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p-ADIC QUOTIENT SETS

STEPHAN RAMON GARCIA, YU XUAN HONG, FLORIAN LUCA, ELENA PINSKER,
EVAN SCHECHTER, AND ADAM STARR

Abstract. For A ⊆ N, the question of when R(A) = {a/a′ : a, a′ ∈ A} is
dense in the positive real numbers R+ has been examined by many authors over
the years. In contrast, the p-adic setting is largely unexplored. We investigate
conditions under which R(A) is dense in the p-adic numbers. Techniques
from elementary, algebraic, and analytic number theory are employed in this
endeavor. We also pose many open questions that should be of general interest.

1. Introduction

For A ⊆ N = {1, 2, . . .} let R(A) = {a/a′ : a, a′ ∈ A} denote the corresponding
ratio set (or quotient set). The question of when R(A) is dense in the positive
real numbers R+ has been examined by many authors over the years [3–7, 14, 20,
21, 24, 26, 27, 29, 32, 33, 36–38]. Analogues in the Gaussian integers [12] and, more
generally, in imaginary quadratic number fields [34] have been considered.

Since R(A) is a subset of the rational numbers Q, there are other important
metrics that can be considered. Fix a prime number p and observe that each
nonzero rational number has a unique representation of the form r = ±pka/b, in
which k ∈ Z, a, b ∈ N and (a, p) = (b, p) = (a, b) = 1. The p-adic valuation of
such an r is νp(r) = k and its p-adic absolute value is ‖r‖p = p−k. By convention,
νp(0) = ∞ and ‖0‖p = 0. The p-adic metric on Q is d(x, y) = ‖x − y‖p. The
field Qp of p-adic numbers is the completion of Q with respect to the p-adic metric.
Further information can be found in [15, 22].

The first and third authors recently proved that the set of quotients of Fibonacci
numbers is dense in Qp for all p [13]. Other than this isolated result, the study of
quotient sets in the p-adic setting appears largely neglected. We seek here to initiate
the general study of p-adic quotient sets. Techniques from elementary, algebraic,
and analytic number theory are employed in this endeavor. We also pose many
open questions that should be of general interest.

Section 2 introduces several simple, but effective, lemmas. In Section 3, we
compare and contrast the p-adic setting with the “real setting.” The potential p-
adic analogues (or lack thereof) of known results from the real setting are discussed.

Sums of powers are studied in Section 4. Theorem 4.1 completely describes for
which m and primes p the ratio set of {x2

1+ · · ·+x2
m : xi > 0} is dense in Qp. Cubes

are considerably trickier; the somewhat surprising answer is given by Theorem 4.2.
In Section 5 we consider sets whose elements are generated by a second-order

recurrence. Theorem 5.2 provides an essentially complete answer for recurrences of
the form an+2 = ran+1 + san with a0 = 0 and a1 = 1. Examples are given that
demonstrate the sharpness of our result. The proof of Theorem 5.2 involves the
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arithmetic of quadratic number fields and relies upon a few interesting techniques
that arise again in Section 6 and 7.

Section 6 concerns sets of the form A = {bn+1 : n > 0}. Theorem 6.3 completely
describes the situation: R(A) is dense in Qp if and only if p 6= 2 and p divides some
element of A. If b is squarefree, a result of Hasse ensures that R(A) is dense in Qp

for infinitely many p [18].
Fibonacci and Lucas numbers are considered in Section 7. Corollary 7.1 recovers

the main result of [13]: the set of quotients of Fibonacci numbers is dense in each
Qp. The situation for Lucas numbers is strikingly different. Theorem 7.2 asserts
that the set of quotients of Lucas numbers is dense in Qp if and only if p 6= 2, 5
divides a Lucas number.

In Section 8 we examine certain unions of arithmetic progressions. For instance,
the ratio set of A = {5j : j > 0} ∪ {7j : j > 0} is dense in Q7 but not Q5. This
sort of asymmetry is not unusual. Section 9 is devoted to the proof of Theorem
8.3, which asserts that there are infinitely many pairs of primes (p, q) such that
p is not a primitive root modulo q while q is a primitive root modulo p2. The
proof is somewhat technical and involves a sieve lemma due to Heath-Brown, along
with a little heavy machinery in the form of the Brun-Titchmarsh and Bombieri-
Vinogradov theorems. The upshot of Theorem 8.3 is that there are infinitely many
pairs of primes (p, q) so that the ratio set of {pj : j > 0} ∪ {qk : k > 0} is dense in
Qp but not in Qq. A number of related questions are posed at the end of Section 8.

2. Preliminaries

We collect here a few preliminary observations and lemmas that will be fruitful
in what follows. Although these observations are all elementary, we state them here
explicitly as lemmas since we will refer to them frequently.

Lemma 2.1. If S is dense in Qp, then for each finite value of the p-adic valuation,
there is an element of S with that valuation.

Proof. If q ∈ Q×
p can be arbitrarily well approximated with elements of S, then there

is a sequence sn ∈ S so that |p−νp(sn) − p−νp(q)| = |‖sn‖p − ‖q‖p| 6 ‖sn − q‖p → 0.
On Q×, the p-adic valuation assumes only integral values, so νp(sn) eventually
equals νp(q). �

The converse of the preceding lemma is false as S = {pk : k ∈ Z} demonstrates.
More generally, we have the following lemma.

Lemma 2.2. If A is a geometric progression in Z, then R(A) is not dense in any
Qp.

Proof. If A = {crn : n > 0}, in which c and r are nonzero integers, then R(A) =
{rn : n ∈ Z}. Let p be a prime. If p ∤ r, then R(A) is not dense in Qp by Lemma
2.1. If p|r, then rk ≡ −1 (mod p2) is impossible since −1 is a unit modulo p. Thus,
R(A) is bounded away from −1 in Qp. �

To simplify our arguments, we frequently appeal to the “transitivity of density.”
That is, if X is dense in Y and Y is dense in Z, then X is dense in Z. This
observation is used in conjunction with the following lemma.

Lemma 2.3. Let A ⊆ N.

(a) If A is p-adically dense in N, then R(A) is dense in Qp.
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(b) If R(A) is p-adically dense in N, then R(A) is dense in Qp.

Proof. (a) If A is p-adically dense in N, it is p-adically dense in Z. Inversion is
continuous on Q×

p , so R(A) is p-adically dense in Q, which is dense in Qp.

(b) Suppose that R(A) is p-adically dense in N. Since inversion is continuous on Q×
p ,

the result follows from the fact that N is p-adically dense in {x ∈ Q : νp(x) > 0}. �

Although the hypothesis of (a) implies the hypothesis of (b), we have stated
them separately. We prefer to use (a) whenever possible. We turn to (b) when
confronted with problems that do not succumb easily to (a). This can occur since
the hypothesis of (a) is not necessary for R(A) to be dense in Qp. If A is the set
of even numbers, then R(A) = Q is dense in Qp for all p, but A is not 2-adically
dense in N. The following lemma concerns more general arithmetic progressions.

Lemma 2.4. Let A = {an+ b : n > 0}.
(a) If p ∤a, then R(A) is dense in Qp.

(b) If p|a and p ∤b, then R(A) is not dense in Qp.

Proof. (a) Let p ∤a and let n ∈ N be arbitrary. If r > 1, let i ≡ a−1(n− b) (mod pr)
so that ai + b ≡ n (mod pr). Then A is p-adically dense in N, so R(A) is dense in
Qp by Lemma 2.3.
(b) If p|a and p ∤b, then νp(an+ b) = 0 for all n. Thus, R(A) is not dense in Qp by
Lemma 2.1. �

3. Real versus p-adic setting

A large amount of work has been dedicated to studying the behavior of quotient
sets in the “real setting.” By this, we refer to work focused on determining condi-
tions upon A which ensure that R(A) is dense in R+. It is therefore appropriate
to begin our investigations by examining the extent to which known results in the
real setting remain valid in the p-adic setting.

