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DYSON’S RANKS AND APPELL–LERCH SUMS

DEAN HICKERSON AND ERIC MORTENSON

For Freeman Dyson in honour of his 90th birthday

Abstract. Denote by p(n) the number of partitions of n and by N(a,M ;n) the number

of partitions of n with rank congruent to a modulo M . We find and prove a general

formula for Dyson’s ranks by considering the deviation of the ranks from the average:

D(a,M) :=

∞
∑

n=0

(

N(a,M ;n)−
p(n)

M

)

qn.

Using Appell–Lerch sum properties we decompose D(a,M) into modular and mock mod-

ular parts so that the mock modular component is supported on certain arithmetic pro-

gressions, whose modulus we can control. Using our decomposition, we show how our

formula gives as a straightforward consequence Atkin and Swinnerton-Dyer’s results on

ranks as well as Bringmann, Ono, and Rhoades’s results on Maass forms. We also apply

our techniques to a variation of Dyson’s ranks due to Berkovitch and Garvan.

0. Definitions

Let q be a complex number with 0 < |q| < 1 and define C∗ := C− {0}. We have

(x)n = (x; q)n :=
n−1
∏

i=0

(1− qix), (x)∞ = (x; q)∞ :=
∏

i≥0

(1− qix),

j(x; q) := (x)∞(q/x)∞(q)∞ =
∞
∑

n=−∞

(−1)nq(
n
2)xn, (0.1)

and j(x1, x2, . . . , xn; q) := j(x1; q)j(x2; q) · · · j(xn; q).

where in the middle line the equivalence of product and sum follows from Jacobi’s triple

product identity. Identity (0.1) defines a theta function. A partial theta function is half of
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a theta function, for example
∞
∑

n=0

(−1)nq(
n
2)xn. (0.2)

Let a and m be integers with m positive. We further define

Ja,m := j(qa; qm), Ja,m := j(−qa; qm), and Jm := Jm,3m =
∏

i≥1

(1− qmi). (0.3)

1. Introduction

Freeman Dyson conjectured a beautiful combinatorial description of Ramanujan’s con-

gruences for the partition function using a statistic which he called the rank. The rank

has further intrigue due to its connections with Ramanujan’s mock theta functions. Atkin

and Swinnerton-Dyer proved Dyson’s conjectures and gave additional examples of how the

rank relates to theta and mock theta functions. Later, Bringmann and Ono generalised

Atkin and Swinnerton-Dyer’s results by using the theory of harmonic weak Maass forms,

a theory which generalises mock theta functions. In this paper, we use Appell–Lerch sum

properties to give an explicit formula for Dyson’s ranks which then yields as straightfor-

ward consequence results of Atkin and Swinnerton-Dyer [3] as well as Bringmann, Ono,

Rhoades, and Zagier [6, 7, 26].

In Ramanujan’s last letter to Hardy, he gave a list of seventeen functions which he called

“mock theta functions” [23]. Each mock theta function f(q) was defined as a q-series,

convergent for |q| < 1, such that for every root of unity ζ , there is a theta function θζ(q)

such that the difference f(q) − θζ(q) is bounded as q → ζ radially; moreover, there is no

single theta function which works for all ζ [13]. Ramanujan also stated identities relating

mock theta functions to each other as well as to modular forms, which suggested that mock

theta functions live inside of a vector space, which has a subspace consisting of modular

forms. Later, more mock theta identities were found in the Lost Notebook [24, 16].

The Lost Notebook is the Rosetta Stone of q-series. Indeed, numerous entries expand

q-hypergeometric series in terms of theta functions (Rogers-Ramanujan type identities),

Appell–Lerch sums (mock theta functions), or partial theta functions. Partial theta func-

tions play roles in areas outside of number theory such as quantum invariants of 3-manifolds

[19]. Appell–Lerch sums appear in the context of black hole physics [9]. Long-standing

problems have been to determine the modularity of the mock thetas and to understand

how various types of q-series representations relate to each other.

In Zwegers’ breakthrough work [27], he solved the modularity question for mock theta

functions. Although mock theta functions are not modular [25], he showed that they can
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be completed to non-holomorphic functions which are modular. As a result, mock theta

functions may be viewed as holomorphic parts of harmonic weak Maass forms [5, 6, 8, 26].

1.1. Dyson’s ranks. One way to study mock theta functions is through partitions. A

partition of a positive integer n is a weakly-decreasing sequence of positive integers whose

sum is n. The partitions of 4 are (4), (3, 1), (2, 2), (2, 1, 1), (1, 1, 1, 1). We denote the number

of partitions of n by p(n). Among the most famous results in partitions are Ramanujan’s

congruences:

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11),

for which there are many proofs and generalisations. To study partition congruences, one

often constructs a function, called a statistic, which assigns an integer value to a partition.

Dyson [10] gave insight into the first two congruences with such a statistic, which he called

the rank. He defined the rank of a partition to be the largest part minus the number of

parts. In particular, the ranks of the five partitions of 4 are 3, 1, 0,−1,−3, respectively,

giving an equinumerous distribution of the partitions of 4 into the five distinct residue

classes mod 5. In general, one defines

N(a,M ;n) := number of partitions of n with rank ≡ a (mod M),

which has the symmetry property N(a,M ;n) = N(M − a,M ;n). Dyson conjectured [10],

[3, (2.2)–(2.11)]:

N(1, 5; 5n+ 1) = N(2, 5; 5n+ 1), (1.1a)

N(0, 5; 5n+ 2) = N(2, 5; 5n+ 2), (1.1b)

N(0, 5; 5n+ 4) = N(1, 5; 5n+ 4) = N(2, 5; 5n+ 4), (1.1c)

N(2, 7; 7n) = N(3, 7; 7n), (1.1d)

N(1, 7; 7n+ 1) = N(2, 7; 7n+ 1) = N(3, 7, 7n+ 1), (1.1e)

N(0, 7, 7n+ 2) = N(3, 7; 7n+ 2), (1.1f)

N(0, 7; 7n+ 3) = N(2, 7; 7n+ 3), N(1, 7; 7n+ 3) = N(3, 7; 7n+ 3), (1.1g)

N(0, 7; 7n+ 4) = N(1, 7; 7n+ 4) = N(3, 7; 7n+ 4), (1.1h)

N(0, 7; 7n+ 5) = N(1, 7; 7n+ 5) = N(2, 7; 7n+ 5) = N(3, 7; 7n+ 5), (1.1i)

N(0, 7; 7n+ 6) +N(1, 7; 7n+ 6) = N(2, 7; 7n+ 6) +N(3, 7; 7n+ 6). (1.1j)
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In particular, indentities (1.1c) and (1.1i) with the symmetry property give the first two of

Ramanujan’s congruences.

