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PRO-CATEGORIES IN HOMOTOPY THEORY

ILAN BARNEA, YONATAN HARPAZ, AND GEOFFROY HOREL

Abstract. The goal of this paper is to prove an equivalence between the model categorical
approach to pro-categories, as studied by Isaksen, Schlank and the first author, and the ∞-
categorical approach, as developed by Lurie. Three applications of our main result are described.
In the first application we use (a dual version of) our main result to give sufficient conditions on
an ω-combinatorial model category, which insure that its underlying ∞-category is ω-presentable.
In the second application we consider the pro-category of simplicial étale sheaves and use it to
show that the topological realization of any Grothendieck topos coincides with the shape of

the hyper-completion of the associated ∞-topos. In the third application we show that several
model categories arising in profinite homotopy theory are indeed models for the ∞-category of
profinite spaces. As a byproduct we obtain new Quillen equivalences between these models, and
also obtain an example which settles negatively a question raised by G. Raptis.
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Introduction

Following the appearance of model categories in Quillen’s seminal paper [Qu67], the framework
of homotopy theory was mostly based on the language of model categories and their variants
(relative categories, categories of fibrant objects, Waldhausen categories, etc.). This framework
has proven very successful at formalizing and manipulating constructions such as homotopy limits
and colimits as well as more general derived functors, such as derived mapping spaces. There are
well-known model category structures on the classical objects of study of homotopy theory like
spaces, spectra and chain complexes.

When working in this setting one often requires the extension of classical category theory con-
structions to the world of model categories. One approach to this problem is to perform the
construction on the underlying ordinary categories, and then attempt to put a model structure on
the result that is inherited in some natural way from the model structures of the inputs. There
are two problems with this approach. The first problem is that model categories are somewhat
rigid and it is often hard, if not impossible, to put a model structure on the resulting object.
The second problem is that model categories themselves have a non-trivial homotopy theory, as
one usually considers Quillen equivalences as “weak equivalences” of model categories. It is then
a priori unclear whether the result of this approach is invariant under Quillen equivalences, nor
whether it yields the “correct” analogue of the construction from a homotopical point of view.

Let us look at a very simple example. For M a model category and C a small ordinary category,
one can form the category of functors MC. There is a natural choice for the weak equivalences on
MC, namely the objectwise weak equivalences. A model structure with these weak equivalences
is known to exist when M or C satisfy suitable conditions, but is not known to exist in general.
Furthermore, even when we can endow MC with such a model structure, it is not clear whether it
encodes the desired notion from a homotopical point of view. In particular, one would like MC to
capture a suitable notion of homotopy coherent diagrams in M. Writing down exactly what
this means when M is a model category is itself not an easy task.

These issues can be resolved by the introduction of ∞-categories. Given two ∞-categories
C,D, a notion of a functor category Fun(C,D) arises naturally, and takes care of all the delicate
issues surrounding homotopy coherence in a clean and conceptual way. On the other hand, any
model category M, and in fact any category with a notion of weak equivalences, can be localized
to form an ∞-category M∞. The ∞-category M∞ can be characterized by the following universal
property: for every ∞-category D, the natural map

Fun(M∞,D) −→ Fun(M,D)

is fully faithful, and its essential image is spanned by those functors M −→ D which send weak
equivalences in M to equivalences. The ∞-category M∞ is called the ∞-localization of M, and
one says that M is a model for M∞.

One may then formalize what it means for a model structure on MC to have the “correct type”:
one wants the ∞-category modelled by MC to coincides with the ∞-category Fun(C,M∞). When
M is a combinatorial model category it is known that MC both exists and has the correct type
in the sense above (see [Lu09, Proposition 4.2.4.4] for the simplicial case). For general model
categories it is not known that MC has the correct type, even in cases when it is known to exist.

Relying on the theory of ∞-categories for its theoretical advantages, it is often still desirable
to use model categories, as they can be simpler to work with and more amenable to concrete
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computations. It thus becomes necessary to be able to compare model categorical constructions
to their ∞-categorical counterparts.

The aim of this paper is to achieve this comparison for the construction of pro-categories. In
classical category theory, one can form the pro-category Pro(C) of a category C, which is the free

completion of C under cofiltered limits. This can be formalized in term of a suitable universal
property: given a category D which admits cofiltered limits, the category of functors Pro(C) −→ D

which preserve cofiltered limits is naturally equivalent, via restriction, with the category of all
functors C −→ D. It is often natural to consider the case where C already possesses finite limits.
In this case Pro(C) admits all small limits, and enjoys the following universal property: (*) if
D is any category which admits small limits, then the category of functors Pro(C) −→ D which
preserve limits can be identified with the category of functors C −→ D which preserve finite limits.

If C is an∞-category, one can define the pro-category of C using a similar universal construction.
This was done in [Lu09] for C a small ∞-category and in [Lu11] for C an accessible ∞-category
with finite limits. On the other hand, when C is a model category, one may attempt to construct a
model structure on Pro(C) which is naturally inherited from that of C. This was indeed established
in [EH76] when C satisfies certain conditions (“Condition N”) and later in [Is04] when C is a proper
model category. The first author and Schlank [BS16] observed that a much simpler structure on C

is enough to construct, under suitable hypothesis, a model structure on Pro(C). Recall that

Definition 0.0.1. A weak fibration category is a category C equipped with two subcategories

Fib,W ⊆ C

containing all the isomorphisms, such that the following conditions are satisfied:

(1) C has all finite limits.
(2) W has the 2-out-of-3 property.
(3) For every pullback square

X //

g

��

Y

f

��
Z // W

with f ∈ Fib (resp. f ∈ Fib ∩W) we have g ∈ Fib (resp. g ∈ Fib ∩W).

(4) Every morphism f : X −→ Y can be factored as X
f ′

−→ Z
f ′′

−→ Y where f ′ ∈ W and
f ′′ ∈ Fib.

The structure of weak fibration category was first studied by Anderson [An78], who referred
to it as a right homotopy structure, and is closely related to the notion of a category of fibrant
objects due to Brown [Br73]. Other variants of this notion were studied by Cisinski [Ci10b],
Radlescu-Banu [RB06], Szumio [Sz14] and others. We note that the full subcategory of any weak
fibration category spanned by the fibrant objects is a category of fibrant objects in the sense
of [Br73], and the inclusion functor induces an equivalence of ∞-categories after ∞-localization.
This last statement, which is somewhat subtle when one does not assume the factorizations of
Definition 0.0.1 (4) to be functorial, appears as Proposition 2.4.9 and is due to Cisinski.

The main result of [BS16] is the construction of a model structure on the pro-category of a
weak fibration category C, under suitable hypothesis. The setting of weak fibration categories is
not only more flexible than that of model categories, but it is also conceptually more natural: as
we will show in §2, the underlying ∞-category of a weak fibration category has finite limits, while
the underlying ∞-category of a model category has all limits. It is hence the setting in which the
∞-categorical analogue of universal property (*) comes into play, and arguably the most natural
context in which one wishes to construct pro-categories. In §4 we give a general definition of what
it means for a model structure on Pro(C) to be induced from a weak fibration structure on C.
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Our approach unifies the constructions of [EH76], [Is04] and [BS16], and also answers a question
posed by Edwards and Hastings in [EH76] (see Remark 4.3.7).

Having constructed a model structure on Pro(C), a most natural and urgent question is the
following: is Pro(C) a model for the ∞-category Pro(C∞)? Our main goal in this paper is to give
a positive answer to this question:

Theorem 0.0.2 (see Theorem 5.2.1). Assume that the induced model structure on Pro(C) exists.
Then the natural map

F : Pro(C)∞ −→ Pro(C∞)

is an equivalence of ∞-categories.

We give three applications of our general comparison theorem. The first application concerns
combinatorial model categories. If M is a combinatorial model category, then by [Lu09, Proposition
A.3.7.6.] and the main result of [Du01], its underlying ∞-category M∞ is presentable. For many
purposes, however, it is useful to know that M∞ is not only presentable, but also ω-presentable,
i.e., equivalent to the ind-category of its subcategory of ω-compact objects. This fact is often
not so easy to prove, even if we know that M is ω-combinatorial (in the sense that its underlying
category is ω-presentable and M admits a sets of generating cofibrations and trivial cofibrations
whose domains and codomains are ω-compact). Using (a dual version of) our main result we are
able to give a simple sufficient condition on an ω-combinatorial model category, which insures that
its underlying ∞-category is ω-presentable. Namely, we show

Proposition 0.0.3 (see Proposition 5.3.1). Let M be an ω-combinatorial model category and let
M0 ⊆ M be the full subcategory spanned by ω-compact objects. Suppose that every morphism in
M0 can be factored inside M0 into a cofibration followed by a weak equivalence. Then (M0)∞ is
essentially small, admits finite colimits and

Ind((M0)∞) ≃M∞.

In particular, M∞ is ω-presentable, and every ω-compact object in M∞ is a retract of an object in
M0.

Our second application involves the theory of shapes of topoi. In [AM69], Artin and Mazur
defined the étale homotopy type of an algebraic variety. This is a pro-object in the homotopy
category of spaces, which depends only on the étale site of X . Their construction is based on
the construction of the shape of a topological space X , which is a similar type of pro-object
constructed from the site of open subsets of X . More generally, Artin and Mazur’s construction
applies to any locally connected site.

In [BS16] the first author and Schlank used their model structure to define what they call the
topological realization of a Grothendieck topos. Their construction works for any Grothendieck
topos and refines the previous constructions form a pro-object in the homotopy category of spaces
to a pro-object in the category of simplicial sets. On the ∞-categorical side, Lurie constructed
in [Lu09] an ∞-categorical analogue of shape theory and defined the shape assigned to any ∞-
topos as a pro-object in the ∞-category S∞ of spaces. A similar type of construction also appears
in [TV03]. One then faces the same type of pressing question: Is the topological realization
constructed in [BS16] using model categories equivalent to the one defined in [Lu09] using the
language of ∞-categories? In §6 we give a positive answer to this question:

Theorem 0.0.4 (see Theorem 6.0.5). For any Grothendieck site C there is a weak equivalence

|C| ≃ Sh(Ŝhv∞(C))

of pro-spaces, where |C| is the topological realization constructed in [BS16] and Sh(Ŝhv∞(C)) ∈

Pro(S∞) is the shape of the hyper-completed ∞-topos Ŝhv∞(C) constructed in [Lu09].
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Combining the above theorem with [BS16, Theorem 1.15] we obtain:

Corollary 0.0.5. Let X be a locally Noetherian scheme, and let Xét be its étale site. Then the

image of Sh(Ŝhv∞(Xét)) in Pro(Ho(S∞)) coincides with the étale homotopy type of X.

Our third application is to the study of profinite homotopy theory. Let S be the category
of simplicial sets, equipped with the Kan-Quillen model structure. The existence of the induced
model structure on Pro(S) (in the sense above) follows from the work of [EH76] (as well as [Is04]
and [BS16] in fact). In [Is05], Isaksen showed that for any set K of fibrant object of S, one can
form the maximal left Bousfield localization LK Pro(S) of Pro(S) for which all the objects in K are
local. The weak equivalences in LK Pro(S) are the maps X −→ Y in Pro(S) such that the map

MaphPro(S)(Y,A) −→ MaphPro(S)(X,A)

is a weak equivalence for every A in K. When choosing a suitable candidate K = Kπ, the model
category LKπ Pro(S) can be used as a theoretical setup for profinite homotopy theory.

On the other hand, one may define what profinite homotopy theory should be from an ∞-
categorical point of view. Recall that a space X is called π-finite if it has finitely many connected
components, and finitely many non-trivial homotopy groups which are all finite. The collection of
π-finite spaces can be organized into an ∞-category Sπ∞, and the associated pro-category Pro(Sπ∞)
can equally be considered as the natural realm of profinite homotopy theory. One is then yet again
faced with the salient question: is LKπ Pro(S) a model for the ∞-category Pro(Sπ∞)? In §7.2 we
give a positive answer to this question:

Theorem 0.0.6 (see Corollary 7.2.12). The underlying ∞-category of LKπ Pro(S) is naturally
equivalent to the ∞-category Pro(Sπ∞) of profinite spaces.

A similar approach was undertaken for the study of p-profinite homotopy theory, when p
is a prime number. Choosing a suitable candidate K = Kp, Isaksen’s approach yields a model
structure LKp Pro(S) which can be used as a setup for p-profinite homotopy theory. On the other
hand, one may define p-profinite homotopy theory from an ∞-categorical point of view. Recall
that a space X is called p-finite if it has finitely many connected components and finitely many
non-trivial homotopy groups which are all finite p-groups. The collection of p-finite spaces can be
organized into an ∞-category Sp∞, and the associated pro-category Pro(Sp∞) can be considered as
a natural realm of p-profinite homotopy theory (see [Lu11] for a comprehensive treatment). Our
results allow again to obtain the desired comparison:

Theorem 0.0.7 (see Corollary 7.3.8). The underlying ∞-category of LKp Pro(S) is naturally
equivalent to the ∞-category Pro(Sp∞) of p-profinite spaces.

Isaksen’s approach is not the only model categorical approach to profinite and p-profinite ho-

motopy theory. In [Qu11] Quick constructs a model structure on the category Ŝ of simplicial

profinite sets and uses it as a setting to perform profinite homotopy theory. His construction
is based on a previous construction of Morel ([Mo96]), which endowed the category of simplicial
profinite sets with a model structure aimed at studying p-profinite homotopy theory. In §7.4 we
show that Quick and Morel’s constructions are Quillen equivalent to the corresponding Bousfield
localizations studied by Isaksen.

Theorem 0.0.8 (see Theorem 7.4.8 and Theorem 7.4.11). There are Quillen equivalences

ΨKπ : LKπ Pro(S) ⇄ ŜQuick : ΦKπ

ΨKp : LKp Pro(S) ⇄ ŜMorel : ΦKp .
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These Quillen equivalences appear to be new. A weaker form of the second equivalence was
proved by Isaksen in [Is05, Theorem 8.7], by constructing a length two zig-zag of adjunctions

between LKp Pro(S) and ŜMorel where the middle term of this zig-zag is not a model category but
only a relative category.

A key point in the construction of these Quillen equivalences is a notion which we call τ-finite
simplicial sets. A simplicial set is called τ -finite if it is levelwise finite and n-coskeletal for some
n ≥ 0. We denote by Sτ ⊆ S the full subcategory spanned by τ -finite simplicial sets. The category
Sτ is clearly essentially small, and we show that its pro-category is equivalent to the category of
simplicial profinite sets. These results also enable us to show (see Remark 7.4.3) that the opposite
of Quicks model structure is an example of an ω-combinatorial model category, whose class of
weak equivalences is not ω-accessible (as a full subcategory of the class of all morphisms). To
the knowledge of the authors such an example has not yet appeared in the literature. It settles
negatively a question raised by G. Raptis in personal communication with the first author.

Finally, let us briefly mention two additional applications which will appear in forthcoming
papers. In a joint work with Michael Joachim and Snigdhayan Mahanta (see [BJM]) the first
author constructs a model structure on the category Pro(SC∗), where SC

∗ is the category of sepa-
rable C∗-algebras, and uses it to define a bivariant K-theory category for the objects in Pro(SC∗).
Theorem 0.0.2 is then applied to show that this bivariant K-theory category indeed extends the
known bivariant K-theory category constructed by Kasparov. In [Ho15] the third author relies on
Theorem 0.0.6 and Theorem 0.0.8 in order to prove that the group of homotopy automorphisms
of the profinite completion of the little 2-disk operad is isomorphic to the profinite Grothendieck-
Teichmüller group.

Overview of the paper. In §1 we formulate the set theoretical framework and terminology used
throughout the paper. Such framework is required in order to work fluently with both large and
small ∞-categories. The reader who is familiar with these issues can very well skip this section
and refer back to it as needed.
§2 is dedicated to recalling and sometimes proving various useful constructions and results in

higher category theory. In particular, we will recall the notions of∞-categories, relative categories,
categories of fibrant objects, weak fibration categories and model categories. Along the way we
will fill what seems to be a gap in the literature and prove that the ∞-category associated to any
category of fibrant objects, or a weak fibration category, has finite limits, and that the∞-category
associated to any model category has all limits and colimits.

In §3 we recall a few facts about pro-categories, both in the classical categorical case and in
the ∞-categorical case. In particular, we construct and establish the universal property of the
pro-category of a general locally small ∞-category, a construction that seems to be missing from
the literature.

In §4 we explain what we mean by a model structure on Pro(C) to be induced from a weak
fibration structure on C. We establish a few useful properties of such a model structure and give
various sufficient conditions for its existence (based on the work of [EH76], [Is04] and [BS16]).

In §5 we will conduct our investigation of the underlying ∞-category of Pro(C) where C is a
weak fibration category such that the induced model category on Pro(C) exists. Our main result,
which is proved in §5.2, is that the underlying ∞-category of Pro(C) is naturally equivalent to the
pro-category of the underlying∞-category of C, as defined by Lurie. In §5.3 we give an application
of our main theorem to the theory of combinatorial model categories.

In §6 we give an application of our main theorem to the theory of shapes ∞-topoi. The main
result is Theorem 6.0.5, which shows that the shape of the hyper-completion of the ∞-topos of
sheaves on a site can be computed using the topological realization of [BS16].
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Finally, in §7 we give another application of our main result to the theory of profinite and p-
profinite homotopy theory. We compare various models from the literature due to Isaksen, Morel
and Quick and we show that they model the pro-category of the ∞-category of either π-finite or
p-finite spaces.

Acknowledgments. We wish to thank Denis-Charles Cisinski for sharing with us the proof of
Proposition 2.4.9.

1. Set theoretical foundations

In this paper we will be working with both small and large categories and ∞-categories. Such
a setting can involve some delicate set theoretical issues. In this section we fix our set theoretical
working environment and terminology. We note that these issues are often ignored in texts on
categories and ∞-categories, and that the reader who wishes to trust his or her intuition in these
matters may very well skip this section and refer back to it as needed.

We refer the reader to [Sh08] for a detailed account of various possible set theoretical foundations
for category theory. Our approach is based mainly on §8 of loc. cit. We will be working in ZFC
and further assume

Assumption 1.0.9. For every cardinal α there exists a strongly inaccessible cardinal κ such that
κ > α.

Definition 1.0.10. We define for each ordinal α a set Vα by transfinite induction as follows:

(1) V0 := ∅

(2) Vα+1 := P(Vα)
(3) If β is a limit ordinal we define Vβ :=

⋃
α<β Vα.

