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Abstract

Let (Fm)m≥0 be the Fibonacci sequence given by F0 = 0, F1 = 1
and Fm+2 = Fm+1+Fm, for all m ≥ 0. In [3], it is conjectured that 2, 5

and 34 are the only Fibonacci numbers of the form n!+n(n+1)
2 , for some

positive integer n. In this paper, we confirm the above conjecture.
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1 Introduction

The Fibonacci sequence (Fm)m≥0 is given by F0 = 0, F1 = 1 and

Fm+2 = Fm+1 + Fm for all m ≥ 0.

The few terms of the Fibonacci sequence are

F := {0, 1, 1,2, 3,5, 8, 13, 21,34, 55, 89, 144, 233, 377, 610, . . .}.

Ljunggren [6] showed that the only squares in the Fibonacci sequence are
0, 1 and 144. This was rediscovered by Cohn [4] and Wyler [17]. London and
Finkelstein [7] and Pethő [11] proved that the only cubes in the Fibonacci
sequence are 0, 1 and 8. Bugeaud, Mignotte and Siksek [2] showed that the
only perfect powers (of exponent larger than 1) in the Fibonacci sequence
are 0, 1, 8 and 144. There are several other papers which study Diophantine
equations arising from representing Fibonacci numbers by other quadratic
and cubic polynomials such as Fn = k2 + k + 2 (see [8]); Fn = x2 − 1 or
Fn = x3 ± 1 (see [13]); Fn = px2 + 1 and Fn = px3 + 1 for some fixed prime
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p (see [14]). Luca [9] proved that 55 is the largest number with only one
distinct digit (called repdigit) in the Fibonacci sequence.

Recently, Castillo [3] dubbed a number of the form Ftn := n! + n(n+1)
2

a factoriangular (from the sum between a factorial and the corresponding
triangular). The first few factoriangular numbers are

Ft := {2,5, 12,34, 135, 741, 5068, 40356, 362925, . . .}.

This sequence is included in Sloane’s The OnLine Encyclopedia of Integer
Sequences (OEIS) [15] as sequence A101292. In [3], Castillo set forth the
following conjecture.

Conjecture. The only Fibonacci factoriangular numbers are F3 = 2, F5 = 5
and F9 = 34.

Here, we confirm Castillo’s Conjecture.

Theorem 1. The only Fibonacci factoriangular numbers are 2, 5 and 34.

2 p-adic linear forms in logarithms

Our main tool is an upper bound for a non–zero p–adic linear form in two
logarithms of algebraic numbers due to Bugeaud and Laurent [1].

We begin with some preliminaries. Let η be an algebraic number of degree
d over Q with minimal primitive polynomial over the integers

f(X) := a0

d∏
i=1

(X − η(i)) ∈ Z[X],

where the leading coefficient a0 is positive. The logarithmic height of η is
given by

h(η) :=
1

d

(
log a0 +

d∑
i=1

log max{|η(i)|, 1}

)
.

Let L be an algebraic number field of degree dL. Let η1, η2 ∈ L\{0, 1} and
b1, b2 positive integers. We put

Λ = ηb11 − ηb22 .

For a prime ideal π of the ring OL of algebraic integers in L and η ∈ L we
denote by ordπ(η) the order at which π appears in the prime factorization
of the principal fractional ideal ηOL generated by η in L. When η is an
algebraic integer, ηOL is an ideal of OL. When L = Q, π is just a prime
number. Let eπ and fπ be the ramification index and the inertial degree of π,
respectively, and let p ∈ Z be the only prime number such that π | p. Then

pOL =
k∏
i=1

π
eπi
i , |OL/π| = pfπi and dL =

k∑
i=1

eπifπi ,
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where π1 := π, . . . , πk are prime ideals in OL.
We set D := dL/fπ. Let A1, A2 be positive real numbers such that

logAi ≥ max

{
h(ηi),

log p

D

}
(i = 1, 2).

Further, let

b′ :=
b1

D logA2

+
b2

D logA1

.