We define the general rank-difference

R(a, b,M, c,m) :=

∞
∑

n=0

(

N(a,M ;mn + c)−N(b,M ;mn + c)
)

qn, (1.2)

where a, b, c,m,M are integers with 0 ≤ a, b < M and 0 ≤ c < m. Dyson’s conjec-

tures (1.1a)–(1.1i) can be written as rank-differences that are equal to zero. Atkin and

Swinnerton-Dyer not only proved Dyson’s conjectures but also determined rank-differences

[3, Theorems 4, 5] which are equal to theta and mock theta functions. As an example

of Atkin and Swinnerton-Dyer’s other results, they proved for modulus 5 [3, Theorem 4],

slightly rewritten,

R(1, 2, 5, 0, 5) = qg(q, q5), (1.3a)

R(0, 2, 5, 0, 5) + 2R(1, 2, 5, 0, 5) = J1J
3
5/J

3
1,5, (1.3b)

R(0, 2, 5, 1, 5) = J2
5/J1,5, (1.3c)

R(1, 2, 5, 2, 5) = J2
5/J2,5, (1.3d)

R(0, 2, 5, 3, 5) = −qg(q2, q5), (1.3e)

R(0, 1, 5, 3, 5) +R(0, 2, 5, 3, 5) = J1J
3
5/J

3
2,5, (1.3f)

where

g(x, q) := x−1
(

− 1 +

∞
∑

n=0

qn
2

(x; q)n+1(q/x; q)n

)

(1.4)

is a universal mock theta function.

Many of Ramanujan’s mock theta functions can be written in terms of rank-differences.

For two fifth order mock theta functions [16]:

χ0(q) :=

∞
∑

n=0

qn

(qn+1)n
= 2 + 3qg(q, q5)−

J2
5J2,5

J2
1,5

= 2 +R(1, 0, 5, 0, 5), (1.5a)

χ1(q) :=

∞
∑

n=0

qn

(qn+1)n+1
= 3qg(q2, q5) +

J2
5J1,5

J2
2,5

= R(2, 0, 5, 3, 5) +R(2, 1, 5, 3, 5). (1.5b)

Most results about rank-differences have m = M , see (1.2), but for the mock theta f(q):

f(q) :=
∞
∑

n=0

qn
2

(−q)2n
= 2− 2g(−1, q) = R(0, 1, 2, 0, 1). (1.6)

So we see that the n-th Fourier coefficient of f(q) is equal to the number of partitions of n

with even rank minus the number of partitions of n with odd rank [5].
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1.2. TheMain Theorem: a special case. We give an example of how our Main Theorem

3.1 yields Dyson’s conjectures and Atkin and Swinnerton-Dyer’s results. For integers 0 ≤

a < M , define

D(a,M) = D(a,M, q) :=

∞
∑

n=0

(

N(a,M ;n)−
p(n)

M

)

qn. (1.7)

In terms of our definition (1.2)

R(a, b,M, 0, 1) = D(a,M)−D(b,M). (1.8)

The Main Theorem 3.1 decomposes (1.7) into modular and mock modular components.

For modulus M = 5, the Main Theorem specialises to

D(0, 5) = −2q5g(q5, q25) (1.9)

+
4

5
·
J5J

3
25

J3
5,25

+
4

5
· q1 ·

J2
25

J5,25
−

2

5
· q2 ·

J2
25

J10,25
+

2

5
· q3 ·

J5J
3
25

J3
10,25

D(1, 5) = D(4, 5) = q5g(q5, q25)− q8g(q10, q25) (1.10)

−
1

5
·
J5J

3
25

J3
5,25

−
1

5
· q1 ·

J2
25

J5,25
+

3

5
· q2 ·

J2
25

J10,25
−

3

5
· q3 ·

J5J
3
25

J3
10,25

D(2, 5) = D(3, 5) = q8g(q10, q25) (1.11)

−
1

5
·
J5J

3
25

J3
5,25

−
1

5
· q1 ·

J2
25

J5,25
−

2

5
· q2 ·

J2
25

J10,25
+

2

5
· q3 ·

J5J
3
25

J3
10,25

.

The general form of the Main Theorem has twelve cases depending on a and M modulo 3.

Identities (1.1a)–(1.1c) and (1.3a)–(1.3f) are now immediate. Because of definitions (1.4)

and (0.1), the terms in the Fourier expansions from the g’s and J ’s will be in terms of

powers of q5. Given that there are no q5k+4 terms in the expansions (1.9) – (1.11), it is easy

to see the first of Ramanujan’s congruences (1.1c). We also see that (1.1a) follows from

(1.10) and (1.11) since the coefficients of the g parts do not involve any powers of q of the

form q5k+1 and the theta parts for those powers are both equal to −1/5 · q1 · J2
25/J5,25. We

even see rank-differences (1.5a) and (1.5b).

To prove and use our Main Theorem, we will need a building block finer than the universal

mock theta function g(x, q). Although all of the mock theta functions from Ramanujan’s

letter [23] can be expressed in terms of the universal mock theta function g(x, q) [25, 16, 17],

many mock thetas found in the Lost Notebook [24] cannot. In [18], we demonstrated that

all of the classical mock theta functions [23, 24] can be expressed in terms of Appell-Lerch
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sums [20] defined as follows. Let x, q, and z be nonzero complex numbers with |q| < 1 and

neither z nor zx equal to an integral power of q, then

m(x, q, z) :=
1

j(z; q)

∞
∑

r=−∞

(−1)rq(
r
2)zr

1− qr−1xz
. (1.12)

From [16, Theorem 2.2] and [18], we can express g(x, q) in terms of m(x, q, z) :

g(x, q) = −x−2m(qx−3, q3, x3z)− x−1m(q2x−3, q3, x3z) +
J2
1 j(xz; q)j(z; q

3)

j(x; q)j(z; q)j(x3z; q3)
, (1.13)

where the right-hand side is actually z-independent.

The Main Theorem can be used to determine the arithmetic progressions A for which

∑

n∈A, n≥0

(

N(a,M ;n)−
p(n)

M

)

qn−1/24 (1.14)

is modular. To sketch an example, take expansions (1.9) – (1.11). The mock modular

contributions are supported on arithmetic progressions of modulus 5, e.g. for (1.9) the mock

contribution is supported on the q-terms of the form q5n. As a consequence, an arithmetic

progression modulo 5 from (1.9) not containing the terms q5n will give a weakly holomorphic

modular form. Identity (1.13) and an Appell–Lerch sum property [18, Theorems 3.5], which

we recall in Section 2, allows us to control the modulus of the progression on which the

mock modular component is supported. A detailed discussion is found in Section 2.

