DUALITY AND SERRE FUNCTOR IN HOMOTOPY CATEGORIES

J. ASADOLLAHI, N. ASADOLLAHI, R. HAFEZI AND R. VAHED

ABSTRACT. For a (right and left) coherent ring A, we show that there exists a duality between homotopy categories $\mathbb{K}^b(\text{mod-}A^{\text{op}})$ and $\mathbb{K}^b(\text{mod-}A)$. If $A=\Lambda$ is an artin algebra of finite global dimension, this duality restricts to a duality between their subcategories of acyclic complexes, $\mathbb{K}^b_{\text{ac}}(\text{mod-}\Lambda^{\text{op}})$ and $\mathbb{K}^b_{\text{ac}}(\text{mod-}\Lambda)$. As a result, it will be shown that, in this case, $\mathbb{K}^b_{\text{ac}}(\text{mod-}\Lambda)$ admits a Serre functor and hence has Auslander-Reiten triangles.

1. Introduction

A contravariant functor between two categories that is an equivalence is called a duality. The role and importance of dualities is known in representation theory of algebras. Let A be a right and left coherent ring. In this paper, we introduce and study a duality between the bounded homotopy categories of finitely generated right and finitely generated left A-modules, denoted by $\mathbb{K}^{b}(\text{mod-}A)$ and $\mathbb{K}^{b}(\text{mod-}A^{\text{op}})$, respectively. We gain this duality starting from an equivalence

$$\mu : \mathbb{D}(\operatorname{Mod-}(\operatorname{mod-}A^{\operatorname{op}})) \longrightarrow \mathbb{D}(\operatorname{Mod-}(\operatorname{mod-}A)^{\operatorname{op}})$$

of derived categories of functor categories.

The relationship between μ and some known dualities will be discussed. In particular, it is shown that, Proposition 3.4 below, there is a close relationship between μ and the Auslander-Gruson-Jensen duality

$$\mathfrak{D}: \operatorname{mod-}(\operatorname{mod-}A^{\operatorname{op}})^{\operatorname{op}} \longrightarrow \operatorname{mod-}(\operatorname{mod-}A)^{\operatorname{op}}.$$

Let Λ be an artin algebra of finite global dimension over a commutative artinian ring R. We show that in this case, the above duality between $\mathbb{K}^b(\text{mod-}\Lambda^{op})$ and $\mathbb{K}^b(\text{mod-}\Lambda)$ restricts to a duality between $\mathbb{K}^b_{ac}(\text{mod-}\Lambda^{op})$ and $\mathbb{K}^b_{ac}(\text{mod-}\Lambda)$, where for an abelian category \mathcal{A} , $\mathbb{K}^b_{ac}(\mathcal{A})$ is the full subcategory of $\mathbb{K}^b(\mathcal{A})$ consisting of all acyclic complexes. This, in turn, implies that there is an equivalence of triangulated categories

$$\frac{\mathbb{K}^b(\operatorname{mod-}\!\Lambda)}{\mathbb{K}^b(\operatorname{prj-}\!\Lambda)} \stackrel{\sim}{-\!\!\!-\!\!\!-\!\!\!-} \frac{\mathbb{K}^b(\operatorname{mod-}\!\Lambda)}{\mathbb{K}^b(\operatorname{inj-}\!\Lambda)}.$$

Note that under certain conditions, the quotient $\frac{\mathbb{K}^b(\text{mod-}\Lambda)}{\mathbb{K}^b(\text{prj-}\Lambda)}$ is equivalent to the relative singularity category introduced and studied recently in [KY], see Remark 3.8.

Finally, we show that $\mathbb{K}_{ac}^{b}(\text{mod-}\Lambda)$ admits a Serre functor \mathbb{S} in the sense of [BK]. By a well-known result of Reiten and Van den Bergh [RV, Theorem I.2.4], the existence of a Serre functor is equivalent to the existence of Auslander-Reiten triangles in a category and so we deduce that $\mathbb{K}_{ac}^{b}(\text{mod-}\Lambda)$ admits Auslander-Reiten triangles.

²⁰¹⁰ Mathematics Subject Classification. 18E30, 16E35, 18G25.

Key words and phrases. Functor category, derived category, artin algebra, duality.

2. Preliminaries

Throughout the paper, A denotes a right and left coherent ring. A-module means right A-module. Mod-A, resp. mod-A, denotes the category of A-modules, resp. finitely presented A-modules. Prj-A, resp. prj-A, denotes the full subcategory of Mod-A, resp. mod-A, consisting of projective A-modules. Inj-A and inj-A represent injectives and finitely presented injectives, resp. For an additive category A, $\mathbb{D}(A)$, resp. $\mathbb{K}(A)$, denotes the derived category, resp. homotopy category, of A. As usual, the bounded derived, resp. homotopy, category of A, will be denoted by $\mathbb{D}^{b}(A)$, resp. $\mathbb{K}^{b}(A)$.

2.1. Following Auslander we let Mod-(mod-A), resp. Mod-(mod-A)^{op}, denote the category of all contravariant, resp. covariant, additive functors from mod-A to Ab, the category of abelian groups. Throughout we shall use parenthesis to denote the Hom sets. An object F of Mod-(mod-A), resp. Mod-(mod-A)^{op}, is called coherent if there exists a short exact sequence

$$(-,X) \longrightarrow (-,Y) \longrightarrow F \longrightarrow 0,$$
 resp. $(X,-) \longrightarrow (Y,-) \longrightarrow F \longrightarrow 0,$

of functors, where X and Y belong to mod-A. We let mod-(mod-A), resp. mod- $(\text{mod-}A)^{\text{op}}$, denote the full subcategory of Mod-(mod-A), resp. Mod- $(\text{mod-}A)^{\text{op}}$, consisting of all coherent functors. It is known [A1] that both Mod-(mod-A) and mod-(mod-A) and also their counterparts of covariant functors are abelian categories with enough projective objects.

Special objects of such categories have been studied by several authors. In particular, an object F of Mod-(mod-A) is flat if and only if there exists an A-module M such that $F \cong \operatorname{Hom}_A(-, M)$, see [JL, Theorem B.10]. We let $\mathcal{F}(\operatorname{mod-}A)$ denote the full subcategory of Mod-(mod-A) consisting of all flat functors.

2.2. A sequence $0 \to X \to Y \to Z \to 0$ of A-modules is called pure exact if the induced sequence

$$0 \longrightarrow X \otimes_A M \longrightarrow Y \otimes_A M \longrightarrow Z \otimes_A M \longrightarrow 0$$
,

is exact, for every left A-module M. A module P is called pure projective, resp. pure injective, if it is projective, resp. injective, with respect to the class of all pure exact sequences. We let PPrj-A, resp. PInj-A, denote the full subcategory of Mod-A consisting of all pure projective, resp. pure injective, A-modules.

The derived category of A with respect to the pure exact structure is called pure derived category and is denoted by $\mathbb{D}_{pur}(\text{Mod-}A)$. Krause [K1] introduced and studied this category in deep. He [K1, Corollary 6] proved that for a ring A, there exists a triangle equivalence

$$\mathbb{D}_{\mathrm{pur}}(\mathrm{Mod}\text{-}A) \simeq \mathbb{D}(\mathrm{Mod}\text{-}(\mathrm{mod}\text{-}A)).$$

2.3. Let $\mathbb{K}_{ac}(\mathcal{F}(\text{mod-}A))$ be the full subcategory of $\mathbb{K}(\mathcal{F}(\text{mod-}A))$ formed by all acyclic complexes of flat functors. It is a thick subcategory of $\mathbb{K}(\mathcal{F}(\text{mod-}A))$ and so we have the quotient category $\frac{\mathbb{K}(\mathcal{F}(\text{mod-}A))}{\mathbb{K}_{ac}(\mathcal{F}(\text{mod-}A))}$. By [AAHV, Lemma 4.4], there exists a triangle equivalence

$$\varphi: \mathbb{D}(\operatorname{Mod-(mod-}A)) \longrightarrow \frac{\mathbb{K}(\mathcal{F}(\operatorname{mod-}A))}{\mathbb{K}_{\operatorname{ac}}(\mathcal{F}(\operatorname{mod-}A))}.$$

This equivalence maps every complex \mathbf{X} in $\mathbb{D}(\text{Mod-}(\text{mod-}A))$ to a complex \mathbf{F} in $\mathbb{K}(\mathcal{F}(\text{mod-}A))$, where \mathbf{F} fits into a short exact sequence

$$0 \longrightarrow \mathbf{C} \longrightarrow \mathbf{F} \longrightarrow \mathbf{X} \longrightarrow 0$$

in $\mathbb{C}(\text{Mod-(mod-}A))$ in which $\text{Ext}^i(\mathbf{F}',\mathbf{C}) = 0$, for i > 0 and for all $\mathbf{F}' \in \mathbb{C}(\mathcal{F}(\text{mod-}A))$.

