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The Hodge theory of the Hecke category

Geordie Williamson

Abstract. Ideas from Hodge theory have found important applications in representation
theory. We give a survey of joint work with Ben Elias which uncovers Hodge theoretic
structure in the Hecke category (“Soergel bimodules”). We also outline similarities and
differences to other combinatorial Hodge theories.
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1. Introduction

In representation theory the setting is often highly structured. Thus it is surprising
that several central theorems and conjectures may be interpreted as stating that
a given situation behaves as if it were generic.1 (An example: a generic bilinear
form on a vector space is non-degenerate, however establishing that a specific form
is non-degenerate might be very difficult.)

The notion of a Hodge structure first arose in complex algebraic geometry. The
existence of Hodge structures is the extra data that distinguishes the cohomology
groups of algebraic varieties (or Kähler manifolds) from those of general spaces.
Over the last twenty years it has been discovered that some kind of combinatorial
Hodge structure exists in at least four other situations (polytopes, Coxeter groups,
matroids, tropical geometry). The existence of these structures has lead to the
solutions of several conjectures which have elementary formulations, but no ele-
mentary proofs. (An example of such an elementary question: how many faces of
each dimension can a polytope have?) It is an interesting question as to whether
there is a unifying framework for these various “Hodge theories”.

In this paper we survey these Hodge theories and then concentrate on Soergel
bimodules, which gives rise to Hodge structures in three distinct ways (global, rel-
ative and local). Hodge structures are powerful enough to deduce the genericity
statements alluded to above, and thus to prove several positivity conjectures about
the Kazhdan-Lusztig basis. They also provide new algebraic proofs of difficult the-
orems in representation theory (Kazhdan-Lusztig conjecture, Jantzen conjecture).

The structure of this survey is as follows. In §2 we define what we mean by
a combinatorial Hodge theory and in §3 we give some examples. In §4 we recall
the Hecke algebra, its Kazhdan-Lusztig basis and its categorification by Soergel
bimodules. Finally, in §5 we survey the Hodge structures arising from Soergel
bimodules.

1I learnt this point of view from W. Soergel and P. Fiebig.

http://arxiv.org/abs/1610.06246v1
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2. Combinatorial Hodge theory

Here we outline what we mean by combinatorial Hodge theory. So far most of the
structures that show up outside complex algebraic geometry are of a very simple
form (they are of “Hodge-Tate type”). This means that much of the linear algebra
simplifies greatly.

2.1. Lefschetz data. Let Λ ⊂ R denote a subfield. Examples to keep in mind are
Λ = Q,R or some finite extension of Q. By Lefschetz data we mean the following:

(1) A finite dimensional graded Λ-vector space H =
⊕

i∈Z H
i which vanishes in

either even or odd degree.

(2) A non-degenerate graded symmetric bilinear form

〈−,−〉 : H ×H → Λ

(“graded” means that 〈Hi, Hj〉 = 0 if i 6= −j).

(3) A graded vector space V concentrated in degree 2 together with a map of
graded algebras

a : S•(V ) → End(H)

where S•(V ) denotes the graded symmetric algebra on V (i.e. we are given
commuting endomorphisms a(γ) : H• → H•+2 depending linearly on γ ∈ V ).
Via a we may view H as a graded S•(V )-module. From now on we forget a
and, for any p ∈ S•(V ), simply write

p · h := a(p)(h).

We require that the action is compatible with 〈−,−〉 in the sense that

〈p · h, h′〉 = 〈h, p · h′〉 for all p ∈ S•(V ) and h, h′ ∈ H .

(4) An open convex cone Vample ⊂ V (“cone” means that Vample is closed under
multiplication by Λ>0 := R>0 ∩ Λ.)

We say that γ ∈ V satisfies hard Lefschetz if for all i ≥ 0 the action by γi yields
an isomorphism

γi : H−i ∼
→ Hi.

We say that Lefschetz data as above satisfies hard Lefschetz if all γ ∈ Vample satisfy
hard Lefschetz.

Let us fix γ ∈ V which satisfies hard Lefschetz. We define the γ-primitive
subspace (or simply primitive subspace) to be

P−i
γ := ker(γi+1 : H−i → Hi+2) ⊂ H−i.

For any such γ the map induced by the inclusions P−i
γ →֒ H−i gives an isomor-

phism of Λ[γ]-modules (the primitive decomposition):
⊕

i≥0

Λ[γ]/(γi+1)⊗Λ P−i
γ

∼
→ H.
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Remark 2.1. Let us fix Lefschetz data H,V etc. as above. Consider the Lie
algebra sl2 := Λf ⊕ Λh⊕ Λe over Λ with

f =

(

0 0
1 0

)

, h =

(

1 0
0 −1

)

and e =

(

0 1
0 0

)

.

Then γ ∈ V satisfies hard Lefschetz if and only if there is a (necessarily unique) sl2-
action on H with e(x) = γ ·x and h(x) = jx for all x ∈ Hj (see e.g. [38, §1]). With
respect to this action, the primitive decomposition is the isotypic decomposition
and the primitive subspaces are the lowest weight spaces (i.e. P−i

γ = ker(f :

H−i → H−i−2)).