1.3. Harmonic weak Maass forms. It turns out that our Main Theorem gives as a

straightforward consequence recent celebrated results of Bringmann, Ono, and Rhoades [6,

7, 26], in which they employ the theory of harmonic weak Maass forms in order to produce

far-reaching generalizations of Dyson’s and Atkin and Swinnerton-Dyer’s observations on

rank-differences. To give examples of their results we recall notation. For an integer t > 0,

define ft :=
2t

gcd(t,6)
, lt := lcm(2t2, 24), and l̃t := lt/24. Define the group Γc by

Γc :=
〈(1 1

0 0

)

,
(1 0

l2c 0

)〉

. (1.15)

Bringmann and Ono showed that the deviation of the ranks from the average value is a

mock theta function:

Theorem 1.1. [6, Theorem 1.3] If 0 ≤ r < t are integers, then

∞
∑

n=0

(

N(r, t;n)−
p(n)

t

)

qltn−
lt
24 (1.16)
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is a holomorphic part of a weak Maass form of weight 1/2 on Γt. Moreover, if t is odd,

then it is on Γ1

(

144 f2t l̃t
)

.

They found arithmetic progressions of the deviation that are modular:

Theorem 1.2. [6, Theorem 1.4] If 0 ≤ r < t are integers, where t is odd, and P ∤ 6t is

prime, then
∑

n≥1
(

24ltn−lt
P

)

=−

(

−24̃lt
P

)

(

N(r, t;n)−
p(n)

t

)

qltn−
lt
24 (1.17)

is a weight 1/2 weakly holomorphic modular form on Γ1

(

144 f2t l̃t P
4
)

.

Remark. One could rewrite (1.17) as a sum over n with
(

1−24n
P

)

= −1.

Bringmann, Ono, and Rhoades, also found generalisations of Atkin and Swinnerton-Dyer’s

results on rank-differences, see also Zagier [26]:

Theorem 1.3. [7, Theorem 1.1] Suppose that t ≥ 5 is prime, 0 ≤ r1, r2 < t and 0 ≤ d < t.

Then the following are true:

(1) If
(

1−24d
t

)

= −1, then

∞
∑

n=0

(N(r1, t; tn+ d)−N(r2, t; tn+ d))q24(tn+d)−1

is a weight 1/2 weakly holomorphic modular form on Γ1(576t
6).

(2) Suppose that
(

1−24d
t

)

= 1. If r1, r2 6≡
1
2
(±1±α) (mod t), where α is any integer for

which 0 ≤ α < 2t and 1− 24d ≡ α2 (mod 2t), then

∞
∑

n=0

(N(r1, t; tn+ d)−N(r2, t; tn+ d))q24(tn+d)−1

is a weight 1/2 weakly holomorphic modular form on Γ1(576t
6).

To obtain their results, Bringmann et al. first complete an expression similar to (1.14)

to a weight 1/2 harmonic weak Maass form. They then use a generalisation of quadratic

twists (see for example Proposition 22 of [15]) in order to obtain an expression in which the

non-holomorphic terms are supported on a certain arithmetic progression. Using quadratic

twists again they eliminate the non-holomorphic terms to obtain that, say, (1.17) is a

weakly holomorphic modular form. Using orthogonality of Dirichlet characters they then

refine their results to, for example, [7, Theorem 1.1(1)].
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1.4. Results. We obtain more explicit results without appealing to the theory of harmonic

weak Maass forms. Where Bringmann et al first complete (1.14) to a weight 1/2 harmonic

weak Maass form, we use Appell–Lerch sum properties to decompose (1.14) into modular

and mock modular components, similar to (1.9) – (1.11). Thus the Main Theorem is

stronger version of [6, Theorem 1.3]. To construct an arithmetic progression of terms

from (1.14) which is a weakly holomorphic modular form, one applies quadratic twists and

orthogonality of Dirichlet characters to the modular component. One then checks that the

mock modular component of the decomposition is supported on a disjoint progression.

In Section 2 we discuss the role Appell–Lerch sums and their properties [18, Theorems

3.9, 3.5] play in the proof the Main Theorem and in its applications. In Section 3 we state

the Main Theorem and give additional specializations relevant to Dyson’s rank-differences

[3, 10]. In Section 5 we prove the Main Theorem using classical methods. In Section 6 we

demonstrate how the Main Theorem yields results of Bringmann et al [6, 7, 26] on Dyson’s

ranks and Maass forms. In Section 7 we apply our techniques to the M2 rank of Berkovitch

and Garvan [4], which is based on work of Dyson [11, 12].

2. The Role of Appell–Lerch sums

We first recall well-known Appell–Lerch sum properties.

Proposition 2.1. [20, 18, 27] If x, q, z, z0, and z1 satisfy the appropriate conditions of

definition (1.12), then

m(x, q, z) = m(x, q, qz), (2.1a)

m(x, q, z) = x−1m(x−1, q, z−1), (2.1b)

m(qx, q, z) = 1− xm(x, q, z), (2.1c)

m(x, q, z1)−m(x, q, z0) =
z0J

3
1 j(z1/z0; q)j(xz0z1; q)

j(z0; q)j(z1; q)j(xz0; q)j(xz1; q)
. (2.1d)

In our work [18], we introduced a heuristic relating partial theta functions to Appell–

Lerch sums. The heuristic suggests that identities involving partial theta functions have

analogous identities in terms of Appell–Lerchs sums; one just needs to add a theta function

[18, Section 3], [22]. So for example, trivial identities such as
∞
∑

n=0

(−1)nxnq(
n
2) −

∞
∑

n=0

(−1)n(−x)nq(
n
2) = −2x

∞
∑

n=0

(−1)n(−x2q3)nq4(
n
2), (2.2)

∞
∑

n=0

(−1)nxnq(
n
2) =

∞
∑

n=0

(−1)n(−x2q)nq4(
n
2) − x

∞
∑

n=0

(−1)n(−x2q3)nq4(
n
2), (2.3)
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where we sum over roots of unity or break up the summation index modulo some num-

ber, e.g. 2, have non-trivial analogs in terms of Appell–Lerch sums. The analog of (2.2)

generalises to

Theorem 2.2. [18, Theorem 3.9] Let n and k be integers with 0 ≤ k < n. Let ω be a

primitive n-th root of unity. Then

n−1
∑

t=0

ω−ktm(ωtx, q, z) = nq−(
k+1
2 )(−x)km

(

− q(
n
2)−nk(−x)n, qn

2

, z′
)

+ nΨn
k(x, z, z

′; q),

where

Ψn
k(x, z, z

′; q) := (2.4)

−
xkzk+1J3

n2

j(z; q)j(z′; qn2)
·

n−1
∑

t=0

q(
t+1
2 )+kt(−z)tj

(

− q(
n+1
2 )+nk+nt(−z)n/z′; qn

2)

j(qntxnznz′; qn
2
)

j
(

− q(
n
2)−nk(−x)nz′, qntxnzn; qn2

)

.

