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ON THE X-COORDINATES OF PELL EQUATIONS WHICH ARE

TRIBONACCI NUMBERS

FLORIAN LUCA, AMANDA MONTEJANO, LASZLO SZALAY, AND ALAIN TOGBÉ

Abstract. For an integer d ≥ 2 which is not a square, we show that there is
at most one value of the positive integer X participating in the Pell equation
X

2 − dY
2 = ±1 which is a Tribonacci number, with a few exceptions that we

completely characterize.

1. Introduction

Let d > 1 be a positive integer which is not a perfect square. Consider the Pell
equation

(1) X2 − dY 2 = ±1.

All its positive integer solutions (X,Y ) are given by

Xn + Yn

√
d = (X1 + Y1

√
d)n

for some positive integer n, where (X1, Y1) is the smallest positive solution. In
several recent papers, the following problem was investigated. Let U = {Un}n≥0

be some interesting sequence of positive integers. What can one say about the
square-free integers d such that the equation Xn ∈ U has at least two solutions
n? For most sequences, one expects that the answer to such a question would
be that the equation Xn ∈ U has at most one positive integer solution n for any
given d except maybe for a few (finitely many) values of d. In [3], this was shown
to be so when U is the sequence of all base 10-repdigits; that is, numbers of the
form c(10m − 1)/9, for some positive integers m ≥ 1 and c ∈ {1, . . . , 9}. The only
exceptional d’s in this case were d = 2, 3. For each of these two values of d, the
equation Xn ∈ U has two solutions n. In [5], it was shown, more generally, that if
b ≥ 2 is any fixed positive integer, U is the sequence of base b-repdigits, and d is
such that Xn ∈ U has two solutions n, then

d < exp((10b)10
5

).

In [7], it was shown that if U is the sequence of Fibonacci numbers, then the
equation Xn ∈ U has at most one positive integer solution n, except when d = 2
for which there are exactly two solutions.

In this paper, we consider the same problem for the sequence U := T of Tri-
bonacci numbers given by T0 = 0, T1 = T2 = 1 and Tm+3 = Tm+2 + Tm+1 + Tm,
for all m ≥ 0. Our result is the following.
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Theorem 1.1. Let d ≥ 2 be square-free. The Diophantine equation

(2) Xn = Tm

has at most one solution (n,m) in positive integers with the following exceptions:

• (n1,m1) = (1, 3) and (n2,m2) = (2, 5) in the +1 case,
• (n1,m1) = (1, 1), (n2,m2) = (1, 2) and (n3,m3) = (3, 5) in the −1 case.

A few words about our method. For the arguments in [3], [5] and [7], the arith-
metical properties of the members of U played an important role. For example, it
was important to know all the solutions of the equation Um = 2X2−1 in positive in-
tegers (m,X), which are easy to find when U is the sequence of Fibonacci numbers
or base 10-repdigits. It was also important that gcd(Um, Un) was closely related to
Ugcd(m,n), which is the case both when U is the sequence of Fibonacci numbers and
the sequence of repdigits. In contrast, the sequence of Tribonacci numbers does
not display similar properties. For example, the equation Tm = 2X2 − 1 in posi-
tive integers (m,X) is unsolved and there is no general method that would allow
one to solve such equation (albeit some tricky elementary arguments might solve
such equation) and gcd(Tm, Tn) is not related in any obvious way to Tgcd(m,n). Our
method consists in applying Baker’s theory of linear forms in logarithms three times
to three different linear forms in order to get an absolute bound on all the variables,
after which we use reduction procedures to reduce our bounds to some reasonable
values and carry on the computations in the remaining range. Our method works
equally well not only for the Tribonacci sequence but for other linearly recurrent se-
quences satisfying certain technical conditions. For example, it works for sequences
(um)m≥1 which are linearly recurrent, nondegenerate, have a simple dominant root
α > 1 and all other roots of absolute value smaller than 1, and furthermore if a is
the coefficient of αm in the Binet formula for um, then log(2a) and logα are linearly
dependent over Q (which insures that the analog of the left–hand side of (16) is
nonzero).

