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DUALITY AND SERRE FUNCTOR IN HOMOTOPY CATEGORIES

J. ASADOLLAHI, N. ASADOLLAHI, R. HAFEZI AND R. VAHED

Abstract. For a (right and left) coherent ring A, we show that there exists a duality
between homotopy categories Kb(mod-Aop) and Kb(mod-A). If A = Λ is an artin algebra
of finite global dimension, this duality restricts to a duality between their subcategories of
acyclic complexes, Kb

ac(mod-Λop) and Kb
ac(mod-Λ). As a result, it will be shown that, in

this case, Kb
ac(mod-Λ) admits a Serre functor and hence has Auslander-Reiten triangles.

1. Introduction

A contravariant functor between two categories that is an equivalence is called a duality.
The role and importance of dualities is known in representation theory of algebras. Let A be
a right and left coherent ring. In this paper, we introduce and study a duality between the
bounded homotopy categories of finitely generated right and finitely generated left A-modules,
denoted by Kb(mod-A) and Kb(mod-Aop), respectively. We gain this duality starting from
an equivalence

µ : D(Mod-(mod-Aop)) −→ D(Mod-(mod-A)op)

of derived categories of functor categories.
The relationship between µ and some known dualities will be discussed. In particular,

it is shown that, Proposition 3.4 below, there is a close relationship between µ and the
Auslander-Gruson-Jensen duality

D : mod-(mod-Aop)op −→ mod-(mod-A)op.

Let Λ be an artin algebra of finite global dimension over a commutative artinian ring
R. We show that in this case, the above duality between Kb(mod-Λop) and Kb(mod-Λ)
restricts to a duality between K

b
ac(mod-Λop) and K

b
ac(mod-Λ), where for an abelian category

A, Kb
ac(A) is the full subcategory of Kb(A) consisting of all acyclic complexes. This, in turn,

implies that there is an equivalence of triangulated categories

K
b(mod-Λ)
Kb(prj-Λ)

∼ // K
b(mod-Λ)
Kb(inj-Λ)

.

Note that under certain conditions, the quotient K
b(mod-Λ)
Kb(prj-Λ) is equivalent to the relative sin-

gularity category introduced and studied recently in [KY], see Remark 3.8.
Finally, we show that Kb

ac(mod-Λ) admits a Serre functor S in the sense of [BK]. By a
well-known result of Reiten and Van den Bergh [RV, Theorem I.2.4], the existence of a Serre
functor is equivalent to the existence of Auslander-Reiten triangles in a category and so we
deduce that Kb

ac(mod-Λ) admits Auslander-Reiten triangles.
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2. Preliminaries

Throughout the paper, A denotes a right and left coherent ring. A-module means right A-
module. Mod-A, resp. mod-A, denotes the category of A-modules, resp. finitely presented A-
modules. Prj-A, resp. prj-A, denotes the full subcategory of Mod-A, resp. mod-A, consisting
of projective A-modules. Inj-A and inj-A represent injectives and finitely presented injectives,
resp. For an additive category A, D(A), resp. K(A), denotes the derived category, resp.
homotopy category, of A. As usual, the bounded derived, resp. homotopy, category of A,
will be denoted by D

b(A), resp. Kb(A).

2.1. Following Auslander we let Mod-(mod-A), resp. Mod-(mod-A)op, denote the category
of all contravariant, resp. covariant, additive functors from mod-A to Ab, the category of
abelian groups. Throughout we shall use parenthesis to denote the Hom sets. An object F of
Mod-(mod-A), resp. Mod-(mod-A)op, is called coherent if there exists a short exact sequence

(−, X) −→ (−, Y ) −→ F −→ 0,

resp. (X,−) −→ (Y,−) −→ F −→ 0,

of functors, where X and Y belong to mod-A. We let mod-(mod-A), resp. mod-(mod-A)op,
denote the full subcategory of Mod-(mod-A), resp. Mod-(mod-A)op, consisting of all coher-
ent functors. It is known [A1] that both Mod-(mod-A) and mod-(mod-A) and also their
counterparts of covariant functors are abelian categories with enough projective objects.

Special objects of such categories have been studied by several authors. In particular,
an object F of Mod-(mod-A) is flat if and only if there exists an A-module M such that
F ∼= HomA(−,M), see [JL, Theorem B.10]. We let F(mod-A) denote the full subcategory of
Mod-(mod-A) consisting of all flat functors.