3.1. Independence from the real case. The behavior of a quotient set in the
p-adic setting is essentially independent from its behavior in the real setting. To
be more specific, a concrete example exists for each of the four statements of the
form “R(A) is (dense/not dense) in every Qp and (dense/not dense) dense in R+.”

(a) Let A = N. Then R(A) is dense in every Qp and dense in R+.

(b) Let F = {1, 2, 3, 5, 8, 13, 21, 34, 55, . . .} denote the set of Fibonacci numbers.
Then R(F ) is dense in each Qp [13]; see Theorem 5.2 for a more general result.
On the other hand, Binet’s formula ensures that R(F ) accumulates only at
integral powers of the Golden ratio, so R(F ) is not dense in R+.

(c) Let A = {2, 3, 5, 7, 11, 13, 17, 19, . . .} denote the set of prime numbers. The
p-adic valuation of a quotient of primes belong to {−1, 0, 1}, so Lemma 2.1
ensures that R(A) is not dense in any Qp. The density of R(A) in R+ is
well known consequence of the Prime Number Theorem; see [10, Ex. 218], [11,
Ex. 4.19], [14, Cor. 4], [21, Thm. 4], [30, Ex. 7, p. 107], [31, Thm. 4], [36, Cor. 2]
(this result dates back at least to Sierpiński, who attributed it to Schinzel [29]).

(d) Let A = {2, 6, 30, 210, . . .} denote the set of primorials ; the nth primorial is
the product of the first n prime numbers. The p-adic valuation of a quotient of



4 S.R. GARCIA, Y.X. HONG, F. LUCA, E. PINSKER, E. SCHECHTER, AND A. STARR

primorials belongs to {−1, 0, 1}, so Lemma 2.1 ensures that R(A) is not dense
in any Qp. Moreover, R(A) ∩ [1,∞) ⊆ N, so R(A) is not dense in R+.

3.2. Independence across primes. Not only is the behavior of a quotient set
in the p-adic setting unrelated to its behavior in the real setting, the density of
a quotient set in one p-adic number system is completely independent, in a very
strong sense, from its density in another.

Theorem 3.1. For each set P of prime numbers, there is an A ⊆ N so that R(A)
is dense in Qp if and only if p ∈ P .

Proof. Let P be a set of prime numbers, let Q be the set of prime numbers not
in P , and let A = {a ∈ N : νq(a) 6 1 ∀q ∈ Q}. Lemma 2.1 ensures that R(A) is
not dense in Qq for any q ∈ Q. Fix p ∈ P , let ℓ > 0, and let n = pkm ∈ N with
p ∤m. Dirichlet’s theorem on primes in arithmetic progressions provides a prime of
the form r = pℓj +m. Then pkr ∈ A and pkr ≡ pk(pℓj +m) ≡ pkm ≡ n (mod pℓ).
Since n was arbitrary, Lemma 2.3 ensures that R(A) is dense in Qp. �

3.3. Arithmetic progressions. There exists a set A ⊆ N which contains arbitrar-
ily long arithmetic progressions and so that R(A) is not dense in R+ [3, Prop. 1].
On the other hand, there exists a set A that contains no arithmetic progressions of
length three and so that R(A) is dense in R+ [3, Prop. 6]. The same results hold,
with different examples, in the p-adic setting.

Example 3.2 (Arbitrarily long arithmetic progressions). The celebrated Green-
Tao theorem asserts that the set of primes contains arbitrarily long arithmetic
progressions [16]. However, its ratio set is dense in no Qp; see (c) in Section 3.

A set without long arithmetic progressions can have a quotient set that is dense
in some Qp. Consider the set A = {2n : n > 0} ∪ {3n : n > 0}, which contains
no arithmetic progressions of length three [3]. The upcoming Theorem 8.1 implies
that R(A) is dense in Q3. One can confirm that R(A) is bounded away from 5 in
Q2, so R(A) is dense in Qp if and only if p = 3. However, we can do much better.

Theorem 3.3. There is a set A ⊆ N that contains no arithmetic progression of
length three and which is dense in each Qp.

Proof. Fix an enumeration (qn, rn) of the set of all pairs (q, r), in which q is a prime
power and 0 6 r < q; observe that each of the the pairs (q, 0), (q, 1), . . . , (q, q − 1)
appears exactly once in this enumeration. Construct A, initially empty, according
to the following procedure. Include the first natural number a1 for which a1 ≡
r1 (mod q1), then include the first a2 so that a2 > a1 and a2 ≡ r2 (mod q2). Next,
select a3 > a2 so that a3 ≡ r3 (mod q3) and so that a1, a2, a3 is not an arithmetic
progression of length three. Continue in this manner, so that a natural number
an > an−1 is produced in the nth stage so that an ≡ rn (mod qn) and a1, a2, . . . , an
contains no arithmetic progression of length three. Since A = {an : n > 1} contains
a complete set of residues modulo each prime power, it is p-adically dense in N for
each prime p. Thus, R(A) is dense in each Qp by Lemma 2.3. By construction, A
contains no arithmetic progression of length three. �
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3.4. Asymptotic density. For A ⊆ N, define A(x) = A ∩ [1, x]. Then |A(x)|
denotes the number of elements in A that are at most x. The lower asymptotic
density of A is

d(A) = lim inf
n→∞

|A(n)|
n

and the upper asymptotic density of A is

d(A) = lim sup
n→∞

|A(n)|
n

.

If d(A) = d(A), then their common value is denoted d(A) and called the asymptotic
density (or natural density) of A. In this case, d(A) = limn→∞ |A(n)|/n. Clearly
0 6 d(A) 6 d(A) 6 1.

A striking result of Strauch and Tóth is that if d(A) > 1
2 , then R(A) is dense in

R+ [37]; see also [3] for a detailed exposition. That is, 1
2 is a critical threshold in

the sense that any subset of N that contains at least half of the natural numbers
has a quotient set that is dense in R+. On the other hand, the critical threshold in
the p-adic setting is 1.

Theorem 3.4.

(a) If d(A) = 1, then R(A) is dense in each Qp.

(b) For each α ∈ [0, 1), there is an A ⊆ N so that R(A) is dense in no Qp and
d(A) > α.

Proof. (a) Suppose that d(A) = 1. If A contained no representative from some
congruence class modulo a prime power pr, then d(A) 6 1− 1/pr < 1, a contradic-
tion. Thus, A contains a representative from every congruence class modulo each
prime power pr. Let n, r ∈ N and select a, b ∈ A so that a ≡ n (mod pr) and
b ≡ 1 (mod pr). Then a ≡ bn (mod pr) and hence νp(a/b − n) = νp(a − bn) > r.
Thus, R(A) is dense in Qp by Lemma 2.3.

(b) Let α ∈ (0, 1), let pn denote the nth prime number, and let rn be so large that
2n 6 (1− α)prnn for n > 1. If

A = {a ∈ N : νpn(a) 6 rn ∀n},
then R(A) is dense in no Qp by Lemma 2.1. Since A omits every multiple of prnn ,

d(A) > 1−
∞
∑

n=1

1

prnn
> 1−

∞
∑

n=1

(1 − α)

2n
= α. �

It is also known that if d(A) + d(A) > 1, then R(A) is dense in R+ [37, p. 71].
The p-adic analogue is false: for α > 1

2 , the set A from Theorem 3.4 satisfies

d(A) + d(A) > 1 and is dense in no Qp. On the other extreme, we have the
following theorem.