Let ζM := e2πi/M , we have from [6, (3.13)]:

D(a,M) =
1

M

M−1
∑

j=1

ζ−aj
M

(

1− ζjM

)(

1 + ζjMg(ζjM , q)
)

, (2.5)

where the g(x, q) is the universal mock theta function (1.4). To decompose D(a,M) into

modular and mock modular components, we first expand (2.5) in terms of the m(x, q, z)

function, see (1.13). Once expanded, we can use Thereom 2.2 to collapse the sum over

roots of unity. We then use (1.13) again to write the resulting m(x, q, z) functions in terms

of the universal mock theta function g(x, q). This method gives our Main Theorem.

Producing generalisations of rank-differences such as [6, Theorem 1.4] and [7, Theorem

1.1] requires another Appell–Lerch sum property from [18]. Let us consider (1.11). We

remind the reader of the various ways of producing new modular forms from old ones such

as by taking the twist by a Dirichlet character or by restricting the index of summation

of the Fourier expansion to terms that lie in certain arithmetic progressions. With this in

mind we see that up to multiplication by a factor q−1/24 that we can restrict the right-hand

side (1.11) to the sequences q5n, q5n+1, or q5n+2, and obtain a weakly holomorphic modular

form. In particular, we point out that these are the sequences to which q8g(q10, q25) does

not contribute. If we wish to consider sequences modulo M instead of modulo 5, we rewrite

the q8g(q10, q25) in terms of them(x, q, z) function, see (1.13), and use the following theorem

with n = M and z′ = −1:
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Theorem 2.3. [18, Theorem 3.5] For generic x, z, z′ ∈ C∗

m(x, q, z) =
n−1
∑

r=0

q−(
r+1
2 )(−x)rm

(

− q(
n
2)−nr(−x)n, qn

2

, z′
)

+
z′J3

n

j(xz; q)j(z′; qn2)
·
n−1
∑

r=0

q(
r
2)(−xz)rj

(

− q(
n
2)+r(−x)nzz′; qn

)

j(qnrzn/z′; qn
2
)

j
(

− q(
n
2)(−x)nz′, qrz; qn

)

.

Instead of only allowing sequences module 5 to which q8g(q10, q25) does not contribute, we

now avoid contributions from terms of the form qdrm(qMar , qM
2br ,−1). Here ar, br, and dr

are integers. By definition (1.12) the Appell–Lech sums contribute only powers of qM to

the Fourier expansion, so we just need to avoid q-exponents congruent to dr modulo M .

We list a few more facts which will be useful in the paper. We note the z = x−1 and

z = −x−3 specialisations of identity (1.13):

g(x, q) = −x−1m(q2x−3, q3, x2)− x−2m(qx−3, q3, x2), (2.6a)

g(x, q) = −x−2m(qx−3, q3,−1)− x−1m(q2x−3, q3,−1) + ∆(x; q), (2.6b)

where

∆(x; q) :=
x−2J1J

3
3 j(−x2; q)

j(x; q)j(−qx3; q3)j(−q2x3; q3)J0,3

. (2.7)

For computing examples involving g(x, q), we recall an identity [24, p. 32], [2, (12.5.3)]:

g(x, q) = −x−1 + qx−3g(−qx−2, q4)− qg(−qx2, q4) +
J2J

2
2,4

xj(x; q)j(−qx2; q2)
, (2.8)

as well as two properties:

g(x, q) = g(q/x, q) and g(qx, q) = −x− x2 − x3g(x, q). (2.9)

3. The Main Theorem

Theorem 3.1. If 0 ≤ a < M , then

D(a,M, q) = d(a,M, q) + Ta,M(q)

where
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d(a,M, q) =























































































































































































































































































































2m((−1)M+1qM(M−1)/6, qM
2/3, z) if a = 0 and M ≡ 0 (mod 3)

(−1)a q−a(a+1)/6 m((−1)M+1 qM(M−2a−1)/6, qM
2/3, z)

+(−1)a+1 q−a(a−1)/6 m((−1)M+1 qM(M−2a+1)/6, qM
2/3, z)

if a ≡ 0 (mod 3), M ≡ 0 (mod 3), and a 6= 0

(−1)a q−a(a−1)/6 m((−1)M+1 qM(M−2a+1)/6, qM
2/3, z)

if a ≡ 1 (mod 3) and M ≡ 0 (mod 3)

0 if a = 0 and M = 1

2 + 2 (−1)M+1 qM(M−1)/6 g((−1)M+1 qM(M−1)/6, qM
2
)

if a = 0, M ≡ 1 (mod 3), and M 6= 1

(−1)aq−a(a+1)/6 + (−1)M+a+1 q(M(M−2a−1)−a(a+1))/6 g((−1)M+1qM(M−2a−1)/6, qM
2
)

+ (−1)M+a+1 q(M(M+2a−1)−a(a−1))/6 g((−1)M+1qM(M+2a−1)/6, qM
2
)

if a ≡ 0 (mod 3), M ≡ 1 (mod 3), a 6= 0, and M 6= 2a+ 1

(−1)aqa(7a+5)/6 g(q2aM/3, qM
2
) if a ≡ 0 (mod 3), a 6= 0, and M = 2a+ 1

(−1)M+a+1 q(M(M+2a+1)−a(a+1))/6 g((−1)M+1 qM(M+2a+1)/6, qM
2
)

+(−1)a+1 q(2M
2−a(a−1))/6 g((−1)M+1 qM(3M+2a−1)/6, qM

2
)

if a ≡ 2 (mod 3) and M ≡ 1 (mod 3)

2 (−1)M qM(M+1)/6 g((−1)M+1 qM(M+1)/6, qM
2
)

if a = 0 and M ≡ 2 (mod 3)

(−1)a+1 q−a(a−1)/6 + (−1)M+a q(M(M−2a+1)−a(a−1))/6 g((−1)M+1 qM(M−2a+1)/6, qM
2
)

+ (−1)M+a q(M(M+2a+1)−a(a+1))/6 g((−1)M+1 qM(M+2a+1)/6, qM
2
)

if a ≡ 0 (mod 3), M ≡ 2 (mod 3), a 6= 0, and M 6= 2a− 1

(−1)a+1 qa(7a−5)/6 g(q2aM/3, qM
2
) if a ≡ 0 (mod 3) and M = 2a− 1

(−1)M+a q(M(M+2a−1)−a(a−1))/6 g((−1)M+1 qM(M+2a−1)/6, qM
2
)

+(−1)a q(2M
2−a(a+1))/6 g((−1)M+1 qM(3M−2a−1)/6, qM

2
)

if a ≡ 1 (mod 3) and M ≡ 2 (mod 3)

and Ta,M (q) is a theta function. For M ≡ 0 (mod 3), Ta,M(q) also depends on the z.
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We have removed the cases determined by D(a,M) = D(M − a,M). We note that the

case a = 0 is almost a special case of a ≡ 0 (mod 3); we just have to add 1. This is related

to the empty partition of 0, whose rank Atkin and Swinnerton-Dyer leave undefined. We

have defined it to have rank 0.