2.4. Recall that an object C of an abelian category A is called cotorsion if for every flat object F, $\operatorname{Ext}^1(F,C)=0$. Let $\operatorname{Cot-}\mathcal{F}(\operatorname{mod-}A)$ denote the full subcategory of $\mathcal{F}(\operatorname{mod-}A)$ consisting of all cotorsion-flat functors. By $[H, \operatorname{Theorem } 4]$, a flat functor (-,M) in $\operatorname{Mod-}(\operatorname{mod-}A)$ is cotorsion if and only if M is a pure-injective module. So the fully faithful functor $U: \operatorname{Mod-}A \longrightarrow \operatorname{Mod-}(\operatorname{mod-}A)$ induces an equivalence

$$\mathbb{K}(\operatorname{PInj-}A) \xrightarrow{\overset{\mathbb{K}(U)}{\sim}} \mathbb{K}(\operatorname{Cot-}\mathcal{F}(\operatorname{mod-}A)),$$

of triangulated categories.

2.5. By Remark 4.5 of [AAHV], for every complex **F** in $\mathbb{K}(\mathcal{F}(\text{mod-}A))$, there is a triangle

$$G\longrightarrow F\longrightarrow C\rightsquigarrow$$

in $\mathbb{K}(\mathcal{F}(\text{mod-}A))$ with $\mathbf{C} \in \mathbb{K}(\text{Cot-}\mathcal{F}(\text{mod-}A))$ and $\mathbf{G} \in \mathbb{K}_{ac}(\mathcal{F}(\text{mod-}A))$. So, there is a triangle functor

$$\psi: \frac{\mathbb{K}(\mathcal{F}(\operatorname{mod-}A))}{\mathbb{K}_{\operatorname{ac}}(\mathcal{F}(\operatorname{mod-}A))} \longrightarrow \mathbb{K}(\operatorname{Cot-}\mathcal{F}(\operatorname{mod-}A)),$$

given by $\psi(\mathbf{F}) = \mathbf{C}$; see [M, Proposition 2.6] for more details.

3. Dualities of homotopy categories

Throughout the section, A is a right and left coherent ring. Our aim is to show that there is a duality of triangulated categories

$$\mathbb{K}^{\mathrm{b}}(\mathrm{mod}\text{-}A^{\mathrm{op}}) \longrightarrow \mathbb{K}^{\mathrm{b}}(\mathrm{mod}\text{-}A),$$

that restricts to a duality between their full subcategories of all acyclic complexes

$$\mathbb{K}_{\mathrm{ac}}^{\mathrm{b}}(\mathrm{mod}\text{-}A^{\mathrm{op}}) \longrightarrow \mathbb{K}_{\mathrm{ac}}^{\mathrm{b}}(\mathrm{mod}\text{-}A).$$

3.1. In view of 2.3, 2.4 and 2.5, we get an equivalence $\Psi : \mathbb{D}(\text{Mod-}(\text{mod-}A)) \to \mathbb{K}(\text{PInj-}A)$ of triangulated categories, given by the following composition

$$\Psi: \mathbb{D}(\operatorname{Mod-}(\operatorname{mod-}A)) \stackrel{\varphi}{\longrightarrow} \frac{\mathbb{K}(\mathcal{F}(\operatorname{mod-}A))}{\mathbb{K}_{\operatorname{ac}}(\mathcal{F}(\operatorname{mod-}A))} \stackrel{\psi}{\longrightarrow} \mathbb{K}(\operatorname{Cot-}\mathcal{F}(\operatorname{mod-}A)) \stackrel{\mathbb{K}(U)^{-1}}{\longrightarrow} \mathbb{K}(\operatorname{PInj-}A),$$

of equivalences. Throughout we will use this equivalence.

Lemma 3.2. There is an equivalence

$$\mu: \mathbb{D}(\operatorname{Mod-}(\operatorname{mod-}A^{\operatorname{op}})) \stackrel{\sim}{\longrightarrow} \mathbb{D}(\operatorname{Mod-}(\operatorname{mod-}A)^{\operatorname{op}})$$

of triangulated categories, given by

$$\mu(\mathbf{X}) = - \otimes_A \Psi(\mathbf{X}),$$

where Ψ is the equivalence introduced in 3.1.

Proof. By [GJ], an object E of Mod-(mod-A)^{op} is injective if and only if $E \cong - \otimes_A M$, for some $M \in \text{PInj-}A^{\text{op}}$. Therefore, the full and faithful functor $\text{PInj-}A^{\text{op}} \longrightarrow \text{Mod-}(\text{mod-}A)^{\text{op}}$, given by the rule $M \mapsto - \otimes_A M$, induces the following triangle equivalence

$$\mathbb{K}(\text{PInj-}A^{\text{op}}) \simeq \mathbb{K}(\text{Inj-}(\text{Mod-}(\text{mod-}A)^{\text{op}})).$$

Moreover, similar to Lemma 4.8 of [K2], one can see that the canonical functor

$$\mathbb{K}(\operatorname{Inj-}(\operatorname{Mod-}(\operatorname{mod-}A)^{\operatorname{op}})) \longrightarrow \mathbb{D}(\operatorname{Mod-}(\operatorname{mod-}A)^{\operatorname{op}})$$

is an equivalence of triangulated categories. So, in view of the equivalence

$$\Psi : \mathbb{D}(\operatorname{Mod-(mod-}A^{\operatorname{op}})) \longrightarrow \mathbb{K}(\operatorname{PInj-}A^{\operatorname{op}})$$

of 3.1, we get the desired equivalence

$$\mu : \mathbb{D}(\operatorname{Mod-(mod-}A^{\operatorname{op}})) \xrightarrow{\sim} \mathbb{D}(\operatorname{Mod-(mod-}A)^{\operatorname{op}}).$$

Lemma 3.3. Let μ be the equivalence of Lemma 3.2. Let $t: M \longrightarrow N$ be an A-homomorphism of left A-modules. Then $\mu((-, M)) = - \otimes_A M$ and $\mu((-, t)) = - \otimes_A t$.

Proof. Pick $M \in \text{Mod-}A^{\text{op}}$ and consider the functor (-, M) as a complex concentrated in degree zero, which is a complex of flat functors. Take an injective resolution

$$0 \longrightarrow - \otimes_A M \stackrel{-\otimes_A \varepsilon}{\longrightarrow} \mathbf{I}_{-\otimes_A M}$$

of $-\otimes_A M$. By the characterization of injective objects of Mod-(mod-A)^{op}, $\mathbf{I}_{-\otimes_A M}$ is of the form

$$\mathbf{I}_{-\otimes_A M}: \quad 0 \longrightarrow -\otimes_A C^1 \stackrel{-\otimes d^1}{\longrightarrow} -\otimes_A C^2 \stackrel{-\otimes d^2}{\longrightarrow} -\otimes_A C^3 \longrightarrow \cdots,$$

such that for each $i \in \mathbb{N}$, C^i is pure-injective [GJ]. Let **F** be the complex

$$0 \longrightarrow M \xrightarrow{\varepsilon} C^1 \xrightarrow{d^1} C^2 \xrightarrow{d^2} \cdots$$

which is pure-exact and C be the following complex of pure-injectives

$$\mathbf{C}: 0 \longrightarrow C^1 \xrightarrow{d^1} C^2 \xrightarrow{d^2} C^3 \longrightarrow \cdots$$

Hence, there exists a degree-wise split exact sequence

$$0 \to (-, \mathbf{C}) \to (-, \mathbf{F}) \to (-, M) \to 0$$

of complexes in Mod-(mod- A^{op}). So, there is the following triangle in $\mathbb{K}(\mathcal{F}(\text{mod-}A))$

$$(-, \mathbf{F}) \to (-, M) \to (-, \mathbf{C})[1] \leadsto$$

with $(-, \mathbf{F}) \in \mathbb{K}_{ac}(\mathcal{F}(\text{mod-}A))$ and $(-, \mathbf{C}) \in \mathbb{K}(\text{Cot-}\mathcal{F}(\text{mod-}A))$. Therefore, by definition, $\Psi((-, M)) = \mathbf{C}[1]$. Hence, $\mu((-, M)) = -\otimes_A \mathbf{C}[1]$, which is quasi-isomorphic to $-\otimes_A M$.