2.2. A sequence 0 → X → Y → Z → 0 of A-modules is called pure exact if the induced
sequence

0 −→ X ⊗AM −→ Y ⊗AM −→ Z ⊗AM −→ 0,

is exact, for every left A-moduleM . A module P is called pure projective, resp. pure injective,
if it is projective, resp. injective, with respect to the class of all pure exact sequences. We let
PPrj-A, resp. PInj-A, denote the full subcategory of Mod-A consisting of all pure projective,
resp. pure injective, A-modules.

The derived category of A with respect to the pure exact structure is called pure derived
category and is denoted by Dpur(Mod-A). Krause [K1] introduced and studied this category
in deep. He [K1, Corollary 6] proved that for a ring A, there exists a triangle equivalence

Dpur(Mod-A) ≃ D(Mod-(mod-A)).

2.3. Let Kac(F(mod-A)) be the full subcategory of K(F(mod-A)) formed by all acyclic
complexes of flat functors. It is a thick subcategory of K(F(mod-A)) and so we have the

quotient category K(F(mod-A))
Kac(F(mod-A)) . By [AAHV, Lemma 4.4], there exists a triangle equivalence

ϕ : D(Mod-(mod-A)) −→
K(F(mod-A))

Kac(F(mod-A))
.

This equivalence maps every complexX in D(Mod-(mod-A)) to a complex F inK(F(mod-A)),
where F fits into a short exact sequence

0 −→ C −→ F −→ X −→ 0

in C(Mod-(mod-A)) in which Exti(F′,C) = 0, for i > 0 and for all F′ ∈ C(F(mod-A)).
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2.4. Recall that an object C of an abelian categoryA is called cotorsion if for every flat object
F , Ext1(F,C) = 0. Let Cot-F(mod-A) denote the full subcategory of F(mod-A) consisting
of all cotorsion-flat functors. By [H, Theorem 4], a flat functor (−,M) in Mod-(mod-A)
is cotorsion if and only if M is a pure-injective module. So the fully faithful functor U :
Mod-A −→ Mod-(mod-A) induces an equivalence

K(PInj-A)
K(U)
∼
−→ K(Cot-F(mod-A)),

of triangulated categories.

2.5. By Remark 4.5 of [AAHV], for every complex F in K(F(mod-A)), there is a triangle

G −→ F −→ C 

in K(F(mod-A)) with C ∈ K(Cot-F(mod-A)) and G ∈ Kac(F(mod-A)). So, there is a
triangle functor

ψ :
K(F(mod-A))

Kac(F(mod-A))
−→ K(Cot-F(mod-A)),

given by ψ(F) = C; see [M, Proposition 2.6] for more details.

3. Dualities of homotopy categories

Throughout the section, A is a right and left coherent ring. Our aim is to show that there
is a duality of triangulated categories

K
b(mod-Aop) −→ K

b(mod-A),

that restricts to a duality between their full subcategories of all acyclic complexes

K
b
ac(mod-Aop) −→ K

b
ac(mod-A).

3.1. In view of 2.3, 2.4 and 2.5, we get an equivalence Ψ : D(Mod-(mod-A))→ K(PInj-A) of
triangulated categories, given by the following composition

Ψ : D(Mod-(mod-A))
ϕ
−→

K(F(mod-A))

Kac(F(mod-A))

ψ
−→ K(Cot-F(mod-A))

K(U)−1

−→ K(PInj-A),

of equivalences. Throughout we will use this equivalence.

Lemma 3.2. There is an equivalence

µ : D(Mod-(mod-Aop))
∼
−→ D(Mod-(mod-A)op)

of triangulated categories, given by

µ(X) = − ⊗A Ψ(X),

where Ψ is the equivalence introduced in 3.1.

Proof. By [GJ], an object E of Mod-(mod-A)op is injective if and only if E ∼= − ⊗AM , for
some M ∈ PInj-Aop. Therefore, the full and faithful functor PInj-Aop −→ Mod-(mod-A)op,
given by the rule M 7→ − ⊗AM , induces the following triangle equivalence

K(PInj-Aop) ≃ K(Inj-(Mod-(mod-A)op)).

Moreover, similar to Lemma 4.8 of [K2], one can see that the canonical functor

K(Inj-(Mod-(mod-A)op)) −→ D(Mod-(mod-A)op)
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is an equivalence of triangulated categories. So, in view of the equivalence

Ψ : D(Mod-(mod-Aop)) −→ K(PInj-Aop)

of 3.1, we get the desired equivalence

µ : D(Mod-(mod-Aop))
∼
−→ D(Mod-(mod-A)op).

