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The Cox ring of a complexity-one horospherical variety

KEVIN LANGLOIS AND RONAN TERPEREAU

Abstract. Cox rings are intrinsic objects naturally generalizing homoge-
neous coordinate rings of projective spaces. A complexity-one horospher-
ical variety is a normal variety equipped with a reductive group action
whose general orbit is horospherical and of codimension one. In this note,
we provide a presentation by generators and relations for the Cox rings
of complete rational complexity-one horospherical varieties.
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Introduction. All algebraic varieties and algebraic groups considered in this
article are defined over an algebraically closed field k of characteristic zero.

Let G be a connected simply-connected reductive algebraic group (i.e., a
direct product of a torus and a connected simply-connected semisimple group),
and let H C G be a closed subgroup. The homogeneous space G/H is called
horospherical if H contains a maximal unipotent subgroup of G. Geometrically,
the homogeneous space G/H may be realized as the total space of a principal T-
bundle over the flag variety G/P, where P = Ng(H) is the parabolic subgroup
normalizing H and T is the algebraic torus P/H.

In this paper, we consider a specific class of G-varieties: the complexity-one
horospherical G-varieties, that is, the normal G-varieties whose general orbit is
horospherical and of codimension one. From the Luna—Vust theory [18], there
is a combinatorial description of such varieties (see [23], [24, Ch. 16], and [17,
§1]) which is quite similar to the classical one of torus embeddings (see, for
instance, [8]). The geometry of complexity-one horospherical varieties has been
studied in [17]; see [17, Th. 2.5 and 2.6] for a smoothness criterion, [17, Cor.
2.12] for a description of the class group, and [17, Th. 2.18] for a description
of the canonical class. Also the stringy invariants of these varieties have been
determined in [16].
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An important issue for the theory of complexity-one horospherical varieties
is to describe them in terms of equations via ‘explicit coordinates’. In the spe-
cial framework of torus actions of complexity one, this program was achieved
in some cases via the theory of Cox rings (see [11,12]).

Let X be a normal variety whose class group Cl(X) is of finite type and
such that I'(X,0%) = k™. As a graded k-vector space, the Coz ring of X is
defined as

R(X)= P TI(X,0x(D)).

[D]eCl(X)

The vector space R(X) can be equipped with a multiplicative law making
R(X) a Cl(X)-graded algebra over k; see [1, §1.4] for details. Let us note
that any projective Q-factorial normal variety X, with finitely generated class
group Cl(X), is completely determined (up to isomorphism) by the data of its
Cox ring, as a Cl(X)-graded algebra, and an ample class (see [1, §1.6.3]).

There are deep connections between Cox rings, invariant theory, and the
minimal model program (see [19] for a survey). Cox rings also appear in the
classification of Fano varieties (see, for instance, [10,22] for complexity-one
torus actions), and they have applications in arithmetic geometry to the study
of rational points of algebraic varieties (see [1, §6] for an overview).

The Cox ring has been computed for several important classes of algebraic
varieties with reductive group action; see [15] for flag varieties, [7] for toric
varieties, and more generally [6,9] for spherical varieties (complexity zero case).
A description of the Cox ring for algebraic varieties with torus action is given
in [12].

The purpose of this article is to describe the Cox ring of a new class of alge-
braic varieties with reductive group action, namely our main result (Theorem
2.1) is a description of the Cox ring of any complete rational complexity-one
horospherical variety by generators and relations. Note that, by [17, Cor. 2.12],
the class group of a complexity-one horospherical variety is finitely generated
if and only if the variety is rational. The completeness assumption however is
only for convenience.

The proof of Theorem 2.1 is based on the fact that a complexity-one
horospherical variety X is naturally equipped with an action of the algebraic
torus T; see Lemma 3.2. We first describe the T-action on X in terms of di-
visorial fans by adapting the results of Altmann—Kiritchenko—Petersen in [4]
obtained for spherical varieties of minimal rank; see Proposition 3.3. Then our
result follows from [12, Th. 4.8] which describes Cox rings of T-varieties in
terms of their divisorial fans.