Theorem 3.5. There is an A ⊆ N with d(A) = 0 for which R(A) dense in every
Qp.

Proof. Let qn denote the increasing sequence 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, . . . of
prime powers. Construct A according to the following procedure. Add the first q1
numbers to A (that is, 1, 2 ∈ A) and skip the next q1! numbers (that is, 3, 4, /∈ A).
Then add the next q2 numbers to A (that is, 5, 6, 7 ∈ A) and skip the next q2!
numbers (that is 8, 9, 10, 11, 12, 13 /∈ A). The rapidly increasing sizes of the gaps
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between successive blocks of elements of A ensures that d(A) = 0. Since A contains
arbitrarily long blocks of consecutive integers, it contains a complete set of residues
modulo each qn. Thus, A is p-adically dense in N for each prime p and hence R(A)
is dense in each Qp by Lemma 2.3. �

3.5. Partitions of N. If N = A⊔B, then at least one of R(A) or R(B) is dense in
R+ [5]; this is sharp in the sense that there exists a partition N = A⊔B⊔C so that
none of R(A), R(B), and R(C) is dense in R+. See [3] for a detailed exposition of
these results. Things are different in the p-adic setting.

Example 3.6. Fix a prime p and let

A = {pjn ∈ N : j even, (n, p) = 1} and B = {pjn ∈ N : j odd, (n, p) = 1}.
Then A ∩B = ∅, but neither R(A) nor R(B) is dense in Qp by Lemma 2.1.

Problem. Is there a partition N = A ⊔B so that A and B are dense in no Qp?

4. Sums of powers

The representation of integers as the sum of squares dates back to antiquity,
although this study only truly flowered with the work of Fermat, Lagrange, and
Legendre. Later authors studied more general quadratic forms and also represen-
tations of integers as sums of higher powers. From this perspective, it is natural to
consider the following family of problems. Let

A = {a ∈ N : a = xn
1 + xn

2 + · · ·+ xn
m, xi > 0}.

For what m, n, and p is R(A) dense in Qp? For squares and cubes, Theorems 4.1
and 4.2 provide complete answers.

Theorem 4.1. Let Sn = {a ∈ N : a is the sum of n squares, with 0 permitted}.
(a) R(S1) is not dense in any Qp.

(b) R(S2) is dense in Qp if and only if p ≡ 1 (mod 4).

(c) R(Sn) is dense in Qp for all p whenever n > 3.

Proof. (a) Let p be a prime. Then 2|νp(s) for all s ∈ S1 and hence R(S1) is dense
in no Qp by Lemma 2.1.

(b) There are three cases: (b1) p = 2; (b2) p ≡ 1 (mod 4); (b3) p ≡ 3 (mod 4).

(b1) Since ν2(3) = 0 any element a/b ∈ R(S2) that is sufficiently close in Q2 to 3
must have ν2(a) = ν2(b). Without loss of generality, we may assume that a and b
are odd. Then a ≡ b ≡ 1 (mod 4) since a, b ∈ S2, so a ≡ 3b (mod 4) is impossible.
Thus, R(S2) is bounded away from 3 in Q2.

(b2) Let p ≡ 1 (mod 4). By Lemma 2.3, it suffices to show that for each n > 0 and
r > 1, the congruence x2 + y2 ≡ n (mod pr) has a solution with p ∤x. We proceed
by induction on r. Since there are precisely (p+1)/2 quadratic residues modulo p,
the sets {x2 : x ∈ Z/pZ} and {n − y2 : y ∈ Z/pZ} have a nonempty intersection.
Thus, x2 + y2 ≡ n (mod p) has a solution. If p ∤n, then p cannot divide both x and
y; in this case we may assume that p ∤ x. If p|n, let x = 1 and y2 ≡ −1 (mod p);
such a y exists since p ≡ 1 (mod 4). This establishes the base case r = 1.
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Suppose that x2 + y2 ≡ n (mod pr) and p ∤x. Then x2 + y2 = n+mpr for some
m ∈ Z. Let i ≡ −2−1x−1m (mod p) so that p|(2ix+m). Then

(x + ipr)2 + y2 = x2 + 2ixpr + i2p2r + y2

≡ n+ (2ix+m)pr (mod pr+1)

≡ n (mod pr+1).

This completes the induction.

(b3) Let p ≡ 3 (mod 4). If a, b ∈ S2, then a theorem of Fermat ensures that νp(a)
and νp(b) are both even. Then νp(a)−νp(b) = νp(a/b) 6= 1 = νp(p) for all a, b ∈ S2.
Thus, S2 is bounded away from p in Qp.

(c) Lagrange’s four-square theorem asserts that Sn = N for n > 4, so R(Sn) = Q
is dense in Qp for n > 4. Thus, we consider only n = 3. There are three cases to
consider: (c1) p = 2; (c2) p ≡ 1 (mod 4); (c3) p ≡ 3 (mod 4).

(c1) Recall that Legendre’s three square theorem asserts that a natural number is
in S3 if and only if it is not of the form 4i(8j + 7) for some i, j > 0. Consequently,
if the 2-adic order of a natural number is odd, then it is the sum of three squares.
Let n ∈ N be odd and let k ∈ N. If k is odd, let a = 2kn and b = 1; if k is
even, let a = 2k+1n and b = 2. Then a = 2knb and a, b ∈ S3 since ν2(a) is odd.
Consequently, a ≡ 2knb (mod 2r) for all r ∈ N, so R(S3) is 2-adically dense in N.
Lemma 2.3 ensures that R(S3) is dense in Q2.

(c2) If p ≡ 1 (mod 4), then R(S3) contains R(S2), which is dense in Qp by (b2).

(c3) Let p ≡ 3 (mod 4). Since 4j(8k+7) is congruent to either 0, 4, or 7 modulo 8,
it follows that S3 contains the infinite arithmetic progression A = {8k+1 : k > 0}.
Lemma 2.4 ensures that R(A) is dense in Qp, so R(S3) is dense in Qp too. �

Theorem 4.2. Let Cn = {a ∈ N : a is the sum of n cubes, with 0 permitted}.
(a) R(C1) is not dense in any Qp.

(b) R(C2) is dense in Qp if and only if p 6= 3.

(c) R(Cn) is dense in all Qp for all p whenever n > 3.

Proof. (a) Let p be a prime. Then 3|νp(c) for all c ∈ C1, so Lemma 2.1 ensures
that R(C1) is dense in no Qp.

(b) There are three cases: (b1) p 6= 3, 7; (b2) p = 3; and (b3) p = 7.

(b1) The congruence x3 + y3 ≡ n (modm) has a solution for each n if and only if
7 ∤m or 9 ∤m [2, Thm. 3.3]. Consequently, C2 is p-adically dense in N if p 6= 3, 7, so
R(C2) is dense in Qp for p 6= 3, 7 by Lemma 2.3.

(b2) If x/y ∈ R(C2) is sufficiently close to 3 in Q3, then ν3(x) = ν3(y)+1. Without
loss of generality, we may suppose that ν3(x) = 1 and ν3(y) = 0. A sum of two
cubes modulo 9 must be among 0, 1, 2, 7, 8, so ν3(x) = 1 is impossible for x ∈ C2.
Thus, R(C2) is not dense in Q3.