We refer to elements of Vα as α-sets.

If α is a strongly inaccessible cardinal then it can be shown that Vα is a Grothendieck universe,
and thus a model for ZFC.

Definition 1.0.11. Let α be a strongly inaccessible cardinal. An α-category C is a pair of α-sets
Ob(C) and Mor(C), together with three functions

Dom : Mor(C) −→ Ob(C),

Cod : Mor(C) −→ Ob(C),

Id : Ob(C) −→ Mor(C),

satisfying the well-known axioms. A functor between α-categories C and D consists of a pair
of functions Ob(C) −→ Ob(D) and Mor(C) −→ Mor(D) satisfying the well-known identities.
Given two objects X,Y ∈ Ob(C) we denote by HomC(X,Y ) ⊆ Mor(C) the inverse image of
(X,Y ) ∈ Ob(C) via the map (Dom,Cod) : Mor(C) −→ Ob(C)×Ob(C).

Remark 1.0.12. If C is an α-category for some strongly inaccessible cardinal α then C can naturally
be considered as a β-category for any strongly inaccessible cardinal β > α.

Definition 1.0.13. Let β > α be strongly inaccessible cardinals. We denote by Setα the β-category
of α-sets. We denote by Catα the β-category of α-categories.

Definition 1.0.14. Let α be a strongly inaccessible cardinal. A simplicial α-set is a functor
∆op −→ Setα (where ∆ is the usual category of finite ordinals). A simplicial set is a simplicial
α-set for some strongly inaccessible cardinal α. For β > α a strongly inaccessible cardinal we
denote by Sα the β-category of simplicial α-sets.
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In this paper we will frequently use the notion of ∞-category. Our higher categorical setup is
based on the theory quasi-categories due to [Jo08] and [Lu09].

Definition 1.0.15 (Joyal, Lurie). Let α be a strongly inaccessible cardinal. An α-∞-category

is a simplicial α-set satisfying the right lifting property with respect to the maps Λni →֒ ∆n for
0 < i < n (where Λni is the simplicial set obtained by removing from ∂∆n the i’th face).

For every strongly inaccessible cardinal α the nerve functor N : Catα −→ Sα is fully faithful and
lands in the full subcategory spanned by α-∞-categories. If C ∈ Catα we will often abuse notation
and write C for the α-∞-category NC.

Definition 1.0.16. We denote by κ the smallest strongly inaccessible cardinal, by λ the smallest
strongly inaccessible cardinal bigger than κ and by δ the smallest strongly inaccessible cardinal
bigger than λ.

We will refer to κ-sets as small sets, to simplicial κ-sets as small simplicial sets, to κ-
categories as small categories and to κ-∞-categories as small ∞-categories. For any strongly
inaccessible cardinal α we say that an α-∞-category C is essentially small if it is equivalent to
a small ∞-category.

The following special cases merit a short-hand terminology:

Definition 1.0.17. The notations Set, Cat and S without any cardinal stand for the λ-categories
Setκ, Catκ and Sκ respectively. The notations Set,Cat and S stand for the δ-categories Setλ, Catλ
and Sλ respectively.

Definition 1.0.18. Let α be a strongly inaccessible cardinal. We say that an α-category is locally
small if HomC(X,Y ) is a small set for every X,Y ∈ C. Similarly, we will say that an α-∞-category
is locally small if the mapping space MapC(X,Y ) is weakly equivalent to a small simplicial set
for every X,Y ∈ C.

In ordinary category theory one normally assumes that all categories are locally small. In
the setting of higher category theory it is much less natural to include this assumption in the
definition itself. In order to be as consistent as possible with the literature we employ the following
convention:

Convention 1.0.19. The term category without an explicit cardinal always refers to a locally
small λ-category. By contrast, the term ∞-category without an explicit cardinal always refers to
a λ-∞-category (which is not assumed to be locally small).

Definition 1.0.20. Let β > α be strongly inaccessible cardinals and let f : C −→ D be a map of
β-∞-categories. We say f is α-small if there exists a full sub-α-category C0 ⊆ C such that f is
a left Kan extension of f |C0

along the inclusion C0 ⊆ C. When α = κ we will also say that f is
small.

Remark 1.0.21. The following criterion for α-smallness is useful to note. Let f : C −→ D be a map
of β-∞-categories. Suppose there exists a diagram of the form

C0
g

//

h

��

D

C

f

>>⑦⑦⑦⑦⑦⑦⑦⑦

with C0 an α-∞-category, and a natural transformation u : g ⇒ f ◦ h exhibiting f as a left Kan
extension of g along h. Since h factors through a full inclusion C′

0 ⊆ C, with C′
0 an α-∞-category,

it follows that f is a left Kan extension of some functor h′ : C′
0 −→ D along the inclusion C′

0 ⊆ C.
But then we have that h′ ≃ f |C′

0
([Lu09, after Proposition 4.3.3.7]), and so f is α-small.
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2. Preliminaries from higher category theory

In this section we recall some necessary background from higher category theory and prove a
few preliminary results which will be used in the following sections.

2.1. Cofinal and coinitial maps. In this subsection we recall the notion of cofinal and coinitial

maps of ∞-categories.
Let ϕ : C −→ D be a map of ∞-categories (see Definition 1.0.15 and Convention 1.0.19). Given

an object d ∈ D we denote by C/d = C ×D D/d where D/d is the ∞-category of objects over

d (see [Lu09, Proposition 1.2.9.2]). If C and D are (the nerves of) ordinary categories, then C/d
is an ordinary category whose objects are given by pairs (c, f) where c is an object in C and
f : ϕ(c) −→ d is a map in D. Similarly, we denote by Cd/ = C ×D Dd/ where Dd/ is now the
∞-category of object under d.

Definition 2.1.1. Let ϕ : C −→ D be a map of ∞-categories. We say that ϕ is cofinal if Cd/ is
weakly contractible (as a simplicial set) for every d ∈ D. Dually, we say that ϕ is coinitial if C/d
is weakly contractible for every d ∈ D.

Remark 2.1.2. Let C be the ∞-category with one object ∗ ∈ C and no non-identity morphisms.
Then f : C −→ D is cofinal if and only if the object f(∗) is a final object in D. Similarly,
f : C −→ D is coinitial if and only if f(∗) is an initial object in D.

A fundamental property of cofinal and coinitial maps is the following:

Theorem 2.1.3 ([Lu09, Proposition 4.1.1.8]).

(1) Let ϕ : C −→ D be a cofinal map and let F : D⊲ −→ E be a diagram. Then F is a colimit
diagram if and only if F ◦ ϕ⊲ is a colimit diagram.

(2) Let f : C −→ D be a coinitial map and let F : D⊳ −→ E be a diagram. Then F is a limit
diagram if and only if F ◦ ϕ⊳ is a limit diagram.

Thomason proved in [Th79] that the homotopy colimit of a diagram of nerves of categories may
be identified with the nerve of the corresponding Grothendieck construction. This yields the
following important case of Theorem 2.1.3:

Theorem 2.1.4. Let C,D be ordinary categories and let f : C −→ D be a cofinal map (in the

sense of Definition 2.1.1). Let F : D −→ Cat be any functor, let G(D,F) be the Grothendieck
construction of F, and let G(C,F ◦ f) be the Grothendieck construction of F ◦ f . Then the induced
map

NG(C,F ◦ f)
≃
−→ NG(D,F)

is a weak equivalence of simplicial sets.

Corollary 2.1.5 (Quillen’s theorem A). Let f : C −→ D be a cofinal functor between ordinary
categories. Then the induced map on nerves

N(C)
≃
−→ N(D)

is a weak equivalence of simplicial sets.

Remark 2.1.6. Definition 2.1.1 pertains to the notions of cofinality and coinitiality which are
suitable for higher category theory. In the original definition of these notions, the categories Cd/
and C/d were only required to be connected. This is enough to obtain Theorem 2.1.3 when
E is an ordinary category. We note, however, that for functors whose domains are filtered
(resp. cofiltered) categories, the classical and the higher categorical definitions of cofinality (resp.
coinitiality) coincide (see Lemma 3.1.4 below).
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2.2. Relative categories and ∞-localizations. In this subsection we recall the notion of rel-

ative categories and the formation of ∞-localizations, a construction which associates an
underlying ∞-category to any relative category. Let us begin with the basic definitions.

Definition 2.2.1. A relative category is a category C equipped with a subcategory W ⊆ C that
contains all the objects. We refer to the maps in W as weak equivalences. A relative map

(C,W) −→ (D,U) is a map f : C −→ D sending W to U.

Given a relative category (C,W) one may associate to it an∞-category C∞ = C[W−1], equipped
with a map C −→ C∞, which is characterized by the following universal property: for every ∞-
category D, the natural map

Fun(C∞,D) −→ Fun(C,D)

is fully faithful, and its essential image is spanned by those functors C −→ D which send W to
equivalences. The ∞-category C∞ is called the ∞-localization of C with respect to W. In this
paper we also refer to C∞ as the underlying ∞-category of C, or the∞-category modelled by

C. We note that this notation and terminology is slightly abusive, as it makes no direct reference
to W. We refer the reader to [Hi13] for a more detailed exposition. The ∞-category C∞ may be
constructed in the following three equivalent ways

(1) One may construct the Hammock localization LH(C,W) of C with respect to W (see [DK80]),
and obtain a simplicial category. The ∞-category C∞ can then be obtained by taking the
coherent nerve of any fibrant model of LH(C,W) (with respect to the Bergner model struc-
ture).

(2) One may consider the marked simplicial set N+(C,W) = (N(C),W). The ∞-category
C∞ can then be obtained by taking the underlying simplicial set of any fibrant model of
N+(C,W) (with respect to the Cartesian model structure, see [Lu09, §3]).

(3) One may apply to (C,W) the Rezk nerve construction to obtain a simplicial space
NRezk(C,W). The space of n-simplices of this simplicial space is the nerve of the category
whose objects are functors [n] −→ C and whose morphisms are natural transformations
which are levelwise weak equivalences. The ∞-category C∞ can then be obtained by
applying the functor W•,• 7→ W•,0 to any fibrant model of NRezk(C,W) (in the complete
Segal space model structure).

We refer to [Hi13] for the equivalence of the first two constructions and to the appendix of
[Ho16] for the equivalence of the third. Given a relative map f : (C,W) −→ (D,U) we denote
by f∞ : C∞ −→ D∞ the induced map. The map f∞ is essentially determined by the universal
property of ∞-localizations, but it can also be constructed explicitly, depending on the method
one uses to construct C∞.

Remark 2.2.2. We note that the fibrant replacements in either the Bergner, the Cartesian or the
complete Segal space model structures can be constructed in such a way that the resulting map
on objects is the identity. We will always assume that we use such a fibrant replacement when
constructing C∞. This implies that the resulting map C −→ C∞ is also the identity on objects.

Remark 2.2.3. If C is a category then we may view C as a relative category with the weak equiva-
lences being the isomorphisms. In this case we have C∞ ≃ C.

Definition 2.2.4. We will denote by S∞ and S∞ the ∞-localizations of S and S respectively with
respect to weak equivalences of simplicial sets (see §1 for the relevant definitions). We will refer to

objects of S∞ as small spaces and to objects of S∞ as large spaces. We will say that a space
X ∈ S∞ is essentially small if it is equivalent to an object in the image of S∞ ⊆ S∞.

As first observed by Dwyer and Kan, the construction of ∞-localizations allows one to define
mapping spaces in general relative categories:
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Definition 2.2.5. Let (C,W) be a relative category and let X,Y ∈ C be two objects. We denote
by

MaphC(X,Y ) := MapC∞
(X,Y )

the derived mapping space from X to Y .

Remark 2.2.6. If C is not small, then C∞ will not be locally small in general (see Definition 1.0.18).
However, when C comes from a model category, it is known that C∞ is always locally small.

2.3. Categories of fibrant objects. In this subsection we recall and prove a few facts about
categories of fibrant objects. Let C be a category and let M,N be two classes of morphisms in C.
We denote by M ◦N the class of arrows of C of the form g ◦ f with g ∈M and f ∈ N. Let us begin
by recalling the definition of a category of fibrant objects.

Definition 2.3.1 ([Br73]). A category of fibrant objects is a category C equipped with two
subcategories

Fib,W ⊆ C

containing all the isomorphisms, such that the following conditions are satisfied:

(1) C has a terminal object ∗ ∈ C and for every X ∈ C the unique map X −→ ∗ belongs to
Fib.

(2) W satisfies the 2-out-of-3 property.
(3) If f : Y −→W belongs to Fib and h : Z −→W is any map then the pullback

X //

g

��

Y

f

��
Z

h // W

exists and g belongs to Fib. If furthermore f belongs to W then g belongs to W as well.
(4) We have Mor(C) = Fib ◦W.

We refer to the maps in Fib as fibrations and to the maps in W as weak equivalences. We
refer to maps in Fib ∩W as trivial fibrations.

Remark 2.3.2. We note that properties (1) and (3) of Definition 2.3.1 imply that any category
of fibrant objects C admits finite products. Some authors (notably [Br73]) replace property (4)
with the a priori weaker statement that for any X ∈ C the diagonal map X −→ X × X admits
a factorization as in (4) (such a factorization is sometimes called a path object for X). By the
factorization lemma of [Br73] this results in an equivalent definition. In fact, the factorization
lemma of [Br73] implies something slightly stronger: any map f : X −→ Y in C can be factored

as X
i
−→ Z

p
−→ Y such that p is a fibration and i is a right inverse of a trivial fibration.

Definition 2.3.3. A functor F : C −→ D between categories of fibrant objects is called a left

exact functor if

(1) F preserves the terminal object, fibrations and trivial fibrations.
(2) Any pullback square of the form

X //

g

��

Y

f

��
Z

h // W

such that f ∈ Fib is mapped by F to a pullback square in D.



12 ILAN BARNEA, YONATAN HARPAZ, AND GEOFFROY HOREL

Remark 2.3.4. By Remark 2.3.2 any weak equivalence f : X −→ Y in a category of fibrant objects

C can be factored as X
i
−→ Z

p
−→ Y such that p is a trivial fibration and i is a right inverse of a

trivial fibration. It follows that any left exact functor f : C −→ D preserves weak equivalences.

Given a category of fibrant objects (C,W,Fib) we may consider the∞-localization C∞ = C[W−1]
associated to the underlying relative category of C. In [Ci10a] Cisinski constructs a concrete and
convenient model for computing derived mapping spaces in categories of fibrant objects. Let us
recall the definition.

Definition 2.3.5. Let C be a category equipped with two subcategories W,Fib containing all
isomorphisms and a terminal object ∗ ∈ C. Let X,Y ∈ C two objects. We denote by HomC(X,Y )
the category of diagrams of the form

Z
f

//

p

��

Y

��
X // ∗

where ∗ ∈ C is the terminal object and p : Z −→ X belongs to W ∩ Fib.

Remark 2.3.6. For any object X ∈ C the category HomC(X, ∗) can be identified with the full
subcategory of C/X spanned by Fib ∩W. In particular, HomC(X, ∗) has a terminal object and
is hence weakly contractible. For any object Y ∈ C we may identify the category HomC(X,Y )
with the Grothendieck construction of the functor HomC(X, ∗)op −→ Set which sends the object
Z −→ X to the set HomC(Z, Y ).

There is a natural map from the nerve NHomC(X,Y ) to the simplicial set MapLH(C,W)(X,Y )

where LH(C,W) denotes the hammock localization of C with respect to W. We hence obtain a
natural map

(1) NHomC(X,Y ) −→ MaphC(X,Y ).

Remark 2.3.7. If C is a category of fibrant objects then HomC(X,Y ) depends covariantly on Y
and contravariantly on X (via the formation of pullbacks). Furthermore, the map 1 is compatible
with these dependencies.

Proposition 2.3.8 ([Ci10a, Proposition 3.23]). Let C be a category of fibrant objects. Then for
every X,Y ∈ C the map 1 is a weak equivalence.

Cisinski’s comprehensive work on categories of fibrant objects shows that such a category admits
a well-behaved notion of homotopy limits for diagrams indexed by finite posets (and more
generally any category whose nerve has only finitely many non-degenerate simplices). Recent work
of Szumi lo (see [Sz14]) shows that a certain variant of the notion of a category of fibrant objects
(which includes, in particular, a two-out-of-six axiom for weak equivalences) is in fact equivalent,
in a suitable sense, to that of an∞-category admitting finite limits (i.e., limits indexed by simplicial
sets with finitely many non-degenerate simplices). Unfortunately, the functor used in [Sz14] to turn
a category of fibrant objects into an ∞-category is not the localization functor discussed in §2.2
(although recent work of Kapulkin and Szumio appears to bridge this gap; see [KS]). All in all, as
these lines are written, there has not yet appeared in the literature a proof of the fact that if C is
a category of fibrant objects, then C∞ has all finite limits. Our goal in the rest of this section is
to fill this gap by supplying a proof which is based on Cisinski’s work.
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Let D be a category of fibrant objects and let T denote the category

∗

��
∗ // ∗

Let DT
sp ⊆ DT denote the subcategory spanned by those diagrams

X

f

��
Y

g
// Z

such that both f and g are fibrations.

Lemma 2.3.9. Let D be a category of fibrant objects. If F : T⊳ −→ D is a limit diagram such that
F|T is belongs to DT

sp then F∞ : T⊳∞ −→ D∞ is a limit diagram.

Proof. This follows directly from [Ci10a, Proposition 3.6] and Proposition 2.3.8. �

Lemma 2.3.10. Let D be a category of fibrant objects and let u : N(T) −→ D∞ be a diagram.
Then there exists a diagram Fsp : T −→ D which belongs to DT

sp such that the composite

N(T)
N(Fsp)
−→ N(D) −→ D∞

is homotopic to u.