2. The Tribonacci sequence

Here, we recall a few important properties of the Tribonacci sequence {Tn}n≥0.
The characteristic equation

x3 − x2 − x− 1 = 0

has roots α, β, γ = β, where

α =
1 + ω1 + ω2

3
, β =

2− ω1 − ω2 +
√
3i(ω1 − ω2)

6
,

and

ω1 =
3

√

19 + 3
√
33 and ω2 =

3

√

19− 3
√
33.

Further, Binet’s formula is

(3) Tm = aαm + bβm + cγm, for all m ≥ 0,

where

(4) a =
1

(α− β)(α − γ)
, b =

1

(β − α)(β − γ)
, c =

1

(γ − α)(γ − β)
= b
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(see [9]). Numerically,

1.83 < α < 1.84,

0.73 < |β| = |γ| = α−1/2 < 0.74,

0.18 < a < 0.19,

0.35 < |b| = |c| < 0.36.

(5)

Further,

(6) αm−2 ≤ Tm ≤ αm−1,

for all m ≥ 2 (see [2]).

3. Linear forms in logarithms

We need some results from the theory of lower bounds in nonzero linear forms in
logarithms of algebraic numbers. We start by recalling Theorem 9.4 of [1], which
is a modified version of a result of Matveev [8]. Let L be an algebraic number field
of degree dL. Let η1, η2, . . . , ηl ∈ L not 0 or 1 and d1, . . . , dl be nonzero integers.
We put

D = max{|d1|, . . . , |dl|, 3},
and put

Γ =
l

∏

i=1

ηdi

i − 1.

Let A1, . . . , Al be positive integers such that

Aj ≥ h′(ηj) := max{dLh(ηj), | log ηj |, 0.16}, for j = 1, . . . l,

where for an algebraic number η of minimal polynomial

f(X) = a0(X − η(1)) · · · (X − η(k)) ∈ Z[X ]

over the integers with positive a0, we write h(η) for its Weil height given by

h(η) =
1

k



log a0 +

k
∑

j=1

max{0, log |η(j)|}



 .

The following consequence of Matveev’s theorem is Theorem 9.4 in [1].

Theorem 3.1. If Γ 6= 0 and L ⊆ R, then

log |Γ| > −1.4 · 30l+3l4.5d2
L
(1 + log dL)(1 + logD)A1A2 · · ·Al.

When k = 2 and η1, η2 are positive and multiplicatively independent, we can
do better. Namely, let in this case B1, B2 be real numbers larger than 1 such that

logBi ≥ max

{

h(ηi),
| log ηi|
dL

,
1

dL

}

i = 1, 2,

and

b′ :=
|d1|

dL logB2
+

|d2|
dL logB1

.

Put
Λ = d1 log η1 + d2 log η2.

Note that Λ 6= 0 when η1 and η2 are multiplicatively independent. The following
inequality is Corollary 2 in [6].
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Theorem 3.2. With the above notation, assuming that k = 2, L is real, η1, η2 are
positive and multiplicatively independent, then

(7) log |Λ| > −24.34d4
L

(

max

{

log b′ + 0.14,
21

dL
,
1

2

})2

logB1 logB2.

4. The Baker-Davenport lemma

We recall the Baker-Davenport reduction method (see [4, Lemma 5a]), which
will be useful to reduce the bounds arising from applying Theorems 3.1 and 3.2.

Lemma 4.1. Let κ 6= 0 and µ be real numbers. Assume that M is a positive
integer. Let P/Q be the convergent of the continued fraction expansion of κ such
that Q > 6M and put

ξ = ‖µQ‖ −M · ‖κQ‖,
where ‖ · ‖ denotes the distance from the nearest integer. If ξ > 0, then there is no
solution of the inequality

0 < |mκ− n+ µ| < AB−k

in positive integers m, n and k with

log (AQ/ξ)

logB
≤ k and m ≤ M.

5. Bounding the variables

We assume that (X1, Y1) is the minimal solution of the Pell equation (1). Setting

X2
1 − dY 2

1 =: ε, ε ∈ {±1},
we put

δ := X1 +
√
dY1 and η := X1 −

√
dY1 = εδ−1.

Then

(8) Xn =
1

2
(δn + ηn).

Since δ ≥ 1 +
√
2, it follows that the estimate

(9)
δn

α
≤ Xn < δn holds for all n ≥ 1.

We now assume that (n1,m1) and (n2,m2) are pairs of positive integers such that

Xn1
= Tm1

and Xn2
= Tm2

.

