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Abstract. For an integer d ≥ 2 which is not a square, we show that there is

at most one value of the positive integer x participating in the Pell equation
x2 − dy2 = ±4 which is a Fibonacci number, except when d = 2, 5, cases

in which we have exactly two values of x being members of the Fibonacci

sequence.

1. Introduction

Let {Fm}m≥0 be the Fibonacci sequence given by Fm+2 = Fm+1+Fm, for m ≥ 0,
where F0 = 0 and F1 = 1. A few terms of this sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, ...

The Fibonacci numbers are well-known for possessing wonderful and amazing prop-
erties (see [18, pp. 53-56] and [7] as well as their extensive annotated bibliographies
for additional references and history).

Let d > 1 be a positive integer which is not a perfect square. Consider the Pell
equation

(1) x2 − dy2 = ±1.

All its positive integer solutions (x, y) are given by

xn + yn
√
d = (x1 + y1

√
d)n,

for some positive integer n, where (x1, y1) is the smallest positive solution. In [12],
the second and third author studied the positive integers n such that xn = Fm is a
member of the Fibonacci sequence and proved that for any d, there is at most one
such n, except when d = 2 for which there are exactly two such values of n.

In this paper, we consider the same problem for the Pell equation

(2) X2 − dY 2 = ±4.

Before getting to our main result, let us make some numerical observations. It is
known that all positive integer solutions (X,Y ) of (2) are given by

Xn + Yn
√
d

2
=

(
X1 + Y1

√
d

2

)n

for some positive integer n, where (X1, Y1) is the smallest positive integer solution.
As a toy example, let us start the study of this question with the small values of

m, namely m ≤ 3.
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• If m = 1, 2, then Xn = Fm = 1. Using equation (2), we see that n = 1, d = 5,
Yn = 1.
• If m = 3, then Xn = Fm = 2. Using equation (2), we get that n = 1, d = 2,

Yn = 2 and the the sign on the right–hand side is −.
From now on, we only consider the instance m ≥ 4.
Hence, we study the Diophantine equation

(3) Xn ∈ {Fm}m≥4.

Of course, for every integer x ≥ 3 and every ε1 ∈ {±4} there is a unique square-
free integer d ≥ 2 such that

x2 − dy2 = ε1.

Namely d is the product of all prime factors of x2−ε1 which appear at odd exponents
in its factorization. In particular, taking x = Fm, we get that any Fibonacci number
is the X-coordinate of the Pell equation corresponding to one of two specific square-
free integers d (according to the sign of ε1). Here, we study the square-free integers
d such that the sequence {Xn}n≥1 contains at least two Fibonacci numbers. Our
result is the following.

Theorem 1.1. Let d ≥ 2 be square-free. The Diophantine equation

(4) Xn ∈ {Fm}m≥4

has at most one solution (n,m) in positive integers. Allowing also m ∈ {1, 2, 3},
the above Diophantine equation still has at most one solution except for d = 2 and
d = 5, cases in which

n ∈ {1, 4}, and n ∈ {1, 2},

respectively, are all the solutions of the containment (4).

The organization of this paper is as follows. The proof of Theorem 1.1 proceeds
in two cases according to whether n is even or odd. In Section 2, we consider the
case in which n even and prove that equation (4) has no other solution in addition
to those listed in Theorem 1.1. For this, we transform the main problem into a
problem about finding all the rational points on some elliptic curves. This is done
by the means of MAGMA. In Section 3, we deal with the case when n is odd. Here,
we use Baker’s method and the Baker-Davenport reduction method to prove that
there is no other solution than those obtained already.

2. The case when n is even

Put

α =
X1 + Y1

√
d

2
and β =

X1 − Y1

√
d

2
.

One can see that αβ = ε, so β = εα−1, where ε ∈ {±1}. With

αn =
Xn + Yn

√
d

2
and βn =

Xn − Yn
√
d

2
,

we obtain

Xn = αn + βn.
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Thus,

X2n = α2n + β2n =

(
Xn +

√
dYn

2

)2

+

(
Xn −

√
dYn

2

)2

=
1

2
(X2

n + dY 2
n ) =

1

2
(X2

n + (X2
n − 4ε)) = X2

n − 2ε.