�

Lemma 3.3. Let µ be the equivalence of Lemma 3.2. Let t :M −→ N be an A-homomorphism

of left A-modules. Then µ((−,M)) = −⊗AM and µ((−, t)) = −⊗A t.

Proof. Pick M ∈ Mod-Aop and consider the functor (−,M) as a complex concentrated in
degree zero, which is a complex of flat functors. Take an injective resolution

0 −→ −⊗AM
−⊗Aε−→ I−⊗AM

of −⊗AM . By the characterization of injective objects of Mod-(mod-A)op, I−⊗AM is of the
form

I−⊗AM : 0 −→ −⊗A C
1 −⊗d1
−→ −⊗A C

2 −⊗d2
−→ −⊗A C

3 −→ · · · ,

such that for each i ∈ N, Ci is pure-injective [GJ]. Let F be the complex

0 −→M
ε
−→ C1 d1

−→ C2 d2

−→ · · ·

which is pure-exact and C be the following complex of pure-injectives

C : 0 −→ C1 d1

−→ C2 d2

−→ C3 −→ · · · .

Hence, there exists a degree-wise split exact sequence

0→ (−,C)→ (−,F)→ (−,M)→ 0

of complexes in Mod-(mod-Aop). So, there is the following triangle in K(F(mod-A))

(−,F)→ (−,M)→ (−,C)[1] 

with (−,F) ∈ Kac(F(mod-A)) and (−,C) ∈ K(Cot-F(mod-A)). Therefore, by definition,
Ψ((−,M)) = C[1]. Hence, µ((−,M)) = −⊗A C[1], which is quasi-isomorphic to −⊗AM .

Finally, natural transformation (−, t) : (−,M) −→ (−, N) induces the natural transforma-
tion −⊗A t : −⊗AM −→ −⊗AN . This, in turn, can be lifted to their injective resolutions.
Hence, µ takes the morphism (−, t) to the morphism

−⊗A t : −⊗AM −→ −⊗A N,

as it was claimed. �

Consider the functor D : mod-(mod-Aop)op −→ mod-(mod-A)op given by

(DF )(N) = Hom(F,N ⊗A −),

where F ∈ mod-(mod-Aop)op and N ∈ mod-A. This is a duality first considered by Aus-
lander [A3] and then, independently, proved by Gruson and Jensen [GJ]. It is known as the
Auslander-Gruson-Jensen duality.

In the following, we intent to show that there is a close relationship between the equivalence
µ : D(Mod-(mod-Aop)) −→ D(Mod-(mod-A)op) in Lemma 3.2 and the Auslander-Gruson-
Jensen duality D.
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Proposition 3.4. There exists a fully faithful contravariant functor

ζ : mod-(mod-Aop)op −→ D(Mod-(mod-Aop))

that commutes the following diagram

D(Mod-(mod-Aop))
µ
∼ // D(Mod-(mod-A)op)

mod-(mod-Aop)op

ζ

OO

D // mod-(mod-A)op,
?�

OO

where D is the Auslander-Gruson-Jensen duality.

Proof. Let F be an object of mod-(mod-Aop)op. By definition there is an exact sequence

(†) 0 −→ (M2,−)
(d2,−)
−→ (M1,−)

(d1,−)
−→ (M0,−) −→ F −→ 0

with Mi ∈ mod-Aop, for i ∈ {0, 1, 2}.
We define ζ(F ) to be the complex

deg0 deg1 deg2

· · · // 0 // (−,M0)
(−,d1)// (−,M1)

(−,d2)// (−,M2) // 0 // · · · .

Note that ζ(F ) is a complex of projectives and one can easily check that ζ is a full and
faithful functor.