To fix ideas, we assume that n1 < n2, so m1 < m2. Setting (n,m) := (ni,mi), for
i ∈ {1, 2} and using inequalities (6) and (9), we get that

(10) αm−2 ≤ Tm = Xn < δn and
δn

α
≤ Xn = Tm ≤ αm−1.

Hence,

(11) nc1 log δ ≤ m ≤ nc1 log δ + 2, c1 := 1/ logα

holds. Next, using (3) and (8), we get

1

2
(δn + ηn) = aαm + bβm + cγm,



ON TERMS OF PELL EQUATION WITH TRIBONACCI NUMBERS 5

so

δn(2a)−1α−m − 1 = −(2a)−1α−mηn + (b/a)(βα−1)m + (c/a)(γα−1)m.

Hence, using (5), and assuming that m > 100, we have

∣

∣δn(2a)−1α−m − 1
∣

∣ ≤ 1

2aαmδn
+

|b||β|m
aαm

+
|c||γ|m
aαm

<
1

2aαmδn
+

2|b|
aα3m/2

<
α3

2aα2m
+

2|b|
aα3m/2

<
4.5

α3m/2
.

In the above, we used that |b|/a < 2 (see (5)) and that αm/2 > α3/(2a) which
holds for m > 100. Since α3m/2 > 6, it follows that the last number above is < 1/2.
Thus,

(12)
∣

∣δn(2a)−1α−m − 1
∣

∣ <
4.5

α3m/2
.

Put

Λ := n log δ − log 2a−m logα.

Since |eΛ − 1| < 1/2, it follows that

|Λ| < 2|eΛ − 1| < 9

α3m/2
.

Recalling that (m,n) = (mi, ni), we get that

(13) |ni log δ − log 2a−mi logα| <
9

α3mi/2
holds for both i = 1, 2,

where m2 > m1 > 100. We apply Matveev’s theorem on the left–hand side of (12).
First we need to check that

Γ := eΛ − 1 = δn(2a)−1α−m − 1

is nonzero. Well, if it were, then δn = (2a)αm. The right–hand side belongs to

Q[α] which is a field of degree 3, while the left–hand side belongs to Q[
√
d] which

is a quadratic field. The intersection of these two fields is Q. Hence, δn ∈ Q. Since
δ is an algebraic integer and n ≥ 1, it follows that δn ∈ Z. Since δ is a unit, we get
that δn = 1, so n = 0, a contradiction. Thus, Γ 6= 0, and we can apply Matveev’s
theorem. We take

l = 3, η1 = δ, η2 = 2a, η3 = α, d1 = n, d2 = −1, d3 = −m

and L = Q[
√
d, α] which has degree dL = 6. Since δ ≥ 1 +

√
2 > α, the second

inequality (10) tells us right–away that n < m, so we take D = m. We have
h(η1) = (1/2) log δ and h(η3) = (1/3) logα. Further,

a =
α

α2 + 2α+ 3

and the minimal polynomial of 2a is 11X3 + 4X − 2 and has roots 2a, 2b, 2c.
Further, max{|2a|, |2b|, |2c|} < 1 by (5). Thus, h(η2) = (1/3) log 11. Thus, we can
take

A1 = 3 log δ, A2 = 2 log 11, A3 = 2 log 1.84.
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Now Theorem 3.1 tells us that

log |Γ| > −1.4× 306 × 34.5 × 62(1 + log 6)(1 + logm)(3 log δ)(2 log 11)(2 log 1.84

> −2.6× 1014 log δ(1 + logm).

Comparing the above inequality with (12), we get

1.5m logα− log 4.5 < 2.6× 1014 log δ(1 + logm).

Thus,
m logα < 1.8× 1014 log δ(1 + logm).

Since αm > δn (see the second equation (10)), we get that

(14) n < 1.8× 1014(1 + logm).

Further, since α > 1.83, we get

(15) m < 3× 1014 log δ(1 + logm).

Let us record what we have proved so far.

Lemma 5.1. If Xn = Tm and m > 100, then

n < 1.8× 1014(1 + logm) and m < 3× 1014 log δ(1 + logm).