(b3) Let p = 7. For each integer m congruent to 0, 1, 2, 5 or 6 modulo 7 and each
r > 1, we use induction on r to show that x3 + y3 ≡ m (mod 7r) has a solution
with 7 ∤x. The cubes modulo 7 are 0, 1 and 6 and hence each of the residue classes
0, 1, 2, 5, 6 is a sum of two cubes modulo 7, at least one of which is nonzero. This
is the base of the induction. Suppose that n congruent to 0, 1, 2, 5 or 6 modulo 7
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and that x3 + y3 ≡ m (mod 7r), in which 7 ∤x. Then x3 + y3 = m + 7rℓ for some
ℓ ∈ Z. Let i ≡ −5ℓx−2 (mod 7), so that 7|(3ix2 + ℓ). Then

(x+ 7ri)3 + y3 ≡ x3 + y3 + 3x2 · 7ri (mod 7r+1)

≡ m+ 7r(3ix2 + ℓ) (mod 7r+1)

≡ m (mod 7r+1).

Since 7 ∤x, we have 7 ∤(x+ 7ri). This completes the induction.
The inverses of 1, 2, 5 and 6 modulo 7 are 1, 4, 3 and 6, respectively. Conse-

quently, for each m congruent to 1, 3, 4 or 6 modulo 7, the congruence (x3+y3)−1 ≡
m (mod 7r) has a solution with 7 ∤x.

Each residue class modulo 7 is a product of an element in {0, 1, 2, 5, 6}with an ele-
ment in {1, 3, 4, 6}. Given a natural number n and r > 0, write n ≡ m1m2 (mod 7r),
in which m1 modulo 7 is in {0, 1, 2, 5, 6} and m2 modulo 7 is in {1, 3, 4, 6}. Then
there are c1, c2 ∈ C2 so that c1c

−1
2 ≡ m1m2 ≡ n (mod 7r). Lemma 2.3 ensures that

R(C2) is dense in Q7.

(c) There are two cases to consider: (c1) n > 4; (c2) n = 3 and p = 3.

(c1) Almost every natural number, in the sense of natural density, is the sum of four
cubes [9]. For each prime power pr and each n ∈ N, the congruence x ≡ n (mod pr)
must have a solution with x ∈ C4 since otherwise the natural density of C4 would
be at most 1− 1/pr. Lemma 2.3 ensures that R(C4) is dense in Qp.

(c2) Modulo 9, the set of cubes is {0, 1, 8}; modulo 9, the set of sums of three cubes
is {0, 1, 2, 3, 6, 7, 8}. Since 4 · 7 ≡ 5 · 2 ≡ 1 (mod 9), each element of {1, 4, 5, 8} is the
inverse, modulo 9, of a residue class that is the sum of three cubes.

A lifting argument similar to that used in the proof of (b3) confirms that when-
ever m ≡ 0, 1, 2, 3, 6, 7, 8 (mod 9), the congruence x3 + y3 + z3 ≡ m (mod 3r) has
a solution with 3 ∤ x for all r > 2. Thus, whenever m ≡ 1, 4, 5, 8 (mod 9), the
congruence (x3 + y3 + z3)−1 ≡ m (mod 3r) has a solution with 3 ∤x for all r > 2.

Each residue class modulo 9 is the product of an element in {0, 1, 2, 3, 6, 7, 8}
and an element of {1, 4, 5, 8}. Given a natural number n and r > 2, write n ≡
m1m2 (mod 3r), in which m1 modulo 9 is in {0, 1, 2, 3, 6, 7, 8} and m2 modulo 9
is in {1, 4, 5, 8}. Then there are c1, c2 ∈ C3 so that c1c

−1
2 ≡ m1m2 ≡ n (mod 3r).

Lemma 2.3 ensures that R(C2) is dense in Q3. �

We close this section with a couple open problems. In light of Theorems 4.1 and
4.2, the following question is the next logical step.

Problem. What about sums of fourth powers? Fifth powers?

Turning in a different direction, instead of sums of squares one might consider
quadratic forms. Cubic and biquadratic forms might also eventually be considered.

Problem. Let Q be a quadratic form and let A = {a ∈ N : Q represents a}. For
which primes p is R(A) dense in Qp?

5. Second-order recurrences

The main result of [13] is that the set of quotients of Fibonacci numbers is dense
in Qp for all p. The proof employed a small amount of algebraic number theory and
some relatively obscure results about Fibonacci numbers. The primes p = 2 and
p = 5 required separate treatment. In this section, we establish a result for certain
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second-order recurrences that includes the Fibonacci result as a special case. We
unapologetically use the language of algebraic number theory.

We require Euler’s theorem for ideals. Let K be a number field with ring of
integers OK. If i is a nonzero ideal in OK and α ∈ OK is relatively prime to i, then

αΦ(i) ≡ 1 (mod i), (5.1)

in which

Φ(i) = N(i)
∏

q|i

(

1− 1

N(q)

)

is the Euler totient function for ideals. In the preceding, N(·) denotes the norm of
an ideals; the product runs over all distinct prime ideals q that divide i.

Theorem 5.2. Let r and s be nonzero integers with

r2 /∈ {−s,−2s,−3s,−4s}, (5.3)

let (an)n>0 be defined by1

a0 = 0, a1 = 1, an+2 = ran+1 + san, (5.4)

and let A = {an : n > 1}.
(a) If p|s and p ∤r, then R(A) is not dense in Qp.

2

(b) If p ∤s, then R(A) is dense in Qp.

Proof. (a) If p|s and p ∤r, then induction confirms that an ≡ rn−1 (mod p) so that
νp(an) = 0 for n > 0. Thus, R(A) is not dense in Qp by Lemma 2.1.

(b) Suppose that p ∤ s. The characteristic polynomial of the recurrence (5.4) is
x2 − rx− s. It is monic and has integer coefficients, so its roots

α =
r +

√
r2 + 4s

2
and β =

r −
√
r2 + 4s

2
(5.5)

are algebraic integers. They satisfy

α+ β = r and αβ = −s. (5.6)

Since s 6= 0, both α and β are nonzero; since r2+4s 6= 0, they are distinct. Regard α
and β as elements of the ring OK of algebraic integers in the field K = Q(

√
r2 + 4s),

in which it is understood that K = Q and OK = Z if r2 + 4s is a perfect square.
The initial conditions (5.4) and the integrality of r and s ensure that

an =
αn − βn

α− β
(5.7)

and that an is an integer for n > 0.
We claim that an 6= 0 for all n > 1. In light of (5.7), it suffices to show that α/β

is not a root of unity. Suppose toward a contradiction that

α

β
=

r +
√
r2 + 4s

r −
√
r2 + 4s

=
r2 + 2s+ r

√
r2 + 4s

−2s
(5.8)

is a primitive nth root of unity. Then the degree of α/β is Φ(n), in which Φ denotes
the Euler totient function; this is the degree of the nth cyclotomic polynomial Φn.

1The condition (5.3) ultimately ensures that an 6= 0 for n > 1. There is no loss of generality in
assuming that r, s 6= 0. If r = 0, we obtain the sequence 0, 1, 0, s, 0, s2, . . .. Even if we disregard
the 0 terms, Lemma 2.2 ensures that R(A) is dense in no Qp. If s = 0, then (5.4) is inconsistent.
2If p|s and p|r, then anything can happen. See the remarks after the proof.
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Since α/β ∈ K, which is either Q or a quadratic extension of Q, we have Φ(n) 6 2.
Consequently, n ∈ {1, 2, 3, 4, 6}. We show that each case leads to a contradiction.

(a) If n = 1, then α = β and (5.5) implies that r2 = −4s, in violation of (5.3).

(b) If n = 2, then α = −β and (5.6) implies that r = 0, a contradiction.