Finally, natural transformation $(-,t):(-,M)\longrightarrow (-,N)$ induces the natural transformation $-\otimes_A t:-\otimes_A M\longrightarrow -\otimes_A N$. This, in turn, can be lifted to their injective resolutions. Hence, μ takes the morphism (-,t) to the morphism

$$-\otimes_A t: -\otimes_A M \longrightarrow -\otimes_A N,$$

as it was claimed.

Consider the functor $\mathfrak{D}: \operatorname{mod-(mod-}A^{\operatorname{op}})^{\operatorname{op}} \longrightarrow \operatorname{mod-(mod-}A)^{\operatorname{op}}$ given by

$$(\mathfrak{D}F)(N) = \operatorname{Hom}(F, N \otimes_A -),$$

where $F \in \text{mod-}(\text{mod-}A^{\text{op}})^{\text{op}}$ and $N \in \text{mod-}A$. This is a duality first considered by Auslander [A3] and then, independently, proved by Gruson and Jensen [GJ]. It is known as the Auslander-Gruson-Jensen duality.

In the following, we intent to show that there is a close relationship between the equivalence $\mu: \mathbb{D}(\text{Mod-}(\text{mod-}A^{\text{op}})) \longrightarrow \mathbb{D}(\text{Mod-}(\text{mod-}A)^{\text{op}})$ in Lemma 3.2 and the Auslander-Gruson-Jensen duality \mathfrak{D} .

Proposition 3.4. There exists a fully faithful contravariant functor

$$\zeta : \operatorname{mod-}(\operatorname{mod-}A^{\operatorname{op}})^{\operatorname{op}} \longrightarrow \mathbb{D}(\operatorname{Mod-}(\operatorname{mod-}A^{\operatorname{op}}))$$

that commutes the following diagram

$$\mathbb{D}(\operatorname{Mod-}(\operatorname{mod-}A^{\operatorname{op}})) \xrightarrow{\mu} \mathbb{D}(\operatorname{Mod-}(\operatorname{mod-}A)^{\operatorname{op}})$$

$$\downarrow^{\zeta} \qquad \qquad \downarrow^{\zeta} \qquad \qquad \downarrow^{\zeta}$$

$$\operatorname{mod-}(\operatorname{mod-}A^{\operatorname{op}})^{\operatorname{op}} \xrightarrow{\mathfrak{D}} \operatorname{mod-}(\operatorname{mod-}A)^{\operatorname{op}},$$

where \mathfrak{D} is the Auslander-Gruson-Jensen duality.

Proof. Let F be an object of mod- $(\text{mod-}A^{\text{op}})^{\text{op}}$. By definition there is an exact sequence

$$(\dagger) \quad 0 \longrightarrow (M_2, -) \stackrel{(d_2, -)}{\longrightarrow} (M_1, -) \stackrel{(d_1, -)}{\longrightarrow} (M_0, -) \longrightarrow F \longrightarrow 0$$

with $M_i \in \text{mod-}A^{\text{op}}$, for $i \in \{0, 1, 2\}$.

We define $\zeta(F)$ to be the complex

$$\begin{array}{c} \operatorname{deg0} & \operatorname{deg1} & \operatorname{deg2} \\ \cdots \longrightarrow 0 \longrightarrow (-, M_0) \xrightarrow{(-, d_1)} (-, M_1) \xrightarrow{(-, d_2)} (-, M_2) \longrightarrow 0 \longrightarrow \cdots \end{array}$$

Note that $\zeta(F)$ is a complex of projectives and one can easily check that ζ is a full and faithful functor.

Now, we compute the image of $\zeta(F)$ under the functor μ . First we show that μ maps the complex

$$deg1 \qquad deg2$$

$$\theta: \cdots \longrightarrow 0 \longrightarrow (-, M_1) \xrightarrow{(-, d_2)} (-, M_2) \longrightarrow 0 \longrightarrow \cdots$$

in $\mathbb{D}(\text{Mod-}(\text{mod-}A^{\text{op}}))$ to the complex

in $\mathbb{D}(\text{Mod-}(\text{mod-}A)^{\text{op}})$. The complex θ is the mapping cone of the following morphisms of complexes

$$\frac{\deg 2}{\cdots \longrightarrow 0 \longrightarrow (-, M_1) \longrightarrow 0 \longrightarrow \cdots}$$

$$\downarrow^{(-, d_2)}$$

$$\cdots \longrightarrow 0 \longrightarrow (-, M_2) \longrightarrow 0 \longrightarrow \cdots$$

Since μ is a triangle functor, $\mu(\theta)$ is the mapping cone of the morphism

$$\frac{\deg 2}{\cdots \longrightarrow 0 \longrightarrow \mu((-, M_1)) \longrightarrow 0 \longrightarrow \cdots}$$

$$\downarrow^{\mu((-, d_2))}$$

$$\cdots \longrightarrow 0 \longrightarrow \mu((-, M_2)) \longrightarrow 0 \longrightarrow \cdots$$

By Lemma 3.3, the above diagram is isomorphic in $\mathbb{D}(\text{Mod-}(\text{mod-}A)^{\text{op}})$ to the diagram

$$\frac{\deg 2}{\cdots \longrightarrow 0 \longrightarrow -\otimes_A M_1 \longrightarrow 0 \longrightarrow \cdots}$$

$$\downarrow^{-\otimes d_2}$$

$$\cdots \longrightarrow 0 \longrightarrow -\otimes_A M_2 \longrightarrow 0 \longrightarrow \cdots$$

Thus, $\mu(\theta)$ is the complex

$$\cdots \longrightarrow 0 \longrightarrow -\otimes_A M_1 \xrightarrow{-\otimes d_2} -\otimes_A M_2 \longrightarrow 0 \longrightarrow \cdots$$

with $-\otimes_A M_1$ at the 1-th position.

Now, $\zeta(F)$ is the mapping cone of the following morphism of complexes

$$\frac{\deg 1}{\cdots} \longrightarrow 0 \longrightarrow (-, M_0) \longrightarrow 0 \longrightarrow \cdots$$

$$\downarrow^{(-,d_1)} \\
\cdots \longrightarrow 0 \longrightarrow (-, M_1) \xrightarrow{(-,d_2)} (-, M_2) \longrightarrow 0 \longrightarrow \cdots$$

Hence, the same argument as above, applying this time to the above diagram, implies that $\mu(\zeta(F))$ is isomorphic in $\mathbb{D}(\text{Mod-}(\text{mod-}A)^{\text{op}})$ to the complex

Now, by applying \mathfrak{D} to the exact sequence (†), we have the following exact sequence

$$0 \longrightarrow \mathfrak{D}F \longrightarrow -\otimes_A M_0 \stackrel{-\otimes d_1}{\longrightarrow} -\otimes_A M_1 \stackrel{-\otimes d_2}{\longrightarrow} -\otimes_A M_2 \longrightarrow 0.$$

Hence, if we consider $\mathfrak{D}F$ as a complex concentrated in degree zero, then $\mathfrak{D}F$ is quasi-isomorphic to $\mu(\zeta(F))$ in $\mathbb{D}(\operatorname{Mod-(mod-}A)^{\operatorname{op}})$. This completes the proof.