Proof. Let LH(D,W)
≃
−→ D∆ be a fibrant replacement with respect to the Bergner model struc-

ture such that the map Ob(LH(D,W)) −→ Ob(D∆) is the identity, so that D∞ ≃ N(D∆). By
adjunction, the diagram u : N(T) −→ D∞ corresponds to a functor of simplicial categories

F : C(N(T)) −→ D∆

Since T contains no composable pair of non-identity morphisms, the simplicial set N(T) does
not have any non-degenerate simplices above dimension 1. It then follows that the counit map
C(N(T)) −→ T is an isomorphism, and so we may represent F by a diagram

X

F
��

Y
G // Z

in D∆, which we still denote by the same name F : T −→ D∆. According to Proposition 2.3.8 the
maps

HomD(X,Z) −→ MapD∆
(X,Z)

and

HomD(Y, Z) −→ MapD∆
(Y, Z)

are weak equivalences. It follows that there exists a zig-zag X
p
←− X ′ f

−→ Z (with p a trivial

fibration) whose corresponding vertex F ′ ∈ MapD∆
(X,Z) is homotopic to F and a zig-zag Y

q
←−

Y ′ g
−→ Z (with q a trivial fibration) whose corresponding vertex G′ ∈ MapD∆

(Y, Z) is homotopic
to G. We may then conclude that F is homotopic to the diagram F′ : T −→ D∆ determined by F ′
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and G′. On the other hand, since p and q are weak equivalences it follows that F′ is equivalent to

the composition T
F

′′

−→ D −→ D∆ where F′′ : T −→ D is given by

X ′

f

��
Y ′ g

// Z

Finally, by using property (4) of Definition 2.3.1 we may replace F′′ with a levelwise equivalent
diagram Fsp which belongs to DT

sp. Now the composed map

N(T)
N(Fsp)
−→ N(D) −→ D∞

is homotopic to u as desired. �

Proposition 2.3.11. Let D be a category of fibrant objects. Then D∞ admits finite limits.

Proof. According to [Lu09, Proposition 4.4.2.6] it is enough to show that D∞ has pullbacks
and a terminal object. The fact that the terminal object of D is also terminal in D∞ follows
from Remark 2.3.6. Finally, the existence of pullbacks in D∞ follows from Lemma 2.3.9 and
Lemma 2.3.10. �

By Remark 2.3.4 any left exact functor F : C −→ D preserves weak equivalences and hence
induces a functor F∞ : C∞ −→ D∞ on the corresponding ∞-categories.

Proposition 2.3.12. Let F : C −→ D be a left exact functor between categories of fibrant objects.
Then F∞ : C∞ −→ D∞ preserves finite limits.

Proof. It suffices to prove that F∞ preserves pullbacks and terminal objects. Since the terminal
object of C is also the terminal in C∞ and since F preserves terminal objects it follows that F∞

preserves terminal objects. Now let T be as above. By Definition 2.3.3 we see that f maps limits
T⊳-diagrams which contain only fibrations to limit diagrams. It then follows from Lemmas 2.3.9
and 2.3.10 that F∞ preserves limit T⊳-diagrams, i.e., pullback diagrams. �

2.4. Weak fibration categories. Most relative categories appearing in this paper are weak

fibration categories.

Definition 2.4.1. Let C be category and let M ⊆ C be a subcategory. We say that M is closed

under base change if whenever we have a pullback square:

A

g

��

// B

f

��
C // D

such that f is in M, then g is in M.

Definition 2.4.2 (cf. [An78, BS16]). A weak fibration category is a category C equipped with
two subcategories

Fib,W ⊆ C

containing all the isomorphisms, such that the following conditions are satisfied:

(1) C has all finite limits.
(2) W has the 2-out-of-3 property.
(3) The subcategories Fib and Fib ∩W are closed under base change.
(4) (Factorization axiom) We have Mor(C) = Fib ◦W.
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We refer to the maps in Fib as fibrations and to the maps in W as weak equivalences. We
refer to maps in Fib ∩W as trivial fibrations.

Definition 2.4.3. A functor C −→ D between weak fibration categories is called a weak right

Quillen functor if it preserves finite limits, fibrations and trivial fibrations.

We now recall some terminology from [BS16].

Definition 2.4.4. Let T be a poset. We say that T is cofinite if for every element t ∈ T the set
Tt := {s ∈ T|s < t} is finite.

Definition 2.4.5. Let C be a category admitting finite limits, M a class of morphisms in C, I a
small category, and F : X −→ Y a morphism in CI. Then F is:

(1) A levelwise M-map if for every i ∈ I the morphism Fi : Xi −→ Yi is in M. We denote
by Lw(M) the class of levelwise M-maps.

(2) A special M-map if the following holds:
(a) The indexing category I is an cofinite poset (see Definition 2.4.4).
(b) For every i ∈ I the natural map

Xi −→ Yi ×lim
j<i

Yj lim
j<i

Xj

belongs to M.
We denote by Sp(M) the class of special M-maps.

We will say that a diagram X ∈ CI is a special M-diagram if the terminal map X −→ ∗ is a
special M-map.

The following proposition from [BS16] will be used several times, and is recalled here for the
convenience of the reader.

Proposition 2.4.6 ([BS16, Proposition 2.19]). Let C be a category with finite limits, and M ⊆ C a
subcategory that is closed under base change, and contains all the isomorphisms. Let F : X −→ Y
be a natural transformation between diagrams in C which is a special M-map. Then F is a levelwise
M-map.

The following constructions of weak fibration structures on functors categories will be useful.

Lemma 2.4.7. Let (C,W,Fib) be a weak fibration category and T be a cofinite poset.

(1) There exists a weak fibration structure on CT in which the weak equivalences are the level-
wise weak equivalences and the fibrations are the levelwise fibrations (see Definition 2.4.5).
We refer to this structure as the projective weak fibration structure on CT.

(2) There exists a weak fibration structure on CT in which the weak equivalences are the level-
wise weak equivalences and the fibrations are the special Fib-maps (see Definition 2.4.5).
We refer to this structure as the injective weak fibration structure on CT.

Proof. We first note that the category CT has finite limits, and these may be computed levelwise.
Furthermore, it is clear that levelwise weak equivalences satisfy the 2-out-of-3 property. Now given
a morphism in CT we can factor it into a levelwise weak equivalence followed by a special Fib-map
by employing the construction described in [BS15a, Definition 4.3]. By Proposition 2.4.6 the latter
is also a levelwise fibration. This establishes the factorization axiom for both the projective and
injective weak fibration structures. Now levelwise fibrations and levelwise trivial fibrations are
clearly closed under composition and base change. It follows from Proposition 2.4.6 that a special
Fib-map is trivial in the injective structure if and only if it is a levelwise trivial fibration. To finish
the proof it hence suffices to show that the special Fib-maps are closed under composition and
base change.
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We begin with base change. Let f : {Xt} −→ {Yt} be a special Fib-map and let g : {Zt} −→ {Yt}
be any map in CT . Let t ∈ T be an element. Consider the diagram

Zt ×Yt Xt
//

��

Xt

��
Zt ×lim

s<t
Zs lim

s<t
(Zs ×Ys Xs) //

��

Yt ×lim
s<t

Ys lim
s<t

Xs

��

// lim
s<t

Xs

��
Zt // Yt // lim

s<t
Ys

Since limits commute with limits it follows that the large bottom horizontal rectangle is Cartesian.
Since the right bottom inner square is Cartesian we get by the pasting lemma for Cartesian squares
that the bottom left inner square is Cartesian. Since the vertical left rectangle is Cartesian we get
from the pasting lemma that the top left square is Cartesian. The desired result now follows from
the fact that Fib is closed under base change.

We now turn to composition. Let f : {Xt} −→ {Yt} and g : {Yt} −→ {Zt} be special Fib-maps
in CT, an let t ∈ T. We need to show that

Xt −→ Zt ×lim
s<t

Zs lim
s<t

Xs

belongs to Fib. But this map is the composition of two maps

Xt −→ Yt ×lim
s<t

Ys lim
s<t

Xs −→ Zt ×lim
s<t

Zs lim
s<t

Xs.

The first map belongs to Fib because f : {Xt} −→ {Yt} is a special Fib-map, and the second map
belongs to Fib because we have a pullback square

Yt ×lim
s<t

Ys lim
s<t

Xs
//

��

Yt

��
Zt ×lim

s<t
Zs lim

s<t
Xs

// Zt ×lim
s<t

Zs lim
s<t

Ys,

and the right vertical map belongs to Fib because g : {Yt} −→ {Zt} is a special Fib-map. Thus
the result follows from that fact that Fib is closed under composition and base change. �

Any weak fibration category (C,Fib,W) has an underlying structure of a relative category given
by (C,W), and hence an associated ∞-category C∞ (see §2.2). However, unlike the situation with
categories of fibrant objects, weak right Quillen functors f : C −→ D do not, in general, preserve
weak equivalences. To overcome this technicality, one may consider the full subcategory ι : Cfib →֒ C

spanned by the fibrant objects. Endowed with the fibrations and weak equivalences inherited from
C, the category Cfib has the structure of a category of fibrant objects (see Definition 2.3.1). By
Remark 2.3.4 weak right Quillen functors preserve weak equivalences between fibrant objects, and
so the restriction gives a relative functor ffib : Cfib −→ D. Thus, any weak right Quillen functor
induces a diagram of ∞-categories of the form

(
Cfib

)
∞

f fib
∞

$$❍
❍❍

❍❍
❍❍

❍❍
ι∞

{{✇✇
✇✇
✇✇
✇✇

C∞ D∞.
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We will prove in Proposition 2.4.9 below that the map ι∞ : Cfib
∞ −→ C∞ is an equivalence of

∞-categories. This implies that one can complete the diagram above into a triangle
(
Cfib

)
∞

f fib
∞

##●
●●

●●
●●

●
ι∞

{{✇✇
✇✇
✇✇
✇✇

C∞
f∞ // D∞

of ∞-categories, together with a commutation homotopy u : f∞ ◦ ι ≃ ffib
∞ . Furthermore, the pair

(f∞, u) is unique up to a contractible space of choices. We call such a (f∞, u) a right derived

functor for f . In the following sections we simply write f∞ : C∞ −→ D∞, without referring
explicitly to u, and suppressing the choice that was made.

The rest of this subsection is devoted to proving that ι∞ : Cfib
∞ −→ C∞ is an equivalence of ∞-

categories. The proof we shall give is due to Cisinski and was described to the authors in personal
communication.

Given a weak fibration category (C,W,Fib) we denote by Wfib ⊆ W the full subcategory of W
spanned by the fibrant objects.

Lemma 2.4.8. Let (C,W,Fib) be a weak fibration category. Then the functor

Wfib −→W

is cofinal.

Proof. Let X ∈W be an object. We need to show that the category of fibrant replacements Wfib
X/

is contractible. By [Ci10a, Lemme d’asphéricité p. 509], it suffices to prove that for any finite
poset T, any simplicial map

N(T) −→ N(Wfib
X/)

is connected to a constant map by a zig-zag of simplicial homotopies. Since the nerve functor
N : Cat −→ S is fully faithful, it suffices to prove that any functor

f : T −→Wfib
X/

is connected to a constant functor by a zig-zag of natural transformations. Such a functor is
the same data as a functor f : T −→ W which is objectwise fibrant together with a natural
transformation X −→ f in WT (where X denotes the constant functor with value X).

Consider the injective weak fibration structure on CT (see Lemma 2.4.7). Using the factoriza-
tion property we may factor the morphism f −→ ∗ as

f
Lw(W)
−−−−→ f ′ Sp(Fib)

−−−−−→ ∗.

By Proposition 2.4.6 f ′ : T −→ C is also levelwise fibrant and by [BS16, Proposition 2.17] the limit
limT f

′ ∈ C is fibrant. We can now factor the map X −→ limT f
′ as a weak equivalence X −→ Y

followed by a fibration Y −→ limT f
′. Then Y is fibrant, and by the 2-out-of-3 property in CT the

map Y −→ f ′ is a levelwise weak equivalence. Thus, Y determines a constant functor T → Wfib
X/

which is connected to f by a zig-zag of natural transformations f ⇒ f ′ ⇐ Y. �

Proposition 2.4.9 (Cisinski). Let C be a weak fibration category. Then the inclusion Cfib → C

induces an equivalence (
Cfib

)
∞
−→ C∞.

Proof. According to Section 2.2 it suffices to show that the induced map on Rezk’s nerve

NRezk(Cfib) −→ NRezk(C)
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is an equivalence in the model structure of complete Segal spaces. For each [n], the category
C[n] can be endowed with the projective weak fibration structure (see Lemma 2.4.7). Applying
Lemma 2.4.8 to C[n] and using Quillen’s theorem A, we get that the map

NRezk(Cfib) −→ NRezk(C)

is a levelwise equivalence and hence an equivalence in the complete Segal space model structure. �

We finish this subsection by stating a few important corollaries of Proposition 2.4.9.

Corollary 2.4.10. Let C be a weak fibration category and let X,Y ∈ C be two fibrant objects.
Then the natural map

NHomC(X,Y )
≃
−→ MaphC(X,Y )

is a weak equivalence.

Proof. Combine Proposition 2.4.9 and Proposition 2.3.8. �

Remark 2.4.11. Corollary 2.4.10 can be considered as a generalization of [BS16, Proposition 6.2].

Corollary 2.4.12. Let D be a weak fibration category. Then D∞ has finite limits.

Proof. Combine Proposition 2.4.9 and Proposition 2.3.11. �

Corollary 2.4.13. Let f : C −→ D be a weak right Quillen functor between weak fibration cate-
gories. Then the right derived functor f∞ : C∞ −→ D∞ preserves finite limits.

Proof. Combine Proposition 2.4.9 and Proposition 2.3.12. �

2.5. Model categories. In this subsection we recall some basic definitions and constructions from
the theory of model categories. We then attempt to fill a gap in the literature by showing that if
M is a model category then M∞ admits small limits and colimits (Theorem 2.5.9), and that these
may be computed using the standard model categorical toolkit (Proposition 2.5.6). We begin by
recalling the basic definitions.

Definition 2.5.1. A model category is a quadruple (C,W,Fib,Cof), consisting of a category C,
and three subcategories W,Fib,Cof of C, called weak equivalences, fibrations, and cofibra-

tions, satisfying the following properties:

(1) The category C has all small limits and colimits.
(2) The subcategory W satisfies the two-out-of-three property.
(3) The subcategories W,Fib,Cof are closed under retracts.
(4) Trivial cofibrations have the left lifting property with respect to fibrations, and the cofi-

brations have the left lifting property with respect to trivial fibrations.
(5) Any morphism in C can be factored (not necessarily functorially) into a cofibration followed

by a trivial fibration, and into a trivial cofibration followed by a fibration.

Remark 2.5.2. Note that our definition of a model category is weaker than the one given in [Hi03],
because we do not require the factorizations to be functorial. Indeed, in one of our main examples,
the projective model structure on Pro(Shv∆(C)) considered in Section 6, we do not have functorial
factorizations.

The notion of a morphism of model categories is given by a Quillen adjunction, that is, an
adjunction L : M ⇄ N : R such that L preserves cofibrations and trivial cofibrations and R

preserves fibrations and trivial fibrations. Note that any model category is in particular a weak
fibration category with respect to Fib and W, and every right Quillen functor can also be considered
as a weak right Quillen functor between the corresponding weak fibration categories.
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We note that the method described in §2.4 of constructing derived functors can be employed
for model categories as well. Given a Quillen adjunction L : M ⇄ N : R, we may form a right
derived functor R∞ : N∞ −→ M∞ using the full subcategory Nfib spanned by the fibrant objects
and a left derived functor L∞ : M∞ −→ N∞ using the full subcategory Mcof ⊆ M spanned by
cofibrant objects.

Let M be a model category and T a cofinite poset. One is often interested in endowing the
functor category MT with a model structure. We first observe the following:

Lemma 2.5.3. Let T be a cofinite poset (see Definition 2.4.4). Then T is a Reedy category with
only descending morphisms.

Proof. For each t ∈ T define the degree deg(t) of t to be the maximal integer k such that there
exists an ascending chain in T of the form

t0 < t1 < ... < tk = t

Since T is cofinite the degree of each element is a well-defined integer ≥ 0. The resulting map
deg : T −→ N ∪ {0} is strongly monotone (i.e. t < s⇒ deg(t) < deg(s)) and hence exhibits T as a
Reedy category in which all the morphisms are descending. �

Remark 2.5.4. Let M be a model category and T a cofinite poset. Then a map f : X −→ Y in
MT is a special Fib-map (see Definition 2.4.5) if and only if it is a Reedy fibration with respect to
the Reedy structure of Lemma 2.5.3. Similarly, an object X ∈MT is a special Fib-diagram if and
only if it is Reedy fibrant.

Let I be a small category. Recall that a model structure on MI is called injective if its weak
equivalences and cofibrations are defined levelwise. If an injective model structure on MI exists
then it is unique.

Corollary 2.5.5. Let M be a model category and T a cofinite poset. Then the injective model

structure on MT exists and coincides with the Reedy model structure associated to the Reedy
structure of Lemma 2.5.3. Furthermore, the underlying weak fibration structure coincides with the
injective weak fibration structure of Lemma 2.4.7.

Proof. This follows directly from the fact the Reedy structure on T has only descending morphisms,
and that the Reedy model structure always exists. The last property follows from Remark 2.5.4. �

It seems to be well-known to experts that if M is a model category then M∞ admits all small
limits and colimits, and that these limits and colimits can be computed via the ordinary model
theoretical techniques. For simplicial combinatorial model categories such results were established
as part of the general theory due to Lurie which relates simplicial combinatorial model categories
and presentable ∞-categories (see [Lu09, Proposition A.3.7.6]). The theory can be extended to
general combinatorial model categories using the work of Dugger [Du01] (see [Lu14, Propositions
1.3.4.22, 1.3.4.23 and 1.3.4.24]). However, it seems that a complete proof that the underlying
∞-category of any model category admits limits and colimits has yet to appear in the literature.
For applications to our main theorem, and for the general benefit of the theory, we will bridge this
gap. We first show that the model categorical construction of limits always gives the correct limit
in the underlying ∞-category.

Proposition 2.5.6. Let M be a model category and let T be a small category such that the injective
model structure on MT exists. Let F : T⊳ −→M be a limit diagram such that F = F|T is injectively

fibrant. Then the image of F in M∞ is a limit diagram.

Proof. Let LH(M,W)
≃
−→M∆ be a fibrant replacement with respect to the Bergner model struc-

ture such that the map Ob(LH(M,W)) −→ Ob(M∆) is the identity, so that M∞ ≃ N(M∆). In
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light of [Lu09, Theorem 4.2.4.1], it suffices to show that F is a homotopy limit diagram in M∆ in
the following sense (see [Lu09, Remark A.3.3.13]): for every object Z the induced diagram

MapM∆
(Z,F(−)) : T⊳ −→ S

is a homotopy limit diagram of simplicial sets. Since every object is weakly equivalent to a fibrant
object it will suffice to prove the above claim for Z fibrant. Since F is injectively fibrant it is also
levelwise fibrant, and since the limit functor lim : MT −→M is a right Quillen functor with respect
to the injective model structure we get that F is levelwise fibrant as well. By Corollary 2.4.10 and
Remark 2.3.7 we have a levelwise weak equivalence

NHomM(Z,F(−))
≃
−→ MapM∆

(Z,F(−)).