For any γ ∈ V and i ≥ 0 we can consider the symmetric form

(−,−)−i
γ : H−i ×H−i → Λ

(h, h′) 7→ 〈h, γi · h′〉

It is non-degenerate if and only if γ satisfies hard Lefschetz on H . Let m denote the
minimal non-zero degree in H . We say that γ ∈ V satisfies the Hodge-Riemann
bilinear relations if for all i ≥ 0 the restriction of (−,−)−i

γ to P−i
γ ⊂ H−i is

(−1)(−i−m)/2-definite.2 In other words, we require that

• (−,−)mγ is positive definite on Pm
γ = Hm,

• (−,−)m+2
γ is negative definite on Pm+2

γ ⊂ Hm+2,

• (−,−)m+4
γ is positive definite on Pm+4

γ ⊂ Hm+4, etc.

If γ satisfies the Hodge-Riemann bilinear relations then it satisfies hard Lefschetz.
We say that Lefschetz data as above satisfies the Hodge-Riemann bilinear relations
if all γ ∈ Vample do.

Remark 2.2. The set of γ ∈ V which satisfy hard Lefschetz is Zariski open
and stable under multiplication by Λ×. The set of γ ∈ V which satisfy the Hodge-
Riemann bilinear relations is an open semi-algebraic set stable under multiplication
by Λ>0.

2.2. The case of a graded algebra. Many examples of Lefschetz data arise
from Frobenius algebras. Consider

(1) A positively graded commutative Λ-algebra A =
⊕

i≥0 A
i which vanishes in

odd degree.

(2) A degree zero map (“Frobenius form”)

tr : A → Λ(−2m)

which does not vanish on any non-zero ideal of A. (Here Λ(−2m) denotes
the one-dimensional graded vector space concentrated in degree 2m, for some
m ≥ 0.)

2The exponent (−i−m)/2 is always an integer if H−i 6= 0 by our assumption that H vanishes
in even or odd degrees.
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(3) An open convex cone A2
ample ⊂ A2.

To this we may associate a Lefschetz datum as follows:

(1) We set H := A(m), i.e. H =
⊕

Hi where Hi := Ai+m.

(2) We define 〈a, a′〉 := tr(aa′) (non-degenerate by assumption (2)).

(3) Vample := A2
ample ⊂ V := A2 with action induced by the multiplication in A.

3. Some examples

In this section we give some examples of Lefschetz data.

3.1. Classical Hodge theory. Let X be a connected smooth complex projective
variety (or more generally a compact Kähler manifold) of (complex) dimension m.
Let A := H∗(X,Q) denote its (singular) cohomology ring. It is equipped with the
trace tr : A2m → Q given by pairing with the fundamental class of X and the
corresponding Poincaré form 〈α, β〉 = tr(α ∪ β). Let A2

ample ⊂ A2 = H2(X,Q)
denote the ample cone (the convex hull of all Q>0-multiples of Chern classes of
ample line bundles).

Assume that the Hodge decomposition of H∗(X,C) involves only type (p, p).3

By classical Hodge theory (see e.g. [47]) the corresponding Lefschetz datum (see
§2.2) satisfies hard Lefschetz and the Hodge-Riemann bilinear relations.

If X is still projective but no longer smooth we can instead consider its intersec-
tion cohomology H := IH∗(X,Q). This is a graded H∗(X)-module concentrated
in degrees between −m and m, and is equipped with a non-degenerate intersection
form 〈−,−〉. Suppose as before that the Hodge decomposition of H ⊗Q C only
involves type (p, p). Then the Lefschetz datum (H, 〈−,−〉, Aample) satisfies hard
Lefschetz and the Hodge-Riemann bilinear relations [4, 12].

In examples coming from algebraic geometry, all Lefschetz data are naturally
defined over Q.

3.2. Polytopes. Recall that a polytope P ⊂ Rn is the convex hull of finitely
many points in Rn. A polytope is simplicial if all of its maximal dimensional faces
are simplices. Any n-dimensional polytope determines a collection ∆ of polyhedral
cones (a “fan”) by moving P so that its interior contains the origin and considering
the cones spanned by all faces F 6= P of P . To P we may associate A(P ), the
algebra of functions on Rn which are piecewise polynomial on all cones in ∆, and
its quotient Π(P ) by the action of polynomials of positive degree on Rn. The
algebras A(P ) and Π(P ) are graded by degree. Inside Π(P )1 we can consider the
convex cone of Π(P )1ample given by (the image of) strictly convex piecewise linear
functions on ∆. If P is simplicial then there exists a trace map tr : Π(P )n → R

3We ignore here the more general form of the Hodge-Riemann bilinear relations (see e.g. [47])
when Hodge types other than (p, p) are present.
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[10]. (In this case Π(P ) is isomorphic to the polytope algebra of McMullen [36],
and under this isomorphism tr is given by volume.4)

If P is simplicial then (after doubling degrees and applying the recipe of §2.2)
the associated Lefschetz data satisfies hard Lefschetz and the Hodge-Riemann bi-
linear relations. The hard Lefschetz theorem can be used to deduce the neces-
sity of McMullen’s conditions on the number of faces of P of each dimension
(“face numbers”) [35]. The Hodge-Riemann relations imply generalisations of the
Aleksandrov-Fenchel inequalities in convex geometry. The hard Lefschetz theorem
and Hodge-Riemann bilinear relations were proved by Stanley by “wiggling the
vertices” of P so that they become rational numbers, and then identifying Π(P )
with the cohomology ring of a rationally smooth projective toric variety [45]. A
direct proof (entirely within the world of convexity) was given by McMullen [37].