Therefore, it suffices to solve the equation

(5) u2 ± 2 = Fm, where m ≥ 1.

There are many papers in the literature solving Diophantine equations of the form
Fn = f(u), for some quadratic polynomial f(x) ∈ Q[x] by elementary means. We
give only a couple of examples. The only squares in the Fibonacci sequence are
0 = F0, 1 = F1 = F2, 144 = F12. This is a consequence of the work of Ljunggren
[8], [10] (see the Introduction to [11]) and was rediscovered by Cohn [2] and Wyler
[19]. All triangular numbers in the Fibonacci sequence are 1 = F1 = F2, 3 =
F4, 21 = F8, 55 = F10 were found by an elementary method by Luo Ming [16].
It is therefore likely that one can find all solutions of equation (5) by elementary
means using only congruences and Jacobi symbol manipulations. We preferred a
more computational approach using MAGMA, which we now describe. Since the
formula

(6) V 2 − 5U2 = ±4,

holds with (V,U) = (Lm, Fm), where {Ln}n≥0 is the Lucas companion of the
Fibonacci sequence given by L0 = 2, L1 = 1 and Ln+2 = Ln+1 + Ln for all n ≥ 0,
it follows that by replacing Fm with u2 ± 2 and setting v = Lm, we obtain

(7) v2 = 5(u2 ± 2)2 ± 4.

In the right–hand sides of (7) above we have one of four polynomials each of degree
4. Se we are lead to integer points (u, v) on the following four elliptic curves:

(8) v2 = 5u4 + 20u2 + 24;

(9) v2 = 5u4 − 20u2 + 24;

(10) v2 = 5u4 + 20u2 + 16;

(11) v2 = 5u4 − 20u2 + 16.

We used MAGMA to determine the integer points (u, v) on these elliptic curves.
We obtained:

(±1,±7), for curve (8);

(±1,±3), for curve (9);

(0,±4), for curve (10);

(0,±4), (±1,±1), (±2,±4), (±6,±76), for curve (11).

As Fm = u2 ± 2, we get that X = Xn = Fm ∈ {2, 3, 34}. Using the equation
X2 − dY 2 = ±4, we see that:
• for X = 2, we get (Y, d, ε, n) = (2, 2,−1, 1);
• for X = 3, we get (Y, d, ε, n) = (1, 5, 1, 2), (1, 13,−1, 1);
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• for X = 34, we get (Y, d, ε, n) = (24, 2, 1, 4), (2, 290,−1, 1).
Since n is even, the only acceptable cases are (n, d) = (2, 5), (4, 2). In both cases,

X2
1 − dY 2

1 = −4.

So far, we have seen that if Xn ∈ {Fm}m≥1 holds for some even n, then we must
have (n, d) = (2, 5), (4, 2). Since we are searching for solutions to the problem
when Xn ∈ {Fm}m≥1 holds for at least two values of n, it follows that in each of
the above two cases, the other value of n must be odd. This leads to

X2
n − dY 2

n = −4 with d ∈ {2, 5}.

When d = 5, it is well-known that (Xn, Yn) = (Ln, Fn), and furthermore, n must
be odd. Hence, we get Ln = Fm, whose only convenient solution is n = 1. For
d = 2, we rewrite our equation as

2Y 2
n = X2

n + 4 = F 2
m + 4.

Multiplying the above relation with L2
m = 5F 2

m ± 4, we get

(2YnLm)2 = 2(F 2
m + 4)(5F 2

m ± 4).

Setting u := Fm and v := 2YnLm, we are led to solving the equations

(12) v2 = 2(u2 + 4)(5u2 + 4) = 10u4 + 48u2 + 32

and

(13) v2 = 2(u2 + 4)(5u2 − 4) = 10u4 + 32u2 − 32

in positive integers (u, v). Only equation (13) gives us the solution (u, v) = (2, 16)
which leads to Xn = Fm = 2 = F3, and Yn = 2.

Lemma 2.1. Assume that X2 − dY 2 = ±4 and that Xn = Fm for some even n.
Then, (n, d) = (2, 5), (4, 2). Additionally, if d = 2 and d = 5, the only solutions of
Xn = Fm (regardless of the parity of n) are n = 1, 4, and n = 1, 2, respectively.