Hence, it suffices to prove that the diagram NHomM(Z,F(−)) is a homotopy limit diagram of
simplicial sets.

Let Z• be a special cosimplicial resolution for Z in the sense of [DK80, Remark 6.8]. Let Y be any
fibrant object in M and let H(Z•, Y ) be the Grothendieck construction of the functor ∆op −→ Set
sending [n] to HomM(Zn, Y ). Recall from Remark 2.3.6 that the category HomM(Z, ∗) is just
the full subcategory of C/Z spanned by trivial fibrations. By [DK80, Proposition 6.12] we have
a coinitial functor ∆ −→ HomM(Z, ∗) which sends [n] to the composed map Zn −→ Z0 −→ Z.
(Note that the term left cofinal loc. cit. is what we call coinitial here.). By Remark 2.3.6
we may identify the category HomM(Z, Y ) with the Grothendieck construction of the functor
HomM(Z, ∗)op −→ Set which sends a trivial fibration W −→ Z to the set HomM(W,Y ). By
Theorem 2.1.4 we obtain a natural weak equivalence

NH(Z•, Y )
≃
−→ NHomM(Z, Y ).

Note that the objects of H(Z•, Y ) are pairs ([n], f) where [n] ∈ ∆ is an object and f : Zn −→ Y is
a map in M. Thus, we may identify H(Z•, Y ) with the category of simplices of the simplicial set
HomM(Z•, Y ). We thus have a natural weak equivalence

NH(Z•, Y )
≃
−→ HomM(Z•, Y ).

Hence, it suffices to show that the diagram

HomM(Z•,F(−)) : T⊳ −→ S

is a homotopy limit diagram of simplicial sets. Now for A ∈ Set and M ∈M we define

A⊗M :=
∐

a∈A

M ∈M.

This makes M tensored over Set. For any simplicial set K : ∆op −→ Set we can now define
LZ•

(K) := K ⊗∆ Z• ∈M to be the appropriate coend. We now have an adjunction

LZ•
: S ⇄ M : RZ•

,

where RZ•
(X) = HomM(Z•, X). In light of [Hi03, Corollary 16.5.4] this adjunction is a Quillen

pair. We then obtain an induced Quillen pair

L
T
Z•

: ST ⇄ M
T : RT

Z•

between the corresponding injective model structures. Since F ∈ MT is an injectively fibrant
diagram it follows that HomM(Z•,F(−)) is injectively fibrant. Since HomM(Z•,F(−)) is a limit
diagram we may conclude that it is also a homotopy limit diagram. �

Remark 2.5.7. Applying Proposition 2.5.6 to the opposite model structure on Mop we obtain the
analogous claim for colimits of projectively cofibrant diagrams in M.
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Remark 2.5.8. It is not known if the injective model structure on MI exists in general. However,
using, for example, [Lu09, Variant 4.2.3.15], one may show that for any small category I there
exists a cofinite poset T and a coinitial map T −→ I (see Definition 2.1.1). One may hence always
compute homotopy limits of functors F : I −→M by first restricting to T, and then computing the
homotopy limit using the injective model structure on MT . According to Proposition 2.5.6 and
Theorem 2.1.3 this procedure yields the correct limit in M∞.

Theorem 2.5.9. Let M be a model category. Then the ∞-category M∞ has all small limits and
colimits.

Proof. We prove the claim for limits. The case of colimits can be obtained by applying the proof
to the opposite model structure on Mop. According to [Lu09, Proposition 4.4.2.6] it is enough
to show that M∞ has pullbacks and small products. The existence of pullbacks follows from
Corollary 2.4.12, since M is in particular a weak fibration category. To see that M∞ admits small
products let S be a small set. We first observe that the product model structure on MS coincides

with the injective model structure. Let LH(M,W)
≃
−→M∆ be a fibrant replacement with respect

to the Bergner model structure such that the map Ob(LH(M,W)) −→ Ob(M∆) is the identity, so
that M∞ ≃ N(M∆). The data of a map S −→M∞ is just the data of a map of sets

S −→ (M∞)0 = Ob(M∆) = Ob(M).

Let u : S −→ Ob(M) be such a map. We can then factor each map u(s) −→ ∗ as a weak equivalence
followed by a fibration. This gives us a map v : S −→Mfib with a weak equivalence u −→ v and v
injectively fibrant. Now, according to Proposition 2.5.6, the limit of v is a model for the homotopy
product of v and hence also of u. �

Remark 2.5.10. Let L : M ⇄ N : R be a Quillen adjunction. According to [MG15, Theorem
2.1] the derived functors L∞ and R∞ are adjoints in the ∞-categorical sense. It follows that L∞

preserves colimits and R∞ preserves limits (see [Lu09, Proposition 5.2.3.5]).

3. Pro-categories

3.1. Pro-categories in ordinary category theory. In this subsection we recall some general
background on pro-categories and prove a few lemmas which will be used in §5. Standard references
include [AGV72] and [AM69].

Definition 3.1.1. We say that a category I cofiltered if the following conditions are satisfied:

(1) I is non-empty.
(2) For every pair of objects i, j ∈ I, there exists an object k ∈ I, together with morphisms

k −→ i and k −→ j.
(3) For every pair of morphisms f, g : i −→ j in I, there exists a morphism h : k −→ i in I,

such that f ◦ h = g ◦ h.

We say that a category I is filtered if Iop is cofiltered.

Convention 3.1.2. If T is a small partially ordered set, then we view T as a small category which
has a single morphism u −→ v whenever u ≥ v. It is then clear that a poset T is cofiltered if and
only if T is non-empty, and for every a, b ∈ T, there exists a c ∈ T, such that c ≥ a and c ≥ b.

We now establish a few basic properties of cofiltered categories.

Lemma 3.1.3. Let I be cofiltered category and let E be a category with finitely many objects and
finitely many morphisms. Then any functor F : E −→ I extends to a functor F : E⊳ −→ I.
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Proof. If E is empty, then the desired claim is exactly property (1) of Definition 3.1.1. Now assume
that E is non-empty. Since E has finitely many objects we may find, by repeated applications of
property (2) of Definition 3.1.1, an object i ∈ I admitting maps fe : i −→ F(e) for every e ∈ E.
Now for every morphism g : e −→ e′ in E we obtain two maps i −→ F(e′), namely fe′ on the one
hand and F(g) ◦ fe on the other. Since E has finitely many morphisms we may find, by repeated
applications of property (3) of Definition 3.1.1, a map h : j −→ i in I such that fe′ ◦h = F(g)◦fe◦h
for every morphism g : e −→ e′ in E. The morphisms fe ◦ h : j −→ F(e) now form an extension of

F to a functor F : E⊳ −→ I. �

Lemma 3.1.4. Let I be a cofiltered category and let F : I −→ J be a functor such that for each
j ∈ J the category I/j is connected. Then F is coinitial (see Definition 2.1.1).

Proof. Since I/j is connected, it suffices, By [Ci10a, Lemme d’asphéricité p. 509], to prove that
for any connected finite poset T, and any map

G : T −→ I/j ,

there exists a natural transformation X ⇒ G where X : T −→ I/j is a constant functor. Now let
G : T −→ I/j be such a map. The data of G can be equivalently described as a pair (GI,GJ) where
GI : T −→ I is a functor and GJ : T⊲ −→ J is a functor sending the cone point to j and such that
GJ|T = F ◦ GI. For each t ∈ T let us denote by αt : GJ(t) −→ j the map determined by GJ.

By Lemma 3.1.3 there exists an extension GI : T⊳ −→ I. Let i0 ∈ I be the image of the cone
point of T⊳ under GI and for each t let βt : i0 −→ GI(t) be the map determined by GI. Let
γt : F(i0) −→ j be the map obtained by composing the map F(βt) : F(i0) −→ F(GI(t)) = GJ(t)
and the map αt : GJ(t) −→ j. We claim that the maps γt are all identical. Indeed, if t > s then
the commutativity of he diagram

GJ(t)

αt

  ❇
❇❇

❇❇
❇❇

❇❇

��

F(i0)

F(βt)
;;✇✇✇✇✇✇✇✇

F(βs) ##●
●●

●●
●●

●
j

GJ(s)

αs

>>⑤⑤⑤⑤⑤⑤⑤⑤⑤

shows that γt = γs. Since T is connected it follows that γt = γs for every t, s ∈ T. Let us
call this map γ : F(i0) −→ j. Then the pair (i0, γ) corresponds to an object X ∈ I/j, which
can be interpreted as a constant functor X : T −→ I/j. The maps βt now determine a natural
transformation X ⇒ G as desired. �

Lemma 3.1.5. Let F : I −→ J be a coinitial functor. If I is cofiltered then J is cofiltered.

Proof. See [BS15a, Lemma 3.12]. �

Definition 3.1.6. Let C be a category. We define Pro(C) to be the category whose objects are
diagrams X : I −→ C such that I is small and cofiltered (see Definition 3.1.1) and whose morphism
sets are given by

HomPro(C)(X,Y ) := lim
s

colim
t

HomC(Xt, Ys).

Composition of morphisms is defined in the obvious way. We refer to Pro(C) as the pro-category

of C and to objects of Pro(C) as pro-objects.
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A pro-object X : I −→ C will often be written as X = {Xi}i∈I where Xi = X(i). There is
a canonical full inclusion ι : C −→ Pro(C) which associates to X ∈ C the constant diagram with
value X , indexed by the trivial category. We say that a pro-object is simple if it is in the image

of ι. Given a pro-object X = {Xi}i∈I and a functor p : J −→ I we will denote by p∗X
def
= X ◦ p

the restriction (or reindexing) of X along p.
If X,Y : I −→ C are two pro-objects indexed by I then any natural transformation: X −→ Y

gives rise to a morphism X −→ Y in Pro(C). More generally, for pro-object X = {Xi}i∈I, Y =
{Yj}j∈J if p : J −→ I is a functor and φ : p∗X −→ Y is a map in CJ, then the pair (p, φ)
determines a morphism νp,φ : X −→ Y in Pro(C) (whose image in colim

t
HomC(Xt, Ys) is given by

φs : Xp(s) −→ Ys).
The following special case of the above construction is well-known.

Lemma 3.1.7. Let p : J −→ I be a coinitial functor between small cofiltered categories, and let
X = {Xi}i∈I be a pro-object indexed by I. Then the morphism of pro-objects νp,Id : X −→ p∗X

determined by p is an isomorphism. For the purpose of brevity we will denote νp
def
= νp,Id.

Proof. For any pro-object X = {Xi}i∈I, the maps X −→ Xi exhibit X as the limit, in Pro(C), of
the diagram i 7→ Xi. Since restriction along coinitial maps preserves limits (see Theorem 2.1.3) it
follows that the induced map νp : X −→ p∗X is an isomorphism. �

Definition 3.1.8. We refer to the isomorphisms νp : X −→ p∗X described in Lemma 3.1.7 as
reindexing isomorphisms.

Definition 3.1.9. Let T be a small poset. We say that T is inverse if it is both cofinite and
cofiltered.

The following lemma (and variants thereof) is quite standard.

Lemma 3.1.10. Let I be a small cofiltered category. Then there exists an inverse poset T (see
Definition 3.1.9) and a coinitial functor p : T −→ I.

Proof. A proof of this can be found, for example, in [Lu09, Proposition 5.3.1.16]. �

Corollary 3.1.11. Any pro-object is isomorphic to a pro-object which is indexed by an inverse
poset.

Although not every map of pro-objects is induced by a natural transformation, it is always
isomorphic to one. More specifically, we recall the following lemma:

Lemma 3.1.12. Let f : {Zi}i∈I −→ {Xj}j∈J be a map in Pro(C). Then there exists a cofiltered
category T, coinitial functors p : T → I and q : T → J, a natural transformation p∗Z → q∗X and
a commutative square in Pro(C) of the form

Z
f

//

νp

��

X

νq

��
p∗Z // q∗X.

Proof. This is shown in [AM69, Appendix 3.2]. �

Corollary 3.1.11 demonstrates that isomorphic pro-objects might have non isomorphic indexing
categories. Thus the assignment of the indexing category to every pro-object is non-functorial. It
is often useful to assign functorially a “canonical indexing category” to every pro-object. This will
be done in Definition 3.1.15.
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Let C be a category, X = {Xi}i∈I ∈ Pro(C) a pro-object and f : X −→ Y a map in Pro(C)
where Y ∈ C ⊆ Pro(C) a simple object. Let H : Iop −→ Set be the functor which associates to

i ∈ I the set of maps g : Xi −→ Y such that the composite X −→ Xi
g
−→ Y is equal to f . Let

G(Iop,H) the Grothendieck construction of H.

Lemma 3.1.13. The category G(Iop,H) is weakly contractible

Proof. By the main result of [Th79] the nerve of G(Iop,H) is a model for the homotopy colimit of
the functor H : Iop −→ Set. Since Iop is filtered this homotopy colimit it weakly equivalent to the
actual colimit of the diagram. It will hence suffice to show that colimi∈Iop H = ∗. Now the functor
H fits into a Cartesian square of functors of the form

H(i) //

��

HomC(Xi, Y )

��
∗ // HomPro(C)(X,Y )

where the image of the bottom horizontal map is the point f ∈ HomPro(C)(X,Y ). Since Iop is
filtered the square

colim
i∈Iop

H(i) //

��

colim
i∈Iop

HomC(Xi, Y )

��
∗ // HomPro(C)(X,Y )

is a Cartesian square of sets (see [Sc72, Theorem 9.5.2]). By definition of Pro(C) the right vertical
map is an isomorphism. It follows that the left vertical map is an isomorphism as well as desired. �

Corollary 3.1.14. Let C be a category and X = {Xi}i∈I ∈ Pro(C) a pro-object. Then the natural
functor

I −→ CX/

is coinitial and CX/ is cofiltered. In particular, if C is small then the pro-object CX/ −→ C given
by (X −→ Y ) 7→ Y is naturally isomorphic to X.

Proof. Combine Lemmas 3.1.13, 3.1.7 and 3.1.5. �

Definition 3.1.15. Let X = {Xi}i∈I ∈ Pro(C) be a pro-object. We refer to CX/ as the canonical

indexing category of X and to J as the actual indexing category of X .

3.2. Pro-categories in higher category theory. In [Lu09] Lurie defined pro-categories for
small ∞-categories and in [Lu11] the definition was adjusted to accommodate accessible ∞-
categories which admit finite limits (such ∞-categories are typically not small). The purpose of
this subsection is to extend these definitions to the setting of general locally small ∞-categories
(see Definition 1.0.18). It is from this point on in the paper that set theoretical issues of “largeness”
and “smallness” begin to play a more important role, and the interested reader might want to go
back to Section 1 to recall our setting and terminology.

We denote by Funsm(C,D) ⊆ Fun(C,D) the full subcategory spanned by small functors (see
Definition 1.0.20).

Lemma 3.2.1. If D is locally small, then the ∞-category Funsm(C,D) is locally small.

Proof. Let f, g : C −→ D be two small functors. Then there exists a small full-subcategory C0 ⊆ C

such that both f, g are left Kan extended from C0. Then

MapFun(C,D)(f, g) ≃MapFun(C0,D)(f |C0
, g|C0

)
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and the latter space is small. �

Lemma 3.2.2. The full subcategory Funsm(C,D) ⊆ Fun(C,D) is closed under small colimits.

Proof. Given a family of small functors fi : C −→ D indexed by a small ∞-category I, we may
find a small full subcategory C0 ⊆ C such that fi is a left Kan extension of fi|C0

for every i ∈ I.
Since left Kan extension commute with colimits it follows that colimi fi is a left Kan extension of
colimi fi|C0

. �

Lemma 3.2.3. If f : C −→ S∞ (see Definition 2.2.4) is a small colimit of corepresentable functors
then f is small. The converse holds if f takes values in essentially small spaces.

Proof. Suppose f is corepresentable by c ∈ C. Then f is a left Kan extension of the functor
∆0 −→ S∞ which sends the object of ∆0 to the terminal space along the map ∆0 −→ C which
sends the object of ∆0 to c. Thus, by Remark 1.0.21, f is small. By Lemma 3.2.2 every small
colimit of corepresentable functors is small.

Now suppose that f is small and takes values in essentially small spaces. Let C̃ −→ C be a left
fibration classifying f . Since f is small there exists a small full subcategory C0 ⊆ C such that f is

a left Kan extension of g = f |C0
. Let C̃0 = C̃ ×C C0. Then the left fibration C̃0 −→ C0 classifies g

and by the straightening unstraightening equivalence of [Lu09, Theorem 2.2.1.2] it follows that g
can be identified with the colimit of the composition

C̃
op
0 −→ C

op
0 −→ Fun

(
C0, S∞

)

where the second map is the Yoneda embedding of Cop
0 . Since f is a left Kan extension of g we

may identify f with the colimit in Fun(C, S∞) of the composed map

C̃
op
0 −→ Cop −→ Fun(C, S∞).

Since C̃0 −→ C0 is a left fibration classifying a functor g : C0 −→ S∞ which has a small domain and
takes values in essentially small spaces it follows from the straightening unstraightening equivalence

that C̃0 is essentially small. Thus we can replace it with an equivalent small ∞-category and so
the proof is complete. �

Let us recall the higher categorical analogue of Definition 3.1.1.

Definition 3.2.4 ([Lu09, Definition 5.3.1.7]). Let C be an∞-category. We say that C is cofiltered
if for every map f : K −→ C whereK is a simplicial set with finitely many non-degenerate simplices,
there exists an extension of the form f : K⊳ −→ C.

Remark 3.2.5. For ordinary categories Definition 3.2.4 and Definition 3.1.1 coincide. This follows
from Lemma 3.1.3.

We begin by establishing the following useful lemma:

Lemma 3.2.6. Let C be a cofiltered ∞-category and let D ⊆ C be a full subcategory such that
for every c ∈ C the category D/c is non-empty. Then D is cofiltered and the inclusion D ⊆ C is
coinitial.