(c) If n = 3, then α/β is a root of Φ3(x) = x2 + x + 1; these are (−1 ± i
√
3)/2.

Then (5.8) and a computation ensure that r2 = −s, which contradicts (5.3).

(d) If n = 4, then α/β is a root of Φ4(x) = x2 + 1; these are ±i. Then (5.8) and
a computation ensure that r2 = −2s, which contradicts (5.3).

(e) If n = 6, then α/β is a root of Φ6(x) = x2−x+1; these are (1± i
√
3)/2. Then

(5.8) and a computation ensure that r2 = −3s, which contradicts (5.3).

Recall that p is a rational prime that does not divide s = −αβ. If p = pOK

denotes the ideal in OK generated by p, then α, β /∈ p; that is, α and β are relatively
prime to p. Let q be a prime ideal in OK that divides p. Then q2 might divide
p, but higher powers of q cannot since K is at worst a quadratic extension of Q.
Euler’s theorem for ideals ensures that

αΦ(p2j) ≡ βΦ(p2j) ≡ 1 (mod p2j)

for all j > 1 and hence

αΦ(p2j) ≡ βΦ(p2j) ≡ 1 (mod q2j).

Since an is nonzero for n 6= 0, for each m ∈ N we have

aΦ(p2j)m

aΦ(p2j)
=

αΦ(p2j)m − βΦ(p2j)m

αΦ(p2j) − βΦ(p2j)

= (αΦ(p2j ))m−1 + (αΦ(p2j))m−2(βΦ(p2j)) + · · ·+ (βΦ(p2j))m−1 (5.9)

≡ m (mod q2j)

and hence
aΦ(p2j)m

aΦ(p2j)

≡ m (mod pj). (5.10)

Since the rational number aΦ(p2j)m/aΦ(p2j) belongs to OK by (5.9) it is a rational

integer. Then (5.10) tells us that the rational number (aΦ(p2j)m/aΦ(p2j) −m)/pj is
an algebraic integer and hence a rational integer. Thus,

aΦ(p2j)m

aΦ(p2j)

≡ m (mod pj). (5.11)

Since m ∈ N was arbitrary, Lemma 2.3 ensures that R(A) is dense in Qp. �

The preceding theorem is sharp in the following sense: if p|s and p|r, then R(A)
may or may not be dense in Qp. Consider the following examples.

Example 5.12. Let p = 3, r = 15, and s = −54; note that p|s and p|r. Then
α = 9 and β = 6, so

an =
9n − 6n

9− 6
= 3n−1(3n − 2n).

We claim that R(A) is not dense in Q3. Since ν3(3) = 1 and ν3(am/an) = (m −
1)− (n− 1) = m− n for m,n > 0, any element of R(A) that is sufficiently close to
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3 in Q3 must be of the form an+1/an for some n > 1. However,

ν3

(an+1

an
− 3

)

= ν3

(3n(3n+1 − 2n+1)

3n−1(3n − 2n)
− 3

)

= 1 + ν3

(3n+1 − 2n+1

3n − 2n
− 1

)

= 1 + ν3(3
n+1 − 2n+1 − 3n + 2n) = 1 + ν3

(

3n(3− 1)− 2n(2− 1)
)

= 1 + ν3

(

2 · 3n − 2n
)

= 1 + ν3

(

3n − 2n−1
)

= 1,

so R(A) is bounded away from 3 in Q3.

Example 5.13. Let p = 5, r = 20, and s = −75; note that p|s and p|r. Then
α = 15 and β = 5, so

an =
15n − 5n

15− 5
= 5n−1 3

n − 1

2
.

We claim that R(A) is dense in Q5. Let N ∈ N be given and write N = 5tN0, in
which 5 ∤N0. Let r > t be large and so that r 6≡ t−1 (mod 4). Since φ(5r+1) = 4·5r,
Euler’s theorem permits us to write

34·5
r − 1 = 5r+1ℓ, 5 ∤ℓ. (5.14)

Let m > 1 satisfy
m ≡ ℓ−1N0(3

r−t+1 − 1) (mod 5r+1); (5.15)

Euler’s theorem ensures that 5 ∤m since 4 ∤(r − t+ 1). If n = 4 · 5rm, then

(3n+r−t+1 − 1)
an

an+r−t+1

= 5n−1
(3n − 1

2

)( 2

5n+r−t

)

= 5−r+t−1(34·5
rm − 1)

= 5t
(34·5

rm − 1

34·5r − 1

)(34·5
r − 1

5r+1

)

= 5t
( (34·5

r

)m − 1

34·5r − 1

)

ℓ (by (5.14))

= 5t
(

(34·5
r

)m−1 + (34·5
r

)m−2 + · · ·+ 1
)

ℓ

≡ 5tmℓ (mod 5r+1) (since φ(5r+1) = 4 · 5r)
≡ 5tN0(3

r−t+1 − 1) (mod 5r+1) (by (5.15))

≡ N(3r−t+1 − 1) (mod 5r+1) (since N = 5tN0)

≡ N(3n+r−t+1 − 1) (mod 5r+1) (since φ(5r+1)|n).
Since 4|n and 4 ∤(r − t+ 1), it follows that 5 ∤(3n+r−t+1 − 1) and hence

ν5

( an
an+r−t+1

−N
)

> r + 1.

Thus, R(A) is 5-adically dense in N, so it is dense in Q5 by Lemma 2.3.

Where do the preceding two examples leave us? Suppose that p|s and p|r. Then
d = (r, s) is divisible by p. Induction confirms that d⌊n/2⌋ divides an for n > 0. To
be more specific,

an =

n−1
∑

k=0

(

n− 1− k

k

)

rmax{n−1−2k,0}smax{⌊ 2k+1

2
⌋,0}
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and hence it is difficult to precisely evaluate νp(an). Consequently, we are unable
at this time to completely characterize when R(A) is dense in Qp if p|s and p|r.
However, in most instances, ad hoc arguments can handle these situations. Consider
the following examples.

Example 5.16. The integer sequence

0, 1, 2, −1, −12, −19, 22, 139, 168, −359, −1558, −1321, 5148, . . .

is generated by the recurrence

a0 = 0, a1 = 1, an+2 = 2an+1 − 5an, n > 0.

In this case, α = 1 + 2i and β = 1 − 2i are nonreal. Let A = {an : n > 1} and
confirm by induction that 5 ∤an for all n > 1. Apply Lemma 2.1 and Theorem 5.2
to see that R(A) is dense in Qp if and only if p 6= 5.

Example 5.17. Let b be an integer not equal to ±1 and consider the sequence
an = bn − 1, which is generated by

a0 = 0, a1 = b− 1, an+2 = (b+ 1)an+1 − ban.

Apply Theorem 5.2 with r = b + 1 and s = −b to the set A = {an : n > 1}
andconclude that R(A) is dense in Qp if and only if p ∤ b. For instance, the set
{1, 3, 7, 15, 31, . . .} is dense in Qp if and only if p 6= 2.

6. Sequences of the form bn + 1

The preceding example prompts an immediate follow-up question. Suppose that
b 6= ±1 and consider the set A = {bn+1 : n > 0}. For which p is R(A) dense in Qp?
Unfortunately, Theorem 5.2 does not apply here since the sequence 1, b+1, b2+1, . . .
which defines A does not satisfy the initial conditions in (5.4). This is indeed a
difficulty since the initial conditions guarantee that the sequences considered in
Theorem 5.2 enjoy the special representation (5.7). Fortunately, the main idea
used in the second half of the proof of Theorem 5.2 still applies. It is the setup that
requires a totally different approach. We require a “lifting the exponent” lemma,
familiar to mathematics contest participants.