Remark 3.5. It is known that for any ring A, the derived category $\mathbb{D}(\text{Mod-}A)$ is compactly generated. Moreover, the inclusion $\text{prj-}A \longrightarrow \text{Mod-}A$ induces an equivalence between $\mathbb{K}^{\text{b}}(\text{prj-}A)$ and the full subcategory $\mathbb{D}(\text{Mod-}A)^{\text{c}}$ of $\mathbb{D}(\text{Mod-}A)$ consisting of all compact objects [Ke]. The same argument as in the ring case, implies that both $\mathbb{D}(\text{Mod-}(\text{mod-}A)^{\text{op}}))$ and $\mathbb{D}(\text{Mod-}(\text{mod-}A)^{\text{op}})$ are compactly generated and

$$\mathbb{D}(\operatorname{Mod-(mod-}A^{\operatorname{op}}))^{\operatorname{c}} \simeq \mathbb{K}^{\operatorname{b}}(\operatorname{prj-(Mod-(mod-}A^{\operatorname{op}}))), \text{ and}$$

$$\mathbb{D}(\operatorname{Mod-(mod-}A)^{\operatorname{op}})^{\operatorname{c}} \simeq \mathbb{K}^{\operatorname{b}}(\operatorname{prj-(Mod-(mod-}A)^{\operatorname{op}})).$$

Theorem 3.6. Let A be a right and left coherent ring. There is the following duality of triangulated categories

$$\phi: \mathbb{K}^{\mathrm{b}}(\mathrm{mod}\text{-}A^{\mathrm{op}}) \longrightarrow \mathbb{K}^{\mathrm{b}}(\mathrm{mod}\text{-}A).$$

Proof. Since μ preserves direct sums, it preserves compact objects. So, by Remark 3.5, it induces the equivalence

$$\mu|: \mathbb{K}^{\mathrm{b}}(\mathrm{prj\text{-}}(\mathrm{Mod\text{-}}(\mathrm{mod\text{-}}A^{\mathrm{op}}))) \longrightarrow \mathbb{K}^{\mathrm{b}}(\mathrm{prj\text{-}}(\mathrm{Mod\text{-}}(\mathrm{mod\text{-}}A)^{\mathrm{op}}))$$

of triangulated categories. Moreover, Yoneda functors $u: \text{mod-}A^{\text{op}} \longrightarrow \text{Mod-}(\text{mod-}A^{\text{op}})$ and $v: \text{mod-}A \longrightarrow \text{Mod-}(\text{mod-}A)^{\text{op}}$ yield the following equivalences of triangulated categories

$$\bar{u}: \mathbb{K}^{\mathrm{b}}(\mathrm{mod}\text{-}A^{\mathrm{op}}) \longrightarrow \mathbb{K}^{\mathrm{b}}(\mathrm{prj}\text{-}(\mathrm{Mod}\text{-}(\mathrm{mod}\text{-}A^{\mathrm{op}}))), \text{ and}$$

 $\bar{v}: \mathbb{K}^{\mathrm{b}}(\mathrm{mod}\text{-}A)^{\mathrm{op}} \longrightarrow \mathbb{K}^{\mathrm{b}}(\mathrm{prj}\text{-}(\mathrm{Mod}\text{-}(\mathrm{mod}\text{-}A)^{\mathrm{op}})).$

Consequently, we have the following commutative diagram whose rows are triangle equivalences

$$(3.1) \qquad \mathbb{D}(\operatorname{Mod-}(\operatorname{mod-}A^{\operatorname{op}})) \xrightarrow{\mu} \mathbb{D}(\operatorname{Mod-}(\operatorname{mod-}A)^{\operatorname{op}})$$

$$\downarrow \qquad \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \downarrow \qquad \qquad \downarrow \bar{\nu}$$

$$\mathbb{K}^{\operatorname{b}}(\operatorname{prj-}(\operatorname{Mod-}(\operatorname{mod-}A^{\operatorname{op}}))) \xrightarrow{\bar{\mu}} \mathbb{K}^{\operatorname{b}}(\operatorname{prj-}(\operatorname{Mod-}(\operatorname{mod-}A)^{\operatorname{op}}))$$

$$\downarrow \bar{\nu} \qquad \qquad \qquad \downarrow \bar{\nu}$$

$$\mathbb{K}^{\operatorname{b}}(\operatorname{mod-}A^{\operatorname{op}}) \qquad \mathbb{K}^{\operatorname{b}}(\operatorname{mod-}A)^{\operatorname{op}}$$

Therefore we get a duality $\phi : \mathbb{K}^b (\text{mod-}A^{\text{op}}) \longrightarrow \mathbb{K}^b (\text{mod-}A)$, as desired.

Corollary 3.7. There is the following duality of triangulated categories

$$\bar{\phi}: \frac{\mathbb{K}^{\mathrm{b}}(\mathrm{mod}\text{-}A^{\mathrm{op}})}{\mathbb{K}^{\mathrm{b}}(\mathrm{prj}\text{-}A^{\mathrm{op}})} \longrightarrow \frac{\mathbb{K}^{\mathrm{b}}(\mathrm{mod}\text{-}A)}{\mathbb{K}^{\mathrm{b}}(\mathrm{prj}\text{-}A)}.$$

Proof. First we claim that the equivalence $\phi: \mathbb{K}^b(\text{mod-}A^{\text{op}}) \longrightarrow \mathbb{K}^b(\text{mod-}A)^{\text{op}}$ can be restricted to the equivalence $\phi|: \mathbb{K}^b(\text{prj-}A^{\text{op}}) \longrightarrow \mathbb{K}^b(\text{prj-}A)^{\text{op}}$. Indeed, let P be a finitely generated projective left A-module. Then by Lemma 3.3, $\mu((-,P)) = (-\otimes_A P)$ and $(-\otimes_A P) \cong (P^*,-)$. Hence, $(\phi|)(P) = P^*$ and so belongs to $\mathbb{K}^b(\text{prj-}A)$. So, using an induction argument on the length of the complexes of $\mathbb{K}^b(\text{prj-}A^{\text{op}})$ one can deduce that, the functor ϕ takes any bounded complex over prj- A^{op} to a bounded complex over prj-A. So, there is the following commutative diagram

$$\frac{\mathbb{K}^{b}(\operatorname{mod}-A^{\operatorname{op}})}{\mathbb{K}^{b}(\operatorname{prj}-A^{\operatorname{op}})} \xrightarrow{\bar{\phi}} \xrightarrow{\mathbb{K}^{b}(\operatorname{mod}-A)} \\
\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \\
\mathbb{K}^{b}(\operatorname{mod}-A^{\operatorname{op}}) \xrightarrow{\phi} & \mathbb{K}^{b}(\operatorname{mod}-A) \\
\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \\
\mathbb{K}^{b}(\operatorname{prj}-A^{\operatorname{op}}) \xrightarrow{\phi|} & \mathbb{K}^{b}(\operatorname{prj}-A),$$

which implies the desired duality.

Remark 3.8. Let (S, \mathfrak{m}) be a commutative local complete Gorenstein k-algebra, where k is an algebraically closed field. Let $M_0 = S, M_1, ..., M_t$ be pairwise non-isomorphic indecomposable maximal Cohen-Macaulay S-modules. Set $T := \operatorname{End}_S(\bigoplus_{i=0}^t M_i)$. There is a fully faithful triangle functor $\mathbb{K}^b(\operatorname{prj}-S) \longrightarrow \mathbb{D}^b(\operatorname{mod}-T)$. By [KY, Definition 1.1], the Verdier quotient

$$\frac{\mathbb{D}^{\mathrm{b}}(\mathrm{mod}\text{-}T)}{\mathbb{K}^{\mathrm{b}}(\mathrm{prj}\text{-}S)}$$

is called the relative singularity category, denoted by $\Delta_S(T)$. This category recently has been studied in deep in [KY]. We remark that, if S is a self-injective algebra, then $\Delta_S(T)$ is equivalent to the quotient $\frac{\mathbb{K}^{\mathsf{b}}(\mathsf{mod}-S)}{\mathbb{K}^{\mathsf{b}}(\mathsf{prj}-S)}$. To see this, note that in this case all modules in mod-S are maximal Cohen-Macaulay, and so T is the usual Auslander algebra of S, which is of finite global dimension, in fact, less than or equal to 2.