If P is no longer simplicial then Bressler and Lunts [9] described a combinatorial
recipe to produce a graded Π(P )-module H(P ), which agrees with the intersec-
tion cohomology of a projective (but no longer necessarily rationally smooth) toric
variety if the vertices of P are rational numbers (similar results were obtained by
Barthel, Brasselet, Fieseler and Kaup [2]). The graded module H(P ) is equipped
with a symmetric non-degenerate form 〈−,−〉 : H(P )×H(P ) → R. It is a theorem
of Karu [26] (see also [7]) that the Lefschetz data (H(P ), 〈−,−〉,Π(P )1ample) satis-
fies hard Lefschetz and the Hodge-Riemann bilinear relations. The hard Lefschetz
theorem is used to deduce the unimodality of Stanley’s generalised h-vector, how-
ever here it is unclear if these inequalities have any significance for face numbers.

The (initially counterintuitive) fact that there exist polytopes whose combina-
torial type is not that of any polytope with rational vertices (see e.g. [50]) means
that the trick of “wiggling vertices” cannot be used to deduce Karu’s theorem from
the hard Lefschetz theorem and Hodge-Riemann relations for algebraic varieties.

Note that, if P has vertices defined over some subfield Λ ⊂ R then Π(P ) and
H(P ) are defined over Λ. Hence non-rational polytopes give many examples of
Lefschetz data with no natural Q-structure.

3.3. Coxeter groups. This is the subject of this survey. The theory of Soergel
bimodules yields Lefschetz data satisfying hard Lefschetz and the Hodge-Riemann
bilinear relations in three distinct ways (which we refer to as global, relative and
local). The simplest interesting example of a vector space underlying Lefschetz
data that arises from this theory is the coinvariant algebra (see Remark 5.7)

C := R/〈RW
+ 〉.

Here W ⊂ GL(V ) denotes a finite reflection group; R denotes the polynomial
functions on V , graded so that degV ∗ = 2; 〈RW

+ 〉 denotes the ideal generated by
W -invariants which are homogenous of strictly positive degree.

Examples arising from Soergel bimodules are defined over finite extensions of Q
obtained by adjoining algebraic integers of the form 2 cos(π/mst) wheremst ∈ Z≥2.

4More precisely, we should tensor the degree zero part of the polytope algebra by the real
numbers to obtain such an isomorphism, see [36].
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Thus there are many examples with no natural Q-structure (and probably no Q-
structure at all). Thus it seems unlikely that they arise from complex algebraic
varieties in any straightforward way.

3.4. Matroids. Let M be a matroid of rank r + 1 on a set of cardinality n+ 1.
(For example, if k is a field and if {v0, . . . , vn} ⊂ V is a spanning set of vectors in
an r+1-dimensional k-vector space then we obtain a matroid which tells us which
subsets of {v0, . . . , vn} are linearly independent, of maximal size and fixed rank,
etc. Matroids arising from such arrangements are said to be realisable over k.)
To M one may associate its Chow ring A∗(M), a graded commutative R-algebra.
Under mild assumptions (“loopless”) on M , the Chow ring is equipped with an
isomorphism deg : Ar(M)

∼
→ Q and a cone A1(M)conv ⊂ A1(M) of “strictly convex

functions” (see [1] and the references therein).
In [1], it is proved (after doubling degrees and applying the recipe of §2.2) that

the associated Lefschetz datum satisfies hard Lefschetz and the Hodge-Riemann
bilinear relation. From the Hodge-Riemann relations the authors deduce the log
concavity of the absolute value of the coefficients of the characteristic polynomial
of M , an old conjecture in matroid theory. This generalises a similar log concavity
property for the chromatic polynomial of a graph [23].

The Chow ring A∗(M) is defined over Q. In [1, §5.4] it is proved that Ar(M)
is naturally isomorphic to the Chow ring of a rationally smooth projective vari-
ety over k if and only if the matroid is realisable over k. (However recall that
“most” matroids are probably not realisable over any field.) If k = C then the
hard Lefschetz and Hodge-Riemann relations for A∗(M) may be deduced from
classical Hodge theory; for general k they are related to Grothendieck’s standard
conjectures.

Remark 3.1. The reader is referred to [24] for another remarkable example (of
quite a different flavour to those discussed above) of combinatorial Hodge theory,
this time arising from tropical geometry.

4. The Hecke category

4.1. Coxeter systems. Let (W,S) denote a Coxeter system. That is, W is a
group together with a distinguished finite generating set S ⊂ W of simple reflec-
tions such that W admits a Coxeter presentation

W = 〈s ∈ S | (st)mst = id for all s, t ∈ S〉

for certain mst ∈ Z≥0 such that mss = 1 for all s ∈ S and mst ∈ {2, 3, 4, . . .}∪{∞}
for s 6= t (mst = ∞ means that we do not impose any relation on st). By definition
the reflections is the subset T ⊂ W consisting of the conjugates of S:

T :=
⋃

w∈W

wSw−1.
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Remark 4.1. Coxeter groups are so called because of Coxeter’s theorem that any
finite reflection group (i.e. finite subgroup of linear transformations of a real vector
space generated by reflections) may be given a Coxeter presentation.

For any x ∈ W a reduced expression is an expression x = (s1, . . . , sm) for x in
the generating set S (i.e. x = s1 . . . sm with all si ∈ S) which is of minimal length.
We denote by ℓ : W → Z≥0 the length function on W (i.e. ℓ(x) is the length of a
reduced expression for x). Let ≤ denote the Bruhat order on W .