Lemma 6.1. Let x, y be nonzero integers with x+ y 6= 0, let n be odd, let p be an
odd prime such that p|(x+ y), p ∤x, and p ∤y. Then

νp(x
n + yn) = νp(x+ y) + νp(n). (6.2)

We omit the proof of the lemma since it is well known and can be found on many
websites devoted to problem solving. Although one can find countless proofs and
applications of this lemma by conducting a web search for “lifting the exponent”,
we are strangely unable to locate a proof in a standard number theory textbook.

Theorem 6.3. Let b 6= ±1, let A = {bn + 1 : n > 0}, and let p be an odd prime.

(a) R(A) is not dense in Q2.

(b) R(A) is dense in Qp if and only if p|(bn + 1) for some n.

Proof. (a) If b is even, then ν2(b
n + 1) = 0 for n > 0 so R(A) is not dense in

Q2 by Lemma 2.1. If b ≡ 1 (mod 4), then bn + 1 ≡ 2 (mod 4) for n > 0. Since
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ν2(b
n + 1) = 1 for n > 0, Lemma 2.1 ensures that R(A) is not dense in Q2. If

b ≡ 3 (mod 4), then

ν2(b
n + 1) ≡











1 or 2 (mod 4) if b ≡ 3, 11 (mod 16),

1 or 3 (mod 4) if b ≡ 7 (mod 16),

0 or 1 (mod 4) if b ≡ 15 (mod 16),

for n > 0. This implies that for i, j > 0,

ν2

( bi + 1

bj + 1

)

= ν2(b
i + 1)− ν2(b

j + 1) ≡
{

0, 1, 3 (mod 4) if b ≡ 3, 11, 15 (mod 16),

0, 2 (mod 4) if b ≡ 7 (mod 16).

Thus, R(A) is not dense in Q2 by Lemma 2.1.

(b) (⇒) We prove the contrapositive. If p ∤ (bn + 1) for all n, then νp(b
n + 1) = 0

for all n. Then R(A) is not dense in Qp by Lemma 2.1.

(⇐) Suppose that p is an odd prime that divides bk + 1 for some k > 1. For odd
m, let r > 1, x = bk, y = 1, and n = mpr in Lemma 6.2 and obtain

νp(b
mkpr

+ 1) = νp(b
k + 1) + νp(mpr) > r.

Consequently, bmkpr ≡ −1 (mod pr) for r > 1 and hence

bmkpr

+ 1

bkpr + 1
=

bmkpr − (−1)mkpr

bkpr − (−1)kpr

=
(bkp

r

)m − ((−1)kp
r

)m

bkpr − (−1)kpr

= (bkp
r

)m−1 − (bkp
r

)m−2 + · · ·+ ((−1)kp
r

)m−1

≡ (−1)m−1 − (−1)m−2 − · · · (−1)m−1 (mod pr)

≡ m (mod pr)

since m is odd. As m runs over the odd numbers, it produces a complete set of
residue classes modulo pr. Thus, R(A) is p-adically dense in N; Lemma 2.3 ensures
that R(A) is dense in Qp. �

If b > 3 is squarefree, then the set of primes p for which p|(bn+1) for some n > 0
has relative density 2/3 as a subset of the primes [18]. That is,

lim
x→∞

|{p 6 x : p is prime and p|(bn + 1) for some n > 0}|
2x/3 logx

= 1.

If b = 2, then relative density is 17/24 instead [18]. In all of these cases, the set
{bn + 1 : n > 0} is dense in Qp for infinitely many p.

7. Fibonacci and Lucas numbers

The Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . are generated by the recurrence

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn, n > 0.

Apply Theorem 5.2 with r = s = 1 to the set F = {Fn : n > 1} and conclude that
R(F ) is dense in Qp for all p. This is the main result of [13]:3

3On a related note, a Fibonacci integer is an integer that is a ratio of products of Fibonacci
numbers. For every ǫ > 0, the counting function for the Fibonacci integers is exp(c(log x)1/2 +

O((log x)1/6 + ǫ)), in which c is explicit constant [25].
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Corollary 7.1. The set of quotients of Fibonacci numbers is dense in each Qp.

A simpler proof is available if p = 3 or p = 5. It is known that the Fibonacci
numbers modulo m produce a complete system of residues modulo if and only if m
has one of the following forms:

5k, 2 · 5k, 4 · 5k, 3j · 5k, 6 · 5k, 7 · 5k, 14 · 5k, j > 1, k > 0;

see [8]. As a consequence, R(F ) is dense in Q3 and Q5. In particular, the density
of R(F ) in Qp for p 6= 3, 5 is not simply due to the p-adic density of F in N.

The Lucas numbers 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, . . . obey the
same recurrence as the Fibonacci numbers, but with different initial conditions:

L0 = 2, L1 = 1, Ln+2 = Ln+1 + Ln, n > 0.

Since the initial term is nonzero, Theorem 5.2 no longer applies. Modulo m, the
Lucas numbers contain a complete system of residues if and only if m is one of the
following numbers:

2, 4, 6, 7, 14, 3j , j > 1;

see [35]. Consequently, the set of quotients of Lucas numbers is dense in Q3. We
can do better by suitably adapting the proof of Theorem 6.3.

Theorem 7.2. Let L = {Ln : n > 0} denote the set of Lucas numbers and let
p 6= 5 be an odd prime.

(a) R(L) is not dense in Q2 and Q5.

(b) R(L) is dense in Qp if and only if p|Ln for some n > 0.

Proof. (a) If Fn > 5, then no Lucas number is divisible by Fn [39]. Since F5 = 5
and F6 = 8, we conclude that ν5(Ln) = 0 and ν2(Ln) 6 3 for all n. Thus, R(L) is
not dense in Q2 or Q5.

(b) (⇒) We prove the contrapositive. If p ∤Ln for all n > 0, then νp(Ln) = 0 for all
n > 0. Thus, R(L) is not dense in Qp.

(⇐) Suppose that p 6= 5 is an odd rational prime that divides Ln for some n > 0.

Then Ln = αn + βn, in which α = (1 +
√
5)/2 and β = (1−

√
5)/2 are units in the

ring OK of algebraic integers in K = Q(
√
5). Let p = pOK denote the ideal in OK

generated by p. Since p|Ln in Z, we have αn = −βn (mod p). Since K is a unique
factorization domain, a straightforward generalization of Lemma 6.1 applies and

νq(α
npr

+ βnpr

) = νq(α
n + βn) + νq(p

r) > r

for each prime q in OK that divides p. The discriminant of K is 5, so the only
rational prime in OK that ramifies is 5. Thus, p is either inert or the product of
two distinct prime ideals. Consequently,

αnpr ≡ −βnpr

(mod pr) (7.3)

and hence

α4npr

= (αnpr

)2(αnpr

)2 ≡ (αnpr

)2(−βnpr

)2 ≡ (αβ)2np
r ≡ 1 (mod pr) (7.4)

because αβ = −1. Given m ∈ N and r > 1, the Chinese Remainder Theorem
provides a natural number ℓ so that ℓ ≡ m (mod pr) and ℓ ≡ 1 (mod 4). Since ℓ is
odd and congruent to 1 modulo 4, we conclude from (7.3) and (7.4) that

Lℓnpr

Lnpr

=
αℓnpr

+ βℓnpr

αnpr + βnpr =
(αnpr

)ℓ − (−βnpr

)ℓ

αnpr − (−βnpr )
(7.5)
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= (αnpr

)ℓ−1 + (αnpr

)ℓ−2(−βnpr

) + · · ·+ (−βnpr

)ℓ−1 (7.6)

≡ ℓ(αnpr

)ℓ−1 (mod pr)

≡ ℓ (mod pr).