1. Brief overview of the combinatorics. Let us introduce the necessary back-
ground on Luna—Vust theory required to express and prove Theorem 2.1. Here
we give some geometric ideas how it works out; we refer to [24, Ch. 16] and
[17, §1] for precise statements. The equivariant birational type of a rational
complexity-one horospherical G-variety X has a simple description. Indeed, by



Vol. 108 (2017) The Cox ring of a complexity-one horospherical variety 19

[13, Satz 2.2], there exists a G-equivariant birational map
¥: X --» P x G/H, (1)

where G acts by left multiplication on the horospherical homogeneous space
G/H and trivially on the projective line P!,

The combinatorics introduced thereafter are classifying objects for a specific
category: the category of G-models of P! x G/H, whose objects are pairs
(X, %), where X is a normal G-variety and 1) is a G-equivariant birational map
as in (1). Morphisms (X7,%1) — (Xa2,%2) in this category are G-morphisms
f X1 — X5 such that ¢ o f = 1. In the following we will omit the base
rational map ¥ and write X for (X, ).

Let X be a complete G-model of P! x G/H. Fix a Borel subgroup B C G
whose unipotent radical is contained in H. The B-stable prime divisors of X
which are not G-stable are called colors of X; the finite set of colors of X
is denoted by Fx. This set is in one-to-one correspondence with the set of
Schubert divisors of G/P, where P is the normalizer of H in G. By [17, Prop.
2.9], there exists a unique proper morphism of G-models

W:X—>X7

called discoloration of X, such that: the colors of X do not contain a G-orbit;
and for any G-stable irreducible closed subvariety Z C X, the sets of essential
G-invariant valuations of the field of rational functions k(X) describing the
local rings of Z and 7(Z) are the same (see [18, §8]). The morphism 7 is a
resolution of the indeterminacy locus of the G-equivariant dominant rational
map ¢’ : X --» G/P induced by v, that is, 1)’ o is a morphism. The preimage
of P/P by 9’ or defines a P-variety Y C X which turns out to be a normal T-
variety with general orbit of codimension one and T-isomorphic to T. Moreover,
the natural morphism

GxY =X, (g,2)—~g-

induces a G-isomorphism between the parabolic induction Gx*Y of Y and the
G-variety X. Thus, X is determined by the T-variety Y and by some subsets
of Fx corresponding to the G-stable subvarieties that 7 contracts.

Since the combinatorial datum of Y will be part of the one of X, we make
a short digression to explain the combinatorial description of the T-varieties
following Altmann-Hausen—Stiss; see [3] for details. Let 2 be a normal affine
T-variety (with T acting faithfully on 27), let M be the group of characters of
T, and let Mg = Q®z M. The coordinate ring k[2"] =T'(Z", O ) is described
by a piecewise linear map, called polyhedral divisor [2, Def. 2.7], and defined
as

D :w — CaDivg(V), mw— Z min(®z,m) - Z, (2)
ZCcV
Z prime divisor
where w C Mg is a polyhedral cone spanning Mq, each Dz is a prescribed
polyhedron lying in the dual of Mg, and CaDivg(V) = Q ®z CaDiv(V) is
the Q-vector space generated by the group of Cartier divisors of a certain
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normal variety V' obtained as a rational quotient of 2" by T. The T-action
on % induces an M-grading of algebra on k[2'] with weight cone w. More-
over, each graded piece of k[.2"] corresponding to m € w N M identifies with
T(V, 0y (D(m))); see [2, Th. 3.1 and 3.4] for a precise statement.

As ® is determined by the ® z’s, one usually denotes

9:292-2.

ZCV

For all but a finite numbers of prime divisors Z C V', the ©7’s are equal to the
dual polyhedral cone o = w"; the latter is called the tail of . We follow the
conventions of [3, §2] and we will say that © is defined over a compactification
V of V by adding empty coefficients on the boundary if necessary.

In the general case where the normal T-variety 2~ is not affine, there is
an open covering of 2 by affine T-varieties [21, Cor. 3.2]. Therefore, 2 is
described by a finite set S of polyhedral divisors defined over a common com-
plete variety V and satisfying certain compatibility conditions [3, Th. 5.6]; the
set S is called a divisorial fan [3, Def. 5.1]. Let us note that, for any prime
divisor Z C V, the set of all coefficients ® 7 when D runs through S defines a
polyhedral subdivision Sz of Mg; it is called a slice of S over Z. The support
of S is the set of prime divisors of V where the slices are non-empty and non
trivial. A vertex of a slice Sz is a vertex of one of its elements.

We now return to the combinatorial description of the complexity-one
horospherical G-variety X. Let &’ be a divisorial fan over P! describing the
T-variety Y defined earlier. Each ©® € &’ defines a dense open subset in Y
and a G-stable dense open subset in X via parabolic induction; we denote the
latter by X (D). Let F C Fx be the set of colors of X containing a G-orbit
which is the image by 7 of a G-orbit in the exceptional locus of T % ()" The
pair (D, F) is called a colored polyhedral divisor and describes the G-stable
dense open subset X (D, F) := 7(X(D)).