Central to the theory of Soergel bimodules is a certain reflection5 representation
of W . To this end consider a finite dimensional real vector space h together with
subsets {α∨

s }s∈S ⊂ h and {αs}s∈S ⊂ h∗ of coroots and roots satisfying the following
two conditions:

(1) the subsets {α∨
s }s∈S ⊂ h and {αs}s∈S ⊂ h∗ are linearly independent;

(2) under the natural pairing h∗ × h → R we have

〈αs, α
∨
t 〉 = −2 cos(π/mst). (4.1)

Then the assignment s 7→ φ∨
s ∈ GL(h) (resp. s 7→ φs ∈ GL(h∗)) where

φ∨
s (v) := v − 〈αs, v〉α

∨
s (resp. φs(λ) := λ− 〈λ, α∨

s 〉αs)

defines a representation of W on h (resp. h∗).

Remark 4.2. Some remarks are in order:

(1) The above definition mimics the action of the Weyl group on a Cartan subal-
gebra of a complex semi-simple Lie algebra. The only difference to the Weyl
group case is that we have scaled all roots so as to have the same length.

(2) Central to the study of general Coxeter systems is a “geometric” represen-
tation first defined by Tits. One sets h :=

⊕

s∈S Rα∨
s and defines αs ∈ h∗

by equation (4.1) above. With this definition {αs}s ∈ h∗ will be linearly
independent if and only if W is finite. Thus the representation considered
above usually does not agree with Tits’ representation. The need to “en-
large” so that both roots and coroots are linearly independent is important
in the theory of Kac-Moody Lie algebras [25]. It is also aesthetically pleasing
to have h and h∗ play symmetric roles.

By our assumptions above the intersections of half-spaces

h+reg :=
⋂

s∈S

{v ∈ h | 〈αs, v〉 > 0} and h∗+reg :=
⋂

s∈S

{λ ∈ h | 〈λ, α∨
s 〉 > 0}

are non-empty. Borrowing terminology from Lie theory we refer to elements in
either set as dominant regular.

5i.e. reflections act as reflections
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4.2. The Hecke algebra and Kazhdan-Lusztig basis. The Hecke algebra is a
deformation of the group algebra of a Coxeter group which plays a fundamental role
in Lie theory. It is a free Z[v±1]-algebra H with basis {hx}x∈W and multiplication
determined by the rules (for s ∈ S and x ∈ W )

hshx =

{

hsx if sx > x,

(v−1 − v)hx + hsx if sx < x.

The basis {hx | x ∈ W} is the standard basis of H . The algebra H posesses an
involution h 7→ h determined by v 7→ v−1 and hx 7→ h−1

x−1 .
The algebraH possesses a remarkable basis, discovered by Kazhdan and Lusztig

[27]. The Kazhdan-Lusztig basis is the unique basis {bx} for H such that:

(1) bx = bx (“self-duality”);

(2) bx ∈ hx +
∑

y<x vZ[v]hy.

For example bs = hs + vhid. If we write

bx =
∑

y∈W

py,xhy

the polynomials py,x are Kazhdan-Lusztig polynomials.
The Kazhdan-Lusztig basis appears to satisfy numerous (a priori very myste-

rious) positivity properties. Here is an incomplete list:

(1) Positivity of Kazhdan-Lusztig polynomials:

py,x ∈ Z≥0[v]. (4.2)

(2) Positivity of inverse Kazhdan-Lusztig polynomials: If we write

hx =
∑

(−1)ℓ(x)−ℓ(y)gy,xby

then
gy,x ∈ Z≥0[v]. (4.3)

(3) Positivity of structure constants: If we write

bxby =
∑

µz
x,ybz

then
µz
x,y ∈ Z≥0[v

±1]. (4.4)

(4) Unimodality of structure constants: If we set

[m] :=
vm − v−m

v − v−1
= v−m+1 + v−m+3 + · · ·+ vm−3 + vm−1 (4.5)
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and, for all x, y, z ∈ W , write

µz
x,y =

∑

m≥1

az,mx,y [m]

(this is possible since µz
x,y = µz

x,y), then

az,mx,y ∈ Z≥0. (4.6)

(In other words, µz
x,y is the character of a finite dimensional sl2(C)-module.)

Remark 4.3. As the reader has probably already noticed, (4.6) is strictly stronger
than (4.4). We separate them here because (as we will see) the explanation for
(4.6) lies deeper than that of (4.4).

One of the main purposes of this note is to state theorems of a Hodge theoretic
nature about Soergel bimodules which imply:

Theorem 4.4 ([16] and [19]). Positivity properties (4.2), (4.3), (4.4) and (4.6)
hold for any Coxeter system.

Remark 4.5. That (4.2) holds for Weyl and affine Weyl groups is due to Kazhdan-
Lusztig [28]. That (4.3) is true for affine and Weyl groups is proved in [46] (the
proof uses ideas of Springer, MacPherson and Brylinski). Since the construction
of Kac-Moody flag varieties for any generalised Cartan matrix it was understood
that the arguments of [28, 46] can be used to show that (4.2) and (4.3) hold for
any “crystallographic” Coxeter group (i.e. mst ∈ {2, 3, 4, 6,∞} for all s 6= t).