Now, we compute the image of ζ(F ) under the functor µ. First we show that µ maps the
complex

deg1 deg2

θ : · · · // 0 // (−,M1)
(−,d2)// (−,M2) // 0 // · · ·

in D(Mod-(mod-Aop)) to the complex

deg1 deg2

· · · // 0 // −⊗AM1
−⊗d2 // −⊗M2

// 0 // · · ·

in D(Mod-(mod-A)op). The complex θ is the mapping cone of the following morphisms of
complexes

deg2

· · · // 0 // (−,M1)

(−,d2)
��

// 0 // · · ·

· · · // 0 // (−,M2) // 0 // · · ·

Since µ is a triangle functor, µ(θ) is the mapping cone of the morphism

deg2

· · · // 0 // µ((−,M1))

µ((−,d2))
��

// 0 // · · ·

· · · // 0 // µ((−,M2)) // 0 // · · · .
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By Lemma 3.3, the above diagram is isomorphic in D(Mod-(mod-A)op) to the diagram

deg2

· · · // 0 // −⊗AM1

−⊗d2
��

// 0 // · · ·

· · · // 0 // −⊗AM2
// 0 // · · · .

Thus, µ(θ) is the complex

· · · // 0 // −⊗AM1
−⊗d2 // −⊗AM2

// 0 // · · ·

with −⊗AM1 at the 1-th position.
Now, ζ(F ) is the mapping cone of the following morphism of complexes

deg1

· · · // 0 // (−,M0)

(−,d1)
��

// 0 // · · ·

· · · // 0 // (−,M1)
(−,d2)// (−,M2) // 0 // · · ·

Hence, the same argument as above, applying this time to the above diagram, implies that
µ(ζ(F )) is isomorphic in D(Mod-(mod-A)op) to the complex

deg0 deg1 deg2

· · · // 0 // −⊗AM0
−⊗d1 // −⊗AM1

−⊗d2 // −⊗AM2
// 0 // · · · .

Now, by applying D to the exact sequence (†), we have the following exact sequence

0 −→ DF −→ −⊗AM0
−⊗d1−→ −⊗AM1

−⊗d2−→ −⊗AM2 −→ 0.

Hence, if we consider DF as a complex concentrated in degree zero, then DF is quasi-
isomorphic to µ(ζ(F )) in D(Mod-(mod-A)op). This completes the proof. �

Remark 3.5. It is known that for any ring A, the derived category D(Mod-A) is com-
pactly generated. Moreover, the inclusion prj-A −→ Mod-A induces an equivalence between
Kb(prj-A) and the full subcategory D(Mod-A)c of D(Mod-A) consisting of all compact ob-
jects [Ke]. The same argument as in the ring case, implies that both D(Mod-(mod-Aop)) and
D(Mod-(mod-A)op) are compactly generated and

D(Mod-(mod-Aop))c ≃ K
b(prj-(Mod-(mod-Aop))), and

D(Mod-(mod-A)op)c ≃ K
b(prj-(Mod-(mod-A)op)).

Theorem 3.6. Let A be a right and left coherent ring. There is the following duality of

triangulated categories

φ : Kb(mod-Aop) −→ K
b(mod-A).

Proof. Since µ preserves direct sums, it preserves compact objects. So, by Remark 3.5, it
induces the equivalence

µ| : Kb(prj-(Mod-(mod-Aop))) −→ K
b(prj-(Mod-(mod-A)op))
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of triangulated categories. Moreover, Yoneda functors u : mod-Aop −→ Mod-(mod-Aop) and
v : mod-A −→ Mod-(mod-A)op yield the following equivalences of triangulated categories

ū : Kb(mod-Aop) −→ K
b(prj-(Mod-(mod-Aop))), and

v̄ : Kb(mod-A)op −→ K
b(prj-(Mod-(mod-A)op)).

Consequently, we have the following commutative diagram whose rows are triangle equiv-
alences

(3.1) D(Mod-(mod-Aop))
µ //

OO
D(Mod-(mod-A)op)

OO

Kb(prj-(Mod-(mod-Aop)))
µ| //

OO

ū

Kb(prj-(Mod-(mod-A)op))
OO

v̄

K
b(mod-Aop) K

b(mod-A)op

Therefore we get a duality φ : Kb(mod-Aop) −→ Kb(mod-A), as desired. �

Corollary 3.7. There is the following duality of triangulated categories

φ̄ :
Kb(mod-Aop)

Kb(prj-Aop)
−→

Kb(mod-A)

Kb(prj-A)
.