The finite set & of colored polyhedral divisors (©,F) obtained from &”
and 7 as above is called a colored divisorial fan associated with X. This set
constitutes the combinatorial counterpart of X as explained in [17, §1]. Many
geometric properties of X are reflected in the combinatorial object &’; we refer
for instance to [17, Th. 1.10, 2.5, and 2.6] for characterizations of completeness
and smoothness properties.

In [17, §2.3] a description of the prime G-divisors of X in terms of & is
given. They are separated into two sets depending on whether they have an
open G-orbit or not. The prime G-divisors having an open G-orbit are in
bijection with the set Vert(&’), and the other prime G-divisors are in bijection
with the set Ray(&). The elements of Vert(&) are pairs (y,v), where y € P!
and v is a vertex of the slice &. The elements of Ray(&) are certain extremal
rays of tails of elements of & satisfying additional combinatorial conditions;
see [17, §2.3.1] for details.

2. Statement of the main result. Let X be a complete rational complexity-one
horospherical G-variety with general orbit G-isomorphic to the homogeneous
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space G/H and colored divisorial fan &. The main result of this paper is the
following.

Theorem 2.1. Let {y1,...,y.} C P! be the support of the colored divisorial fan
&. The Cox ring of the complexity-one horospherical variety X is isomorphic
to

R(G/P) @y k[Sy; p € Ray(&)] @ k [To,Tl,T(yM) i (yi,v) € Vert(é")] /1,

where I is the ideal generated by the elements

—aiTO — ﬁiTl + H T#(v)

(yi,v)
v vertez of &y,
for 1 < i < r, with y; = [y : 3], and u(v) is the smallest integer d € Zg
such that dv is a lattice vector. Moreover, the Cl(X)-degree of the variables
S, and Tiy, ») is given by the class of the prime G-divisors corresponding to
p and (y;,v), respectively, and the C1(X)-grading on R(G/P) is obtained by
identifying colors of X and Schubert divisors of G/P.

Remark 2.2. In' the case where r > 2, the variables Ty, T) can be eliminated
and the presentation of the Cox ring R(X) in Theorem 2.1 takes the following
form. Denote by ® a basis of the (r — 2)-dimensional vector space

D Ailai, i) = 0}

i=1

{(Al,...,AT)ek:T

and by F; the monomial [, T{; (vg . Then R(X) is isomorphic to

)
R(G/P) ®k k[S,; p € Ray(&)] @k k [Tiy, )5 (yiv) € Vert(&)] /J,

where J is the ideal generated by the elements Y ._, v F; for (v1,...,7) € ®.

The reader is referred to [1, §3.2.3] for a presentation by generators and
relations of the Cox ring of a flag variety. Note that our result implies that the
Cox ring of a complete rational complexity-one horospherical variety is finitely
generated.

Example 2.3. Let G = SL3 and let H be a maximal unipotent subgroup of
G. The parabolic subgroup P = Ng(H) is a Borel subgroup of G and T is a
2-dimensional torus; in particular M =2 Z?2.

©, %) ©,%)

(0,0)

tail fan slice over [0 : 1] slice over [1 : 1] slice over [2 : 3]

1 We are grateful to the referee for suggesting this remark.
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The figures above represent the colored divisorial fan of a complete rational
horospherical variety X of complexity one with general orbit G/H. We only
mention in the figures the non-trivial slices and the tails of the colored poly-
hedral divisors. The dark gray boxes correspond to polyhedral divisors defined
over P, The two colors of X map to the vectors ey, es of the canonical basis
via the map ¢ : Fx — M defined by (4). The mark in the diagram of tail fan
is the color that we take into account.

Applying Theorem 2.1 and [1, Ex. 3.2.3.10], we obtain that the Cox ring
of the variety X is

k[51,82753,t1,t2,t3,t4,171,.’172,.13,21,22723}
(t9 — 2t — 1213, w121 + T229 + X323)

R(X) =

Moreover, from [17, Cor. 2.12] we determine the class group of X:
CUX) = Z"/(fr0 — 2fs — 4fs, fi0 — s, fro—9f7, fs — fa+ f5 — fs,
fotfa—fs+fo+ fr+ f1— fo)
~7° x 7/(2) x Z./(9),

where we denote by f; the I-th vector of the canonical basis of Z'°. The C1(X)-
degrees of the variables can be chosen as follows.