4. Artin Algebras

In this section, we show that if Λ is an artin algebra of finite global dimension, then the duality introduced in Theorem 3.6, restricts to a duality between their subcategories of acyclic complexes, $\mathbb{K}^b_{ac}(\text{mod-}\Lambda^{op})$ and $\mathbb{K}^b_{ac}(\text{mod-}\Lambda)$.

Throughout Λ is an artin R-algebra, where R is a commutative artinian ring. We need some preparations.

Lemma 4.1. Let $\gamma: \mathbb{K}^b_{ac}(\operatorname{mod}-\Lambda) \longrightarrow \frac{\mathbb{K}^b(\operatorname{mod}-\Lambda)}{\mathbb{K}^b(\operatorname{prj}-\Lambda)}$ be the triangle functor taking every complex to itself. Then γ is full and faithful. Furthermore, γ is dense, and so is an equivalence, if and only if Λ has finite global dimension.

Proof. Let $f: \mathbf{X} \longrightarrow \mathbf{Y}$ be a morphism in $\mathbb{K}^{\mathrm{b}}_{\mathrm{ac}}(\mathrm{mod}\Lambda)$ such that $\gamma(f)$ vanishes in $\frac{\mathbb{K}^{\mathrm{b}}(\mathrm{mod}\Lambda)}{\mathbb{K}^{\mathrm{b}}(\mathrm{prj}\Lambda)}$. So, there is a complex $\mathbf{Z} \in \mathbb{K}^{\mathrm{b}}(\mathrm{mod}\Lambda)$ together with a morphism $s: \mathbf{Z} \longrightarrow \mathbf{X}$ such that $\mathrm{cone}(s) \in \mathbb{K}^{\mathrm{b}}(\mathrm{prj}\Lambda)$ and $f \circ s$ is null homotopic. Hence, there is a morphism $t: \mathrm{cone}(s) \longrightarrow \mathbf{Y}$ making the following diagram commutative

Since $\operatorname{cone}(s) \in \mathbb{K}^{\operatorname{b}}(\operatorname{prj-}\Lambda)$ and **Y** is an acyclic complex, one can deduce that t, and so f, is null homotopic. Hence, γ is faithful. Assume that $\mathbf{X} \overset{s}{\leftarrow} \mathbf{Z} \xrightarrow{f} \mathbf{Y}$ is a roof in $\frac{\mathbb{K}^{\operatorname{b}}(\operatorname{mod-}\Lambda)}{\mathbb{K}^{\operatorname{b}}(\operatorname{prj-}\Lambda)}$ with **X** and **Y** in $\mathbb{K}^{\operatorname{b}}_{\operatorname{ac}}(\operatorname{mod-}\Lambda)$. Consider a triangle $\mathbf{Z} \overset{s}{\to} \mathbf{X} \xrightarrow{u} \operatorname{cone}(s) \leadsto$ and then the composition

$$\operatorname{cone}(s)[-1] \stackrel{u[-1]}{\to} \mathbf{Z} \stackrel{f}{\to} \mathbf{Y}.$$

Since $cone(s) \in \mathbb{K}^b(prj-\Lambda)$ and **Y** is acyclic, the above morphism is null homotopic. So, there is a morphism $t: \mathbf{X} \longrightarrow \mathbf{Y}$ making the following diagram commutative

$$\operatorname{cone}(s)[-1] \xrightarrow{\mathbf{Z}} \mathbf{Z} \xrightarrow{s} \mathbf{X} \sim \searrow$$

$$\downarrow^{f} \downarrow^{f} \downarrow^{t}$$

Now, the following commutative diagram implies that the roof $f \circ s^{-1}$ is equivalent to a roof $t \circ \operatorname{id}^{-1}$ in $\frac{\mathbb{K}^b(\operatorname{mod}-\Lambda)}{\mathbb{K}^b(\operatorname{prj}-\Lambda)}$

This means that γ is full.

For the last part of the statement, let Λ has finite global dimension and M be a finitely presented Λ -module. Take a finite projective resolution $\mathbf{P}_M \xrightarrow{\pi} M$ of M. The mapping cone $\mathrm{cone}(\pi)$ belongs to $\mathbb{K}^{\mathrm{b}}_{\mathrm{ac}}(\mathrm{mod-}\Lambda)$ and is isomorphic to M in $\frac{\mathbb{K}^{\mathrm{b}}(\mathrm{mod-}\Lambda)}{\mathbb{K}^{\mathrm{b}}(\mathrm{prj-}\Lambda)}$. Therefore, γ is dense and hence is an equivalence of triangulated categories.

For the converse, let S be a simple Λ -module. Since γ is dense, there is a bounded acyclic complex $\mathbf{X} \in \mathbb{K}^{\mathrm{b}}_{\mathrm{ac}}(\mathrm{mod}\text{-}\Lambda)$ which is isomorphic to S in $\frac{\mathbb{K}^{\mathrm{b}}(\mathrm{mod}\text{-}\Lambda)}{\mathbb{K}^{\mathrm{b}}(\mathrm{prj}\text{-}\Lambda)}$. Hence, we have a roof $S \stackrel{s}{\longleftarrow} \mathbf{Z} \stackrel{q}{\longrightarrow} \mathbf{X}$ such that $\mathrm{cone}(s)$ and $\mathrm{cone}(q)$ belong to $\mathbb{K}^{\mathrm{b}}(\mathrm{prj}\text{-}\Lambda)$. As \mathbf{X} is an acyclic complex, a triangle $\mathbf{Z} \stackrel{q}{\longrightarrow} \mathbf{X} \to \mathrm{cone}(q) \leadsto \mathrm{implies}$ that \mathbb{Z} is quasi-isomorphic to $\mathrm{cone}(q)$. Now, consider the image of a triangle $\mathbf{Z} \stackrel{s}{\longrightarrow} S \to \mathrm{cone}(s) \leadsto \mathbb{D}^{\mathrm{b}}(\mathrm{mod}\text{-}\Lambda)$. Since \mathbf{Z} and $\mathrm{cone}(s)$ are isomorphic in $\mathbb{D}^{\mathrm{b}}(\mathrm{mod}\text{-}\Lambda)$ to bounded complexes of finitely generated projective Λ -modules,

The argument in the proof of the above lemma carry over verbatim to yield the following lemma.

so is S. This means that S has finite projective dimension. The proof is now complete.

Lemma 4.2. Let $\gamma': \mathbb{K}^b_{ac}(\text{mod-}\Lambda) \longrightarrow \frac{\mathbb{K}^b(\text{mod-}\Lambda)}{\mathbb{K}^b(\text{inj-}\Lambda)}$ be a triangle functor taking every complex to itself. Then γ' is full and faithful. Furthermore, γ' is dense, and so is an equivalence, if and only if Λ has finite global dimension.

Proposition 4.3. Let Λ be an artin algebra of finite global dimension. Then there is the following duality of triangulated categories

$$\mathbb{K}^{\operatorname{b}}_{\operatorname{ac}}(\operatorname{mod-}\!\Lambda^{\operatorname{op}})\simeq \mathbb{K}^{\operatorname{b}}_{\operatorname{ac}}(\operatorname{mod-}\!\Lambda).$$

Proof. Corollary 3.7 in conjunction with Lemma 4.1 imply the result.

Lemma 4.4. Let Λ be an artin algebra of finite global dimension. Then there is a full and faithful functor

$$\lambda: \underline{\operatorname{mod}} \text{-}\Lambda \longrightarrow \frac{\mathbb{K}^{\operatorname{b}}(\operatorname{mod-}\Lambda)}{\mathbb{K}^{\operatorname{b}}(\operatorname{prj-}\Lambda)}$$

taking every Λ -module M to itself.