Proof. First we claim that the equivalence φ : Kb(mod-Aop) −→ Kb(mod-A)op can be re-
stricted to the equivalence φ| : Kb(prj-Aop) −→ K

b(prj-A)op. Indeed, let P be a finitely
generated projective left A-module. Then by Lemma 3.3, µ((−, P )) = (− ⊗A P ) and
(− ⊗A P ) ∼= (P ∗,−). Hence, (φ|)(P ) = P ∗ and so belongs to Kb(prj-A). So, using an
induction argument on the length of the complexes of Kb(prj-Aop) one can deduce that, the
functor φ takes any bounded complex over prj-Aop to a bounded complex over prj-A. So,
there is the following commutative diagram

K
b(mod-Aop)
Kb(prj-Aop)

φ̄ // K
b(mod-A)
Kb(prj-A)

K
b(mod-Aop)

φ //

OO

K
b(mod-A)

OO

Kb(prj-Aop)
φ| //

?�

OO

Kb(prj-A),
?�

OO

which implies the desired duality. �

Remark 3.8. Let (S,m) be a commutative local complete Gorenstein k-algebra, where k is an
algebraically closed field. LetM0 = S,M1, ...,Mt be pairwise non-isomorphic indecomposable
maximal Cohen-Macaulay S-modules. Set T := EndS(

⊕t
i=0Mi). There is a fully faithful

triangle functor Kb(prj-S) −→ Db(mod-T ). By [KY, Definition 1.1], the Verdier quotient

D
b(mod-T )

Kb(prj-S)
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is called the relative singularity category, denoted by ∆S(T ). This category recently has
been studied in deep in [KY]. We remark that, if S is a self-injective algebra, then ∆S(T ) is

equivalent to the quotient K
b(mod-S)
Kb(prj-S) . To see this, note that in this case all modules in mod-S

are maximal Cohen-Macaulay, and so T is the usual Auslander algebra of S, which is of finite
global dimension, in fact, less than or equal to 2.

4. Artin Algebras

In this section, we show that if Λ is an artin algebra of finite global dimension, then the
duality introduced in Theorem 3.6, restricts to a duality between their subcategories of acyclic
complexes, Kb

ac(mod-Λop) and Kb
ac(mod-Λ).

Throughout Λ is an artin R-algebra, where R is a commutative artinian ring. We need
some preparations.

Lemma 4.1. Let γ : Kb
ac(mod-Λ) −→ K

b(mod-Λ)
Kb(prj-Λ)

be the triangle functor taking every complex

to itself. Then γ is full and faithful. Furthermore, γ is dense, and so is an equivalence, if

and only if Λ has finite global dimension.

Proof. Let f : X −→ Y be a morphism in Kb
ac(mod-Λ) such that γ(f) vanishes in K

b(mod-Λ)
Kb(prj-Λ)

.

So, there is a complex Z ∈ Kb(mod-Λ) together with a morphism s : Z −→ X such that
cone(s) ∈ Kb(prj-Λ) and f ◦s is null homotopic. Hence, there is a morphism t : cone(s) −→ Y

making the following diagram commutative

Z
s // X

u //

f

��

cone(s)

t
{{

///o/o/o

Y

Since cone(s) ∈ Kb(prj-Λ) and Y is an acyclic complex, one can deduce that t, and so f , is

null homotopic. Hence, γ is faithful. Assume that X
s
← Z

f
→ Y is a roof in K

b(mod-Λ)
Kb(prj-Λ)

with X

and Y in Kb
ac(mod-Λ). Consider a triangle Z

s
→ X

u
→ cone(s) and then the composition

cone(s)[−1]
u[−1]
→ Z

f
→ Y.

Since cone(s) ∈ Kb(prj-Λ) and Y is acyclic, the above morphism is null homotopic. So, there
is a morphism t : X −→ Y making the following diagram commutative

cone(s)[−1] // Z
s //

f

��

X ///o/o/o

t��
Y



DUALITY AND SERRE FUNCTOR 9

Now, the following commutative diagram implies that the roof f ◦ s−1 is equivalent to a roof

t ◦ id−1 in K
b(mod-Λ)
Kb(prj-Λ)

Z
id

��✄✄
✄✄
✄

s

��❁
❁❁

❁❁

Z
f

))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙

s

��✂✂
✂✂
✂

X
id

uu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦
t

��❂
❂❂

❂❂

X Y

This means that γ is full.
For the last part of the statement, let Λ has finite global dimension and M be a finitely

presented Λ-module. Take a finite projective resolution PM
π
−→M ofM . The mapping cone

cone(π) belongs to Kb
ac(mod-Λ) and is isomorphic to M in K

b(mod-Λ)
Kb(prj-Λ)