For a theta function f(q) (and for many other functions) there is an associated fractional

exponent b/a such that qb/a ·f(q) is, in some ways, simpler than f(q). Modular properties of

theta functions are easier to state when you multiply by qb/a. Let us call b/a the multiplier

exponent or λ. The λ for both Ja,m and Ja,m is (m − 2a)2/8m. For m(qa, qm, z), λ is

−(m − 2a)2/8m. We note that the λ’s for all of the cases and summands therein of the

theorem are equal to −1/24. When multiplied by q−1/24, the term Ta,M(q) becomes a weight

1/2 weakly holomorphic modular form.

In Section 5, we see that we can write Ta,M (q) in terms of the theta function j(x; q).

We explain the arbitrary z as well as how and when Ta,M(q) depends on it. When using

Theorem 2.2, we have an arbitrary z′ in both the resulting m(x, q, z) function and the

quotients of theta functions. For M ≡ 1, 2 (mod 3) we specialise the z′ in order to form

g(x, q) terms as in (1.13). For M ≡ 0 (mod 3), we cannot obtain g(x, q) terms, so we leave

the z′ arbitrary for the reader to decide; this situation is not unlike identity (1.13) in which

the right-hand side is z-independent.

4. Examples of Formulas for D(a,M)

We state formulas for small values of M and give examples of proofs for some of the

individual D(a,M, q)’s.

4.1. Case M=2:

D(0, 2) = 2qg(−q, q4) +
1

2
·
J2
1,2

J1

(4.1)

D(1, 2) = −D(0, 2) = −2qg(−q, q4)−
1

2
·
J2
1,2

J1
(4.2)

To prove D(0, 2), we use (2.8) to obtain

g(−1, q) = 1− 2qg(−q, q4)−
1

2
·
J3
1

J2
2

.

Using (2.5) we arrive at

D(0, 2) =
1

2
· 1 · (1− (−1)) · (1− g(−1, q)) = 2qg(−q, q4) +

1

2
·
J3
1

J2
2

.



DYSON’S RANKS AND APPELL–LERCH SUMS 13

4.2. Case M=3:

D(0, 3) = 2m(q, q3,−1)−
1

3
·
J2
1,2

J1,3

(4.3)

D(1, 3) = D(2, 3) = −D(0, 3)/2 = −m(q, q3,−1) +
1

6
·
J2
1,2

J1,3

(4.4)

For D(0, 3), we specialize M = 3 and z′ = −1 in (5.4) and note straightforward facts

such as j(ζ3; q) = (1− ζ3)J3 and j(−ζ3; q) = (1 + ζ3)J
2
1J6/J2J3. It follows that

D(0, 3) = 2m(q, q3,−1) +
1

3

J2
1

J0,1

[ (ζ3 − ζ23 )

(1− ζ3)J3

(1 + ζ3)J
2
1J6

J2J3

+
(ζ23 − ζ3)

(1− ζ23 )J3

(1 + ζ23 )J
2
1J6

J2J3

]

= 2m(q, q3,−1)−
J5
1J6

3J3
2J

2
3

,

where the last line follows from the fact 1 + ζ3 + ζ23 = 0 and some simplifying.

4.3. Case M=7:

D(0, 7) = 2 + 2q7g(q7, q49) (4.5)

−
8

7
·
J2
21,49

J7
+

6

7
· q1 ·

J2
49

J7,49
−

2

7
· q2 ·

J2
14,49

J7
+

4

7
· q3 ·

J2
49

J14,49
+

2

7
· q4 ·

J2
49

J21,49
−

4

7
· q6 ·

J2
7,49

J7

D(1, 7) = D(6, 7) = −1 − q7g(q7, q49) + q16g(q21, q49) (4.6)

+
6

7
·
J2
21,49

J7
−

1

7
· q1 ·

J2
49

J7,49
+

5

7
· q2 ·

J2
14,49

J7
−

3

7
· q3 ·

J2
49

J14,49
+

2

7
· q4 ·

J2
49

J21,49
+

3

7
· q6 ·

J2
7,49

J7

D(2, 7) = D(5, 7) = q13g(q14, q49)− q16g(q21, q49) (4.7)

−
1

7
·
J2
21,49

J7
−

1

7
· q1 ·

J2
49

J7,49
−

2

7
· q2 ·

J2
14,49

J7
+

4

7
· q3 ·

J2
49

J14,49
−

5

7
· q4 ·

J2
49

J21,49
+

3

7
· q6 ·

J2
7,49

J7

D(3, 7) = D(4, 7) = −q13g(q14, q49) (4.8)

−
1

7
·
J2
21,49

J7
−

1

7
· q1 ·

J2
49

J7,49
−

2

7
· q2 ·

J2
14,49

J7
−

3

7
· q3 ·

J2
49

J14,49
+

2

7
· q4 ·

J2
49

J21,49
−

4

7
· q6 ·

J2
7,49

J7

Dyson’s (1.1d)–(1.1j) and Atkin and Swinnerton-Dyer’s [3, Theorem 5] are immediate.

Dyson’s conjecture (1.1i) is clear as there are no terms of the form q7n+5. Considering

coefficients of respective g(x, q) terms easily leads to identities such as (1.1e). In particular,

the g expressions in D(1, 7) only contribute to the q7n and q7n+2 progressions, so for the

q7n+1 terms we only have

−
1

7
· q1 ·

J2
49

J7,49
.



14 DEAN HICKERSON AND ERIC MORTENSON

5. Proof of the Main Theorem

The proofs of the twelve cases are similar, so we give only a few as examples. For the

sake of brevity, we do not write out an explicit theta function for each Ta,M(q). However,

we point out that our arguments are effective in that we can easily keep track of the various

summands of quotients of theta functions that arise from using (2.1d) and Theorem 2.2.