Next, we return to the two inequalities given by (13). Multiply the one for
i = 1 with n2 and the one for i = 2 with n1, subtract them and apply the triangle
inequality to get that

|(n2 − n1) log 2a+ (n2m1 − n1m2) logα| = |n2(n1 log δ − log 2a−m1 logα)

− n1(n2 log δ − log 2a−m2 logα|
≤ n2|n1 log δ − log 2a−m1 logα|
+ n1|n2 log δ − log 2a−m2 logα|

≤ 9n2

α3m1/2
+

9n1

α3m2/2

<
18n2

α3m1/2
.(16)

We are all set to apply Theorem 3.2 with

l = 2, η1 = 2a, η2 = α, d1 = n2 − n1, d2 = n2m1 −m2n1.

The fact that η1 and η2 are multiplicatively independent follows because the norm
of η1 is 2/11 while η2 is a unit. Observe that n2 − n1 < n2, while by the absolute
value inequality in (16), we have

|n2m1 − n1m2| ≤ (n2 − n1)
| log 2a|
logα

+
12n2

α3m1/2 logα
< 2n2,

because m1 > 100. We have L = Q[α] which has dL = 3. So, we can take

logB1 = max

{

h(η1),
| log η1|

3
,
1

3

}

=
log 11

3

and

logB2 = max

{

h(η2),
log η2
3

,
1

3

}

=
1

3
.

Thus,

b′ =
(n2 − n1)

3× (1/3)
+

|n2m1 − n1m2|
3× (log(11)/3)

< 2n2.
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Now Theorem 3.2 tells us that with

Λ := (n2 − n1) log 2a+ (n2m1 − n1m2) logα,

we have

log |Λ| > −24.34× 34 max{log(2n2) + 0.14, 7}2 · (1/3) · (log(11)/3).
Thus,

log |Λ| > −526 (max {log 2n2 + 0.14, 7})2 .
Combining this with (16), we get

1.5m1 logα− log(18n2) < 526 (max{log(2n2) + 0.14, 7})2 .
If log(2n2) + 0.14 ≤ 7, then n2 ≤ 476. The above inequality then gives

1.5m1 logα < 526× 72 + log(12× 476),

which gives m1 ≤ 28444. Hence, n1 < n2 ≤ 476 and m1 ≤ 28444 in this case.
Assume next that n2 > 476. Then

1.5m1 logα < 526(log(2n2) + 0.14)2 + log(18n2) < 528(1 + logn2)
2,

which gives

(17) m1 < 583(1 + logn2)
2.

Since αm1 > δn1 ≥ δ (see the second relation (10)), we get

log δ < m1 logα < 356(1 + logn2)
2.

Combining this with the second inequality of Lemma 5.1 with (n,m) = (n2,m2),
together with the fact that n2 < m2, we get

m2 < 3× 1014 × 356(1 + logm2)
3,

giving m2 < 1.6×1022. Inserting this into the first inequality of Lemma 5.1, we get
n2 < 1016, which together with (17) gives m1 < 835000. Let us summarize what
we have proved.

Lemma 5.2. If Xni
= Tmi

for i = 1, 2 with m1 < m2 (so n1 < n2), then

m1 < 835000, n2 < 1016, m2 < 1.6× 1022.

To lower these bounds we use continued fractions on (16), and Baker-Davenport
reduction on (13).

6. The final computations

Put χ = − log 2a/ logα. Inequality (16) implies

(18) |(n2 − n1)χ− (n2m1 − n1m2)| <
18n2

α3m1/2 logα
.

Since

(19)
18n2

α3m1/2 logα
<

1

2(n2 − n1)
,

it follows that (n2m1−n1m2)/(n2−n1) is a convergent of −(log 2a)/(logα). Indeed,
logα < 0.61 and m1 > 100, together with Lemma 5.2 induce

(20) α3m1/2 > 6 · 1033 > 60n2
2 > 60(n2 − n1)n2 >

36

logα
(n2 − n1)n2,



8 FLORIAN LUCA, AMANDA MONTEJANO, LASZLO SZALAY, AND ALAIN TOGBÉ

which immediately leads to (19).
Obvoiusly, n2 − n1 < n2 < 1016. Let [a0, a1, a2, . . . ] = [1, 1, 1, 1, 6, 1, 1, 22, 1, . . . ]

be the continued fraction expansion of χ, and let pk/qk be its kth convergent. After
a computer calculation we found that

4999601640630812 = q33 < 1016 < 24351826693265967 = q34,

further the maximum of ai (i = 0, 1, . . . , 34) is 22 = a7. Hence,

1

24n2
<

1

24(n2 − n1)
< |(n2 − n1)χ− (n2m1 − n1m2)| <

18n2

α3m1/2 logα
,

and comparing the leftmost and rightmost expressions, by Lemma 5.2 it gives m1 ≤
87.8. Since we assumed that m1 > 100, we conclude that m1 ≤ 100. Now (11)
gives n1 < 69.2.