Proof. Let K be a simplicial set with finitely many non-degenerate simplices and let p : K −→ D

be a map. Consider the right fibration D/p −→ D. We need to show that D/p is not empty.
Let q : K −→ C be the composition of p with the full inclusion D ⊆ C. Since C is cofiltered the
∞-category C/q is non-empty. Since the inclusion D ⊆ C is full the square

D/p
//

��

C/q

��
D // C
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is Cartesian. It will hence suffice to show that there exists a d ∈ D such that the fiber C/q ×C {d}
is non-empty. Now let x ∈ C/q be an element whose image in C is c ∈ C. By our assumptions there
exists a map of the form d −→ c with d ∈ D. Since C/q is a right fibration there exists an arrow
y −→ x in C/q such that the image of y in C is d. Hence C/q ×C {d} 6= ∅ and we may conclude that
D is cofiltered.

Let us now show that the inclusion D ⊆ C is coinitial. Let c ∈ C be an object. Then the inclusion
D/c →֒ C/c is fully-faithful. Furthermore, for every map f : c′ −→ c, considered as an object
f ∈ C/c, the ∞-category (D/c)/f is equivalent to the ∞-category D/c′ and is hence non-empty.
By [Lu09, Lemma 5.3.1.19] the ∞-category C/c is cofiltered. Applying again the argument above
to the inclusion D/c →֒ C/c we conclude that D/c is cofiltered, and is hence weakly contractible
by [Lu09, Lemma 5.3.1.18]. �

We now turn to the main definition of this subsection.

Definition 3.2.7. Let C be a locally small ∞-category. We say that a functor f : C −→ S∞ is a
pro-object if f is small, takes values in essentially small spaces, and is classified by a left fibration

C̃ −→ C such that C̃ is cofiltered. We denote by Pro(C) ⊆ Fun
(
C, S∞

)op
the full subcategory

spanned by pro-objects.

Remark 3.2.8. If C is a small∞-category then Definition 3.2.7 reduces to [Lu09, Definition 5.3.5.1].

Remark 3.2.9. By definition the essential image of Pro(C) in Fun(C, S∞) is contained in the essential

image of Funsm (C, S∞) ⊆ Funsm

(
C, S∞

)
. It follows by Lemma 3.2.1 that Pro(C) is locally small.

Lemma 3.2.10. Any corepresentable functor f : C −→ S∞ is a pro-object.

Proof. By Lemma 3.2.3 we know that f is small, and since C is locally small f takes values in

essentially small spaces. Let C̃ −→ C be the left fibration classifying f . If f is corepresentable by

c ∈ C then C̃ ≃ Cc/ has an initial object and is thus cofiltered by [Lu09, Proposition 5.3.1.15]. �

Definition 3.2.11. By the previous lemma we see that the Yoneda embedding C →֒ Fun
(
C, S∞

)op
factors through Pro(C), and we denote it by ιC : C →֒ Pro(C). We say that a pro-object is simple

if it belongs to the essential image of ιC.

Lemma 3.2.12. Every pro-object is a small cofiltered limit of simple objects.

Proof. Let f : C −→ S∞ be a pro-object. We define C̃, C0, g and C̃0 as in the second part of the

proof of Lemma 3.2.3. As we have shown there, C̃0 is (essentially) small and we may identify f

with the colimit in Fun(C, S∞) of the composed map

C̃
op
0 −→ C

op −→ Fun(C, S∞),

where the second map is the Yoneda embedding. Thus f can be identified with the limit in Pro(C)
of the composed map

C̃0 −→ C −→ Pro(C).

It will hence suffice to show that C̃0 is cofiltered. Since f is a pro-object the ∞-category C̃ is

cofiltered by Definition. Since f is a left Kan extension of g it follows that for every c ∈ C̃ the

category
(
C̃0

)
/c

is non-empty. The desired result now follows form Lemma 3.2.6. �

Lemma 3.2.13. The full subcategory Pro(C) ⊆ Fun
(
C, S∞

)op
is closed under small cofiltered

limits.

Proof. The same proof as [Lu09, Proposition 5.3.5.3] can be applied here, using Lemma 3.2.2. �



PRO-CATEGORIES IN HOMOTOPY THEORY 27

Corollary 3.2.14. The full subcategory Pro(C) ⊆ Fun
(
C, S∞

)op
is the smallest one containing

the essential image of ιC and closed under small cofiltered limits.

Proof. This follows from Lemma 3.2.12 and Lemma 3.2.13. �

Remark 3.2.15. If C is an accessible ∞-category which admits finite limits, then Pro(C) as de-
fined above coincides with the pro-category defined in [Lu11, Definition 3.1.1], namely, Pro(C) ⊆
Fun(C, S∞)op is the full subcategory spanned by accessible functors which preserve finite

limits. This follows from the fact that they both satisfy the characterization of Corollary 3.2.14
(see the proof of [Lu11, Proposition 3.1.6]).

Definition 3.2.16. Let C be an ∞-category. We say that X ∈ C is ω-cocompact if the functor
C −→ S∞ corepresented by X preserves cofiltered limits.

Lemma 3.2.17. Let X ∈ Pro(C) be a simple object. Then X is ω-cocompact.

Proof. By Lemma 3.2.13 it will suffice to show that X is ω-cocompact when considered as an
object of Fun(C, S∞)op. But this now follows from [Lu09, Proposition 5.1.6.8] in light of our large
cardinal axiom. �

We now wish to show that if C is an ordinary category then Definition 3.2.7 coincides with
Definition 3.1.6 up to a natural equivalence. For this purpose we let Pro(C) denote the category
defined in 3.1.6. For each pro-object X = {X}i∈I ∈ Pro(C) we may consider the associated functor
RX : C −→ Set given by

RX(Y ) = HomPro(C)(X,Y ) = colim
i∈I

HomC(Xi, Y ).

The equivalence of Definition 3.1.6 and 3.2.7 for C now follows from the following proposition:

Proposition 3.2.18. The association X 7→ RX determines a fully-faithful embedding ι : Pro(C) →֒
Fun(C, Set)op. A functor F : C −→ Set belongs to the essential image of ι if and only if F is small
and its Grothendieck construction G(C,F) is cofiltered.

Proof. The fact that X 7→ RX is fully-faithful follows from the fact that the Yoneda embedding
C → Fun(C, Set)op is fully faithful and lands in the subcategory of Fun(C, Set)op spanned by ω-
cocompact objects.

Now let X = {Xi}i∈I be a pro-object. Then RX : C −→ Set is a small colimit of corepresentable
functors and is hence small by Lemma 3.2.3. The Grothendieck construction of RX can naturally
be identified with CX/ and is hence cofiltered by Corollary 3.1.14.

On the other hand, let F : C −→ Set be a small functor such that G(C,F) is cofiltered. Let C0 ⊆ C

be a small full subcategory such that F is a left Kan extension of F|C0
and let I = G(C0,F|C0

) be the
associated Grothendieck construction. Since the inclusion C0 ⊆ C is fully-faithful, the induced map
I −→ G(C,F) is fully faithful. Now let (c, x) ∈ G(C,F) be an object, so that x is an element of f(c).
Since F is a left Kan extension of F|C0

there exists a map α : c0 −→ c with c0 ∈ C0 and an element
y ∈ F(c0) such that F(α)(y) = x. This implies that α lifts to a map (c0, y) −→ (c, x) in G(C,F).
It follows that for every (c, x) ∈ G(C,F) the category I/(c,x) is non-empty. By Lemma 3.2.6 we get
that I is cofiltered and the inclusion I →֒ G(C,F) is coinitial. Let X = {Xi}i∈I be the pro-object
corresponding to the composed map I −→ C0 →֒ C. We now claim that RX is naturally isomorphic
to F. Let Y ∈ C be an object and choose a full subcategory C′

0 ⊆ C0 which contains both C0 and
Y . Let I′ = G(C′

0,F|C′

0
) be the associated Grothendieck construction. Then F|C′

0
is a left Kan

extension of F|C0
and F is a left Kan extension of F|C′

0
. By the arguments above I′ is cofiltered

and the functor I −→ I′ is coinitial. Let X = {X ′
i′}i′∈I′ be the pro-object corresponding to the

composed map I′ −→ C′
0 →֒ C. We then have natural isomorphisms

colim
i∈Iop

HomC(Xi, Y ) ∼= colim
i′∈(I′)op

HomC′

0
(X ′

i′ , Y ) ∼=

∫

c′0∈C′

0

F(c′0)×HomC′

0
(c′0, Y ) ∼= F(Y )
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�

We finish this subsection by verifying that Pro(C) satisfies the expected universal property
(compare [Lu11, Proposition 3.1.6]):

Theorem 3.2.19. Let C be a locally small ∞-category and let D be a locally small ∞-category
which admits small cofiltered limits. Let Funcofil(C,D) ⊆ Fun(C,D) denote the full subcategory
spanned by those functors which preserve small cofiltered limits. Then composition with the Yoneda
embedding restricts to an equivalence of ∞-categories

(2) Funcofil(Pro(C),D)
≃
−→ Fun(C,D)

Proof. This is a particular case of [Lu09, Proposition 5.3.6.2] where K is the family of small
cofiltered simplicial sets and R is empty. Note that [Lu09, Proposition 5.3.6.2] is stated for a small
∞-category C (in the terminology of loc. cit.) and makes use of the ∞-category S∞ of small

spaces. In light of our large cardinal axiom 1.0.9 we may replace S∞ with S∞ and apply [Lu09,
Proposition 5.3.6.2] to the ∞-category Cop. The fact that the ∞-category PK(C) constructed in
the proof of [Lu09, Proposition 5.3.6.2] coincides with Pro(C) follows from Corollary 3.2.14. �

The universal property 3.2.19 allows, in particular, to define the prolongation of functors in
the setting of ∞-categories.

Definition 3.2.20. Let f : C −→ D be a map of locally small ∞-categories. A prolongation of
f is a cofiltered limit preserving functor Pro(f) : Pro(C) −→ Pro(D), together with an equivalence
u : Pro(f)|C ≃ ιD ◦ f (where ιD : D →֒ Pro(D) is the full embedding of simple objects). By
Theorem 3.2.19 we see that a prolongation (Pro(f), u) is unique up to a contractible choice.

4. The induced model structure on Pro(C)

4.1. Definition. In this subsection we define what we mean for a model structure on Pro(C) to
be induced by a weak fibration structure on C. Sufficient hypothesis on C for this procedure to be
possible appear in [EH76, Is04, BS16, BS15b]. We begin by establishing some useful terminology.

Definition 4.1.1. Let C be a category with finite limits, and M a class of morphisms in C. Denote
by:

(1) R(M) the class of morphisms in C that are retracts of morphisms in M.
(2) ⊥M the class of morphisms in C with the left lifting property against any morphism in M.
(3) M⊥ the class of morphisms in C with the right lifting property against any morphism in

M.
(4) Lw

∼=(M) the class of morphisms in Pro(C) that are isomorphic to a levelwise M-map (see
Definition 2.4.5).

(5) Sp
∼=(M) the class of morphisms in Pro(C) that are isomorphic to a special M-map (see

Definition 2.4.5).

Lemma 4.1.2 ([Is04, Proposition 2.2]). Let M be any class of morphisms in C. Then R(Lw
∼=(M)) =

Lw
∼=(M).

Definition 4.1.3. Let (C,W,Fib) be a weak fibration category. We say that a model structure
(Pro(C),W,Cof ,Fib) on Pro(C) is induced from C if the following conditions are satisfied:

(1) The cofibrations are Cof = ⊥(Fib ∩W).
(2) The trivial cofibrations are Cof ∩W = ⊥Fib.
(3) If f : Z −→ X is a morphism in CT , with T a cofiltered category, then there exists a

cofiltered category J, a coinitial functor µ : J −→ T and a factorization

µ∗Z
g
−→ Y

h
−→ µ∗X
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in CJ of the map µ∗f : µ∗Z −→ µ∗X such that g is a cofibration in Pro(C) and h is both
a trivial fibration in Pro(C) and a levelwise trivial fibration.

Since a model structure is determined by its cofibrations and trivial cofibrations, we see that
the induced model structure is unique if it exists.

We now recall some terminology from [BS16].

Definition 4.1.4. Let (C,W,Fib) be a weak fibration category and Cs ⊆ C a full-subcategory
which is closed under finite limits. We say that Cs is a full weak fibration subcategory of C if
(Cs,W ∩ Cs,Fib ∩ Cs) satisfies the axioms of a weak fibration category.

Definition 4.1.5. Let (C,W,Fib) be a weak fibration category and Cs ⊆ C a full weak fibration

subcategory of C. We say that Cs is dense if the following condition is satisfied: if X
f
−→ H

g
−→ Y

is a pair of composable morphisms in C such that X,Y ∈ Cs and g is a fibration (resp. trivial
fibration) then there exists a diagram of the form

H ′

g′

  ❆
❆❆

❆❆
❆❆

❆

��

X

f ′

>>⑤⑤⑤⑤⑤⑤⑤⑤

f

  ❇
❇❇

❇❇
❇❇

❇ Y

H

g
>>⑤⑤⑤⑤⑤⑤⑤⑤

such that g′ is a fibration (resp. trivial fibration) and H ′ ∈ Cs.

Definition 4.1.6. Let C be a weak fibration category. We say that C is homotopically small if
for every map of the form f : I −→ C where I is a small cofiltered category, there exists a dense
essentially small weak fibration subcategory Cs ⊆ C such that the image of f is contained in Cs.

Remark 4.1.7. Note that any essentially small weak fibration category is clearly homotopically
small.

Proposition 4.1.8. Let (C,W,Fib) be a weak fibration category. Suppose that there exists a model
structure on Pro(C) such that the following conditions are satisfied:

(1) The cofibrations are ⊥(Fib ∩W).
(2) The trivial cofibrations are ⊥Fib.

If C is a model category or is homotopically small then the model structure on Pro(C) is induced
from C in the sense of Definition 4.1.3.

Proof. We only need to verify that Condition (3) in Definition 4.1.3 is satisfied.
Suppose that C is a model category. Let f : Z −→ X be a morphism in CT , with T a cofiltered

category. Choose an inverse poset A with a coinitial functor µ : A −→ T and consider the
induced map µ∗f : µ∗Z −→ µ∗X . Since Fib ∩W and Cof are classes of morphisms satisfying
(Fib∩W) ◦ Cof = Mor(C) we may employ the construction described in [BS15a, Definition 4.3] to
factor µ∗f in CA as

µ∗Z
Lw(Cof)
−−−−−→ Y

Sp(Fib∩W)
−−−−−−−→ µ∗X.

By [BS15a, Proposition 4.1] we have that

Lw(Cof) = ⊥ R(Sp(Fib ∩W) = ⊥(Fib ∩W).

R(Sp(Fib ∩W) = Lw(Cof)⊥ = (⊥(Fib ∩W))⊥.

Thus, the first map is a cofibration and the second map is both a trivial fibration and a levelwise
trivial fibration (see Proposition 2.4.6).
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Now suppose that C is homotopically small. Let f : Z −→ X be a morphism in CT , with T a
cofiltered category. Following the proof of [BS16, Proposition 3.15], we can find an inverse poset
A equipped with a coinitial functor µ : A −→ T, together with a factorization of µ∗f in CA as

µ∗Z
⊥(Fib∩W)
−−−−−−−→ Z ′ Sp(Fib∩W)

−−−−−−−→ µ∗X.

By [BS15b, Proposition 5.10] we have that

Sp(Fib ∩W) ⊆ cocell(Fib ∩W) ⊆ (⊥(Fib ∩W))⊥.

Thus the first map is a cofibration and the second map is both a trivial fibration and a levelwise
trivial fibration (see Proposition 2.4.6). �

4.2. Existence results. We shall now describe sufficient conditions on C which insure the exis-
tence of an induced model structure on Pro(C).

We denote by [1] the category consisting of two objects and one non-identity morphism between
them. Thus, if C is any category, the functor category C[1] is just the category of morphisms in C.

Definition 4.2.1. A relative category (C,W) is called pro-admissible if Lw
∼=(W) ⊆ Pro(C)[1]

satisfies the 2-out-of-3 property.

Lemma 4.2.2 (Isaksen). Let M be a proper model category. Then (M,W) is pro-admissible.

Proof. Combine Lemma 3.5 and Lemma 3.6 of [Is04]. �

Remark 4.2.3. Lemma 4.2.2 can be generalized to a wider class of relative categories via the notion
of proper factorizations, see [BS15b, Proposition 3.7].

Our first sufficient condition is based on the work of Isaksen:

Theorem 4.2.4 ([Is04]). Let (C,W,Fib,Cof) be a pro-admissible model category (e.g., a proper
model category). Then the induced model structure on Pro(C) exists. Furthermore, we have:

(1) The weak equivalences in Pro(C) are given by W = Lw
∼=(W).

(2) The fibrations in Pro(C) are given by Fib := R(Sp
∼=(Fib)).

(3) The cofibrations in Pro(C) are given by Cof = Lw
∼=(Cof).

(4) The trivial cofibrations in Pro(C) are given by Cof ∩W = Lw
∼=(Cof ∩W).

(5) The trivial fibrations in Pro(C) are given by Fib ∩W = R(Sp
∼=(Fib ∩W)).

Proof. The existence of a model structure satisfying Conditions (1) and (2) of Definition 4.1.3, as
well as Properties (1)-(5) above, is proven in [Is04, §4]. The rest follows from Proposition 4.1.8.
Note that the results of [Is04] are stated for a proper model category C. However, the properness
of C is only used to show that C is pro-admissible (see Lemma 4.2.2), while the arguments of [Is04,
§4] apply verbatim to any pro-admissible model category. �

The following case is based on the work of the work of Schlank and the first author:

Theorem 4.2.5 ( [BS16]). Let (C,W,Fib) be a homotopically small pro-admissible weak fibration
category and assume that C is either essentially small or admits small colimits. Then the induced
model structure on Pro(C) exists. Furthermore, we have:

(1) The weak equivalences in Pro(C) are given by W = Lw
∼=(W).

(2) The fibrations in Pro(C) are given by Fib := R(Sp
∼=(Fib)).

(3) The trivial fibrations in Pro(C) are given by Fib ∩W = R(Sp
∼=(Fib ∩W)).

Proof. The existence of a model structure satisfying Conditions (1) and (2) of Definition 4.1.3,
as well as Properties (1)-(3) above, is proven in [BS16, Theorem 4.18]. The rest follows from
Proposition 4.1.8 �



PRO-CATEGORIES IN HOMOTOPY THEORY 31

4.3. The weak equivalences in the induced model structure. In this subsection, we let C

be a weak fibration category and assume that the induced model structure on Pro(C) exists (see
Definition 4.1.3). Our goal is to relate the weak equivalences of Pro(C) to the class Lw

∼=(W) (see
Definition 4.1.1).