Remark 4.6. There are almost no cases so far where there exists combinatorial
(i.e. only using combinatorics of Coxeter groups) proofs of the above positivity
properties. Notable exceptions include the case of “Grassmannian” permutations
in the symmetric group [31], and the case of “universal” Coxeter systems [14]. Let
us repeat Bernstein’s opinion on the subject of combinatorial formulas [5]: “In
some cases one can get explicit formulas for [Kazhdan-Lusztig polynomials]. For
instance, one can calculate intersection cohomology for Schubert varieties on usual
Grassmannians (see Lascoux and Schützenberger). But Zelevinsky showed that in
this case it is possible to construct small resolutions of singularities. I would say
that if you can compute a polynomial P for intersection cohomologies in some case
without a computer, then probably there is a small resolution which gives it.”

Remark 4.7. The reader is referred to [15] for a list of further positivity properties
and to [21] for some recent results.

4.3. Bimodules. Let R denote the regular functions on h. (After choosing a
basis x1, . . . , xn for h∗, R is simply the polynomial ring R[x1, . . . , xn].) Let R-bim
denote the category of graded R-bimodules, with morphisms those R-bimodule
maps which preserve the grading (i.e. are of “degree zero”). Given bimodules
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M,N ∈ R-bim we let Hom(M,N) denote the vector space of bimodule homomor-
phisms. We denote the tensor product of M and N by juxtaposition:

MN := M ⊗R N ∈ R-bim.

This gives R-bim the structure of monoidal category with unit R. For M =
⊕

i∈Z M
i ∈ R-bim and m ∈ Z we denote the shifted bimodule by M(m)

M(m)i := Mm+i.

(So M(m) is the same bimodule with grading shifted “down” by m.) Given bimod-
ules M,N ∈ R-bim we denote by Hom•(M,N) the graded R-bimodule consisting
of morphisms of all degrees:

Hom•(M,N) :=
⊕

m∈Z

Hom(M,N(m)).

(We emphasise that this is simply notation: it does not refer to the homomorphisms
in any category we consider in this paper.)

Let R-bimfg denote the full subcategory of R-bim consisting of bimodules
which are finitely generated both as left and right R-modules. Then R-bimfg

is a monoidal subcategory of R-bim. If M,N ∈ R-bimfg then Hom(M,N) is fi-
nite dimensional. It follows that the additive category R-bimfg is Krull-Schmidt:
any object admits a decomposition into indecomposable objects and an object is
indecomposable if and only if its endomorphism ring is local; it follows that the
Krull-Schmidt theorem holds in R-bimfg.

4.4. Soergel bimodules. Recall that R is the polynomial ring of regular func-
tions on h. Thus our Coxeter group W acts on R (by functoriality). Given x ∈ W
we denote by Rx the subring of invariants under x. Similarly, Rx1,x2 denotes the
invariants under the subgroup generated by x1, x2 etc. For s ∈ S we consider the
bimodule

Bs := R⊗Rs R(1).

It is easy to see that Bs belongs to R-bimfg. We denote by H the smallest strict,
graded, additive, monoidal and Karoubian6 subcategory of R-bimfg containing Bs

for all s ∈ S. In formulas:

H := 〈Bs | s ∈ S〉∼=,(±1),⊕,⊗,Kar ⊂ R-bimfg.

By the Krull-Schmidt theorem, the indecomposable objects of H are the indecom-
posable direct summands of the Bott-Samelson bimodules

BS(x) = BsBt . . . Bu(m) ∈ H

for all expressions x = (s, t, . . . , u) in the simple reflections and all m ∈ Z. Bi-
modules belonging to H are called Soergel bimodules. We call the category H the
category of Soergel bimodules or the Hecke category (see Remark 4.15).

6i.e. H is closed under taking direct summands: if M ⊕M ′ = N ∈ H then M,M ′ ∈ H
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Remark 4.8. The reader is warned that H is additive but never abelian.

It is a remarkable theorem of Soergel that H categorifies the Hecke algebra.
Let [H] denote the split Grothendieck group of H: it is the free abelian group
generated by symbols [M ] for M ∈ H modulo the relation [M ] = [M ′] + [M ′′] if
M ∼= M ′ ⊕M ′′. We view [H] as an Z[v±1]-algebra via:

[M ][N ] := [M ⊗N ′],

v[M ] := [M(1)].

Theorem 4.9 (“Soergel’s categorification theorem”, [43]). There exists an (obvi-
ously unique) isomorphism of Z[v±1]-algebras:

φ : H
∼
→ [H] : bs 7→ [Bs]. (4.7)

To establish the existence of φ it is enough to verify certain isomorphisms among
tensor products of Bs and Bt for pairs s, t ∈ S (see the the examples below). In
the words of Soergel [42]: “This is a bit tricky, but not deep”. To show that φ is
an isomorphism we must control the size of [H], which comes as a corollary of the
following theorem:

Theorem 4.10 ([43]). For each x ∈ W there exists a unique indecomposable
bimodule Bx (well-defined up to isomorphism) which occurs as a summand of the
Bott-Samelson bimodule BS(x) for any reduced expression x of x, and does not
occur as a summand of BS(y) for any shorter expression y. The set

{Bx(m) | x ∈ W,m ∈ Z}

gives a set of representatives for the indecomposable Soergel bimodules up to iso-
morphism.