With the above notation, Bugeaud and Laurent proved the following result
(see Corollary 1 to Theorem 3 in [1]).

Theorem 2. Assume that η1, η2 are algebraic integers which are multiplica-
tively independent and that π does not divide η1η2. Then

ordπ(Λ) ≤ 24p(pfπ − 1)

(p− 1)(log p)4
D5(logA1)(logA2)

×
(

max

{
log b′ + log log p+ 0.4,

10 log p

D
, 10

})2

.

(In the actual statement of [1], there is only a dependence of D4 in the
right–hand side of the above inequality, but there all the valuations are nor-
malized. Since we work with the actual order ordπ(Λ), we must multiply the
upper bound of [1] by another factor of dL/fπ = D).

3 Proof of the Theorem 1

Recall that if k is any nonnegative integer then

Fk =
αk − βk

α− β
(1)

where α = (1 +
√

5)/2 and β = (1 −
√

5)/2, are the roots of X2 − X − 1.
This is known as Binet’s formula. It is well–known that inequalities

αk−2 ≤ Fk ≤ αk−1 hold for all k ≥ 1. (2)

We need to solve the Diophantine equation

Fm = n! +
n(n+ 1)

2
, (3)

in positive integers m ≥ 3 and n ≥ 1. From now on we assume that (m,n)
is a solution of the Diophantine equation (3).

We first study the size of m versus n. Since the inequalities

(n/e)n < n! +
n(n+ 1)

2
< nn hold for all n ≥ 3,
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we have

n(log n− 1) < log

(
n! +

n(n+ 1)

2

)
≤ n log n hold for all n ≥ 3. (4)

Hence, combining inequalities (2) and (4), it follows from equation (3)
that

n(log n− 1) < log
(
n! + n(n+1)

2

)
< (m− 1) logα;

(m− 2) logα < log
(
n! + n(n+1)

2

)
< n log n,

therefore

n(log n− 1)

logα
+ 1 < m <

n log n

logα
+ 2 provided that n ≥ 3. (5)

If n ≤ 100, the above inequality implies that m ≤ 960. We ran a quick
Mathematica code which listed all Fibonacci numbers Fm with m ≤ 960
and all factoriangular numbers Ftn with n ≤ 100 and intersected these two
lists. The only solutions in this range are the ones from the statement of the
Theorem 1.

From now on we assume that n > 100. Our next goal is to find an upper
bound for n. We use formula (1) with k = m and the fact that αβ = −1 to
rewrite our Diophantine equation (3) as

√
5n! = αm −

√
5
n(n+ 1)

2
+ (−1)mα−m (6)

= α−m
(
α2m −

√
5
n(n+ 1)

2
αm − ε

)
= α−m (αm − z1) (αm − z2) ,

where ε = (−1)m+1 = ±1 and

z1,2 =

√
5n(n+ 1)±

√
5n2(n+ 1)2 + 16ε

4

are the roots of the polynomial

z2 −
√

5
n(n+ 1)

2
z − ε ∈ Z[

√
5][z].

Let L = Q(z1) and π be a prime ideal lying above 2 in OL. From (6)

ord2(n!) ≤ ordπ(
√

5n!) ≤ ordπ(αm − z1) + ordπ(αm − z2). (7)

The equalities above hold because π | 2 and α is a unit. We use Theorem 2
to get an upper bound of ordπ(αm − zi) for i = 1, 2. We fix i ∈ {1, 2} and
put

η1 := α, η2 := zi, b1 := m, b2 := 1 and Λi := αm − zi.
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Note that z1z2 = ε and z1 + z2 =
√

5n(n+ 1)/2. In particular, α, z1, z2 are
all units so π does not divide any one of them and all these three numbers
are in L. We need to check that α and zi are multiplicatively independent.
It suffices to show that this is so for i = 1 (since z2 = ±z−11 ). To see this,
write

5n2(n+ 1)2 + 16ε = du2

for some squarefree integer d and positive integer u. Clearly, d > 0. Since d
is squarefree and the left–hand side above is a multiple of 4, we get that u is
even and

5(n(n+ 1)/2)2 + 4ε = d(u/2)2.