Proof. By Lemma 4.1, we have the following equivalence of triangulated categories

$$\mathbb{K}^{\mathrm{b}}_{\mathrm{ac}}(\mathrm{mod}\text{-}\Lambda) \xrightarrow{\gamma} \frac{\mathbb{K}^{\mathrm{b}}(\mathrm{mod}\text{-}\Lambda)}{\mathbb{K}^{\mathrm{b}}(\mathrm{prj}\text{-}\Lambda)}.$$

So, it is enough to show that the functor

$$\underline{\operatorname{mod}}$$
- $\Lambda \longrightarrow \mathbb{K}_{\operatorname{ac}}^{\operatorname{b}}(\operatorname{mod-}\Lambda)$

mapping every module M in $\underline{\operatorname{mod}}$ - Λ to the mapping cone of a projective resolution $\mathbf{P}_M \longrightarrow M$ of M, is full and faithful. This follows easily from the properties of projective resolutions. Hence, the functor λ which is the composition of the above two functors is also full and faithful.

Lemma 4.5. Let Λ be an artin algebra of finite global dimension. Then there is a full and faithful functor

$$\lambda' : \overline{\operatorname{mod}} \cdot \Lambda \longrightarrow \frac{\mathbb{K}^{\operatorname{b}}(\operatorname{mod} \cdot \Lambda)}{\mathbb{K}^{\operatorname{b}}(\operatorname{ini} \cdot \Lambda)}$$

taking every Λ -module M to itself.

Proof. The proof is similar to the proof of the above lemma. Just one should consider the functor $\varsigma : \overline{\text{mod}} \cdot \Lambda \longrightarrow \mathbb{K}^{\text{b}}_{\text{ac}}(\text{mod} \cdot \Lambda)$ which maps every module M to the mapping cone of an injective resolution $M \longrightarrow \mathbf{E}_M$ of M, show that ς is full and faithful and then apply Lemma 4.2. We skip the details.

Let $P_0 \xrightarrow{f} P_1 \longrightarrow M \longrightarrow 0$ be a projective presentation of the A-module M. Recall that the Auslander transpose of M, TrM, is defined to be the A^{op} -module Coker(Hom_A(f, A)). It is known that TrM is unique up to projective equivalences and so induces an equivalence

$$\operatorname{Tr}: \operatorname{\underline{mod}} A^{\operatorname{op}} \longrightarrow (\operatorname{\underline{mod}} A)^{\operatorname{op}}$$

of stable categories.

Proposition 4.6. Let Λ be an artin algebra of finite global dimension. Then there is the following commutative diagram

$$\begin{array}{ccc} & & & & & & & & & & \\ \mathbb{K}^{b}(\operatorname{mod}-\Lambda^{\operatorname{op}}) & \xrightarrow{\bar{\phi}}[-2] & & & & & & & \\ \mathbb{K}^{b}(\operatorname{prj}-\Lambda^{\operatorname{op}}) & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

such that rows are dualities and λ is the functor defined in Lemma 4.4.

Proof. Let M be a finitely presented left Λ -module with no projective direct summands. Consider the functor (-, M) in $\mathbb{D}(\text{Mod-}(\text{mod-}\Lambda^{\text{op}}))$. By Lemma 3.3, $\mu((-, M)) = - \otimes_{\Lambda} M$. If $Q \longrightarrow P \longrightarrow M \longrightarrow 0$ is a projective presentation of M, then the exact sequence

$$0 \longrightarrow (\operatorname{Tr} M, -) \longrightarrow (Q^*, -) \longrightarrow (P^*, -) \longrightarrow - \otimes_{\Lambda} M \longrightarrow 0$$

implies that $\mu((-, M))$ is isomorphic to the following complex in $\mathbb{D}(\text{Mod-}(\text{mod-}\Lambda)^{\text{op}})$

$$0 \longrightarrow (\operatorname{Tr} M, -) \longrightarrow (Q^*, -) \longrightarrow (P^*, -) \longrightarrow 0.$$

It follows from the definition of ϕ , see diagram (3.1), that $\phi(M)$ is a complex

$$0 \longrightarrow P^* \longrightarrow Q^* \longrightarrow \text{Tr} M \longrightarrow 0$$

in $\mathbb{K}^{\mathrm{b}}(\mathrm{mod}\text{-}\Lambda)$. This clearly is isomorphic to $\mathrm{Tr}M[2]$ in $\frac{\mathbb{K}^{\mathrm{b}}(\mathrm{mod}\text{-}\Lambda)}{\mathbb{K}^{\mathrm{b}}(\mathrm{pri}\text{-}\Lambda)}$.

Remark 4.7. It is known that if Λ is an artin R-algebra, there is the duality

$$D: \operatorname{mod-}\Lambda \longrightarrow \operatorname{mod-}\Lambda^{\operatorname{op}}$$

defined by $D(M) = \operatorname{Hom}_R(M, E)$, where E is the injective envelope of $R/\operatorname{rad}R$. The duality $D : \operatorname{mod-}\Lambda \longrightarrow \operatorname{mod-}\Lambda^{\operatorname{op}}$ can be extended to the following duality of triangulated categories

$$\mathbb{K}^b (\text{mod-}\Lambda) \xrightarrow{\sim} \mathbb{K}^b (\text{mod-}\Lambda^{op}).$$

Moreover, it is known that the duality D can be restricted to the duality

$$D|: \operatorname{prj-}\Lambda \xrightarrow{\sim} \operatorname{inj-}\Lambda^{\operatorname{op}}.$$

This duality also can be extended to the duality

$$\mathbb{K}^b(\operatorname{prj-}\Lambda) \xrightarrow{\sim} \mathbb{K}^b(\operatorname{inj-}\Lambda^{\operatorname{op}})$$

of triangulated categories. Therefore, we can deduce that D induces a duality

$$\frac{\mathbb{K}^b(\operatorname{mod-}\!\Lambda)}{\mathbb{K}^b(\operatorname{prj-}\!\Lambda)} \simeq \frac{\mathbb{K}^b(\operatorname{mod-}\!\Lambda^{\operatorname{op}})}{\mathbb{K}^b(\operatorname{inj-}\!\Lambda^{\operatorname{op}})}$$

of triangulated categories, which we denote it again by D.

Corollary 4.8. Let Λ be an artin algebra of finite global dimension. Then there is the following commutative diagram

$$\begin{array}{c|c} \mathbb{K}^{\mathbf{b}}(\operatorname{mod}-\Lambda) & \bar{\phi}[-2] & \mathbb{K}^{\mathbf{b}}(\operatorname{mod}-\Lambda^{\operatorname{op}}) & D \\ \hline \mathbb{K}^{\mathbf{b}}(\operatorname{prj}-\Lambda) & & \mathbb{K}^{\mathbf{b}}(\operatorname{prj}-\Lambda^{\operatorname{op}}) & D \\ \hline \lambda & & & & \\ \hline \underline{\operatorname{mod}}-\Lambda & & & & D \\ \hline \end{array} \right) \xrightarrow{D \operatorname{Tr}} \begin{array}{c} \mathbb{K}^{\mathbf{b}}(\operatorname{mod}-\Lambda) \\ \hline \mathbb{K}^{\mathbf{b}}(\operatorname{inj}-\Lambda) \\ \hline \lambda' & & \\ \hline \operatorname{mod}-\Lambda, \end{array}$$

such that λ and λ' are fully faithful and DTr and $D\bar{\phi}[-2]$ are equivalences.

Proof. By Lemmas 4.4 and 4.5, λ and λ' are fully faithful, respectively. The commutativity of the diagram follows from Proposition 4.6.

5. Serre functor for
$$\mathbb{K}^b_{ac}(\text{mod-}\Lambda)$$

In this section, we prove that if Λ is an artin algebra of finite global dimension, then $\mathbb{K}^b_{ac}(\text{mod-}\Lambda)$ has Serre duality and will investigate the relationship between this Serre duality and the equivalence

$$\frac{\mathbb{K}^{\mathrm{b}}(\mathrm{mod}-\Lambda)}{\mathbb{K}^{\mathrm{b}}(\mathrm{prj}-\Lambda)} \xrightarrow{D\bar{\phi}[-2]} \frac{\mathbb{K}^{\mathrm{b}}(\mathrm{mod}-\Lambda)}{\mathbb{K}^{\mathrm{b}}(\mathrm{inj}-\Lambda)}$$

of Corollary 4.8.