variable | s1 | s2 | 83 | t1 | ta | t3 | ta | @5 | 25

degree | fi | fo| fa|fa| fs | fe| fr| fs]|fo

3. Proof of the main result. We keep the same notation as in the preceding
sections. We start by looking for a natural covering of X by affine open subsets.
To do this, we first consider the B-stable dense open subset

Xo(®,F) = X(D,F)\ U o,

DeFx\F
where (D, F) € &. This subset is affine and intersects every G-orbit of X (D, F)
(compare with [17, Lem. 2.1]). Then we consider the Weyl group
W = Ng(T')/T corresponding to a maximal torus 7" of B. Note that for any
lift w € Ng(T) of an element w € W and any B-stable subset Z C X, the
subset @ - Z C X does not depend on the choice of @ but only on w. Hence
we may write

XY ®,F) =w- Xo(D,F).
The proof of the following lemma is inspired from [4, Prop. 3.7].

Lemma 3.1. The affine dense open subsets XY (D, F) cover X when (D,F)
and w run through & and W respectively.

Proof. We may assume that & = {(D,F)}. Let X' :=J,cppy X¢'(D,F), and
let O = G.2 be any G-orbit in X. By [24, Rem. 7.2], the homogeneous space
O is horospherical. Therefore O = | J,,cyy w - Op, where Oy denotes the open
B-orbit of O; indeed, this result is classical for flag varieties (see, e.g., [5, Prop.
1.2.1]), and it extends easily to horospherical homogeneous spaces. Since ONX
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is a B-stable dense open subset, we have Oy C O N Xy. It follows that O N X’
contains all the w - Og, where w € W, and thus O C X’. We conclude that
X=X O

The torus T identifies naturally with the group of G-equivariant automor-
phisms of G/H. The trivial action of T on P! induces an action of T on the
field of rational functions k(P! x G/H). We will see that this action, in turn,
induces a T-action on X. For basic notions on invariant valuations we refer to

24, Ch. 4].

Lemma 3.2. The T-action on k(P* x G/H) induces a regular T-action on X
such that each affine dense open subset X' (D,F) is T-stable.

Proof. Without loss of generality, we may assume that & = {(D,F)}. Since
T is connected and its action on G/H commutes with the G-action, it pre-
serves the open subset w - Og and the irreducible components of its com-
plement in G/H. Let v be any G-valuation of k(X), and let f € k(X) be a
B-eigenfunction. Since all B-invariant functions in k(G /H) are constant, there
exists a character y : T — k™ such that ¢t - f = x(¢)f for all ¢ € T, and thus
v(t- f) =v(f). A G-valuation of k(X) is determined by its values on the B-
eigenfunctions [24, Cor. 19.13], hence we see that every G-valuation of k(X)
is also a T-valuation of k(X). Let V be the set of all G-valuations of k(X)
corresponding to proper G-stable closed subvarieties of X which are maximal
for the inclusion. By [24, §13], the coordinate ring of X’ := X% (®,F) can be
expressed inside k(P! x G/H) as

k[XSU] = (k(IP )®k kw OO ( ﬂ OVwD) N (m 01/) ’ (3)

DeF vey

where O, = {f € k(X)* | v(f) > 0} U{0}. For all w € W, it follows from the
discussion above that k(PP') ®j k[w - O], the local rings O,,, , with D € F,
and O, with v € V are all T-stable. We deduce that the natural G-equivariant
birational T-action on X is biregular on X§ C X. Since the locus where this
action is biregular is a G-stable dense open subset of X, the birational T-action
on X is biregular everywhere. O

Our next goal is to describe the T-action on X via the language of divisorial
fans. Colors of X are naturally represented as elements of the dual lattice M
as follows: for the natural action of B on k(X), the lattice M identifies with the
lattice of B-weights of the B-algebra k(X). For every nonzero B-eigenvector
f € k(X) of weight m € M and every color D € Fx, we put

(m, o(D)) = vp(f), (4)

where vp is the valuation associated with D. Since the value o(D) does not
depend on the choice of f, we obtain a map o : Fx — M". We recall that the
set Fx of colors of X is in one-to-one correspondence with the set Fq/p of
Schubert divisors of G/P. For all s € P* and D € Fg/p, welet Z, := {s}xG/P
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and Zp := P! x D. For allw € W and (D, F) € &, we define a new polyhedral
divisor on P! x G/P by

Qw,D,F):= Y (a(D)+0)-[Zp]+ > Ds-[Z]+ Y, 0-[w-Zp),

DeFx selp?! DeFx\F

where we denote the empty coefficients of Q(w,®, F) by (). The tail of Q(w, D,
F) does not depend on w and coincides with the tail ¢ = w" of ®. We denote
by S(&) the finite set formed by the polyhedral divisors Q(w,®,F) when
(D,F) € & and w € W. Here we refer to [14] for the Luna—Vust theory of
spherical embeddings.