Next, d 6= 1. Indeed, if d = 1, then

5((n(n+ 1)/2))2 + 4ε = (u/2)2.

Hence, (X, Y ) := (n(n+ 1)/2, u/2) is a positive integer solution to

Y 2 − 5X2 = ±4.

It is then known than (Y,X) = (Lk, Fk) for some positive integer k, where
(Lk)k≥0 is the companion Lucas sequence to the Fibonacci sequence given
by L0 = 2, L1 = 1 and Lk+2 = Lk+1 + Lk for all k ≥ 0. In particular,
Fk = n(n + 1)/2 is a triangular number. Ming [10] showed that the largest
triangular Fibonacci number is F10 = 55 = 10 × 11/2. Hence, n ≤ 10,
contradicting our hypothesis that n > 100. Thus, 5n2(n + 1)2 + 16ε = du2,
holds with some squarefree integer d > 1 which is coprime to 5. Thus,
zi = r1

√
5 ± r2

√
d with some r1, r2 ∈ Q, so z2i ∈ Q(

√
5d). Since z2i is also

an algebraic integer, it follows that z2i is a unit of infinite order in Q(
√

5d).
Since α is a unit of infinite order in Q(

√
5), it follows right away that zi

and α are multiplicatively independent, otherwise z2ui = αv for some integers
u and v would imply that the above common value of z2ui and αv is in
Q(
√

5) ∩ Q(
√

5d) = Q, so u = v = 0, a contradiction. Note in passing that
we also showed that L = Q(

√
5,
√
d), so dL = 4.

We now look at how the prime 2 splits in OL. Since the discriminant of
Q(
√

5) is 5 and 2 is not a quadratic residue modulo 5, the prime 2 remains
prime in Q(

√
5) ⊆ L. However, the prime 2 is not prime in L. To see this,

note that when d is even, then 2 = π2 is a square in Q(
√
d) ⊆ L. When d is

odd, then d ≡ 1, 3, 5, 7 (mod 8). Thus, either d ≡ 1, 7 (mod 8) therefore 2 =
π1π2 splits in Q(

√
d), or d ≡ 3, 5 (mod 8), so 5d ≡ 1, 7 (mod 8), therefore

2 = π1π2 splits in Q(
√

5d). We get that for our ideal π, we have NL/Q(π) =
4 = 2fπ and so, fπ = 2 and D = dL/fπ = 2.

We next calculate upper bounds for the logarithmic heights of α and zi.
Clearly, h(α) = (logα)/2, so we take D logA1 = log 2. For the logarithmic
heights of zi, we note that each zi has degree 4 and its conjugates are

z
(j)
i =

±
√

5n(n+ 1)±
√

5n2(n+ 1)2 + 16ε

4
satisfy |z(j)i | < n2.1.
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for n > 100 and j = 1, 2, 3, 4. Thus, the minimal primitive polynomial of zi,
over the integers, divide to(

z2 − (
√

5n(n+ 1)/2)z − ε
)
×

(
z2 + (

√
5n(n+ 1)/2)z − ε

)
= (z2 − ε)2 − 5(n(n+ 1)/2)2 ∈ Z[z].

Hence,

h(zi) ≤
1

4

(
4∑
j=1

log max{|z(j)i |, 1}

)
< 2.1 log n.

We take D logA2 = 4.4 log n. Finally, we note that

b′ =
m

4.4 log n
+

1

log 2
<
n

2
.

In the above inequality we have used the fact that m < 2.1n log n which is
implied by (5) for n > 100. Thus,

log b′ + log log p+ 0.4 < log(n/2) + log log 2 + 0.4 < log n.