3. The case n odd

3.1. Preliminary considerations. From now on, d > 2 and d 6= 5. Now suppose
that n1 < n2 are odd integers such that Xn1

= Fm1
and Xn2

= Fm2
for some

positive integers m1 < m2. Since n1 and n2 are odd, we have

gcd(Xn1
, Xn2

) = Xgcd(n1,n2).

Further, gcd(Fm1 , Fm2) = Fgcd(m1,m2). Thus, by replacing n1 with gcd(n1, n2) and
m1 by gcd(m1,m2), we may assume that n1 | n2 and m1 | m2. Thus, we put
n2 = n1n and m2 = m1t for some positive integers n > 1, t > 1. Clearly, n is
odd. Further, we replace (Xn1 , Yn1) by (X1, Y1), therefore we replace (αn1 , βn1) by
(α, β). We obtain

(14) X1 = α+ β = Fm1

and

(15) Xn = αn + βn = Fm1t.
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Since n1 is odd, it follows that εn1 = (αβ)n1 = ε is preserved under the above

replacements. We put (γ, δ) = ((1 +
√

5)/2, (1−
√

5)/2) for the golden section and
its conjugate. The formula

(16) Fk =
γk − δk√

5
holds for all k ≥ 1.

With these notations, the following inequalities hold.

Lemma 3.1. We have the following estimates:

(17)

∣∣∣∣α− 1√
5
γm1

∣∣∣∣ < 6

γm1
,

(18) γm1t−2 < αn < γm1t,

(19)
∣∣∣√5γ−m1tαn − 1

∣∣∣ < 10

γ2m1t
.

Proof. Using the equation (14) and the Binet formula (16) for the Fibonacci num-
bers, we obtain

(20) α+ β =
γm1 − δm1

√
5

.

We deduce that

(21) α =
1√
5
γm1 − β − 1√

5
δm1 .

Since α > 3 (because d > 2) and |β| < 1, we have

2α

3
< α+ β < 2α.

Further,
γm1−2 < Fm1 < γm1−1,

inequality which can be deduced easily from the Binet formula (16). Thus, from
(14), we deduce

2α

3
< Fm1

< γm1−1 so α <
3

2
γm1−1 < γm1 ,

as well as

γm1−2 < Fm1
< 2α and so

1

2
γm1−2 < α.

This leads to
1

2
γm1−2 < α < γm1 .

So, we get

(22) γm1−4 < α < γm1 .

Therefore, we obtain from (21), that∣∣∣∣α− 1√
5
γm1

∣∣∣∣ =

∣∣∣∣± 1

α
+

1√
5

(±γ)−m1

∣∣∣∣ ≤ 1

γm1

(
1√
5

+ 2γ2

)
<

6

γm1
,

which proves (17). On the other hand, we use equation (15) to get

(23) αn =
1√
5
γm1t − βn − 1√

5
δm1t.
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Similarly as above, we have

γm1t−2 < Fm1t = αn + βn < γ (αn + βn) = γFm1t < γm1t.

Thus, one can see that

γm1t−2 < αn < γm1t,

which is (18). Estimate (18) together with (23) leads to

(24)

∣∣∣∣αn − 1√
5
γm1t

∣∣∣∣ =

∣∣∣∣± 1

αn
+

1√
5

(±γ)m1t

∣∣∣∣ ≤ 1

γm1t

(
1√
5

+ γ2

)
<

2
√

5

γm1t
;

which gives us

(25)
∣∣∣√5γ−m1tαn − 1

∣∣∣ < 10

γ2m1t
.

This completes the proof of Lemma 3.1. �

3.2. An inequality among n and t. In this subsection, we prove the following
result that helps to compare n and t.

Lemma 3.2. We have n > t.

Proof. We have that

(α, β) =

(
Fm1 +

√
F 2
m1
− ε1

2
,
Fm1 −

√
F 2
m1
− ε1

2

)
,

where ε1 = 4ε. By induction on n, one can readily prove that the two sequences
{Xn}n≥1 and {Fm1n}n≥1 satisfy

Xn = Fm1Xn−1 + (−ε)Xn−2;(26)

Fm1n = Lm1
Fm1(n−1) + (−1)m1−1Fm1(n−2).(27)

for all n ≥ 3. Further, we have

(28) X1 = Fm1
, X2 = F 2

m1
± 2 ≤ F 2

m1
+ 2 < F2m1

.