We recall that ζM := e2πi/M , so by (2.5):

∑

n≥0

(

N(a,M, n)−
p(n)

M

)

qn =
1

M

M−1
∑

j=1

ζ−aj
M

(

1− ζjM

)(

1 + ζjMg(ζjM , q)
)

=
1

M

M−1
∑

j=1

ζ−aj
M

(

1− ζjM

)(

1−m
(

q2ζ−3j
M , q3,−1

)

− ζ−j
M m

(

qζ−3j
M , q3,−1

)

+ ζjM∆(ζjM ; q)
)

=
1

M

M−1
∑

j=0

ζ−aj
M

(

m
(

qζ3jM , q3,−1
)

− ζ−j
M m

(

qζ−3j
M , q3,−1

)

− ζjMm
(

qζ3jM , q3,−1
)

+m
(

qζ−3j
M , q3,−1

)

)

+
1

M

M−1
∑

j=1

ζ−aj
M

(

1− ζjM

)

ζjM∆(ζjM ; q), (5.1)

where the second equality follows from (2.6b) and the third equality follows from (2.1b)

and (2.1c). Note the change in the lower limit of the first summation symbol in the last

equality.

We consider the case a = 0, M ≡ 0 (mod 3), and recall that Ta,M(q) will depend on an

arbitrary z. We write j = t(M/3) + r, where 0 ≤ t ≤ 2 and 0 ≤ r ≤ (M/3)− 1. The first

summand in (5.1) is then

1

M

M−1
∑

j=0

m
(

qζ3jM , q3,−1
)

=
1

M

2
∑

t=0

(M/3)−1
∑

r=0

m
(

qζ
t(M/3)+r
M/3 , q3,−1

)

=
3

M

(M/3)−1
∑

r=0

m
(

qζrM/3, q
3,−1

)

= m
(

(−1)M+1qM(M−1)/6, qM
2/3, z′

)

+Ψ
M/3
0 (q,−1, z′; q3), (5.2)

where the last equality follows from Theorem 2.2 with k = 0, n = M/3, z = −1. The

fourth summand is similar. For the second summand,

−
1

M

M−1
∑

j=0

ζ−j
M m

(

qζ−3j
M , q3,−1

)

= −
1

M

2
∑

t=0

(M/3)−1
∑

r=0

ζ
−(t(M/3)+r)
M m

(

qζ
−t(M/3)−r
M/3 , q3,−1

)
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= −
1

M

(

2
∑

t=0

ζ−t
3

)

(M/3)−1
∑

r=0

ζ−r
M m

(

qζ−r
M/3, q

3,−1
)

= 0. (5.3)

The third summand is similar and the result follows. So for M ≡ 0 (mod 3) and a = 0:

D(0,M, q) = 2m
(

(−1)M+1qM(M−1)/6, qM
2/3, z′

)

+ 2 ·
J3
M2/3

J0,3

·

(M/3)−1
∑

t=0

q3(
t+1
2 )j

(

− q3(
M/3+1

2 )+tM/z′; qM
2/3

)

j
(

(−1)M/3qMt+M/3z′; qM
2/3

)

j
(

z′, (−1)M/3+1q3(
M/3
2 )+M/3z′, (−1)M/3qMt+M/3; qM2/3

)

+
1

M

M−1
∑

j=1

(

1− ζjM

) ζ−j
M J1J

3
3 j(−ζ2jM ; q)

j(ζjM ; q)j(−qζ3jM ; q3)j(−q2ζ3jM ; q3)J0,3

, (5.4)

where the theta quotients are from (5.2) using (2.4), and (5.1) using (2.7).

We consider the case a ≡ 1 (mod 3), M ≡ 1 (mod 3), M 6= 2a − 1. Here a = 3b + 1,

M = 3R + 1, so a ≡ 3b− 3R (mod M). The first summand in (5.1) is then

1

M

M−1
∑

j=0

ζ−aj
M m

(

qζ3jM , q3,−1
)

=
1

M

M−1
∑

j=0

ζ
3(M−1

3
− a−1

3
)j

M m
(

qζ3jM , q3,−1
)

= (−1)aq−a(a+1)/6−2M2/3−2Ma/3−M/3m
(

(−1)M+1q−M2/2−Ma−M/2, q3M
2

,−1
)

+ΨM
(2M+a)/3(q,−1,−1; q3)

= (−1)M+a+1q−a(a+1)/6−M2/6+Ma/3+M/6m
(

(−1)M+1q2M
2−M(3M−2a−1)/2, q3M

2

,−1
)

+ΨM
(2M+a)/3(q,−1,−1; q3), (5.5)

where the second equality follows from Theorem 2.2 with k = (2M + a)/3 and the third

equality follows from (2.1b). For the second summand in (5.1) we write a = 3b + 1,

M = 3R− 2, so a+ 1 ≡ 3b+ 2 ≡ 3b+ 3R (mod M). Here

−
1

M

M−1
∑

j=0

ζ
−(a+1)j
M m

(

qζ−3j
M , q3,−1

)

= −
1

M

M−1
∑

j=0

ζ
−3(a−1

3
+M+2

3
)j

M m
(

qζ−3j
M , q3,−1

)

= (−1)aq−a(a+1)/6−2M2/3+2Ma/3+M/3m
(

(−1)M+1qM
2−M(3M−2a−1)/2, q3M

2

,−1
)

(5.6)

−ΨM
(2M−a−1)/3(q,−1,−1; q3),

where the second equality follows from Theorem 2.2 with k = (2M − a − 1)/3. For the

third summand in (5.1) we write a = 3b+ 1. Here

−
1

M

M−1
∑

j=0

ζ
−(a−1)j
M m

(

qζ3jM , q3,−1
)

= −
1

M

M−1
∑

j=0

ζ
−3(a−1

3
)j

M m
(

qζ3jM , q3,−1
)
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= (−1)aq−a(a−1)/6m
(

(−1)M+1qM
2+M(M−2a+1)/2, q3M

2

,−1
)

−ΨM
(a−1)/3(q,−1,−1; q3)

= (−1)aq−a(a−1)/6 − (−1)aq−a(a−1)/6m
(

(−1)M+1q2M
2−M(M−2a+1)/2, q3M

2

,−1
)

(5.7)

−ΨM
(a−1)/3(q,−1,−1; q3),

where the second equality follows from Theorem 2.2 with k = (a − 1)/3 and the third

equality follows from (2.1c) and then (2.1b). For the fourth summand in (5.1), we use

k = (M − a)/3 to obtain

1

M

M−1
∑

j=0

ζ−aj
M m

(

qζ−3j
M , q3,−1

)

= (−1)M+aq−a(a−1)/6−M(M−2a+1)/6m
(

(−1)M+1qM
2−M(M−2a+1)/2, q3M

2

,−1
)

(5.8)

+ ΨM
(M−a)/3(q,−1,−1; q3)

With (2.6b) in mind, combining (5.5) and (5.6) yields

(−1)a+1q(2M
2−a(a+1))/6g

(

(−1)M+1qM(3M−2a−1)/6, qM
2)

(5.9)

− (−1)a+1q(2M
2−a(a+1))/6∆((−1)M+1qM(3M−2a−1)/6; qM

2

)

+ ΨM
(2M+a)/3(q,−1,−1; q3)−ΨM

(2M−a−1)/3(q,−1,−1; q3).