It follows that the classes of the bimodules Bx give a basis for [H]:

[H] =
⊕

x∈W

Z[v±1][Bx]. (4.8)

Once one has established the existence of a homomorphism φ : H → [H], Soergel’s
categorification theorem is easily deduced from (4.8).

Example 4.11. (1) Suppose that S = {s} so that W = Z/2Z acting on R =
R[α] via s(α) = −α, and Rs = R[α2]. In this case one may easily calculate
that bs = hs + v satisfies

bsbs = (v + v−1)bs.

In this case Soergel’s categorification theorem follows easily from the isomor-
phism

BsBs = R ⊗Rs R⊗Rs R(2)
∼= R ⊗Rs (Rs ⊕Rs(−2))⊗Rs R(2)

= Bs(1)⊕Bs(−1). (4.9)
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where for the middle step we use that R = Rs⊕αRs as an Rs-bimodule: “any
polynomial can be written as the sum of an even and an odd polynomial”.
Thus the indecomposable Soergel bimodules are (up to shift) given by

{R := Bid, Bs}.

(2) Suppose that W = 〈s, t〉 with mst = 3 so that W is isomorphic to the
symmetric group on three letters. In this case one may check easily that

bsbt = bst, bsbtbs = bsts + bs and bstsbs = (v + v−1)bsts.

(and similarly with s and t interchanged). In this case Soergel’s categorifica-
tion amounts to the isomorphism (4.9) for Bs and Bt as well as the statements
(which can be checked by hand):

Bst := BsBt is indecomposable as an R-bimodule,

BsBtBs
∼= Bsts ⊕Bs with Bsts := R⊗Rs,t R(3),

BstsBs
∼= Bsts(1)⊕Bsts(−1).

(and similarly with s and t interchanged). Indeed once one knows (4.9) and
the above three statements then it is easy to show by induction that any
indecomposable summand of any tensor product of Bs and Bt is isomorphic
to a shift of one of the indecomposable bimodules

{Bid := R,Bs, Bt, Bst, Bts, Bsts}.

Remark 4.12. The above examples are deceptive: in general there is no explicit
description of the indecomposable Soergel bimodules (just as there is no explicit
description of the Kazhdan-Lusztig polynomials). Soergel’s proof [43] is highly
non-constructive. It formally ressembles the proof giving uniqueness of tilting
objects in highest weight categories [39, 13].

In [43], Soergel also constructs an explicit inverse to φ (“the character of a
Soergel bimodule”):

ch : [H]
∼
→ H.

Its definition (which we do not give here) involves taking the graded rank of the
subquotients of certain filtrations. It is manifestly positive on bimodules, i.e.

ch(M) := ch([M ]) ∈
⊕

x∈W

Z≥0[v
±1]hx for M ∈ H.

Thus {ch(Bx) | x ∈ W} gives a basis for H which is positive (i.e. belongs to
⊕

Z≥0[v
±1]hx) and has structure constants in Z≥0[v

±1] (the structure constants
give the graded multiplicity of Bz as a summand of BxBy).

Conjecture 4.13 (Soergel [43]). For all x ∈ W , ch(Bx) = bx.
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This conjecture is proved in [16] using Hodge theoretic ideas, as we will discuss
below. It immediately implies the positivity properties (4.2) and (4.4). The method
of proof also establishes (4.3) (see [16, Remark 6.10]). A variant of these methods
establishes (4.6).

Remark 4.14. This conjecture was proved for Weyl groups and dihedral groups
by Soergel in [41]. It is proved for the Weyl group of any Kac-Moody Lie algebra by
Härterich in [22] and for universal Coxeter systems by Fiebig [20]. Outside of dihe-
dral groups and universal Coxeter systems, these proofs rely on the decomposition
theorem: the bimodule Bx is realised as the equivariant intersection cohomology
of a Schubert variety. Soergel’s original motivation for studying these bimodules
came from attempts to better understand the Kazhdan-Lusztig conjecture [27];
indeed his conjecture implies the Kazhdan-Lusztig conjecture [40].

Remark 4.15. In geometric settings the category H has other incarnations (as
semi-simple complexes on the flag variety, or as a variant of Harish-Chandra bi-
modules, . . . ). In [18], a monoidal category is defined by explicit diagrammatic
generators and relations and it is proved that this category is equivalent to H.
The upshot is that the category of Soergel bimodules is one incarnation of a more
fundamental object, often referred to as the Hecke category. This point of view is
particularly useful when one wishes to study variants of the theory over fields of
positive characteristic, where the theory of Soergel bimodules becomes unwieldy.
The reader is referred to the introduction to [18] for more on this point of view.
The Braden-MacPherson and Fiebig theory of sheaves on moment graphs can be
seen as another incarnation of the Hecke category [8, 20].

5. Hodge theory of Soergel bimodules

5.1. Global theory. Recall the indecomposable Soergel bimodules Bx intro-
duced in the previous section. In the global theory a central role is played by
the corresponding Soergel modules, which are obtained by quotienting by the ac-
tion of positive degree polynomials on the right:

Bx := Bx ⊗R R.

Each Bx is a graded R-module, which is finite dimensional over R and vanishes in
degree of parity different to that of ℓ(x).

Remark 5.1. As already remarked above, in geometric settings Bx may be ob-
tained as the equivariant intersection cohomology of a Schubert variety. In such
cases Bx is isomorphic to the ordinary (i.e. non-equivariant) intersection cohomol-
ogy. See [17] for a detailed discussion of Soergel modules and their connection to
intersection cohomology.