Proposition 3.3. The set S(&) generates a divisorial fan of X as a T-variety
and Q(w,®,F) is a polyhedral divisor of the local chart X' (D,F) of X.

Proof. Let us show that Q(w,®, F) describes the T-variety X' (D, F). With-
out loss of generality, we may assume that w is the neutral element. Let Oy
be the open B-orbit of G/H. Note that k[Op] is naturally equipped with
an M-graduation arising from the T-action on G/H. Given any toroidal G-
equivariant embedding X’ of G/H, the prime G-divisors of X' are exactly the
T-divisors that are in the complement of G/H. Comparing the divisorial fans
for the T-actions on G/H and X’ given in [4, Th. 1.1] and using [20, Prop.
3.13], we deduce that for any G-valuation v of k(G/H) restricted on k[Og],
there exists a unique v € Mg = Q ®z M such that v(f) = (y,m) for any
nonzero element f of degree m € M, and vice-versa. In the following we will
denote by v, the G-valuation attached to +.

Let O’ be the complement in G/H of the union of the colors of Fx\F.
With the same notation as in the proof of Lemma 3.2, Eq. (3) yields

k[Xo(®,F)] = (k(P') @1 k[O']) N <ﬂ Ov) - (5)
veV

For any s € P!, we denote by C(D) the cone in Q @ MG\Q/ generated by the
union of {0} x ¢ and {1} x D,. Considering f; € k(P!) and fo € k[O'] of
degree m € M, we have the following equivalences:

f1® f2 €k Xo(®@D, F)N{0} = v(fi®fe) >0 forallveV
& B-ords(f1) +vy(fa) >0 forall s € P! and (3,7) € C(Dy)

S meo’NM and div(f; ® f2) + Q(w, D, F)(m) > 0.

The first equivalence is a rephrasing of Equality (5). The second equivalence
follows from the descriptions of V in terms of ©; compare with [17, §§1.2.3 and
1.3.3]. The condition f; ® fo € k(P') @4, k[O'] gives
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OrdZD (fl & f2) + <Q(D)am> >0

for all D € F (which holds by the description of O’ in terms of divisorial fans).
Moreover the conditions

B- Ords(fl) + U7<f2) =p- OrdS(fl) + <7am> >0,

for all (3,7) € C(Ds) and s € P!, are translated into the conditions m €
oY N M and

ordz, (f1 ® f2) + min (y,m) > 0,
VEDs

yielding the last equivalence.

The verification that S(&) generates a divisorial fan consists in describing
the polyhedral divisors associated with the intersections of the Xy (®,F)’s
and is left to the reader. O

Proof of Theorem 2.1. Starting with the set S(&) generating a divisorial fan
of the T-variety X, we investigate the Cox ring of X by using [12, Th. 4.8].
To do this, we apply [20, Prop. 3.13] to determine the prime T-divisors on X
that are described by some extremal rays of tails of elements of S(&) or by
some vertices of non-trivial slices. From the study of G-invariant valuations
in the proof of Proposition 3.3, we know that the prime T-divisors given by
the extremal rays coincide with the prime G-divisors parameterized by the set
Ray(&). The remaining prime T-divisors are given either by the vertices of
slices of S(&’) over the Z,,’s, and then they coincide with the prime G-divisors
given by the pairs (y;,v), where v € &, and 1 <14 < r, or else they are given
by the vertices of slices of S(&) over the Zp’s. The latter will not play any
role in the description of R(X) since their vertices (D) are lattice vectors.
Therefore, by [12, Th. 4.8], we obtain that R(X) is isomorphic to

k[S,; p € Ray(&)] @1 R(P' x G/P) [T(y, v); (yi,v) € Vert(&)] /1,
where I is the ideal generated by
w(v)
—Si + H T(yiﬂ))
v vertex of éayi

for 1 <4 < r, with s; the canonical section of Z,, and p(v) as in the state-
ment of Theorem 2.1. We conclude by using that R(P! x G/P) identifies
with &[Ty, Th] ® R(G/P); compare with [1, Lem. 4.2.2.3]. Also, via this iso-

morphism, one can take s; = «;To + 8;T1, where y; = [a;, 5;]. Finally, the
Cl(X)-degree of the variables S, and T\, , is given by [12, Th. 4.8], and we
determine the Cl(X)-grading on R(G/P) by using [12, Prop. 4.7]. O
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