Combining (5.7) and (5.8) and using (2.6b) yields

(−1)aq−a(a−1)/6 + (−1)M+a+1q(M(M−2a+1)−a(a−1))/6g
(

(−1)M+1qM(M−2a+1)/6, qM
2)

(5.10)

− (−1)M+a+1q(M(M−2a+1)−a(a−1))/6∆((−1)M+1qM(M−2a+1)/6; qM
2

)

−ΨM
(a−1)/3(q,−1,−1; q3) + ΨM

(M−a)/3(q,−1,−1; q3).

Combining (5.9) and (5.10) gives

D(a,M, q) = (−1)aq−a(a−1)/6

+ (−1)M+a+1q(M(M−2a+1)−a(a−1))/6g
(

(−1)M+1qM(M−2a+1)/6, qM
2)

+ (−1)a+1q(2M
2−a(a+1))/6g

(

(−1)M+1qM(3M−2a−1)/6, qM
2)

+ Ta,M(q),

where

Ta,M(q) = −(−1)a+1q(2M
2−a(a+1))/6∆((−1)M+1qM(3M−2a−1)/6; qM

2

) (5.11)

− (−1)M+a+1q(M(M−2a+1)−a(a−1))/6∆((−1)M+1qM(M−2a+1)/6; qM
2

)

+ ΨM
(2M+a)/3(q,−1,−1; q3)−ΨM

(2M−a−1)/3(q,−1,−1; q3)
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−ΨM
(a−1)/3(q,−1,−1; q3) + ΨM

(M−a)/3(q,−1,−1; q3)

+
1

M

M−1
∑

j=1

ζ−aj
M

(

1− ζjM

)

ζjM∆(ζjM ; q).

Setting up for (2.6a) instead of (2.6b) in (5.5)–(5.8) gives an alternate form:

Ta,M (q) = ΨM
(2M+a)/3(q,−1, q−M(3M−2a−1)/3; q3)−ΨM

(2M−a−1)/3(q,−1, qM(3M−2a−1)/3; q3)

−ΨM
(a−1)/3(q,−1, q−M(M−2a+1)/3; q3) + ΨM

(M−a)/3(q,−1, qM(M−2a+1)/3; q3)

+
1

M

M−1
∑

j=1

ζ−aj
M

(

1− ζjM

)

ζjM∆(ζjM ; q). (5.12)

6. On Generalisations of Dyson’s Rank-Differences

In [26, Sections 7, 5], Zagier obtains a statement slightly more general than [6, Theorem

1.4]. He states that for all M > 0 and all a ∈ Z/MZ that the function (1.14) is a weight

1/2 weakly holomorphic modular form for any arithmetic progression A ⊂ Z not containing

any number of the form (1 − h2)/24 with h ≡ 2a ± 1 (mod 2M). Zagier points out that

this holds if A is the set of n with
(

1−24n
P

)

= −1 for some prime P > 3, and in this case

A is actually supported on a collection of arithmetic progressions.

It is straightforward to read such results from Theorem 3.1. We first focus on [6, Theorem

1.4]. Take the case M ≡ 0 (mod 3), a ≡ 2 (mod 3) of Theorem 3.1:

D(a,M, q) = (−1)a+1 q−a(a+1)/6 m((−1)M+1 qM(M−2a−1)/6, qM
2/3, z) + Ta,M (q), (6.1)

where Ta,M (q) is a theta function which depends on the arbitrary z. Using Theorem 2.3

with n = P and z′ = −1 (note that n is from Theorem 2.3 and not an n ∈ A), we have

D(a,M, q) = (−1)a+1 q−a(a+1)/6

P−1
∑

r=0

q−
M2

3 (r+1
2 )

(

(−1)Mq
M(M−2a−1)

6

)r

·

·
[

m(−q
M2

3

(

(P2)−Pr
)

((−1)M q
M(M−2a−1)

6 )P , q
(MP)2

3 ,−1)
]

+ T ′
a,M(q), (6.2)

where T ′
a,M(q) is Ta,M (q) after having absorbed the theta functions which appear when

using Theorem 2.3. With the Appell–Lerch sum definition (1.12) in mind, we can write

D(a,M, q) = (−1)Mr+a+1 q−a(a+1)/6

P−1
∑

r=0

q−
M2

3 (r+1
2 )+ rM(M−2a−1)

6

∞
∑

m=mr

ar(m)qPm + T ′
a,M (q).

(6.3)
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Multiplying by q−1/24 makes T ′
a,M(q) a weight 1/2 weakly holomorphic modular form. We

again remind the reader of the various ways of producing new modular forms from old ones

such as taking the twist by a Dirichlet character or restricting the index of summation

of the Fourier expansion to terms that lie in certain arithmetic progressions. So to ensure

modularity, we only want the terms determined by the setA to be contributed from T ′
a,M(q);

in other words, we only have to worry about picking up ‘mockness’ from the m(x, q, z)

portion in (6.3) when we have for some n ∈ A:

−
a(a + 1)

6
−

M2

3

(

r + 1

2

)

+
rM(M − 2a− 1)

6
≡ n (mod P). (6.4)

Condition (6.4) implies

1− 24n ≡ (2rM + 2a + 1)2 (mod P). (6.5)

The other subcases for the case M ≡ 0 (mod 3) imply

1− 24n ≡ (2rM + 2a± 1)2 (mod P), (6.6)

where the sign depends on a. So when

(1− 24n

P

)

= −1, (6.7)

then we have nothing to worry about. The other cases M ≡ 1, 2 (mod 3) are similar. Here

one needs Theorem 2.3 as well as (1.13).