These upper bounds (on n1 and m1) make it possible to compute all existing n1

and m1. Defining

P+
n (X) =

(X +
√
X2 − 1)n + (X −

√
X2 − 1)n

2
and

P−
n (X) =

(X +
√
X2 + 1)n + (X −

√
X2 + 1)n

2
,

a computer search on the equations

P+
n1
(X1) = Tm1

and P−
n1
(X1) = Tm1

with 1 ≤ m1 ≤ 100 and 1 ≤ n1 ≤ 69, where n1 < m1 results in only the following
possibilities:

Besides the trivial case n1 = 1 (for both equations), which implies X1 = Tm1
,

the only nontrivial solutions are

(n1,m1, X1) = (2, 5, 2), and (n1,m1, X1) = (3, 5, 1)

in the first, and in the second case, respectively.
The non-trivial solutions lead to (d, Y1) = (3, 1), and (d, Y1) = (2, 1), respectively.

Now, applying (13) and Lemma 4.1 we determine all the solutions to equation (2).
First observe, that

∣

∣

∣

∣

n2
log δ

logα
−m2 + χ

∣

∣

∣

∣

<
9

α3/2m2 logα
< 14.8 · 2.4−m2.

Put δ1 = 2 +
√
3 and δ2 = 1 +

√
2. Taking the continued fraction expansion of

log δi/ logα (i = 1, 2), such that the suitable denominator of it exceeds 6 · 1016, we
found that

q1,31 = 156827205418169727≈ 1.56 · 1017,
and

q2,28 = 98827474195551603≈ 9.88 · 1016

is satisfactory for i = 1 and i = 2, respectively. We now apply Lemma 4.1, with
m = n2, n = m2, k = m2, A = 14.8, B = 2.4, M = 1016, κ = log δi/ logα
and µ = χ. Further, according to the two cases Q = q1,31 and Q = q2,28, we get
ξ1 > 0.039 and ξ2 > 0.071. Consequently, m2 < 49.9, n2 < 23.1 in the first case,
and m2 < 48.7, n2 < 33.7 in the second case. However, since we assumed that
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m2 > 100, we get a contradiction, so m2 ≤ 100 leading to n2 ≤ 69.2. Checking the
last range we only obtained the possibilities:

X1 = 2 = T3 and X2 = 7 = T5,

and

X1 = 1 = T1 = T2 and X3 = 7 = T5,

respectively.
Finally, in order to check the trivial cases n1 = 1, X1 = Tm1

, we used a brute
force algorithm which essentially coincides the treatment of the non-trivial cases.
For any 1 ≤ m1 ≤ 100 we determined the decomposition T 2

m1
− ε = dY 2

1 , where d

is squarefree. In this way we find δm1
= X1 +

√
dY1. Then we consider the first

convergents of the continued fraction expansions of

(21)
log δm1

logα
,

such that the denominator is larger than M = 6·1016, and the ξ value in Lemma 4.1
is positive. The upper bounds onm2 are always less than 100, which contradicts the
assertion m2 > 100. Thus only the cases m2 ≤ 100 remain to verify. As conclusion,
the trivial cases do not yield further solutions to (2).

To illustrate the treatment, take ε = 1, m1 = 17. Now T17 = 10609, T 2
17 −

1 = 112550880 = 7034430 · 42, therefore δm1
= 10609 + 4

√
7034430. The first

denominator of the continued fractions corresponding to (21), which is larger then
M is q29, but the first denominator with positive ξ is q31 (ξ > 0.276). Lemma 4.1
implies m2 ≤ 50. However, since we assumed that m2 > 100, we get m2 ≤ 100.
But the equations P±

n (X) = Tm were already solved for m ≤ 100, so we get no
further solutions.
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