. Therefore, γ is dense

and hence is an equivalence of triangulated categories.
For the converse, let S be a simple Λ-module. Since γ is dense, there is a bounded acyclic

complex X ∈ Kb
ac(mod-Λ) which is isomorphic to S in K

b(mod-Λ)
Kb(prj-Λ) . Hence, we have a roof

S Z
q //soo X such that cone(s) and cone(q) belong to Kb(prj-Λ). As X is an acyclic

complex, a triangle Z
q
→ X→ cone(q) implies that Z is quasi-isomorphic to cone(q). Now,

consider the image of a triangle Z
s
→ S → cone(s) in Db(mod-Λ). Since Z and cone(s) are

isomorphic in Db(mod-Λ) to bounded complexes of finitely generated projective Λ-modules,
so is S. This means that S has finite projective dimension. The proof is now complete. �

The argument in the proof of the above lemma carry over verbatim to yield the following
lemma.

Lemma 4.2. Let γ′ : Kb
ac(mod-Λ) −→ K

b(mod-Λ)
Kb(inj-Λ)

be a triangle functor taking every complex

to itself. Then γ′ is full and faithful. Furthermore, γ′ is dense, and so is an equivalence, if

and only if Λ has finite global dimension.

Proposition 4.3. Let Λ be an artin algebra of finite global dimension. Then there is the

following duality of triangulated categories

K
b
ac(mod-Λop) ≃ K

b
ac(mod-Λ).

Proof. Corollary 3.7 in conjunction with Lemma 4.1 imply the result. �

Lemma 4.4. Let Λ be an artin algebra of finite global dimension. Then there is a full and

faithful functor

λ : mod-Λ −→
Kb(mod-Λ)

Kb(prj-Λ)

taking every Λ-module M to itself.

Proof. By Lemma 4.1, we have the following equivalence of triangulated categories

K
b
ac(mod-Λ)

γ
−→

Kb(mod-Λ)

Kb(prj-Λ)
.

So, it is enough to show that the functor

mod-Λ −→ K
b
ac(mod-Λ)
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mapping every moduleM in mod-Λ to the mapping cone of a projective resolutionPM −→M
of M , is full and faithful. This follows easily from the properties of projective resolutions.
Hence, the functor λ which is the composition of the above two functors is also full and
faithful. �

Lemma 4.5. Let Λ be an artin algebra of finite global dimension. Then there is a full and

faithful functor

λ′ : mod-Λ −→
Kb(mod-Λ)

Kb(inj-Λ)

taking every Λ-module M to itself.

Proof. The proof is similar to the proof of the above lemma. Just one should consider the
functor ς : mod-Λ −→ Kb

ac(mod-Λ) which maps every module M to the mapping cone of an
injective resolution M −→ EM of M , show that ς is full and faithful and then apply Lemma
4.2. We skip the details. �

Let P0
f
−→ P1 −→M −→ 0 be a projective presentation of the A-module M . Recall that

the Auslander transpose of M , TrM , is defined to be the Aop-module Coker(HomA(f,A)).
It is known that TrM is unique up to projective equivalences and so induces an equivalence

Tr : mod-Aop −→ (mod-A)op

of stable categories.

Proposition 4.6. Let Λ be an artin algebra of finite global dimension. Then there is the

following commutative diagram

K
b(mod-Λop)
Kb(prj-Λop)

φ̄[−2] // K
b(mod-Λ)
Kb(prj-Λ)

mod-Λop

λ

OO

Tr // mod-Λ,

λ

OO

such that rows are dualities and λ is the functor defined in Lemma 4.4.

Proof. Let M be a finitely presented left Λ-module with no projective direct summands.
Consider the functor (−,M) in D(Mod-(mod-Λop)). By Lemma 3.3, µ((−,M)) = − ⊗Λ M .
If Q −→ P −→M −→ 0 is a projective presentation of M , then the exact sequence

0 −→ (TrM,−) −→ (Q∗,−) −→ (P ∗,−) −→ −⊗Λ M −→ 0

implies that µ((−,M)) is isomorphic to the following complex in D(Mod-(mod-Λ)op)

0 −→ (TrM,−) −→ (Q∗,−) −→ (P ∗,−) −→ 0.

It follows from the definition of φ, see diagram (3.1), that φ(M) is a complex

0 −→ P ∗ −→ Q∗ −→ TrM −→ 0

in Kb(mod-Λ). This clearly is isomorphic to TrM [2] in K
b(mod-Λ)
Kb(prj-Λ)

. �

Remark 4.7. It is known that if Λ is an artin R-algebra, there is the duality

D : mod-Λ −→ mod-Λop
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defined by D(M) = HomR(M,E), where E is the injective envelope of R/radR. The duality
D : mod-Λ −→ mod-Λop can be extended to the following duality of triangulated categories

K
b(mod-Λ)

∼
−→ K

b(mod-Λop).