By Theorem 2, we get

ordπ(Λi) <
24× 2× 3× 25

(log 2)4
× ((log 2)/2)× (2.2 log n) max{10, log n}2

< 15221 max{10, log n}3 (i = 1, 2). (8)

We now return to inequalities (7) and give a lower bound to ord2(n!). It is
well–known that for any prime p we have

ordp(n!) =

⌊
n

p

⌋
+

⌊
n

p2

⌋
+ · · ·+

⌊
n

pt

⌋
+ · · ·

Hence,

ord2(n!) =
⌊n

2

⌋
+
⌊n

4

⌋
+ · · ·+

⌊ n
2t

⌋
+ · · ·

≥
(
n

2
− 1

2

)
+

(
n

4
− 3

4

)
+

(
n

8
− 7

8

)
=

7n− 17

8
>

3n

4
.

In the above, we used the fact that if n > 2k, then⌊ n
2k

⌋
≥ n

2k
− 2k − 1

2k

with k = 1, 2, 3 together with the fact that n > 100. Thus,

ord2(n!) >
3n

4
. (9)

From inequalities (7), (8), (9) and assuming that log n > 10 (so, n ≥ 22027),
we conclude that n < 20295 log3 n, which gives n < 1.4× 108.

In summary, we have proved the following result.
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Lemma 1. Let (m,n) be a solution of Diophantine equation (3) with n >
100. Then the inequalities

n(log n− 1)

logα
+ 1 < m <

n log n

logα
+ 2 and n ≤ 1.4× 108

hold.

In particular, the search range for the integer solutions (m,n) of the Dio-
phantine equation (3) with n > 100 is

(n,m) ∈ [101, 1.4× 108]×
[
n(log n− 1)

logα
+ 1,

n log n

logα
+ 2

]
.

The bounds for m and n are too large to verify our Diophantine equation
(3) even computationally. Below we describe a procedure that allows us to
reduce the amount of calculations needed to finish off the proof.

Let’s start with a remark. Returning to equality (3), we note that

Fm = n!

(
1 +

n+ 1

2n!

)
.

Thus, putting

ε := 1 +
n+ 1

2n!
,

from inequalities (2) we have that

αm−2 ≤ εn! ≤ αm−1,

which lead to

log(n!) + log(ε)

logα
+ 1 ≤ m ≤ log(n!) + log(ε)

logα
+ 2. (10)

Now, by Stirling’s formula:

n! =
√

2πn

(
n

e

)n

eλn , where
1

12n+ 1
< λn <

1

12n

we conclude, from inequalities (10), that

log ε+ 1
12n+1

logα
≤ m−

(
n+ 1

2

)
log n− n+ log(

√
2π)

logα
− 1 ≤ 1 +

log ε+ 1
12n

logα
.

From the above inequalities, we conclude that if (n,m) is a solution of
Diophantine equation (3) with n > 100 then

m =

[(
n+ 1

2

)
log n− n+ log(

√
2π)

logα

]
+ δ, with δ ∈ {1, 2}. (11)
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In the above, [x] is the nearest integer to the real number x.

We consider two cases for n ∈ [101, 1.4× 108].

Case 1: n ∈ [101, 2.8× 105]. For each n in this interval, we generate the
list of Fm modulo 1020 (i.e., we keep only the last 20 digits of the Fibonacci
numbers Fm), where m is given by (11). So, since n! ≡ 0(mod 1020), we
explored computationally the congruence

n(n+ 1)

2
≡ Fm(mod 1020). (12)

A brief calculation in Mathematica reveals that the above equation has no
solutions in this range. Thus, our Diophantine equation (3) has no solutions
in this range.

Case 2: n ∈ (2.8 × 105, 1.4 × 108]. Here we use the fact that the Fi-
bonacci sequence is periodic modulo any positive integer. For prime moduli
p, Robinson [12] and Wall [16] showed that when p ≡ 1, 4 (mod 5), the pe-
riod length of the Fibonacci sequence modulo p divides p − 1, while when
p ≡ 2, 3 (mod 5), the period length divides 2(p+ 1).