The rational number Lℓnpr/Lnpr is an algebraic integer by (7.6), so it is an integer.
Since it is congruent to the natural number ℓ modulo pr, we have

Lℓnpr

Lnpr

≡ ℓ (mod pr) ≡ m (mod pr).

Since m was arbitrarily, Lemma 2.3 ensures that R(L) is dense in Qp. �

The set of primes that divide some a Lucas number Ln has relative density 2/3
as a subset of the primes [23]; see [1] for more information about these types of
results. In particular, R(L) is dense in Qp more often than not.

It is worth remarking on the modifications involved in the proof of Theorem 7.2.
Euler’s theorem for ideals ensures that αΦ(p) ≡ βΦ(p) ≡ 1 (mod p) since α and β
are units in OK. If p is inert, then Φ(p) = p2 − 1; if p is the product of two distinct
prime ideals, then Φ(p) = p − 1. In both cases, Φ(p) is even. This prevents the
proof of Theorem 5.2 from going through in this case since (7.5) requires an odd
exponent. Instead, we used the relation αβ = −1 in to obtain a viable replacement
(7.4) for Euler’s theorem. Because the exponent in (7.4) is even, we required the
Chinese Remainer Theorem to replace it with a suitable odd exponent.

8. Unions of geometric progressions

The ratio set of A = {2n : n ∈ N} ∪ {3n : n ∈ N} is dense in R+ [3, Prop. 6].
The argument relies upon the irrationality of log2 3 and the inhomogeneous form of
Kronecker’s approximation theorem [17, Thm. 440]. We consider such sets in the
p-adic setting, restricting our attention to prime bases. The reader should have no
difficulty stating the appropriate generalizations if they are desired.

An integer g is called a primitive root modulo m if g is a generator of the mul-
tiplicative group (Z/mZ)×. Gauss proved that primitive roots exist only for the
moduli 2, 4, pk, and 2pk, in which p is an odd prime [28, Thm. 2.41]. Consequently,
our arguments here tend to focus on odd primes.

Theorem 8.1. Let p be an odd prime, let b be a nonzero integer, and let

A = {pj : j > 0} ∪ {bj : j > 0}.
Then R(A) is dense in Qp if and only if b is a primitive root modulo p2.

Proof. (⇒) Suppose that R(A) is dense in Qp. We first claim that b is a primitive
root modulo p. If not, then there is an m ∈ {2, 3, . . . , p−1} so that bj 6≡ m (mod p)
for all j ∈ Z. Then R(A) is bounded away from m in Qp, a contradiction. Thus, b
must be a primitive root modulo p.

Suppose toward a contradiction that b is not a primitive root modulo p2. Since
b is a primitive root modulo p, the order of b modulo p2 is at least p− 1. On the
other hand, the order must divide Φ(p2) = p(p − 1). Since p is prime, it follows
that the order of b modulo p2 must be exactly p− 1. Thus, bp−1 ≡ 1 (mod p2).

If bn ≡ p+ 1 (mod p2), then bn ≡ 1 (mod p) and hence n is a multiple of p− 1.
Then bn ≡ 1 (mod p2), a contradiction. Thus, R(A) is bounded away from p+1 in
Qp. This contradiction shows that b must be a primitive root modulo p2.



16 S.R. GARCIA, Y.X. HONG, F. LUCA, E. PINSKER, E. SCHECHTER, AND A. STARR

(⇐) Let r > 1 and let n = pkm ∈ N, in which p ∤m. Since b is a primitive root
modulo p2 it is a primitive root modulo p3, p4, . . . [28, Thm. 2.40], so there is a j
such that bjm ≡ 1 (mod pr). Thus,

νp

(

n− pk

bj

)

= k + νp

(

m− 1

bj

)

> νp(b
jm− 1) > r,

so R(A) is dense in Qp by Lemma 2.3. �

A primitive root modulo p is not necessarily a primitive root modulo p2. For
instance, 1 is a primitive root modulo 2, but not modulo 4. A less trivial example
is furnished by p = 29, for which 14 is a primitive root modulo p, but not modulo
p2. Similarly, if p = 37, then 18 is a primitive root modulo p, but not modulo p2.

Example 8.2. Consider p = 5 and q = 7; note that 5 is a primitive root modulo
7 and vice versa. However, 5 is a primitive root modulo 72 but 7 is not a primitive
root modulo 52. Let

A = {5, 7, 25, 49, 125, 343, 625, 2401, 3125, . . .} = {5j : j > 0} ∪ {7j : j > 0}.
Then Theorem 8.1 ensures that R(A) is dense in Q7 but not in Q5.

This sort of asymmetry is not unusual. The following theorem tells us that
infinitely many such pairs of primes exist. The proof is considerably more difficult
than the preceding material and it requires a different collection of tools (e.g., a
sieve lemma of Heath-Brown, the Brun-Titchmarsh theorem, and the Bombieri-
Vinogradov theorem). Consequently, the proof of Theorem 8.3 is deferred until
Section 9.

Theorem 8.3. There exist infinitely many pairs of primes (p, q) such that p is not
a primitive root modulo q and q is a primitive root modulo p2.

Corollary 8.4. There are infinitely many pairs of primes (p, q) so that the ratio
set of {pj : j > 0} ∪ {qk : k > 0} is dense in Qp but not in Qq.

Let a ≺ b denote “p is a primitive root modulo b.” The following table shows
some of the various logical possibilities (bear in mind that a primitive root modulo
p2 is automatically a primitive root modulo p).

p q p ≺ q q ≺ p p ≺ q2 q ≺ p2

3 5 T T T T
5 7 T T T F
3 7 T F T F
5 11 F F F F
7 19 F T F F

Despite an extensive computer search, we were unable to find a pair (p, q) of primes
for which p ≺ q and q ≺ p, but p 6≺ q2 and q 6≺ p2. We hope to revisit this question
in later work. For now we are content to pose the following question.

Problem. Is there a pair (p, q) of primes for which p ≺ q and q ≺ p, but p 6≺ q2

and q 6≺ p2

On the other hand, numerical evidence and heuristic arguments suggests that
there are infinitely many pairs (p, q) of primes for which p ≺ q2 and q ≺ p2.
Although we have given the proof of the closely related Theorem 8.3, we feel that
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attempting to address more questions of this nature would draw us too far afield.
Consequently, we postpone this venture until another day.

Problem. Prove that there infinitely many pairs of primes (p, q) for which p ≺ q2

and q ≺ p2?

9. Proof of Theorem 8.3

Step 1: We start with a sieve lemma due to Heath-Brown. It is a weaker version
of [19, Lem. 3]. In what follows, p always denotes an odd prime. We write (ap ) for

the Legendre symbol of a with respect to p and write x ≺ y to indicate that x is a
primitive root modulo y.

Lemma 9.1 (Heath-Brown). Let q, r, s be three primes, let k ∈ {1, 2, 3}, and let
u, v be positive integers such that

(a) 16|v,
(b) 2k|(u − 1),

(c) (u−1
2k

, v) = 1,

(d) if p ≡ u (mod v), then
(−3

p

)

=
(q

p

)

=
(r

p

)

=
(s

p

)

= −1.

Then for large x, the set of primes

P(x;u, v) =
{

p 6 x : p ≡ u (mod v), (p− 1)/2k is prime or a product of

two primes, and one of q, r, s is primitive root modulo p
}

has cardinality satisfying

|P(x;u, v)| ≫ x

(log x)2
.