Moreover, it is known that the duality D can be restricted to the duality

D| : prj-Λ
∼
−→ inj-Λop.

This duality also can be extended to the duality

K
b(prj-Λ)

∼
−→ K

b(inj-Λop)

of triangulated categories. Therefore, we can deduce that D induces a duality

Kb(mod-Λ)

Kb(prj-Λ)
≃

Kb(mod-Λop)

Kb(inj-Λop)

of triangulated categories, which we denote it again by D.

Corollary 4.8. Let Λ be an artin algebra of finite global dimension. Then there is the

following commutative diagram

K
b(mod-Λ)
Kb(prj-Λ)

φ̄[−2] // K
b(mod-Λop)
Kb(prj-Λop)

D // K
b(mod-Λ)
Kb(inj-Λ)

mod-Λ

λ

OO

DTr // mod-Λ,

λ′

OO

such that λ and λ′ are fully faithful and DTr and Dφ̄[−2] are equivalences.

Proof. By Lemmas 4.4 and 4.5, λ and λ′ are fully faithful, respectively. The commutativity
of the diagram follows from Proposition 4.6. �

5. Serre functor for Kb
ac(mod-Λ)

In this section, we prove that if Λ is an artin algebra of finite global dimension, then
Kb

ac(mod-Λ) has Serre duality and will investigate the relationship between this Serre duality
and the equivalence

K
b(mod-Λ)
Kb(prj-Λ)

Dφ̄[−2]// K
b(mod-Λ)
Kb(inj-Λ)

of Corollary 4.8.
Recall that for a Hom-finite Krull-Schmidt R-linear triangulated category T , a Serre func-

tor is an auto-equivalence S : T −→ T such that the Serre duality formula holds, that is, we
have bifunctorial isomorphisms

DT (X,Y ) ∼= T (Y, SX), for all X,Y ∈ T ,

where D is the duality HomR(−, R).
To begin, observe that the duality

D : mod-Λ −→ mod-Λop

induces the duality

D : mod-(mod-Λ) −→ mod-(mod-Λ)op
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which maps a functor F to the functor DF (M) = D(F (M)) for everyM ∈ mod-Λ. So, every
injective object in mod-(mod-Λ) is of the form DHomΛ(M,−), for some M ∈ mod-Λ. Define
a functor

V : Prj-(mod-(mod-Λ)) −→ Inj-(mod-(mod-Λ))

by V(HomΛ(−,M)) = DHomΛ(M,−). It is an equivalence of categories. V can be naturally
extended to the equivalence

K
b(Prj-(mod-(mod-Λ)))

∼
−→ K

b(Inj-(mod-(mod-Λ)))

of triangulated categories, which we denote it again by V .
Since global dimension of mod-(mod-Λ) is finite, V is in fact the equivalence

D
b(mod-(mod-Λ)) −→ D

b(mod-(mod-Λ)).

Now, the same argument as in the proof of Proposition 5.3 of [ABHV] can be applied to
prove that this functor is a Serre duality, i.e. for every X,Y ∈ Db(mod-(mod-Λ)) there is
the following natural isomorphism

Hom(X,Y) ∼= DHom(Y,VX),

where both Hom are taken in Db(mod-(mod-Λ)).

Proposition 5.1. Let Λ be an artin algebra. Then Kb(mod-Λ) has Serre duality.

Proof. There is an equivalence Db(mod-(mod-Λ)) ≃ Kb(Prj-(mod-(mod-Λ))) of triangulated
categories, because gl.dim(mod-(mod-Λ)) is finite. So, in view of Yoneda lemma, we get an
equivalence

Q : Kb(mod-Λ) −→ D
b(mod-(mod-Λ))

of triangulated categories. Let U : Kb(mod-Λ) −→ Kb(mod-Λ) be the functor that commutes
the following diagram

D
b(mod-(mod-Λ))

V // Db(mod-(mod-Λ))

Kb(mod-Λ)
U //

Q

OO

Kb(mod-Λ).