Recall that for a Hom-finite Krull-Schmidt R-linear triangulated category \mathcal{T} , a Serre functor is an auto-equivalence $\mathbb{S}: \mathcal{T} \longrightarrow \mathcal{T}$ such that the Serre duality formula holds, that is, we have bifunctorial isomorphisms

$$D\mathcal{T}(X,Y) \cong \mathcal{T}(Y,\mathbb{S}X)$$
, for all $X,Y \in \mathcal{T}$,

where D is the duality $\operatorname{Hom}_{R}(-,R)$.

To begin, observe that the duality

$$D: \operatorname{mod-}\Lambda \longrightarrow \operatorname{mod-}\Lambda^{\operatorname{op}}$$

induces the duality

$$D: \operatorname{mod-}(\operatorname{mod-}\Lambda) \longrightarrow \operatorname{mod-}(\operatorname{mod-}\Lambda)^{\operatorname{op}}$$

which maps a functor F to the functor DF(M) = D(F(M)) for every $M \in \text{mod-}\Lambda$. So, every injective object in mod-(mod- Λ) is of the form $D\text{Hom}_{\Lambda}(M, -)$, for some $M \in \text{mod-}\Lambda$. Define a functor

$$\mathcal{V}: \operatorname{Prj-}(\operatorname{mod-}(\operatorname{mod-}\Lambda)) \longrightarrow \operatorname{Inj-}(\operatorname{mod-}(\operatorname{mod-}\Lambda))$$

by $\mathcal{V}(\operatorname{Hom}_{\Lambda}(-,M)) = D\operatorname{Hom}_{\Lambda}(M,-)$. It is an equivalence of categories. \mathcal{V} can be naturally extended to the equivalence

$$\mathbb{K}^{b}(\operatorname{Prj-}(\operatorname{mod-}(\operatorname{mod-}\Lambda))) \xrightarrow{\sim} \mathbb{K}^{b}(\operatorname{Inj-}(\operatorname{mod-}(\operatorname{mod-}\Lambda)))$$

of triangulated categories, which we denote it again by \mathcal{V} .

Since global dimension of mod-(mod- Λ) is finite, $\mathcal V$ is in fact the equivalence

$$\mathbb{D}^{b}(\operatorname{mod-}(\operatorname{mod-}\Lambda)) \longrightarrow \mathbb{D}^{b}(\operatorname{mod-}(\operatorname{mod-}\Lambda)).$$

Now, the same argument as in the proof of Proposition 5.3 of [ABHV] can be applied to prove that this functor is a Serre duality, i.e. for every $\mathbf{X}, \mathbf{Y} \in \mathbb{D}^b(\text{mod-}(\text{mod-}\Lambda))$ there is the following natural isomorphism

$$\operatorname{Hom}(\mathbf{X}, \mathbf{Y}) \cong D\operatorname{Hom}(\mathbf{Y}, \mathcal{V}\mathbf{X}),$$

where both Hom are taken in $\mathbb{D}^{b}(\text{mod-}(\text{mod-}\Lambda))$.

Proposition 5.1. Let Λ be an artin algebra. Then $\mathbb{K}^b(\text{mod-}\Lambda)$ has Serre duality.

Proof. There is an equivalence $\mathbb{D}^b(\text{mod-}(\text{mod-}\Lambda)) \simeq \mathbb{K}^b(\text{Prj-}(\text{mod-}(\text{mod-}\Lambda)))$ of triangulated categories, because gl.dim(mod-(mod- Λ)) is finite. So, in view of Yoneda lemma, we get an equivalence

$$Q: \mathbb{K}^b(\operatorname{mod-}\Lambda) \longrightarrow \mathbb{D}^b(\operatorname{mod-}(\operatorname{mod-}\Lambda))$$

of triangulated categories. Let $\mathcal{U}: \mathbb{K}^b(\text{mod-}\Lambda) \longrightarrow \mathbb{K}^b(\text{mod-}\Lambda)$ be the functor that commutes the following diagram

It can be easily checked that \mathcal{U} is also a Serre duality functor, i.e. for every complexes \mathbf{X} and \mathbf{Y} in $\mathbb{K}^b(\text{mod-}\Lambda)$ we have the following isomorphism

$$\operatorname{Hom}_{\mathbb{K}^{\operatorname{b}}(\operatorname{mod-}\Lambda)}(\mathbf{X},\mathbf{Y}) \cong D\operatorname{Hom}_{\mathbb{K}^{\operatorname{b}}(\operatorname{mod-}\Lambda)}(\mathbf{Y},\mathcal{U}\mathbf{X}).$$

Remark 5.2. The above proposition was proved by Backelin and Jaramillo [BJ] using different approach. Their method is based on the construction of a t-structure in $\mathbb{K}^b(\text{mod-}\Lambda)$. It also can be obtained from [ZH, Theorem 3.4]. The proof presented here uses functor category techniques.

Proposition 5.3. Let Λ be an artin algebra of finite global dimension. Then $\mathbb{K}_{ac}^{b}(\text{mod-}\Lambda)$ has Serre duality.

Proof. First note that the inclusion functor $i: \mathbb{K}^{\mathrm{b}}_{\mathrm{ac}}(\mathrm{mod}\Lambda) \longrightarrow \mathbb{K}^{\mathrm{b}}(\mathrm{mod}\Lambda)$ admits a right adjoint $i_{\rho}: \mathbb{K}^{\mathrm{b}}(\mathrm{mod}\Lambda) \longrightarrow \mathbb{K}^{\mathrm{b}}_{\mathrm{ac}}(\mathrm{mod}\Lambda)$. In fact, i_{ρ} is defined as follows. Let \mathbf{X} be a complex in $\mathbb{K}^{\mathrm{b}}(\mathrm{mod}\Lambda)$. It has a K-injective resolution $\iota_{\mathbf{X}}: \mathbf{X} \longrightarrow \mathbf{I}_{\mathbf{X}}$ with $\mathbf{I}_{\mathbf{X}} \in \mathbb{K}^{\mathrm{b}}(\mathrm{inj}\Lambda)$. Then $i_{\rho}(\mathbf{X}) = \mathrm{cone}(\iota_{\mathbf{X}})[-1]$. We set $\mathbb{S}: \mathbb{K}^{\mathrm{b}}_{\mathrm{ac}}(\mathrm{mod}\Lambda) \longrightarrow \mathbb{K}^{\mathrm{b}}_{\mathrm{ac}}(\mathrm{mod}\Lambda)$ to be the following composition of triangle functors

$$\mathbb{K}^{b}_{ac}(\operatorname{mod-}\Lambda) \xrightarrow{i} \mathbb{K}^{b}(\operatorname{mod-}\Lambda) \xrightarrow{\mathcal{U}} \mathbb{K}^{b}(\operatorname{mod-}\Lambda) \xrightarrow{i_{\rho}} \mathbb{K}^{b}_{ac}(\operatorname{mod-}\Lambda).$$

For every two complexes **X** and **Y** in $\mathbb{K}_{ac}^{b}(\text{mod-}\Lambda)$, there are the following isomorphisms

$$\begin{array}{ll} \operatorname{Hom}_{\mathbb{K}^{\operatorname{b}}_{\operatorname{ac}}(\operatorname{mod-}\Lambda)}(\mathbf{X},\mathbf{Y}) & \cong \operatorname{Hom}_{\mathbb{K}^{\operatorname{b}}(\operatorname{mod-}\Lambda)}(i\mathbf{X},i\mathbf{Y}) \\ & \cong \operatorname{Hom}_{\mathbb{K}^{\operatorname{b}}(\operatorname{mod-}\Lambda)}(i\mathbf{Y},\mathcal{U}i\mathbf{X}) \\ & \cong \operatorname{Hom}_{\mathbb{K}^{\operatorname{b}}_{\operatorname{ac}}(\operatorname{mod-}\Lambda)}(\mathbf{Y},i_{\rho}\mathcal{U}i\mathbf{X}). \end{array}$$

So $\mathbb{S}: \mathbb{K}_{\mathrm{ac}}^{\mathrm{b}}(\mathrm{mod}\Lambda) \longrightarrow \mathbb{K}_{\mathrm{ac}}^{\mathrm{b}}(\mathrm{mod}\Lambda)$ is a Serre duality.