We set A := 24× 32× 52× 7× 11. We found all primes p ≡ 1(mod 5) such
that d = p− 1 divides A. They are

11, 31, 41, 61, 71, 101, 151, 181, 211, 241, 281, 331, 401, 421,
601, 631, 661, 701, 881, 991, 1051, 1201, 1321, 1801, 2311, 2521,

2801, 3301, 3851, 4201, 4621, 4951, 6301, 9241, 9901, 11551,
15401, 18481, 19801, 34651, 55441, 92401.

For each prime p above, Fm is periodic modulo p and the period of the
Fibonacci sequence modulo p divides A. Hence, if (n,m) is a solution of
Diophantine equation (3) with n > 2.8 × 105, then n! ≡ 0 (mod p), and

Fm ≡ n(n+1)
2

(mod p). The second congruence is equivalent to

8Fm + 1 ≡ (2n+ 1)2 (mod p).

However, a simple search in Mathematica shows that for each m ∈ [1, A],
there is a prime p in above list such that(

8Fm + 1

p

)
= −1,

except for m ∈ {1, 2, 4, 8, 10, A/2, A− 1, A}. In the above

(
•
p

)
is the Legen-

dre symbol.
We conclude that the only possible values of n ∈ (2.8 × 105, 1.4 × 108],

which can be solutions of the Diophantine equation (3) satisfy the conditions

n(n+ 1)

2
≡ Fm0 (mod A), for m0 = 1, 2, 4, 8, 10, A/2, A− 1, A. (13)

The table below together with Lemma 2 summarizes the solutions of the
above congruences. We use Nm0 for the set of residue classes for n mod A of
equation (13) for the corresponding value of m0.
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m0 Nm0

1, 2 1, 16798, 26398, 43198, 66526, 75073, 83326, 91873, 92926, 101473,
A-1 109726, 118273, 141601, 158401, 168001, 184798, 184801, 201598,

211198, 227998, 251326, 259873, 268126, 276673.
4 2, 10397, 21282, 29922, 31677, 38882, 40317, 49277, 61602, 70562,

71997, 79202, 80957, 89597, 100482, 110877, 110882, 121277, 132162,
140802, 142557, 149762, 151197, 160157, 172482, 181442, 182877,
190082, 191837, 200477, 211362, 221757, 221762, 232157, 243042,
251682, 253437, 260642, 262077, 271037.

8 6, 11193, 17318, 28518, 33081, 50406, 61593, 78918, 187193, 204518,
237593, 237881, 248793, 254918, 255206, 266118

10 10, 28885, 67210, 88714, 96085, 117589, 155914,
184789, 184810, 213685, 252010, 273514.

A/2, A 14399, 22175, 36575, 86624, 101024, 108800, 123200, 128799,
150975, 193599, 215424, 215775, 237600, 251999, 274175.

Lemma 2. If n ∈ (2.8×105, 1.4×108] and (m,n) is a solution of Diophantine
equation (3), then

n ≡ n0 (mod A)

where A = 24 × 32 × 52 × 7 × 11 and n0 ∈ Nm0 for m0 = 2, 4, 8, 10, A/2.
Furthermore

m =

[(
n+ 1

2

)
log n− n+ log(

√
2π)

logα

]
+ δ, with δ ∈ {1, 2}.

In the above, we only considered m0 = 2 but not m0 = 1, A − 1 since
F2 ≡ F1 ≡ F−1 (mod A). Also, we did not consider m0 = A since this is
covered by m0 = A/2 (mod A) because FA/2 ≡ FA ≡ 0 (mod A).

As in Case 1, we compare the last 20 digits of the Fibonacci numbers
and the factoriangular numbers in pairs (m,n) satisfying the restrictions of
Lemma 2. In other words, we analyzed computationally equation (12) with
the restrictions

n = n0 + tA, with 1 ≤ t ≤
⌊

1.4× 108

A

⌋
, n0 ∈ Nm0 ,

m0 ∈ {2, 4, 8, 10, A/2},

and

m =

[(
n+ 1

2

)
log n− n+ log(

√
2π)

logα

]
+ δ, with δ = 1 or 2.

An extensive computational search with Mathematica showed that equation
(12) has no solutions for such pairs (m,n).

This completes the proof of Theorem 1.
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