The last inequality in (28) follows because F2m1 = Fm1Lm1 and Lm1 > 2Fm1 , for all
m1 ≥ 4, inequality which is obvious because of the formula Lm1 = 2Fm1 + Fm1−3,
which can be proved by induction on m1 ≥ 4. We now prove by induction on n
that the inequality

Xn < Fm1n holds for all n ≥ 2.

This together with (15) will give us the desired conclusion that t < n.
The inequality Xn < Fm1n holds with n = 2 by (28) and we also have X1 = Fm1

(so when n = 1 we have equality). Suppose that n ≥ 3. Since Lm1
> 2Fm1

, for all
m1 ≥ 4, the desired inequality follows by induction on n from the two recurrences
(26) and (27) when m1 is odd. When m1 is even, again by induction on n, we have

Fm1n = Lm1
Fm1(n−1) − Fm1(n−2)

= (Lm1 − 1)Fm1(n−1) + (Fm1(n−1) − Fm1(n−2))

≥ Fm1
Fm1(n−1) + Fm1(n−2) > Fm1

Xn−1 +Xn−2 = Xn,

which is what we wanted to prove. �
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3.3. An inequality among m1 and n. The following result will help to compare
m1 and n.

Lemma 3.3. We have γm1 < 6n2.

Proof. We shall show that

(29) Fm1
| n2 ± t2.

The right–hand side above is nonzero by Lemma 3.2. Divisibility (29) will imme-
diately imply the desired conclusion since then γm1−2 < Fm1

≤ n2 ± t2 < 2n2 by
Lemma 3.2, so γm1 < 2γ2n2 < 6n2, which is what we want.

Recall that the Dickson polynomial

(30) Dn(x, v) =

bn/2c∑
p=0

n

n− p

(
n− p
p

)
(−v)pXn−2p

satisfies

Dn(u+ v/u, v) = un + (v/u)n.

Taking n to be odd, u = α, v = ε, we get that

Xn

X1
=
αn + βn

α+ β
=
Dn(X1, ε)

X1
≡ (−ε)bn/2cn (mod X1),

by (30). Since X1 = Fm1
and Xn = Fm1t, we get that

(31)
Fm1t

Fm1

≡ ±n (mod Fm1).

When t is odd, the left–hand above is congruent to ±t modulo Fm1 , a fact which
can be proved invoking again properties of the Dickson polynomials. But we prefer
a direct approach. Given two algebraic integers η, ζ and an integer m we say that
η ≡ ζ (mod m) if (η− ζ)/m is an algebraic integer. Then, γm1 ≡ δm1 (mod Fm1

),
therefore

Fm1t

Fm1

=
γm1t − δm1t

γm1 − δm1
= γm1(t−1) + · · ·+ δm1(t−1) ≡ tγm1(t−1) (mod Fm1

).

The same congruence holds if we replace γ by δ and multiplying them we get

(32)

(
Fm1t

Fm1

)2

≡ t2(γδ)m1(t−1) ≡ ±t2 (mod Fm1
).

By (31), the left–hand side above is congruent to n2 (mod Fm1
), which together

with (32) leads to divisibility relation (29), which is what we wanted. �

3.4. Bounding n and m1. The next result will give us upper bounds for n and
m1. But before this, we recall the following result due to Matveev [14]. Let L be
an algebraic number field and dL be the degree of the field L. Let η1, η2, . . . , ηl ∈ L
not 0 or 1 and d1, . . . , dl be nonzero integers. We put

D = max{|d1|, . . . , |dl|, 3},

and put

Λ =

l∏
i=1

ηdi
i − 1.
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Let A1, . . . , Al be positive integers such that

Aj ≥ h′(ηj) := max{dLh(ηj), | log ηj |, 0.16}, for j = 1, . . . l,

where for an algebraic number η we write h(η) for its Weil height.

Theorem 3.1. If Λ 6= 0 and L ⊂ R, then

log |Λ| > −1.4 · 30l+3l4.5d2
L(1 + log dL)(1 + logD)A1A2 · · ·Al.

We now use the above result to prove the following lemma.