Let \mathcal{T} be a Hom-finite R-linear Krull-Schmidt triangulated category, where R is a commutative artinian ring. A triangle $X \xrightarrow{f} Y \xrightarrow{g} Z \xrightarrow{h} X[-1]$ in \mathcal{T} is an Auslander-Reiten triangle if the following conditions are satisfied

- (i) X and Z are indecomposable.
- (ii) $h \neq 0$.
- (iii) If W is an indecomposable object in \mathcal{T} , then every non-isomorphism $t:W\longrightarrow Z$ factors through g.

We say that \mathcal{T} has Auslander-Reiten triangles, if for every indecomposable object W there exist Auslander-Reiten triangles starting and ending at W.

Corollary 5.4. Let Λ be an artin algebra of finite global dimension. Then the triangulated category $\mathbb{K}_{\mathrm{ac}}^{\mathrm{b}}(\mathrm{mod}\text{-}\Lambda)$ has Auslander-Reiten triangles.

Proof. It follows directly from Proposition 5.3 and Theorem I.2.4 of
$$[RV]$$
.

The last theorem of the paper establishes a tight connection between the the functor \mathbb{S} and the equivalence $D\bar{\phi}[-2]$ of Corollary 4.8.

Theorem 5.5. Let Λ be an artin algebra of finite global dimension. Then there is the following commutative diagram

$$\frac{\mathbb{K}^{b}(\operatorname{mod}-\Lambda)}{\mathbb{K}^{b}(\operatorname{prj}-\Lambda)} \xrightarrow{\bar{\phi}[-2]} \frac{\mathbb{K}^{b}(\operatorname{mod}-\Lambda^{\operatorname{op}})}{\mathbb{K}^{b}(\operatorname{prj}-\Lambda^{\operatorname{op}})} \xrightarrow{D} \frac{\mathbb{K}^{b}(\operatorname{mod}-\Lambda)}{\mathbb{K}^{b}(\operatorname{inj}-\Lambda)} \\
\stackrel{\wedge}{\sim} \\
\mathbb{K}^{b}_{\operatorname{ac}}(\operatorname{mod}-\Lambda) \xrightarrow{\mathbb{S}[-2]} \xrightarrow{\mathbb{K}^{b}_{\operatorname{ac}}(\operatorname{mod}-\Lambda)},$$

where columns are equivalences of Lemmas 4.1 and 4.2.

Proof. Let M be a finitely presented Λ -module with no projective direct summands. Then $\mathcal{U}(M)$ is isomorphic to the following complex

$$\frac{\deg - 2}{\deg - 1} \qquad \frac{\deg 0}{\deg 0}$$

$$\cdots \longrightarrow 0 \longrightarrow D\operatorname{Tr} M \longrightarrow DP_1^* \xrightarrow{Df^*} DP_0^* \longrightarrow 0 \longrightarrow \cdots,$$

where $P_1 \xrightarrow{f} P_0 \longrightarrow M \longrightarrow 0$ is the minimal projective resolution of M. Let

be a K-injective resolution of $\mathcal{U}(M)$. By definition $\mathbb{S}(M) = \operatorname{cone}(\iota_{\mathcal{U}(M)})[-1]$ and so it is isomorphic in $\frac{\mathbb{K}^{\mathsf{b}}(\operatorname{mod}^{-}\Lambda)}{\mathbb{K}^{\mathsf{b}}(\operatorname{inj}^{-}\Lambda)}$ to $D\operatorname{Tr} M[2]$. Hence, $\mathbb{S}[-2](M) = D\operatorname{Tr} M$.

On the other hand by Corollary 4.8, $D(\bar{\phi}[-2])(M) = D\text{Tr}M$, for every $M \in \text{mod-}A$. Now, an induction argument on the length of the bounded complexes in $\mathbb{K}_{\text{ac}}^{\text{b}}(\text{mod-}\Lambda)$ works to prove the commutativity of the desired diagram. See the proof of Proposition 3.4 for similar argument.

References

- [AAHV] J. ASADOLLAHI, N. ASADOLLAHI, R. HAFEZI, R. VAHED, Auslander's Formula: Variations and Applications, Submitted.
- [ABHV] J. ASADOLLAHI, P. BAHIRAEI, R. HAFEZI AND R. VAHED, On relative derived categories, Comm. Algebra 44 (2016) 5454-5477.
- [A1] M. AUSLANDER, Coherent functors, 1966 Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) pp. 189-231 Springer, New York.
- [A2] M. AUSLANDER, Functors and morphisms determined by objects, Representation theory of algebras (Proc. Conf., Temple Univ., Philadelphia, Pa., 1976), pp. 1-244. Lecture Notes in Pure Appl. Math., Vol. 37, Dekker, New York, 1978.
- [A3] M. AUSLANDER, Isolated Singularities and Existence of Almost Split Sequences, Representation Theory II 1178 (1984), 194-241.
- [BJ] E. BACKELIN AND O. JARAMILLO, Auslander-Reiten sequences and t-structures on the homotopy category of an abelian category, J. Algebra 339 (2011), 80-96.
- [BK] A. I. BONDAL AND M. M. KAPRANOV, Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183-1205, 1337.
- [BEIJR] D. BRAVO, E. E. ENOCHS, A. C. IACOB, O. M. G. JENDA, J. RADA, Cotorsion pairs in $\mathbb{C}(R-Mod)$, Rocky Mountain J. Math. **42** (2012), no. 6, 1787-1802.
- [GJ] L. GRUSON AND C. U. JENSEN, Dimensions cohomologiques relièes aux foncteurs lim, Lecture Notes in Mathematics 867, Springer-Verlag, 1981, 234-294.
- [H] I. HERZOG, Contravariant functors on the category of finitely presented modules, Israel J. Math. 167 (2008), 347-410.
- [JL] C. U. Jensen and H. Lenzing, Model theoretic algebra with particular emphasis on fields, rings, modules, Algebra Logic Appl. vol. 2. Gordon and Breach, New York (1989).
- [KY] M. KALCKA AND D. YANG, Relative singularity categories I: Auslander resolutions, Adv. Math., 301 (2016) 973-1021.
- [Ke] B. Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63-102.
- [K1] H. Krause, Approximations and adjoints in homotopy categories, Math. Ann. 353 (2012), 765-781.
- [K2] H. Krause, Deriving Auslander's formula, Doc. Math. 20 (2015) 669-688.
- [M] J. MIYACHI, Localization of Triangulated Categories and Derived Categories, J. Algebra 141 (1991), 463-483.
- [RV] I. REITEN AND M. VAN DEN BERGH, Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc. 15 (2002), 295-366.
- [St] J. ŠŤovíček, Deconstructibility and the Hill lemma in Grothendieck categories, Forum Math. 25 (2013), no. 1, 193-219.
- [ZH] Y. Zheng and Zh. Huang, Auslander-Reiten Triangles in Homotopy Categories, available at arxiv:1511.08964.

Department of Mathematics, University of Isfahan, P.O.Box: 81746-73441, Isfahan, Iran $E\text{-}mail\ address$: asadollahi@ipm.ir, asadollahi@sci.ui.ac.ir

Department of Mathematics, University of Isfahan, P.O.Box: 81746-73441, Isfahan, Iran $E\text{-}mail\ address$: n.asadollahi@sci.ui.ac.ir

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box: 19395-5746, Tehran, Iran

 $E\text{-}mail\ address: \verb|hafezi@ipm.ir||$

Department of Mathematics, Khansar Faculty of Mathematics and Computer Science, Khansar, Iran

 $E ext{-}mail\ address: wahed@ipm.ir, wahed@khansar-cmc.ac.ir}$