Consider the primes q = 7, r = 11, and s = 19. Let

v = 70,224 = 16× 3× 7× 11× 19

and observe that 16|v, so (a) is satisfied. Let u = 2,951 so that

u− 1 = 2,950 = 2× 52 × 59,

so that (b) is satisfied with k = 1. Then (c) is satisfied since u − 1 and v have no
common factors. If p ≡ u (mod v), then

p ≡ 3 (mod 4), p ≡ 2 (mod 3), and p ≡ 25 (mod qrs). (9.2)

Since q ≡ r ≡ s ≡ 3 (mod 4), quadratic reciprocity ensures that q, r, s are quadratic
nonresidues modulo p. For instance,

( q

p

)

= −
(p

q

)

= −
(25

p

)

= −1 (9.3)

and similarity if q is replaced with r or s. In addition,
(−3

p

)

=
(−1

p

)(3

p

)

=
(p

3

)

=
(2

3

)

= −1

by (9.2) and quadratic reciprocity. Thus, (d) is satisfied.
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Step 2: With u = 2,951, v = 70,224, q = 7, r = 11, and s = 19 as above, let

P = {p ≡ u (mod v) : one of q, r, s is a primitive root modulo p}
and let P(x) = P ∩ [1, x]. Since P(x;u, v) ⊆ P(x), Lemma 9.1 ensures that

|P(x)| > x

(log x)2
.

If p ∈ P , then (pq ) = 1 by (9.3), so p is a quadratic residue modulo q and hence it

fails to be a primitive root modulo q. Since (9.3) holds with q replaced with r or s,
we conclude that p is not a primitive root modulo q, r, or s.

Step 3: The definition of P(x) ensures that one of the primes q, r, s is a primitive
root for at least 1

3 |P(x)| primes p 6 x. Without loss of generality, we may assume
that this prime is q since the specific numerical values of q, r, s are irrelevant in
what follows (save that they are all congruent to 3 modulo 4). Let

P1(x) =
{ x

(log x)2
< p 6 x : p ≡ u (mod v) and q ≺ p

}

and let π(x) denote the number of primes at most x. Then the prime number
theorem implies that

|P1(x)| > 1
3 |P(x)| − π

(

x

(log x)2

)

≫ x

(log x)2
−O

(

x

(log x)3

)

≫ x

(log x)2
.

Step 4: Let P2(x) be the set of p ∈ P1(x) for which q ≺ p2; let P3(x) =
P1(x)\P2(x) be the subset for which q 6≺ p2. One of these two possibilities must
occur at least half the time. This leads to two cases.

Step 4.a: If
|P2(x)| > 1

2 |P1(x)|, (9.4)

then there are at least ≫ x/(log x)2 pairs of primes (p, q) with p 6 x for which
q ≺ p2 and p 6≺ q.

Step 4.b: Suppose that
|P3(x)| > 1

2 |P1(x)|. (9.5)

For p ∈ P3(x) consider primes of the form

ℓ = q + 4hp, h ∈ [1, x3/2 − 1] ∩ Z, (9.6)

first observing that ℓ ≪ x5/2. The prime number theorem for arithmetic progres-
sions asserts that the number of such primes is π(4x3/2p; 4p, q) + O(1), in which
π(x;m, a) denotes the number of primes at most x that are congruent to a (modm).
For such a prime ℓ, quadratic reciprocity and (9.3) ensure that

(p

ℓ

)

= −
( ℓ

p

)

= −
(q + 4hp

p

)

= −
(q

p

)

= 1

since p, q ≡ 3 (mod 4). Consequently, p 6≺ ℓ. Since

ℓp−1 = (q + 4hp)p−1

≡ qp−1 + 4h(p− 1)qp−2p (mod p2)
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≡ 1 + 4h(p− 1)qp−2p (mod p2),

we see that ℓ is a primitive root modulo p2 whenever p ∤h. The Brun-Titchmarsh
theorem ensures that the number of primes ℓ of the form (9.6) for which p|h is

π(4x3/2p; 4p2, q) +O(1) ≪ x3/2p

p2 log(x3/2p)
≪ x3/2

p log x
.

Thus, for each p ∈ P3(x), there are

π(4x3/2p; 4p, q)− π(4x3/2p; 4p2, q) +O(1)

primes ℓ 6 x5/2 for which p 6≺ ℓ and ℓ ≺ p2.

Step 5: Let P4(x) be the subset of P3(x) such that

π(4x3/2p; 4p, q)− π(4x3/2p; 4p2, q) >
x3/2

(log x)2
, (9.7)

and let P5(x) = P3(x)\P4(x). We intend to show that |P5(x)| is small and hence
that (9.7) holds for most p ∈ P3(x). Suppose that p ∈ P5(x); that is,

π(4x3/2p; 4p, q)− π(4x3/2p; 4p2, q) <
x3/2

(log x)2
.

Then
∣

∣

∣

∣

π(4x3/2p; 4p; q)− π(4x3/2p)

φ(4p)

∣

∣

∣

∣

>
π(4x3/2p)

φ(4p)
−
∣

∣π(4x3/2p; 4p, q)− π(4x3/2p; 4p2, q)
∣

∣ − π(4x3/2p; 4p2, q)

≫ x3/2

log x
+O

(

x3/2

(log x)2
+

x3/2

p log x

)

≫ x3/2

log x

because p > x/(log x)2 by the definition of P1(x). Thus,

max
16a64p
(a,4p)=1

16y64x5/2

∣

∣

∣
π(y; 4p, a)− π(y)

φ(4p)

∣

∣

∣
>

∣

∣

∣
π(4x3/2p; 4p, q)− π(4x3/2p)

φ(4p)

∣

∣

∣
≫ x3/2

log x
.

Summing up the above inequality over all p ∈ P5(x) and appealing to the Bombieri-
Vinogradov theorem, for large x we obtain

(

x3/2

log x

)

|P5(x)| ≪
∑

p∈P5(x)

max
16a64p
(a,4p)=1

16y64x5/2

∣

∣

∣
π(y; 4p, a)− π(y)

φ(4p)

∣

∣

∣

≪
∑

m64x

max
16a6m:
(a,m)=1

y6x5/2

∣

∣

∣
π(y;m, a)− π(y)

φ(m)

∣

∣

∣

≪ x5/2/(log x)4.

Thus,

|P5(x)| ≪
x

(log x)3
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and hence

|P4(x)| = |P3(x)| − |P5(x)| > 1
2 |P3(x)| ≫

x

(log x)2

when (9.5) holds and x is sufficiently large. Comparing this with (9.7), we conclude
that the number of pairs (p, ℓ) with p 6≺ ℓ and ℓ ≺ p2 and p < ℓ 6 4x5/2 is

≫
(

x3/2

(log x)2

)(

x

(log x)2

)

≫ x5/2

(log x)4
. (9.8)

Step 6. If (9.4) holds, then the number of pairs (p, q) for which p ∈ P1(x), q ≺ p2,
and p 6≺ q is ≫ x/(log x)2, which is dominated by (9.8) for large x. For such p we
have max{p, q} 6 x < 4x5/2. If y = 4x5/2 is sufficiently large, then the number of
pairs of primes (p, q) with max{p, q} 6 y and for which p 6≺ q and q ≺ p2 is

≫ x

(log x)2
≫ y2/5

(log y)2
.

This completes the proof of Theorem 8.3. �

Remark. A more careful application of the Bombieri-Vinogradov theorem shows
that this count can be improved to y1/2−ε for any ε > 0 fixed (just replace the range
for h in (9.6) x3/2 by x1+ε), or even to y1/2/(log y)A for some constant A > 0, but
we do not get into such details.
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