Any indecomposable Soergel bimodule carries an intersection form. This is a
graded symmetric bilinear form

〈−,−〉 : Bx ×Bx → R
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which is characterised (up to multiplication by R>0) by the following properties
(see [16, Lemmas 3.7 and 3.10]):

(1) For all b, b′ ∈ Bx and r ∈ R we have:

〈rb, b′〉 = 〈b, rb′〉, (5.1)

〈br, b′〉 = 〈b, b′〉r = 〈b, b′r〉. (5.2)

(2) By (5.2), 〈−,−〉 descends to a form on the corresponding Soergel module

〈−,−〉Bx
: Bx ×Bx → R/R>0 = R

such that 〈rm,m′〉 = 〈m, rm′〉 for all r ∈ R and m,m′ ∈ Bx. This form is
non-degenerate.

(3) If bmin ∈ Bx denotes a non-zero element of degree −ℓ(x) (the minimal non-
zero degree) then

〈λℓ(x)bmin, bmin〉Bx
> 0 (5.3)

for any (equivalently every) dominant regular λ ∈ h∗.

Remark 5.2. The reader may well wonder where the intersection form on Bx

comes from. Recall that Bx occurs as a direct summand of BS(x) for any reduced
expression x. It is not difficult to equip BS(x) with a symmetric non-degenerate
R-valued form (see [16, §3.4]). Somewhat miraculously, this form restricts to yield
the desired form on Bx (for any choice of embedding).

Remark 5.3. In geometric settings the intersection form may be identified with
the (topological) intersection form on equivariant intersection cohomology.

Thus (Bx, 〈−,−〉Bx
, h∗+reg ⊂ h∗) gives Lefschetz data (see §2.1). The main the-

orem of [16] is the following:

Theorem 5.4. For any x ∈ W and λ ∈ h∗+
reg

, the action of λ on Bx satisfies hard
Lefschetz and the Hodge-Riemann bilinear relations.

Remark 5.5. This theorem is not new in geometric settings, where it may be
deduced from the hard Lefschetz theorem and Hodge-Riemann bilinear relations
for intersection cohomology.

Remark 5.6. We will not go into how Theorem 5.4 is related to Soergel’s conjec-
ture (Conjecture 4.13). In rough outline the strategy of proof in [16] is to establish
Soergel’s conjecture and Theorem 5.4 “at the same time” by an induction over the
Bruhat order. Let us simply mention that ideas from de Cataldo and Migliorini’s
proof of the decomposition theorem play a key role [11, 12, 49]. In particular, the
definiteness provided by the Hodge-Riemann relations is central to the proof.
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Remark 5.7. If W is finite with longest element w0 then Bw0
= R⊗RW R(ℓ(w0))

(RW ⊂ R denotes the subalgebra of W -invariants) and hence

Bw0
= R/〈RW

+ 〉(ℓ(w0)).

If W is a finite Weyl group then it is well-known that this algebra is (up to shift)
isomorphic to the cohomology ring of the flag variety and Theorem 5.4 for x = w0

follows from classical Hodge theory. However if W is not a Weyl group then there
is no known geometric proof of Theorem 5.4 for x = w0. (This case seems like
it should be much simpler than the general case.) The surprisingly interesting
example of dihedral groups is discussed in detail in [17, §6].

Remark 5.8. For a smooth projective variety X Looijenga-Lunts [32] considered
the Lie subalgebra of endomorphisms of H∗(X,R) generated all copies of sl2(R)λ
associated to all ample classes λ ∈ H2(X,R) (here sl2(R)λ denotes the copy of
sl2(R) inside the endomorphisms of H∗(X,R) provided by Remark 2.1). They
show (using the Hodge-Riemann bilinear relations) that one always obtains a re-
ductive Lie algebra in this way, and compute several examples. By Theorem 5.4
the definition of this Lie algebra also makes sense for any Soergel module. Re-
cently, Patimo [38] has shown that for many x ∈ W this Lie algebra is the full Lie
algebra of symmetries of an orthogonal or symplectic form built from 〈−,−〉Bx

.

5.2. Relative theory. We now turn to the relative Hodge theory of Soergel
bimodules. In part this theory is motivated by the unimodality property (4.6) of
the structure constants µz

x,y of multiplication in the Kazhdan-Lusztig basis. For
all x, y ∈ W we can find an isomorphism in R-bim

BxBy
∼=

⊕

z∈W

V z
x,y ⊗R Bz (5.4)

for some graded vector space V z
x,y. The structure constant µz

x,y is equal to the
graded dimension of the vector spaces V z

x,y. Recall that the unimodality property
(4.6) is equivalent to the fact that µz

x,y is the character of a finite dimensional sl2-
module. Of course this would be the case if we can establish that V z

x,y is actually
an sl2-module. This is equivalent to the existence of an operator L : V z

x,y → V z
x,y

of degree 2 which satisfies hard Lefschetz (see Remark 2.1).
The problem is that the decomposition (5.4) is not canonical, and hence it is

difficult to produce endomorphisms of the multiplicity spaces V z
x,y. This problem

is overcome as follows: any Soergel bimodule B carries a canonical increasing
perverse filtration (see [16, §6.2])

. . . →֒ τ≤i(B) →֒ τ≤i+1(B) →֒ . . .

such that all maps are split inclusions of Soergel bimodules (i.e. the filtration is
non-canonically split). The associated graded (non-canonically isomorphic to B)
admits a canonical isotypic decomposition

gr(B) :=
⊕

τ≤i(B)/τ≤i−1(B) =
⊕

z∈W

Hz(B)⊗R Bz
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for certain graded vectors spaces Hz(B). Moreover any degree d endomorphism of
B induces a degree d endomorphism of each Hz(B).

