields b ≤ 540. Therefore, b ≤ 540 holds in all cases.

We ran a Mathematica code which tested all values 3 ≤ a < b ≤ 540

such that FaFb + 1 is a square. The only instances with b − a ≥ 5 found

were (a, b) ∈ {(3, 12), (4, 19)}. Since Fb > 4000, only the instance (a, b) =

(4, 19) is convenient. Since c ≤ 4b + 10, it follows that c < 100. Another

Mathematica code verified that there is no c ∈ [20, 100] such that F4Fc + 1

is a square. Thus, b − a ≤ 4. The cases b − a = 1, 3 do not lead to any

convenient solutions by Lemma 2.4. The case b−a = 2 together with Lemma

2.3 leads, after repeated applications of Theorem 1.1, to the conclusion that

a is even and that (a, b, c, d) = (a, a+ 2, a+ 4, a+ 6), in contradiction with
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the results of Dujella [12] and Jones [21] because Fa+6 ̸= 4Fa+1Fa+2Fa+3.

Thus, only the case b = a+4 is left and, by Lemma 2.3, a must be even. We

ran another Mathematica code which tested that there is no even a ≤ 540

and c ∈ [a+5, 4(a+4)+10] such that {Fa, Fa+4, Fc} is a Diophantine triple.

This finishes the proof of Theorem 1.4.

Acknowledgements

The authors thank the referee for careful reading of this paper.

The first author is supported by JSPS KAKENHI Grant Number 16K05079.

The second author is supported by grant CPRR160325161141 from the NRF

of South Africa, an A-rated scientist award from the NRF of South Africa

and the grant no. 17-02804S of the Czech Granting Agency.

F. L. thanks A. Dujella for useful discussions. This work started at the

DARF conference at Nihon University in January 2017 where both authors

participated. They thank the organizers for the opportunity to attend this

event. F. L. also worked on this paper while he was a long term guest of the

Max Planck Institute for Mathematics in Bonn, Germany from January to

July, 2017. He thanks that Institution for hospitality and support.

References

[1] Y. M. Aleksentsev, The Hilbert polynomial and linear forms in the

logarithms of algebraic numbers, Izv. Math. 72 (2008), 1063–1110.

[2] J. Arkin, V. E. Hoggatt and E. G. Strauss, On Euler’s solution of a

problem of Diophantus, Fibonacci Quart. 17 (1979), 333–339.

[3] A. Baker and H. Davenport, The equations 3x2− 2 = y2 and 8x2− 7 =

z2, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.

[4] Yu. Bilu, G. Hanrot and P. M. P. Voutier, Existence of primitive divi-

sors of Lucas and Lehmer numbers. With an appendix by M. Mignotte,

J. Reine Angew. Math. 539 (2001), 75–122.

[5] Y. Bugeaud, A. Dujella and M. Mignotte, On the family of Diophantine

triples {k − 1, k + 1, 16k3 − 4k}, Glasgow Math. J. 49 (2007), 333-344.

[6] W. Bosma and J. Cannon, Handbook of magma functions, Depart-

ment of Mathematics, University of Sydney, available online at http:

//magma.maths.usyd.edu.au/magma/.



22 Y. Fujita and F. Luca

[7] Y. Bugeaud, F. Luca, M. Mignotte and S. Siksek, Fibonacci numbers

at most one away from a perfect power, Elem. Math. 63 (2008), 65–75.

[8] R. D. Carmichael, On the numerical factors of the arithmetic forms

αn ± βn, Ann. Math. (2) 15 (1913), 30–70.

[9] M. Cipu, A. Filipin and Y. Fujita, Bounds for Diophantine quintuples

II, Publ. Math. Debrecen 88 (2016), 59–78.

[10] M. Cipu, Y. Fujita and T. Miyazaki, On the number of extensions of a

Diophantine triple, Int. J. Number Theory, to appear.

[11] A. Dujella, The problem of the extension of a parametric family of

Diophantine triples, Publ. Math. Debrecen 51 (1997), 311-322.

[12] A. Dujella, A proof of the Hoggatt-Bergum conjecture, Proc. Amer.

Math. Soc. 127 (1999), 1999–2005.

[13] A. Dujella, An absolute bound for the size of Diophantine m-tuples, J.

Number Theory 89 (2001), 126–150.
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