Q

OO

It can be easily checked that U is also a Serre duality functor, i.e. for every complexes X and
Y in Kb(mod-Λ) we have the following isomorphism

HomKb(mod-Λ)(X,Y) ∼= DHomKb(mod-Λ)(Y,UX).

�

Remark 5.2. The above proposition was proved by Backelin and Jaramillo [BJ] using differ-
ent approach. Their method is based on the construction of a t-structure in Kb(mod-Λ). It
also can be obtained from [ZH, Theorem 3.4]. The proof presented here uses functor category
techniques.

Proposition 5.3. Let Λ be an artin algebra of finite global dimension. Then K
b
ac(mod-Λ)

has Serre duality.
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Proof. First note that the inclusion functor i : Kb
ac(mod-Λ) −→ Kb(mod-Λ) admits a right

adjoint iρ : Kb(mod-Λ) −→ Kb
ac(mod-Λ). In fact, iρ is defined as follows. Let X be a

complex in K
b(mod-Λ). It has a K-injective resolution ιX : X −→ IX with IX ∈ K

b(inj-Λ).
Then iρ(X) = cone(ιX)[−1]. We set S : Kb

ac(mod-Λ) −→ Kb
ac(mod-Λ) to be the following

composition of triangle functors

K
b
ac(mod-Λ)

i
−→ K

b(mod-Λ)
U
−→ K

b(mod-Λ)
iρ
−→ K

b
ac(mod-Λ).

For every two complexes X and Y in K
b
ac(mod-Λ), there are the following isomorphisms

HomKb
ac(mod-Λ)(X,Y) ∼= HomKb(mod-Λ)(iX, iY)

∼= HomKb(mod-Λ)(iY,UiX)
∼= HomKb

ac(mod-Λ)(Y, iρUiX).

So S : Kb
ac(mod-Λ) −→ K

b
ac(mod-Λ) is a Serre duality. �

Let T be a Hom-finite R-linear Krull-Schmidt triangulated category, where R is a com-

mutative artinian ring. A triangle X
f
−→ Y

g
−→ Z

h
−→ X [−1] in T is an Auslander-Reiten

triangle if the following conditions are satisfied

(i) X and Z are indecomposable.
(ii) h 6= 0.
(iii) If W is an indecomposable object in T , then every non-isomorphism t : W −→ Z

factors through g.

We say that T has Auslander-Reiten triangles, if for every indecomposable objectW there
exist Auslander-Reiten triangles starting and ending at W .

Corollary 5.4. Let Λ be an artin algebra of finite global dimension. Then the triangulated

category Kb
ac(mod-Λ) has Auslander-Reiten triangles.

Proof. It follows directly from Proposition 5.3 and Theorem I.2.4 of [RV]. �

The last theorem of the paper establishes a tight connection between the the functor S

and the equivalence Dφ̄[−2] of Corollary 4.8.

Theorem 5.5. Let Λ be an artin algebra of finite global dimension. Then there is the

following commutative diagram

K
b(mod-Λ)
Kb(prj-Λ)

φ̄[−2] // K
b(mod-Λop)
Kb(prj-Λop)

D // K
b(mod-Λ)
Kb(inj-Λ)

Kb
ac(mod-Λ)

∼

OO

S[−2] // Kb
ac(mod-Λ),

∼

OO

where columns are equivalences of Lemmas 4.1 and 4.2.

Proof. Let M be a finitely presented Λ-module with no projective direct summands. Then
U(M) is isomorphic to the following complex

deg − 2 deg − 1 deg0

· · · // 0 // DTrM // DP ∗
1

Df∗

// DP ∗
0

// 0 // · · · ,
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where P1
f
−→ P0 −→M −→ 0 is the minimal projective resolution of M . Let

U(M) :

ιU(M)

��

0 // DTrM //

��

DP ∗
1

Df∗

//

��

DP ∗
0

//

��

0 //

��

· · ·

I : 0 // I0 // I1 // I2 // I3 // · · · // Im // 0

be a K-injective resolution of U(M). By definition S(M) = cone(ιU(M))[−1] and so it is

isomorphic in K
b(mod-Λ)
Kb(inj-Λ)

to DTrM [2]. Hence, S[−2](M) = DTrM .

On the other hand by Corollary 4.8, D(φ̄[−2])(M) = DTrM , for everyM ∈ mod-A. Now,
an induction argument on the length of the bounded complexes in Kb

ac(mod-Λ) works to
prove the commutativity of the desired diagram. See the proof of Proposition 3.4 for similar
argument. �
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