Proposition 4.3.1. Every map in Lw
∼=(W) is a weak equivalence in Pro(C).

Proof. Since any isomorphism is a weak equivalence it is enough to show that every map in Lw(W)
is a weak equivalence in Pro(C). Let I be a cofiltered category and let f : Z −→ X be a morphism
in CI which is levelwise in W. By condition (3) of Definition 4.1.3, there exists a cofiltered category
J with a coinitial functor µ : J −→ I and a factorization

µ∗Z
g
−→ Y

h
−→ µ∗X

in CJ of the map µ∗f : µ∗Z −→ µ∗X such that g is a cofibration in Pro(C) and h is both a trivial
fibration in Pro(C) and a levelwise trivial fibration. Since f is a levelwise weak equivalence, we
get that g is a levelwise weak equivalence. Since the weak equivalences in Pro(C) are closed under
composition, it is enough to show that g is a trivial cofibration in Pro(C), or, equivalently, that
g ∈ ⊥Fib. But g ∈ ⊥(Fib ∩W) ∩ Lw(W), so this follows from [BS16, Proposition 4.17]. �

Corollary 4.3.2. Every map f : Z −→ X in Pro(C) can be factored as

Z
g
−→ Z ′ h

−→ X ′ ∼=
−→ X

such that g is a weak equivalence, h is a levelwise fibration and the isomorphism X ′
∼=
−→ X is a

reindexing isomorphism (see Definition 3.1.8).

Proof. Let f : Z −→ X be a map in Pro(C). By Lemma 3.1.12, we may assume that f is given by
a morphism in CT , with T a cofiltered category.

Now choose an inverse poset A with a coinitial functor µ : A −→ T. Since Fib and W are classes
of morphisms in C such that Fib ◦W = Mor(C), we can, by the construction described in [BS15a,
Definition 4.3], factor µ∗f as

µ∗Z
Lw(W)
−−−−→ Z ′ Sp(Fib)

−−−−−→ µ∗X.

The first map is a weak equivalence by Proposition 4.3.1 and the second map is in Lw(Fib) by
Proposition 2.4.6, so the conclusion of the lemma follows. �

Proposition 4.3.1 admits two partial converses.

Lemma 4.3.3. Every trivial cofibration in Pro(C) belongs to Lw
∼=(W).

Proof. Since C is a weak fibration category we know that C has finite limits and that Mor(C) =
Fib ◦W. By [BS15a, Proposition 4.1] we know that Mor(Pro(C)) = Sp

∼=(Fib) ◦ Lw
∼=(W). Now,

by [BS15a, Proposition 4.1 and Lemma 4.5] and Lemma 4.1.2 we have that

Cof ∩W = ⊥Fib = ⊥ Sp
∼=(Fib) ⊆ R(Lw

∼=(W)) = Lw
∼=(W).

�

Lemma 4.3.4. Every trivial fibration in Pro(C) belongs to Lw
∼=(W).

Proof. Let f : Z −→ X be a morphism in Pro(C). By Lemma 3.1.12 f is isomorphic to a
natural transformation f ′ : Z ′ −→ X ′ over a common indexing category T. By condition (3) of
Definition 4.1.3, there exists a cofiltered category J with a coinitial functor µ : J −→ T and a
factorization in CJ of the map µ∗f ′ : µ∗Z ′ −→ µ∗X ′ of the form

µ∗Z ′ g
−→ Y

h
−→ µ∗X ′
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such that g is a cofibration in Pro(C) and h is a levelwise trivial fibration. We thus obtain a
factorization of f of the form

Z
Cof
−→ Y

Lw
∼=(W)
−→ X.

It follows that Mor(Pro(C)) = Lw
∼=(W) ◦Cof . Now, by [BS15a, Lemma 4.5] and Lemma 4.1.2 we

have that
Fib ∩W = Cof⊥ ⊆ R(Lw

∼=(W)) = Lw
∼=(W).

�

Combining Lemmas 4.3.3 and 4.3.4 we obtain

Corollary 4.3.5. Every weak equivalence in Pro(C) is a composition of two maps in Lw
∼=(W).

Corollary 4.3.6. If the class Lw
∼=(W) is closed under composition then the weak equivalences in

Pro(C) are precisely W = Lw
∼=(W).

Remark 4.3.7. In [EH76], Edwards and Hastings give conditions on a model category which they
call Condition N (see [EH76, Section 2.3]). They show in [EH76, Theorem 3.3.3] that a model
category C, satisfying Condition N, gives rise to a model structure on Pro(C). By Proposition 4.1.8
we get that this model structure is induced on Pro(C) in the sense of Definition 4.1.3.

In [EH76] Edwards and Hastings ask whether the weak equivalences in their model structure
are precisely Lw

∼=(W). Using the results above we may give a positive answer to their question.
Indeed, in a model category satisfying Condition N we have that either every object is fibrant or
every object is cofibrant. It follows that such a model category is either left proper or right proper.
By [BS15b, Proposition 3.7 and Example 3.3] we have that Lw

∼=(W) is closed under composition
and hence by Corollary 4.3.6 the weak equivalences in Pro(C) coincide with Lw

∼=(W). In particular,
a model category satisfying Condition N is pro-admissible and the existence of the induced model
structure is a special case of Theorem 4.2.4.

Remark 4.3.8. In all cases known to the authors the weak equivalences in the induced model
structure coincide with Lw

∼=(W). It is an interesting question whether or not there exist weak
fibration categories for which the induced model structure exists but Lw

∼=(W) ( W. In fact,
we do not know of any example of a weak fibration category for which Lw

∼=(W) does not satisfy
two-out-of-three.

5. The underlying ∞-category of Pro(C)

Throughout this section we let C be a weak fibration category and assume that the induced
model structure on Pro(C) exists (see Definition 4.1.3). In the previous section we have shown that
this happens, for example, if:

(1) C is the underlying weak fibration category of a pro-admissible model category (Theo-
rem 4.2.4).

(2) C is essentially small and pro-admissible (Theorem 4.2.5).
(3) C is homotopically small, pro-admissible and cocomplete (Theorem 4.2.5).

5.1. A formula for mapping spaces. Let C be an ordinary category. Given two objects X =
{Xi}i∈I and Y = {Yj}j∈J in Pro(C), the set of morphisms from X to Y is given by the formula

HomPro(C)(X,Y ) = lim
j∈J

colim
i∈I

HomC(Xi, Yj)

The validity of this formula can be phrased as a combination of the following two statements:

(1) The compatible family of maps Y −→ Yj induces an isomorphism

HomPro(C)(X,Y )
∼=
−→ lim

j∈J
HomPro(C)(X,Yj)
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(2) For each simple object Y ∈ C ⊆ Pro(C) the compatible family of maps X −→ Xi (combined
with the inclusion functor C →֒ Pro(C)) induces an isomorphism

colim
i∈I

HomC(Xi, Y )
∼=
−→ HomPro(C)(X,Y )

In this section we want to prove that when C is a weak fibration category, statements (1) and (2)
above hold for derived mapping spaces in Pro(C), as soon as one replaces limits and colimits
with their respective homotopy limits and colimits. As a result, we obtain the explicit formula

MaphPro(C)(X,Y ) = holim
j∈J

hocolim
i∈I

MaphC(Xi, Yj).

We first observe that assertion (1) above is equivalent to the statement that the maps Y −→ Yj
exhibit Y as the limit, in Pro(C), of the diagram j 7→ Yj . Our first goal is hence to verify that the
analogous statement for homotopy limits holds as well.

Proposition 5.1.1. Let C be a weak fibration category and let Y = {Yj}j∈J ∈ Pro(C) be a pro-

object. Let F : J⊳ −→ Pro(C) be the limit diagram extending F(j) = Yj so that F(∗) = Y (where

∗ ∈ J⊳ is the cone point). Then the image of F in Pro(C)∞ is a limit diagram. In particular, for
every X = {Xi}i∈I the natural map

MaphPro(C)(X,Y ) −→ holim
j∈J

MaphPro(C)(X,Yj)

is a weak equivalence.

Proof. In light of Lemma 3.1.10 we may assume that Y is indexed by an inverse poset T (see
Definition 3.1.9). Consider the injective weak fibration structure on CT (see Lemma 2.4.7). We
may then replace t 7→ Yt with an injective-fibrant levelwise equivalent diagram t 7→ Y ′

t . By
Proposition 4.3.1 we get that the pro-object Y ′ = {Y ′

t }t∈T is weakly equivalent to Y in Pro(C),
and so it is enough to prove the claim for Y ′.

By Corollary 2.5.5 the injective model structure on Pro(C)T exists, and the underlying weak
fibration structure is the injective one as well. Thus the diagram t 7→ Y ′

t is injectively fibrant in
Pro(C)T . The desired result now follows from Proposition 2.5.6. The last claim is a consequence
of [Lu09, Theorem 4.2.4.1] and also follows from the proof of Proposition 2.5.6. �

Our next goal is to generalize assertion (2) above to derived mapping spaces.

Proposition 5.1.2. Let X = {Xi}i∈I be a pro-object and Y ∈ C ⊆ Pro(C) a simple object. Then
the compatible family of maps X −→ Xi induces a weak equivalence

(3) hocolim
i∈I

MaphC(Xi, Y ) −→ MaphPro(C)(X,Y )

Before proving Proposition 5.1.2, let us note an important corollary.

Corollary 5.1.3. The natural map

C∞ −→ Pro(C)∞

is fully faithful.

Remark 5.1.4. Since C is not assumed to be essentially small, the mapping spaces appearing in (3)
are a priori large spaces (see Definition 2.2.4). Fortunately, since Pro(C) is a model category we

know that MaphPro(C)(X,Y ) is weakly equivalent to a small simplicial set. By Corollary 5.1.3 the
derived mapping spaces in C are, up to weak equivalence, small as well.

The rest of this section is devoted to the proof of Proposition 5.1.2. The proof itself will be
given in the end of this section. We begin with a few preliminaries.
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Definition 5.1.5. Let (C,W,Fib) be a weak fibration category. We denote by Fibfib ⊆ C[1] the
full subcategory spanned by fibrations between fibrant objects, and by Trivfib ⊆ C[1] the full
subcategory spanned by trivial fibrations between fibrant objects.

Lemma 5.1.6. Every object Z in Pro(C) admits a weak equivalence of the form Z
≃
−→ Z ′ with

Z ′ ∈ Pro(Cfib) ⊆ Pro(C).

Proof. This follows from Corollary 4.3.2 applied to the map Z −→ ∗. �

Lemma 5.1.7. Under the natural equivalence Pro(C[1]) ≃ Pro(C)[1] every trivial fibration in
Pro(C), whose codomain is in Pro(Cfib), is a retract of a trivial fibration which belongs to Pro(Trivfib).

Proof. Let f : Z −→ X be a trivial fibration in Pro(C), whose codomain is in Pro(Cfib). By
Lemma 3.1.12 we may assume that X,Y are both indexed by the same cofiltered category I and
that f is given by a morphism in CI. By Condition (3) of Definition 4.1.3 there exists a coinitial
functor µ : J −→ I and a factorization

µ∗Z
g
−→ Y

h
−→ µ∗X

in CJ of the map µ∗f : µ∗Z −→ µ∗X , such that g is a cofibration and h is both a trivial fibration

and a levelwise trivial fibration. It follows that µ∗X belongs to Pro(Cfib) and the map Y
h
−→ µ∗X

belongs to Pro(Trivfib). The commutative diagram

µ∗Z
= //

Cof

��

µ∗Z

W∩Fib

��
Y // X

then admits a lift Y −→ Z. Using the isomorphisms Z
∼=
−→ µ∗Z, X

∼=
−→ µ∗X and their inverses

we obtain a retract diagram in Pro(C)[1] of the form

Z //

f

��

Y //

��

Z

f

��
X // µ∗X // X

and so the desired result follows. �

For the proof of Proposition 5.1.2 below we need the following notion. Let

(4) A
ϕ

//

τ

��

B

ρ

��
C

ψ
// D

be a diagram of categories equipped with a commutativity natural isomorphism ρ ◦ ϕ → ψ ◦ τ .
Given a triple (b, c, f) where b ∈ B, c ∈ C and f : ρ(b) −→ ψ(c) is a morphism in D, we denote by
M(A, b, c, f) the category whose objects are triples (a, g, h) where a is an object of A, g : b −→ ϕ(a)
is a morphism in B and h : τ(a) −→ c is a morphism in C such that the composite

ρ(b)
ρ(g)
−→ ρ(ϕ(a)) ∼= ψ(τ(a))

ψ(h)
−→ ψ(c)

is equal to f .

Definition 5.1.8. We say that the square (4) is categorically Cartesian if for every (b, c, f) as
above the category M(A, b, c, f) is weakly contractible.
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Our main claim regarding categorically Cartesian diagrams is the following:

Lemma 5.1.9. Let D be a category and D0 ⊆ D a full subcategory. Let E ⊆ Pro(D) be a full
subcategory containing D0, such that each object of E is a retract of an object in E∩Pro(D0). Then
the diagram

D0
//

��

E

ιE

��
D

ιD // Pro(D)

is categorically Cartesian.

Proof. Let d ∈ D, e ∈ E be objects and f : ιE(e) −→ ιD(d) a morphism. We need to show that
M(D0, d, e, f) is weakly contractible. By our assumptions there exists a e′ ∈ Pro(D0) ∩ E and a
retract diagram of the form e −→ e′ −→ e. Let f ′ : ιE(e′) −→ ιD(d) be the map obtained by
composing the induced map ιE(e′) −→ ιE(e) with f . We then obtain a retract diagram of simplicial
sets

NM(D0, d, e, f) −→ NM(D0, d, e
′, f ′) −→ NM(D0, d, e, f)

and so it suffices to prove that M(D0, d, e
′, f ′) is weakly contractible. In particular, we might as

well assume that E = Pro(D0) and suppress ιE from our notation.
Now let e = {ei}i∈I be an object of Pro(D0), d be an object of D and f : e −→ d a map

in Pro(D). We may identify M(D0, d, e, f) with the Grothendieck construction of the functor
Hd : ((D0)e/)

op −→ Set which associates to each (e −→ x) ∈ ((D0)e/)
op the set of morphisms

g : x −→ d in D such that the composite e −→ x
g
−→ d in Pro(D) is f . By [Th79] we may

consider M(D0, d, e, f) as a model for the homotopy colimit of the functor Hd. Now according to
Corollary 3.1.14 the natural functor

Iop −→ ((D0)e/)
op

sending i to e −→ ei is cofinal. By Theorem 2.1.4 it suffices to prove that the Grothendieck
construction of the restricted functor Hd|Iop : Iop −→ Set is weakly contractible. But this is
exactly the content of Lemma 3.1.13. �

Our next goal is to construct an explicit model for the homotopy colimit on the left hand side
of (3). Let X = {Xi}i∈I ∈ Pro(Cfib) and let Y ∈ Cfib be a fibrant simple object. Let G(X,Y )

be the Grothendieck construction of the functor HY :
(
Cfib
X/

)op

−→ Cat which sends the object

(X −→ X ′) ∈
(
Cfib
X/

)op

to the category HomC(X ′, Y ). Unwinding the definitions, we see that an

object in G(X,Y ) corresponds to a diagram of the form

(5) Z
g

//

f

��

Y

��
X // X ′ // ∗

where X ′ is a fibrant object of C, f : Z −→ X ′ is a trivial fibration in C, and X,Y are fixed. By
the main result of [Th79] the nerve of the category G(X,Y ) is a model for the homotopy colimit

of the composed functor N ◦HY :
(
Cfib
X/

)op

−→ S. We have a natural functor

FX,Y : G(X,Y ) −→ HomPro(C)(X,Y )
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which sends the object corresponding to the diagram (5) to the external rectangle in the diagram

X ×X′ Z //

��

Z
g

//

f

��

Y

��
X // X ′ // ∗

considered as an object of HomPro(C)(X,Y ).

Proposition 5.1.10. Let X,Y be as above. Then the functor

FX,Y : G(X,Y ) −→ HomPro(C)(X,Y )

is cofinal.

Proof. Let X ∈ Pro(Cfib) and let Y ∈ Cfib be a simple fibrant object. Let W ∈ HomPro(C)(X,Y )
be an object corresponding to a diagram of the form

(6) Z //

p

��

Y

��
X // ∗

where p is a trivial fibration in Pro(C). We want to show that the category G(X,Y )W/ is weakly
contractible. Unwinding the definitions we see that objects of G(X,Y )W/ correspond to diagrams
of the form

(7) Z //

p

��

Z ′ //

p′

��

Y

��
X // X ′ // ∗

where p′ : Z ′ −→ X ′ is a trivial fibration in C.
Now let D = C[1] be the arrow category of C and let D0 = Trivfib ⊆ D the full subcategory

spanned by trivial fibrations between fibrant objects. The category Pro(D) can be identified with
the arrow category Pro(C)[1]. Let E ⊆ Pro(D) be the full subcategory spanned by trivial fibrations
whose codomain is in Pro(Cfib). According to Lemma 5.1.7 every object E is a retract of an object
in Pro(D0). We hence see that the categories D,D0 and E satisfy the assumptions of Lemma 5.1.9.
It follows that the square

(8) D0
//

��

E

ιE

��
D

ιD // Pro(D)

is categorically Cartesian. Now the object Y corresponds to an object d = (Y −→ ∗) ∈ D and the
trivial fibration p : Z −→ X corresponds to an object e ∈ E. The diagram (6) then gives a map
f : ιE(e) −→ ιD(d). The category M(D0, d, e, f) of Definition 5.1.8 can then be identified with
D(X,Y )W/. Since (8) is categorically Cartesian we get that D(X,Y )W/ is weakly contractible as
desired. �

We are now ready to prove the main result of this subsection.

Proof of Proposition 5.1.2. We begin by observing that both sides of (3) remain unchanged up to

a weak equivalence by replacing Y with a fibrant model Y
≃
−→ Y ′. We may hence assume without
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loss of generality that Y itself is fibrant. According to Lemma 5.1.6 we may also assume that each
Xi is fibrant as well.