We consider [7, Theorem 1.1]. Here, M ≥ 5 is prime. For a given summand qmg(qMk, qM
2
),

if m ≡ d (mod M), it is easy to check that 1− 24d ≡ (2a± 1)2 (mod 2M) where the sign

depends on M and a. For example, in the first summand in the case M ≡ 2 (mod 3), a ≡ 1

(mod 3), the condition

M(M + 2a− 1)− a(a− 1)

6
≡ d (mod M) (6.8)

implies

1− 24d ≡ (2a− 1)2 (mod 2M). (6.9)

If
(

1−24d
M

)

= −1, we will never have an m ≡ d (mod M), so any rank-difference can be

taken. If
(

1−24d
M

)

= 1, then we may encounter m’s with m ≡ d (mod M), so one must be

careful to avoid the rank values a determined by (6.9).
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7. On M2 rank-differences for partitions without repeated odd parts

There are also variations of rank-differences. Take for example the M2 rank of Berkovitch

and Garvan [4], which is based on work of Dyson [11, 12]. Here

M2 − rank(λ) :=
⌈

ℓ(λ)
2

⌉

− ν(λ)

where ℓ(λ) is the largest part of λ and ν(λ) is the number of parts of λ. The M2 rank

of a partition is also the number of columns minus the number of rows in the 2-modular

diagram [21], where, for example the partition λ = (10, 7, 2, 1) has 2-modular diagram:

2 2 2 2 2

2 2 2 1

2

1

Similar to the rank-differences of Dyson [10] and Atkin and Swinnerton-Dyer [3], Lovejoy

and Osburn [21, Theorems 1.1, 1.2] proved results on M2 rank-differences for partitions

without repeated odd parts.

Let N2(m,n) denote the number of partitions of n without repeated odd parts whose M2

rank is m. We have the following nice generating function [21, (1.1)]:

∑

n≥0
m∈Z

N2(m,n)zmqn =

∞
∑

n=0

qn
2
(−q; q2)n

(zq2, q2/z; q2)n
. (7.1)

Define N2(a,M ;n) to be the number of partitions of n without repeated odd parts whose

M2 rank is congruent to a mod M , and define po(n) to be the number of partitions of n

without repeated odd parts. Furthermore we define the M2 rank-difference

R2(a, b,M, c,m) :=
∞
∑

n=0

(

N2(a,M ;mn + c)−N2(b,M ;mn + c)
)

qn. (7.2)

Lovejoy and Osburn showed [21, Theorem 1.1] for M = m = 3, slightly rewritten:

R2(0, 1, 3, 0, 3) = −1 + 3m(q15, q36, q9) + 3q−6m(q−3, q36, q27) + J
2

3,6J1,4/J
2
2 (7.3a)

R2(0, 1, 3, 1, 3) = J3,6J3,12/J2 (7.3b)

R2(0, 1, 3, 2, 3) = J3J
2
12/J4J1,6 (7.3c)
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We briefly sketch how we prove results for M2 rank-differences similar to our Main Theo-

rem. We define the following:

D2(a,M) := D2(a,M, q) =
∞
∑

n=0

(

N2(a,M ;n)−
po(n)

M

)

qn. (7.4)

From [24, 1], [22, (2.13)]:

∞
∑

n=0

(−1)nqn
2
(q; q2)n

(−x; q2)n+1(−q2/x; q2)n
= m(x, q,−1) +

J2
1,2

2j(−x; q)
, (7.5)

so we can write

∑

n≥0
m∈Z

N2(m,n)zmqn =
(

1− z
)(

m(−z,−q,−1) +
J1,2

2j(z, q)

)

. (7.6)

It follows that

D2(a,M, q) =

M−1
∑

j=1

ζ−aj
M

(

1− ζjM

)(

m(−ζjM ,−q,−1) +
J1,2

2j(ζjM , q)

)

. (7.7)

Using (7.7) and Theorem 2.2 we obtain

Theorem 7.1. If 0 ≤ a < M , then

D2(a,M, q) = (−q)−(
a+1
2 )m

(

− (−q)(
M
2 )−Ma, (−q)M

2

, z0

)

− (−q)−(
a
2)m

(

− (−q)(
M
2 )−M(a−1), (−q)M

2

, z1

)

+ Ta,M (q),

where Ta,M (q) is a theta function which depends on z0 and z1. Here z0 and z1 are arbitrary.

When multiplied by q−1/8, the term Ta,M(q) becomes a weight 1/2 weakly holomorphic

modular form.

Theorem 7.1 is useful for understanding results of Lovejoy and Osburn [21, Theorems

1.1, 1.2]. For the case M = 3 we can use Theorem 2.3 with n = 2 to show

D2(0, 3) = −1 + 2m(q15, q36, q9) + 2q−6m(q−3, q36, q27)

+
2

3
·
J
2

9,18J3,12

J2
6

+ q ·
2

3
·
J9,18J9,36

J6

+ q2 ·
2

3
·
J2
9,36

J3,12

,

D2(1, 3) = −m(q15, q36, q9)− q−6m(q−3, q36, q27)

−
1

3
·
J
2

9,18J3,12

J2
6

− q ·
1

3
·
J9,18J9,36

J6
− q2 ·

1

3
·
J2
9,36

J3,12
.
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Identities (7.3a)–(7.3c) are immediate. For M = 5, we use Theorem 2.3 with n = 2 to show

D2(0, 5) = −1 − 2q−55m(q−55, q100, q75)− 2q−15m(q−5, q100, q25)

−
6

5
·
J2
5,50J30,100J40,100

J5J50,200J100

+ q ·
4

5
·

J4
50

J10,50J25J100
+ q2 ·

2

5
·
(

2 ·
J2
25J30,100

J10,25J50
− q5

J10,100J
2
25

J5,25J50

)

− q3 ·
2

5
·
J25,50J25,100

J20,50

+ q4 ·
2

5
·

J10J100J
2
15,50

J5J30,100J40,100

,

D2(1, 5) = −q−1m(q35, q100, q25)− q−6m(q15, q100, q25)

− 1 + q−55m(q−55, q100, q75) + q−15m(q−5, q100, q25)

+
4

5
·
J2
5,50J30,100J40,100

J5J50,200J100

− q ·
1

5
·

J4
50

J10,50J25J100
− q2 ·

1

5
·
(J2

25J30,100

J10,25J50
− 3 · q5

J10,100J
2
25

J5,25J50

)

+ q3 ·
3

5
·
J25,50J25,100

J20,50

+ q4 ·
2

5
·

J10J100J
2
15,50

J5J30,100J40,100

,

D2(2, 5) = q−1m(q35, q100, q25) + q−6m(q15, q100, q25)

−
1

5
·
J2
5,50J30,100J40,100

J5J50,200J100

− q ·
1

5
·

J4
50

J10,50J25J100

− q2 ·
1

5
·
(J2

25J30,100

J10,25J50

+ 2 · q5
J10,100J

2
25

J5,25J50

)

− q3 ·
2

5
·
J25,50J25,100

J20,50
− q4 ·

3

5
·

J10J100J
2
15,50

J5J30,100J40,100
.

It is straightforward to make generalisations on M2 ranks similar to [6, Theorem 1.4] and

[7, Theorem 1.1]
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