Lemma 3.4. We have n < 2.9× 1015. Additionally, we have m1 ≤ 154.

Proof. We take

Λ :=
√

5γ−m1tαn − 1.

This is nonzero, since if it were, then
√

5 = γm1tα−n would be a unit, which is false
since it belongs to L = Q(

√
5, α) and its norm from L to Q is 52. We use Theorem

3.1 to get a lower bound for |Λ|. We take l = 3,

η1 =
√

5, η2 = γ, η3 = α, d1 = 1, d2 = −m1t, d3 = n.

Clearly, dL ∈ {2, 4}. We have h(η1) = log 5, h(η2) = (log γ)/2, h(α) = (logα)/2.
Thus, we can take A1 = 2 log 5, A2 = 2 log γ, A3 = 2 logα. Since d ≥ 3 and d 6= 5,
we have that α > γ2, so inequality (18) gives that

γ2n < αn < γm1t,

so n < m1t. Hence, we can take D := m1t. Theorem 3.1 gives now that

(33) − log |Λ| < 2.8×306×34.5×42(1+log 4)(2 log 5)(2 log γ)(2 logα)(1+log(m1t)).

On the other hand, inequalities (18) and (19) give

(34) |Λ| < 10

γ2m1t
<

10γ4

α2n
<

80

α2n
so − log |Λ| > 2n logα− log 80.

Putting (33) and (34) together, we get

n < 2.8× 306 × 34.5 × 42(1 + log 4)(2 log 5)(2 log γ)(1 + log(m1t)) +
log 80

logα
.

Since α > 2 +
√

3, t < n (by Lemma 3.2) and m1 < log(6n2)/ log γ (by Lemma
3.3), we get

n < 3.4× 1013(1 + log(n log(6n2)/ log γ)),

giving n < 2.9× 1015. Additionally, Fm1
< 2n2 < 1032, so m1 ≤ 154. �

3.5. The final step. For each m1 ∈ [4, 154] and ε ∈ {±1}, we calculate

α =
Fm1

+
√
F 2
m1
− 4ε

2
.

We put

Γ := n logα−m1t log γ + log(
√

5).

Note that eΓ − 1 = Λ. Since t ≥ 2, m1 ≥ 4, we have that m1t ≥ 8, so by (19), we
have that

|Λ| < 10

γ2m1t
<

1

2
.
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By a classical inequality, this leads to

(35) |Γ| ≤ 2|Λ| ≤ 20

γ2m1t
.

Inequality (35) is suitable to apply the reduction algorithm. Note that

n < m1t < m1n < 4.5× 1017 := M.

So in order to deal with the remaining cases, for m1 ∈ [4, 154], we used a Diophan-
tine approximation algorithm called the Baker-Davenport reduction method. The
following lemma is a slight modification of the original version of Baker-Davenport
reduction method. (See [6, Lemma 5a]).

Lemma 3.5. Assume that M is a positive integer. Let P/Q be the convergent of
the continued fraction expansion of κ such that Q > 6M and let

η = ‖µQ‖ −M · ‖κQ‖,

where ‖ · ‖ denotes the distance from the nearest integer. If η > 0, then there is no
solution of the inequality

0 < mκ− n+ µ < AB−m

in integers m and n with
log (AQ/η)

logB
≤ m ≤M.

As

0 < n logα−m1t log γ + log(
√

5) <
20

γ2n
,

we apply Lemma 3.5 with

κ =
logα

log γ
, µ =

log(
√

5)

log γ
, A =

20

log γ
, B = γ2, M = 4.5 · 1017.

The program was developed in PARI/GP running with 200 digits. For the com-
putations, if the first convergent such that q > 6M does not satisfy the condition
η > 0, then we use the next convergent until we find the one that satisfies the con-
ditions. In one minute, all the computations were done. In all cases, we obtained
m1t ≤ 157. We set M = 157 and the second run of the reduction method yields no
improvement.

For each t, we choose n odd such that inequalities (18) holds (if it exists) and
with this n, we check whether the equality

(36) Xn = Dn(Fm1 , ε) = Fm1t,

holds where the polynomial D(x, v) is shown at (30). If it does, we have found
another solution to our original problem. We wrote a program in Maple that we
ran through the remaining range and found no new solutions.
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