Applying this construction to the tensor product BxBy, we may redefine the
vector spaces V z

x,y above as follows:

V z
x,y := Hz(BxBy).

These graded vector spaces vanish in degrees of parity different from ℓ(x) + ℓ(y) +
ℓ(z) and are equipped with the following structure:

(1) A graded, symmetric, non-degenerate form induced by an “intersection form”
on BxBy (see [19, §2.2]).

(2) The structure of a graded R-module defined as follows: any r ∈ R of degree
d gives a morphism

BxBy → BxBy(d) : b⊗ b′ 7→ br ⊗ b′ = b⊗ rb′ (5.5)

and hence induces a degree d endomorphism of V z
x,y.

The main theorem of [19] is the following:

Theorem 5.9. For all x, y, z ∈ W and λ ∈ h∗+
reg

the action of λ on V z
x,y satisfies

hard Lefschetz and the Hodge-Riemann bilinear relations.

By the discussion above, this theorem immediately implies the unimodality
property (4.6) of the structure constants of the Kazhdan-Lusztig basis.

Remark 5.10. In geometric settings Theorem 5.9 can be deduced from the relative
hard Lefschetz theorem [4] and the relative Hodge-Riemann bilinear relations [12].

Remark 5.11. Suppose that W is finite with longest element w0. Then one has
a canonical isomorphism

Bx
∼= V w0

x,w0

compatible with forms and the R-module structure. (This is a categorification of
the fact that if χ denotes the “trivial” character of H , i.e. Hs 7→ v−1 for all s ∈ S,
then we have bxbw0

= χ(bx)bw0
for all x ∈ W .) In this case Theorem 5.4 is a

special case of Theorem 5.9.

Remark 5.12. Theorem 5.9 can be used to prove that certain tensor categories
associated by Lusztig (see [33, 34]) to any two-sided cell in W are rigid [19].

5.3. Local theory. We finish our discussion with a brief overview of the local
theory, contained in [48]. Here the motivation cannot be given strictly in terms of
positivity properties in the Hecke algebra (although a better understanding of the
local route might yield an alternative proof of Soergel’s conjecture, see [48, §7.5]).
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Remark 5.13. In geometric settings, the global and relative theory discussed
above have “easy” translations into statements about intersection cohomology (see
Remarks 4.15 and 5.1). In the local setting the translation (via the “fundamental
example” of Bernstein-Lunts [6]) is available, but is more complicated. We will not
comment on this further below and instead refer the reader to the introduction of
[48], where the connection is discusssed in detail.

For a Soergel bimodule B and y ∈ W , let Γy(B) (resp. Γy(B)) denote the
largest submodule (resp. quotient) on which one has the relation m·r = y(r)·m for
all r ∈ R. (Thus, for example, Γid(B) and Γid(B) are the Hochschild cohomology
and homology of the bimodule B.)

Both Γy(B) and Γy(B) are free graded R-modules. The evident morphism

iy : Γy(B) → Γy(B)

is injective and becomes an isomorphism if we tensor with R[1/αs]s∈S .

Any µ∨ ∈ h determines a specialisation R → R[z] (“restriction to the line
Rµ∨ ⊂ h”) and if 〈µ∨, αs〉 6= 0 for all s ∈ S then R[z] ⊗R iy is an inclusion of
graded R[z]-modules. For any x ∈ W we define an R[z]-module Hµ

y,x via the short
exact sequence

0 → R[z]⊗R Γy(Bx) → R[z]⊗R Γy(Bx) → Hµ
y,x(1) → 0.

If we write vℓ(x)−ℓ(y)py,x =
∑

i≥1 a
i
y,xv

i then the graded rank of Hµ
y,x is

∑

i≥1

aiy,x[i]

(see (4.5) for the definition of [i]). In particular it vanishes in degrees of the same
parity as ℓ(x). The intersection form Bx induces a symmetric non-degenerate form
on Hµ

y,x. The main theorem of [48] is the following:

Theorem 5.14. For any x < y ∈ W and any µ∨ ∈ h+
reg

, multiplication by z on
Hz

y,x satisfies hard Lefschetz and the Hodge-Riemann bilinear relations.

Remark 5.15. The main motivation for establishing Theorem 5.14 is that (by
work of Soergel [44] and Kübel [29, 30]) it gives an algebraic proof of the Jantzen
conjectures on the Jantzen filtration on Verma modules for complex semi-simple
Lie algebras. The first proof of the Jantzen conjectures was given by Beilinson and
Bernstein [3].

Remark 5.16. The statements and proofs in the local case are less intuitive than
in the previous two settings (global and relative). This might be because we do
not yet have a good framework for discussing the hard Lefschetz theorem and
Hodge-Riemann bilinear relations in equivariant cohomology.
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[31] A. Lascoux, M. Schtzenberger, Polynômes de Kazhdan & Lusztig pour les grassman-
niennes. Young tableaux and Schur functors in algebra and geometry (Toruń, 1980),
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