Now according to Corollary 3.1.14 the natural functor ι : Iop −→
(
Cfib
X/

)op

which sends i to

X −→ Xi is cofinal. Let G(I, X, Y ) be the Grothendieck construction of the restricted functor

(HY ) |Iop : Iop −→ Cat. Since ι is cofinal we known by Theorem 2.1.4 that the natural map
G(I, X, Y ) −→ G(X,Y ) induces a weak equivalence on nerves. By Proposition 5.1.10 the functor
FX,Y induces a weak equivalence on nerves and so the composed functor

G(I, X, Y ) −→ HomPro(C)(X,Y )

induces a weak equivalence on nerves as well. Now the nerve of the category G(I, X, Y ) is a model

for the homotopy colimit of the functor sending i ∈ Iop to MaphC(Xi, Y ). On the other hand, the

nerve of HomPro(C)(X,Y ) is a model for Maph(X,Y ). It hence follows that the map (3) is a weak
equivalence as desired. �

5.2. The comparison of Pro(C)∞ and Pro(C∞). Let C be weak fibration category such that the
induced model structure on Pro(C) exists. By Remark 5.1.4 we know that C∞ and Pro(C)∞ are
locally small∞-categories. Let Pro(C∞) be the pro-category of C∞ in the sense of Definition 3.2.7.
Let F be the composed map

Pro(C)∞ −→ Fun(Pro(C)∞, S∞)op −→ Fun(C∞, S∞)op

where the first map is the opposite Yoneda embedding and the second is given by restriction.
Informally, the functor F may be described as sending an object X ∈ Pro(C)∞ to the functor

F(X) : C∞ −→ S∞ given by Y 7→ MaphPro(C)(X,Y ). By Proposition 5.1.2 we know that F(X) is a

small cofiltered limit of objects in the essential image of C∞ ⊆ Fun(C∞, S∞)op. It hence follows by
Lemma 3.2.13 and Corollary 5.1.3 that the image of F lies in Pro(C∞). We are now able to state
and prove our main theorem:

Theorem 5.2.1. The functor

F : Pro(C)∞ −→ Pro(C∞)

is an equivalence of ∞-categories.

Proof. We first prove that F is fully faithful. Let Y = {Yi}i∈I be a pro-object. By Proposition 5.1.1
we know that the natural maps Y −→ Yi exhibit Y is the homotopy limit of the diagram i 7→ Yi.
On the other hand, by Proposition 5.1.2 the maps F(Y ) −→ F(Yi) exhibit F(Y ) as the limit of
the diagram i 7→ F(Yi) in Pro(C∞). Hence in order to show that F is fully faithful it suffices to
show that F induces an equivalence on mapping spaces from a pro-object to a simple object. In
light of Proposition 5.1.2 and the fact that every simple object in Pro(C∞) is ω-cocompact (see
Lemma 3.2.17), we may reduce to showing that the restriction of F to C∞ is fully faithful. But
this now follows from Corollary 5.1.3.

We shall now show that F is essentially surjective. By Theorem 2.5.9 Pro(C)∞ has all limits
and colimits. Since the restricted functor F|C∞

is fully faithful and its essential image are the
corepresentable functors we may conclude that the essential image of F in Pro(C∞) contains every
object which is a colimit of corepresentable functors. But by Lemma 3.2.12 every object in Pro(C∞)
is a colimit of corepresentable functors. This concludes the proof of Theorem 5.2.1. �

Let f : C −→ D be a weak right Quillen functor between two weak fibration categories. Then
the prolongation Pro(f) : Pro(C) −→ Pro(D) preserves all limits. It is hence natural to ask when
does Pro(f) admit a left adjoint.

Lemma 5.2.2. Let C,D be weak fibration categories and f : C −→ D a weak right Quillen functor.
The functor Pro(f) : Pro(C) −→ Pro(D) admits a left adjoint Lf if and only if for every d ∈ D
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the functor Rd : c 7→ HomD(d, f(c)) is small. Furthermore, when this condition is satisfied then
Rd belongs to Pro(C) ⊆ Fun(C, Set)op and Lf is given by the formula

Lf({di}i∈I) = lim
i∈I

Rdi ,

where the limit is taken in the category Pro(C).

Proof. First assume that a left adjoint Lf : Pro(D) −→ Pro(C) exists. By adjunction we have

HomPro(C)(Lf (d), c) = HomPro(D)(d, f(c)) = HomD(d, f(c)) = Rd(c)

for every c ∈ C, d ∈ D and so the functor Rd is corepresented by Lf (d), i.e., corresponds to the
pro-object Lf(d) ∈ Pro(C) ⊆ Fun(C, Set)op. It follows that Rd is small.

Now assume that each Rd is small. Let C̃ −→ C be the Grothendieck construction of the functor

Rd. Since f preserves finite limits it follows that Rd preserves finite limits. This implies that C̃ is
cofiltered and so by Proposition 3.2.18 Rd belongs to the essential image of Pro(C) in Fun(C, Set)op.
We may then simply define Lf : Pro(D) −→ Pro(C) to be the functor

Lf({di}i∈I) = lim
i∈I

Rdi .

where the limit is taken in Pro(C). The map of sets HomC(c, c′) −→ Rf(c)(c
′) = HomD(f(c), f(c′))

determines a counit transformation Lf ◦ Pro(f)⇒ Id and it is straightforward to verify that this
counit exhibits Lf as left adjoint to Pro(f). �

Remark 5.2.3. The condition of Lemma 5.2.2 holds, for example, in the following cases:

(1) The categories C and D are small.
(2) The categories C and D are accessible and f is an accessible functor (see [AR94, Example

2.17 (2)]).

Proposition 5.2.4. Let f : C −→ D be a weak right Quillen functor between weak fibration
categories such that the condition of Lemma 5.2.2 is satisfied. Suppose that the induced model
structures on Pro(C) and Pro(D) exist. Then the adjoint pair

Lf : Pro(D) ⇄ Pro(C) : Pro(f)

given by Lemma 5.2.2 is a Quillen pair.

Proof. Since f(FibC) ⊆ FibD it follows by adjunction that Lf (⊥FibD) ⊆ ⊥FibC. Since f(FibC ∩
WC) ⊆ FibD ∩WD it follows by adjunction that that Lf (⊥(FibD ∩WD)) ⊆ ⊥(FibC ∩WC). By
Properties (1) and (2) of Definition 4.1.3 we may now conclude that Lf preserves cofibrations and
trivial cofibrations. �

By Remark 2.5.10 we may consider the induced adjunction of ∞-categories

(Lf )∞ : Pro(D)∞ ⇄ Pro(C)∞ : Pro(f)∞.

We then have the following comparison result.

Proposition 5.2.5. Under the assumptions above, the right derived functor Pro(f)∞ : Pro(C)∞ −→
Pro(D)∞ is equivalent to the prolongation of the right derived functor f∞ : C∞ −→ D∞ (see Defi-
nition 3.2.20), under the equivalence of Theorem 5.2.1.

Proof. By the universal property of Theorem 3.2.19, it suffices to prove that both functors preserve
cofiltered limits and restrict to equivalent functors on the full subcategory C∞ ⊂ Pro(C∞). Now
Pro(f∞) preserve cofiltered limits by definition and Pro(f)∞ preserves all limits by Remark 2.5.10.
Moreover, the restriction of both functors to Cfib

∞ ≃ C∞ is the functor induced by f . �
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5.3. Application: ω-presentable ∞-categories. Let M be a combinatorial model category.
By [Lu09, Proposition A.3.7.6.] and the main result of [Du01], the underlying ∞-category M∞ is
presentable. For many purposes it is often useful to know that M∞ is not only presentable, but
also ω-presentable, i.e., equivalent to the ind-category of its subcategory of ω-compact objects.
Recall that a model category M is said to be ω-combinatorial if its underlying category is ω-
presentable and M admits a sets of generating cofibrations and trivial cofibrations whose domains
and codomains are ω-compact.

In this subsection we use (a dual version of) our main result, Theorem 5.2.1, to give sufficient
conditions on an ω-combinatorial model category M which insure that its underlying ∞-category
is ω-presentable. First note that the definition of a weak fibration category can be directly dualized
to obtain the notion of a weak cofibration category. If C is a weak cofibration category then
Cop is naturally a weak fibration category, and Theorem 5.2.1 can be readily applied to Ind(C) ∼=
(Pro(Cop))op.

Proposition 5.3.1. Let (M,W,F,C) be an ω-combinatorial model category and let M0 ⊆ M

be the full subcategory spanned by ω-compact objects. Let W0 and C0 denote the classes of weak
equivalences and cofibrations between objects in M0, respectively. Suppose that Mor(M0) = W0◦C0.
Then (M0)∞ is essentially small, admits finite colimits and

Ind((M0)∞) ≃M∞.

In particular, M∞ is ω-presentable, and every ω-compact object in M∞ is a retract of an object in
M0.

Proof. By our assumption Mor(M0) = W0 ◦ C0 and hence (M0,W0,C0) forms a weak cofibration
category. The formation of colimits induces an equivalences of categories Ind(M0) ∼= M. Since M

is ω-combinatorial it admits generating sets I, J of cofibrations and trivial cofibrations respectively
such that the domains and codomains of all maps in I and J are in M0. It follows that:

(1) The fibrations in M are (C0 ∩W0)⊥.
(2) The trivial fibrations in M are C⊥

0 .

From Proposition 4.1.8 we now get that the model structure on M ≃ Ind(M0) is induced from M0

in the sense of Definition 4.1.3. From Theorem 5.2.1 we can now deduce that

Ind((M0)∞) ≃M∞,

as desired. It follows that (M0)∞ is locally small and hence essentially small (since M0 is essentially
small). From Corollary 2.4.12 we get that (M0)∞ admits finite colimits. The characterization of
ω-compact objects in M∞ now reduces to a well-known property of ind-categories. �

Example 1. Let S be the category of simplicial sets with the Kan-Quillen model structure and
let S0 ⊆ S be the full subcategory spanned by ω-compact objects. Since S is a presheaf category
(of sets) it is easy to see that the ω-compact objects are exactly those simplicial sets which have
finitely many non-degenerate simplices. By Proposition 5.3.1 we may hence conclude that

(9) S∞ ≃ Ind((S0)∞).

We note that it is well-known that the ∞-category S∞ is ω-combinatorial. However, Proposi-
tion 5.3.1 gives us a bit more information, as it says that S∞ is more specifically the ind-category
of (S0)∞. This allows one to explicitly determine the ∞-category modelled by S0. Indeed, 9 im-
plies that (S0)∞ is a full subcategory of S∞. The essential image of the functor (S0)∞ −→ S∞

is well-known as well: it consists of exactly those spaces which can be written as a colimit of a
constant diagram K −→ S∞ with value ∗ indexed by a K ∈ S0. By Corollary 2.4.12 the ∞-
category (S0)∞ admits finite colimits (i.e., colimits indexed by S0) and these must coincide with
the respective colimits in S∞ in view of Proposition 5.1.2. We then obtain an explicit description
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of the ∞-category modelled by the weak cofibration category S0 as the smallest full subcategory
of S∞ containing ∗ and closed under finite colimits. Finally, we note that (S0)∞ does not contain
all ω-compact objects of S∞ (as one has Wall finiteness obstruction), but every ω-compact object
of S∞ is indeed a retract of an object of (S0)∞.

6. Application: Étale homotopy type and shape of topoi

Let (C, τ) be a small Grothendieck site and let PShv∆(C) (resp. Shv∆(C)) be the category of
small simplicial presheaves (resp. small simplicial sheaves) on C. The category PShv∆(C) (resp.
Shv∆(C)) can be given a weak fibration structure, where the weak equivalences and fibrations
are local in the sense on Jardine [Ja87]. It is shown in [BS16] that PShv∆(C) and Shv∆(C) are
homotopically small and pro-admissible. Thus, by Theorem 4.2.5, the induced model structure
exists for both Pro(PShv∆(C)) and Pro(Shv∆(C)). We refer to these model structures as the

projective model structures on Pro(PShv∆(C)) and Pro(Shv∆(C)) respectively.
We denote by Shv∞(C) the∞-topos of sheaves on C. The underlying∞-categories of PShv∆(C)

and Shv∆(C) are naturally equivalent by [Ja07, Theorem 5] and both form a model for the hyper-

completion Ŝhv∞(C) of the ∞-topos Shv∞(C) by [Lu09, Proposition 6.5.2.14]. We hence obtain
the following corollary of Theorem 5.2.1:

Corollary 6.0.2. We have a natural equivalences of ∞-categories

Pro(PShv∆(C))∞ ≃ Pro(Ŝhv∞(C))

Pro(Shv∆(C))∞ ≃ Pro(Ŝhv∞(C)).

We have an adjunction
Γ∗ : S ⇄ Shv∆(C) : Γ∗

where Γ∗ is the global sections functor and Γ∗ is the constant sheaf functor. As explained in [BS16],
the functor Γ∗ (which is a left functor in the adjunction above) is a weak right Quillen functor.
Since the categories S and Shv∆(C) are locally presentable and Γ∗ is accessible (being a left adjoint
Γ∗ preserves all small colimits), we obtain a Quillen adjunction

LΓ∗ : Pro(Shv∆(C)) ⇄ Pro(S) : Pro(Γ∗),

where Pro(Γ∗) is now the right Quillen functor. In light of Remark 2.5.10, this Quillen adjunction
induces an adjunction of ∞-categories

(LΓ∗)∞ : Pro(Shv∆(C))∞ ⇄ Pro(S)∞ : Pro(Γ∗)∞.

Definition 6.0.3. The topological realization of C is defined in to be

|C| := (LΓ∗)∞(∗) ∈ Pro(S)∞,

where ∗ is a terminal object of Shv∆(C).

This construction has an ∞-categorical version that we now recall. Let X be an ∞-topos.
According to [Lu09, Proposition 6.3.4.1] there exists a unique (up to a contractible space of choices)
geometric morphism

q∗ : S∞ ⇄ X : q∗.

By definition of a geometric morphism, the functor q∗ preserves finite limits. As a right adjoint, the
functor q∗ preserves all limits. Moreover, both functors are accessible. Thus the composite q∗ ◦ q∗

is an accessible functor which preserves finite limits, and hence represents an object of Pro(S∞)
(see Remark 3.2.15). This object is called the shape of X and is denoted Sh(X). This definition
appears in [Lu09, Definition 7.1.6.3].

In order to compare the above notion of shape with Definition 6.0.3 we will need the following
lemma:
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Lemma 6.0.4. Let C be a Grothendieck site. Then the derived functor

Γ∗
∞ : S∞ −→ (Shv∆(C))∞

preserves finite limits and has a right adjoint.

Proof. Since the functor Γ∗ is a weak right Quillen functor between weak fibration categories we
get from Corollary 2.4.13 that Γ∗

∞ preserves finite limits. Furthermore, if one endows Shv∆(C)
with the model structure of [Jo83, Ja87] (in which the cofibrations are the monomorphisms and
the weak equivalences are the local weak equivalences) we clearly obtain a Quillen adjunction

Γ∗ : S ⇄ Shv∆(C) : Γ∗.

In light of Remark 2.5.10 we get that Γ∗
∞ has a right adjoint, namely (Γ∗)∞. �

We can now state and prove the main theorem of this section:

Theorem 6.0.5. For any Grothendieck site C we have a weak equivalence in Pro(S∞)

|C| ≃ Sh(Ŝhv∞(C)).

Proof. The functor Γ∗ : S −→ Shv∆(C) induces a functor Γ∗
∞ : S∞ −→ (Shv∆(C))∞ ≃ Ŝhv∞(C).

By Lemma 6.0.4 the functor Γ∗
∞ is the left hand side of a geometric morphism between S∞ and

Ŝhv∞(C) and hence must coincides with q∗ up to equivalence by [Lu09, Proposition 6.3.4.1]. The

functor q∗ : S∞ → Ŝhv∞(C), in turn, is accessible (being a left adjoint) and commutes with finite
limits, hence its prolongation to Pro(S∞) admits a left adjoint:

(10) L : Pro(Ŝhv∞(C)) ⇄ Pro(S∞) : Pro(q∗).

By Proposition 5.2.5 the functor Pro(Γ∗)∞ is equivalent Pro(Γ∗
∞) and hence to Pro(q∗). By

uniqueness of left adjoints, it follows that the adjunction

(11) (LΓ∗)∞ : Pro(Shv∆(C))∞ ⇄ Pro(S)∞ : Pro(Γ∗)∞

is equivalent to the adjunction (10) and so the image of |C| under the equivalence Pro(S)∞ ≃
Pro(S∞) (which is a particular case of Corollary 6.0.2) is given by the object L(∗). Now for every

object X ∈ Ŝhv∞(C), the pro-object L(X) is given, as an object in Fun(S∞, S∞)op, by the formula

L(X)(K) ≃MapPro(S∞)(L(X),K) ≃ Map
Ŝhv∞(C)

(X, q∗(K)).

In particular, the object L(∗) ∈ Pro(S∞) corresponds to the functor

K 7→ Map
Ŝhv∞(C)

(∗, q∗(K)) ≃ Map
Ŝhv∞(C)

(q∗(∗), q∗(K)) ≃ MapS∞
(∗, q∗q

∗(K)) ≃ q∗q
∗(K)

and so we obtain a natural equivalence L(∗) ≃ q∗ ◦q∗ in Fun(S∞, S∞)op and consequently a natural

equivalence |C| ≃ Sh(Ŝhv∞(C)) as desired. �

7. Application: Several models for profinite spaces

In this section we apply Theorem 5.2.1 in order to relate the model categorical and the ∞-
categorical aspects of profinite homotopy theory. In §7.1 we describe a certain left Bousfield
localization, due to Isaksen, of the induced model structure on the category Pro(S) of pro-spaces.
This localization depends on a choice of a collection K of Kan complexes. We identify the under-
lying∞-category of this localization as the pro-category of a suitable∞-category (Knil)∞. In §7.2
and 7.3 we describe explicit examples where (Knil)∞ is equivalent to the ∞-category of π-finite
spaces and p-finite spaces respectively. Finally, in §7.4 we relate Isaksen’s approach to that of
Quick and Morel, via two direct Quillen equivalences. These Quillen equivalences appear to be
new.
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7.1. Isaksen’s model. Consider the category of small simplicial sets S with the Kan-Quillen
model structure. According to Theorem 4.2.4 the induced model structure on Pro(S) exists. The
pro-admissibility of S follows from the left and right properness. This model structure was first
constructed in [EH76] and further studied in [Is01], where it was called the strict model struc-

ture. Isaksen shows in [Is05] that for K any small set of fibrant object of S, one can form the
maximal left Bousfield localization LK Pro(S) of Pro(S) for which all the objects in K are local. In
order to describe the fibrant objects of LK Pro(S), Isaksen defines first the class Knil of K-nilpotent
spaces. This is the smallest class of Kan complexes that is closed under homotopy pullbacks and
that contains K and the terminal object ∗. In particular, Knil is closed under weak equivalences
between Kan complexes. The fibrant objects of LK Pro(S) are the fibrant objects in Pro(S) which
are isomorphic to a pro-space that is levelwise in Knil. The weak equivalences in LK Pro(S) are
the maps X −→ Y in Pro(S) such that for any A in K, the map

MaphPro(S)(Y,A) −→ MaphPro(S)(X,A)

is a weak equivalence.
Our goal in this section is to prove that LK Pro(S) is a model for the pro-category of the ∞-

category underlying Knil. We say that a map in Knil is a weak equivalence (resp. fibration) if
it is a weak equivalence (resp. fibration) when regarded as a map of simplicial sets. Since Sfib

is a category of fibrant objects and Knil ⊆ Sfib is a full subcategory which is closed under weak
equivalences and pullbacks along fibrations it follows that Knil inherits a structure of a category
of fibrant objects.

Lemma 7.1.1. The natural map
(Knil)∞ −→ S∞

is fully faithful.

Proof. Since Knil ⊆ Sfib is closed under weak equivalences the natural map

HomKnil
(X,Y ) −→ HomSfib(X,Y )

is an isomorphism for any X,Y ∈ Knil (see Definition 2.3.5). �

The main theorem of this subsection is the following:

Theorem 7.1.2. Let K be a small set of fibrant objects in S. Then the ∞-category LK Pro(S)∞
is naturally equivalent to Pro((Knil)∞).

Proof. Let
ι : LK Pro(S) −→ Pro(S)

be the identity, considered as a right Quillen functor, and let ι∞ : (LK Pro(S))∞ −→ Pro(S)∞ be
the associated functor of∞-categories. We first claim that ι∞ is fully faithful. By Corollary 2.4.10
it is enough to prove that if X,Y are two fibrant objects of LK Pro(S) (i.e., fibrant K-local objects
of Pro(S)) then the induced map

(12) HomLK Pro(S)(X,Y ) −→ HomPro(S)(X,Y )

induces a weak equivalence on nerves. But since the classes of trivial fibrations are the same for
Pro(S) and LK Pro(S) we see that this map 12 is in fact an isomorphism, and hence in particular
a weak equivalence after taking nerves. It follows that ι∞ is fully-faithful.

By Theorem 5.2.1 we have a natural equivalence of ∞-categories

Pro(S)∞
≃
−→ Pro(S∞).

By Lemma 7.1.1 the inclusion (Knil)∞ →֒ S∞ is fully faithful and so it follows from [Lu09] that
the induced functor

Pro((Knil)∞) −→ Pro(S∞)
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is fully faithful. Hence in order to finish the proof it suffices to show that the essential image of
the composed functor

ι′∞ : (LK Pro(S))∞ −→ Pro(S)∞
≃
−→ Pro(S∞)

coincides with the essential image of Pro((Knil)∞).
Now the essential image of ι′∞ is given by the images of those objects in Pro(S) which are

equivalent in Pro(S) to a fibrant object of LK Pro(S). According to [Is05] the latter are exactly
those fibrant objects of Pro(S) which belong to the essential image of Pro(Knil). We hence see
that the essential image of ι′∞ is contained in the essential image of Pro((Knil)∞) −→ Pro(S∞).
On the other hand, the essential image of ι′∞ clearly contains (Knil)∞. Since LK Pro(S) is a model
category we know by Theorem 2.5.9 that(LK Pro(S))∞ has all small limits. Since ι∞ is induced
by a right Quillen functor we get from Remark 2.5.10 and [Lu09, Proposition 5.2.3.5] that ι∞
preserves limits. It hence follows that the essential image of ι′∞ is closed under small limits. By
Lemma 3.2.12 every object in Pro((Knil)∞) is a small (and even cofiltered) limit of simple objects
and hence the essential image of ι′∞ coincides with the essential image of Pro((Knil)∞). �

7.2. Example: the ∞-category of π-finite spaces. In this subsection we show that for a spe-
cific choice of K, Isaksen’s model category LK(Pro(S)) is a model for the∞-category of profinite
spaces. Let us begin with the proper definitions:

Definition 7.2.1. Let X ∈ S∞ be a space. We say that X is π-finite if it has finitely many
connected components and for each x ∈ X the homotopy groups πn(X, x) are finite and vanish
for large enough n. We denote by Sπ∞ ⊆ S∞ the full subcategory spanned by π-finite spaces. A
profinite space is a pro-object in the ∞-category Sπ∞. We refer to the ∞-category Pro (Sπ∞) as
the ∞-category of profinite spaces.

Remark 7.2.2. By abuse of notation we shall also say that a simplicial set X is π-finite if its image
in S∞ is π-finite.

In order to identify a suitable candidate for K we first need to establish some terminology.
Let ∆≤n ⊆ ∆ denote the full subcategory spanned by the objects [0], . . . , [n] ∈ ∆. We have an
adjunction

τn : Fun (∆op,D) ⇄ Fun
(

∆op
≤n,D

)
: coskn

where τn is given by restriction functor and coskn by right Kan extension. We say that a simplicial
object X ∈ Fun (∆op,D) is n-coskeletal if the unit map X −→ coskn τnX is an isomorphism. We
say that X is coskeletal if it is n-coskeletal for some n.

Definition 7.2.3. Let X ∈ S be a simplicial set. We say that X is τn-finite if it is levelwise finite
and n-coskeletal. We say that X is τ-finite if it is τn-finite for some n ≥ 0. We denote by Sτ ⊆ S

the full subcategory spanned by τ -finite simplicial sets. We note that Sτ is essentially small.

Lemma 7.2.4. If X is a minimal Kan complex then X is τ-finite if and only if it is π-finite (i.e.,
if the associated object in S∞ is π-finite, see Remark 7.2.2).

Proof. Since X is minimal it follows that X0 is in bijection with π0(X) and hence the former is
finite if and only if the latter is. Furthermore, for each x ∈ X0 and each n ≥ 1 the minimality of
X implies that for every map τ : ∂∆n −→ X such that τ(∆{0}) = x, the set of maps σ : ∆n −→ X
such that σ|∂∆n = τ are (unnaturally) in bijection with πn(X, x). This implies that X is levelwise
finite if and only if all the homotopy groups of X are finite. This also implies that if X is coskeletal
then its homotopy groups vanish in large enough degree. On the other hand, if the homotopy
groups of X vanish for large enough degree then there exists a k such that for every n > k the
fibers of the Kan fibration pn : X∆n

−→ X∂∆n

are weakly contractible. Since X is minimal we
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may then deduce that pn is an isomorphism. Since this is true for every n > k this implies that X
is k-coskeletal. We hence conclude that X is τ -finite if and only if it is π-finite. �

Remark 7.2.5. If X is not assumed to be minimal but only Kan then X being τ -finite implies that
X is π-finite, but not the other way around. If one removes the assumption that X is Kan then
there is no implication in any direction.

Corollary 7.2.6. Let X be a simplicial set. Then X is π-finite if and only if X is equivalent to
a minimal Kan τ-finite simplicial set.

Proof. This follows from Lemma 7.2.4 and the fact that any simplicial set is equivalent to one that
is minimal Kan. �

Let us now recall the “basic building blocks” of π-finite spaces. Given a set S, we denote by
K(S, 0) the set S considered as a simplicial set. For a group G, we denote by BG the simplicial set

(BG)n = Gn

The simplicial set BG can also be identified with the nerve of the groupoid with one object and
automorphism set G. It is often referred to as the classifying space of G. We denote by EG the
simplicial set given by

(EG)n = Gn+1

The simplicial set EG may also be identified with cosk0(G). The simplicial set EG is weakly
contractible and carries a free action of G (induced by the free action of G on itself), such that the
quotient may be naturally identified with BG, and the quotient map EG −→ BG is a G-covering.

Now recall the Dold-Kan correspondence, which is given by an adjunction

Γ : Ch≥0 ⇄ Ab∆op

: N

such that the unit and counit are natural isomorphisms ([GJ99, Corollary III.2.3]). We note that
in this case the functor Γ is simultaneously also the right adjoint of N . Furthermore, the homotopy
groups of Γ(C) can be naturally identified with the homology groups of C.

For every abelian group A and every n ≥ 2 we denote by K(A, n) the simplicial abelian group
Γ(A[n]) where A[n] is the chain complex which has A at degree n and 0 everywhere else. Then
K(A, n) has a unique vertex x and πk(K(A, n), x) = 0 if k 6= 0 and πn(K(A, n), x) = A. Though
K(A, n) is a simplicial abelian group we will only treat it as a simplicial set (without any explicit
reference to the forgetful functor). Let L(A, n) −→ K(A, n) be a minimal fibration such that
L(A, n) is weakly contractible. This property characterizes L(A, n) up to an isomorphism over
K(A, n). There is also an explicit functorial construction of L(A, n) as WK(A, n− 1), where W is
the functor described in [GJ99, §V.4] (and whose construction is originally due to Kan).

Now let G be a group and A a G-module. Then K(A, n) inherits a natural action of G and
L(A, n) can be endowed with a compatible action (alternatively, L(A, n) inherits a natural action
via the functor W ). We denote by K(A, n)hG = (EG × K(A, n))/G the (standard model of the)
homotopy quotient of K(A, n) by G and similarly L(A, n)hG = (EG× L(A, n))/G.

Lemma 7.2.7. For every S,G,A and n ≥ 2 as above the simplicial sets K(S, 0),BG and K(A, n)
and K(A, n)hG are minimal Kan complexes, and the maps EG −→ BG,L(A, n) −→ K(A, n) and
L(A, n)hG −→ K(A, n)hG are minimal Kan fibrations.

Proof. The fact that K(S, 0) is minimal Kan complex is clear, and BG is Kan because it is a nerve
of a groupoid. Now, since BG is 2-coskeletal and reduced, in order to check that it is also minimal,
it suffices to check that if σ, τ : ∆1 −→ BG are two edges which are homotopic relative to ∂∆1 then
they are equal. But this is clear since BG is the nerve of a discrete groupoid. In order to check that
the map p : EG −→ BG is a minimal fibration it is enough to note that EG is 0-coskeletal and the
fibers of p are discrete. Finally, by [GJ99, Lemma III.2.21] the simplicial set K(A, n) is minimal



PRO-CATEGORIES IN HOMOTOPY THEORY 45

and the map L(A, n) −→ K(A, n) is a minimal fibration. The analogous claims for K(A, n)hG and
L(A, n)hG −→ K(A, n)hG follow from [GJ99, Lemma VI.4.2]. �

Definition 7.2.8. Let Kπ ⊆ Sfib be a (small) set of representatives of all isomorphism classes of
objects of the form K(S, 0), BG, K(A, n)hG and L(A, n)hG for all finite sets S, finite groups G, and
finite G-modules A.

Remark 7.2.9. By construction all the objects in Kπ are π-finite. Combining Lemma 7.2.7 with
Lemma 7.2.4 we may also conclude that all the objects in Kπ are τ -finite.

We now explain in what way the spaces in Kπ are the building blocks for all π-finite spaces.

Proposition 7.2.10. Every object in Kπ
nil is π-finite. Conversely, every π-finite space is a retract

of an object in Kπ
nil.

Proof. Since the class of Kan complexes which are π-finite contains Kπ and ∗ and is closed under
homotopy pullbacks and retracts it contains Kπ

nil by definition. On the other hand, let X be a
π-finite simplicial set. We wish to show that X is a retract of an object in Kπ

nil. We first observe
that we may assume without loss of generality that X is connected. Indeed, if X = X0

∐
X1 with

X0, X1 6= ∅ then X is a retract of X0 × X1 ×
[
∆0

∐
∆0

]
, and ∆0

∐
∆0 = S({0, 1})) belongs to

Kπ. It follows that if X0 and X1 are retracts of objects in Kπ
nil then so is X . Hence, it suffices to

prove the claim when X is connected.
By possibly replacing X with a minimal model we assume that X is minimal Kan. Let {X(n)}

be the Moore-Postnikov tower for X . Since X is minimal we have X0 = {x0} and X(1) = BG
with G = π1(X, x0) (see [GJ99, Proposition 3.8]). We may hence conclude that X(1) ∈ Kπ

nil. Now
according to [GJ99, Corollary 5.13] we have, for each n ≥ 2 a pullback square of the form

X(n) //

��

L(πn(X, x), n+ 1)hG

��
X(n− 1) // K(πn(X, x), n+ 1)hG

Hence X(n− 1) ∈ Kπ
nil implies that X(n) ∈ Kπ

nil, and by induction X(k) ∈ Kπ
nil for every k ≥ 0.

Since X is minimal and π-finite Lemma 7.2.4 implies that X is τ -finite. Hence there exists a k
such that X ∼= X(k) and the desired result follows. �

By Proposition 7.2.10 the fully faithful inclusion (Kπ
nil)∞ −→ S∞ of Lemma 7.1.1 factors through

a fully faithful inclusion ιπ : (Kπ
nil)∞ −→ Sπ∞, and every object in Sπ∞ is a retract of an object in

the essential image of ιπ. This fact has the following implication:

Corollary 7.2.11. The induced map

Pro(ιπ) : Pro((Kπ
nil)∞) −→ Pro (Sπ∞)

is an equivalence of ∞-categories.

Proof. By [Lu09, Proposition 5.3.5.11(1)] the map Pro(ιπ) is fully faithful. Now let X be a π-finite

space. By Proposition 7.2.10 there is a retract diagram X
i
−→ Y

r
−→ X with Y ∈ Kπ

nil. Let
f = ir : Y −→ Y and consider the pro-object Y f given by

. . .
f
−→ Y

f
−→ Y

f
−→ . . .

f
−→ Y.

The maps i and r can then be used to produce an equivalence

X ≃ Y f

in Pro(Sπ∞). This shows that the Pro(ιπ) is essentially surjective and hence an equivalence. �
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Applying Theorem 7.1.2 we may now conclude that Isaksen’s model category LKπ Pro(S)∞ is
indeed a model for the ∞-category of profinite spaces. More precisely, we have the following

Corollary 7.2.12. The underlying ∞-category of LKπ Pro(S) is naturally equivalent to the ∞-
category Pro(Sπ∞) of profinite spaces.

7.3. Example: the ∞-category of pro-p spaces. In this subsection we will show that for a
specific choice of K, Isaksen’s model category LK(Pro(S)) is a model for a suitable ∞-category of
pro-p spaces. We begin with the proper definitions.

Definition 7.3.1 ([Lu11, Definition 2.4.1, Definition 3.1.12]). Let X ∈ S∞ be a space and p a
prime number. We say that X is p-finite if it has finitely many connected components and for
each x ∈ X the homotopy groups πn(X, x) are finite p-groups which vanish for large enough n.
We denote by Sp∞ ⊆ S∞ the full subcategory spanned by p-finite spaces. A pro-p space is a
pro-object in the ∞-category Sp∞. We refer to the ∞-category Pro (Sp∞) as the ∞-category of

pro-p spaces.

Definition 7.3.2. Let Kp be a (small) set of isomorphism representatives for all K(S, 0),BZ/p
and K(Z/p, n) for all finite sets S and all n ≥ 2.

As in Lemma 7.1.1 we obtain a fully faithful inclusion (Kp
nil)∞ −→ S∞. Out next goal is to

identify its essential image. We first recall a few facts about nilpotent spaces.
Let G be a group. Recall that the upper central series of G is a sequence of subgroups

{e} = Z0(G) ⊂ Z1(G) ⊂ Z2(G) ⊂ . . . ⊂ G

defined inductively by Z0(G) = {e} and Zi(G) = {g ∈ g|[g,G] ⊂ Zi−1(G)}. In particular,
Z1(G) is the center of G. Alternatively, one can define Zi(G) as the inverse image along the
map G −→ G/Zi−1(G) of the center of G/Zi−1(G).

Definition 7.3.3.

(1) A group G is called nilpotent if Zn(G) = G for some n.
(2) A G-module M is called nilpotent if M has a finite filtration by G-submodules

0 = Mn ⊂Mn−1 ⊂ . . . ⊂M1 ⊂M0 = M

such that the induced action of G on each Mi/Mi+1 is trivial.
(3) A space X is called nilpotent if for each x ∈ X , the group π1(X, x) is nilpotent and for

each n ≥ 2 the abelian group πn(X, x) is a nilpotent π1(X, x)-module.

We recall the following well-known group theoretical results:

Proposition 7.3.4. Let G be a finite p-group. Then:

(1) G is nilpotent.
(2) Let M be a finite abelian p-group equipped with an action of G. Then M is nilpotent

G-module.

Proof. The first claim is [Se62, IX §1, Corollary of Theorem I]. The second claim follows from [Se62,
IX §1, Lemme II] via a straightforward inductive argument. �

Lemma 7.3.5. Let A be a finite abelian p-group. Then K(A, n) belongs to Kp
nil for n ≥ 1.

Proof. Let G be the class of groups A such K(A, n) ∈ Kp
nil for every n ≥ 1. By construction G

contains the group Z/p. Now let 0 −→ A −→ B −→ C −→ 0 be a short exact sequence of abelian
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groups such that A,C ∈ G and let n ≥ 1 be an integer. We then have a homotopy pullback square

K(B, n)

��

// L(A, n+ 1)

��
K(C, n)

p
// K(A, n+ 1)

where the p : K(C, n) −→ K(A, n + 1) is the map classifying the principal K(A, n)-fibration
K(B, n) −→ K(C, n). Since L(A, n+ 1) is contractible and K(C, n) and K(A, n+ 1) are in Kp

nil we
conclude that K(B, n) ∈ Kp

nil as well. Since this is true for every n ≥ 1 it follows that B ∈ G. It
follows that the class G is closed under extensions and hence contains all finite abelian p-groups. �

We can now prove the p-finite analogue of proposition 7.2.10.

Proposition 7.3.6. Every object of Kp
nil is p-finite. Conversely, every p-finite space is a retract

of an object of Kp
nil.

Proof. Since the class of Kan complexes which are p-finite contains Kp and ∗ and is closed under
homotopy pullbacks and retracts it contains Kp

nil by definition. Now let X be a p-finite space. As
in the proof of 7.2.10 we may assume without loss of generality that X is a connected minimal Kan
complex. By Lemma 7.2.4 X is τ -finite. According to [GJ99, Proposition V.6.1], we can refine the
Postnikov tower of X into a finite sequence of maps

X = Xk −→ Xk−1 −→ . . . −→ X1 −→ X0 = ∗

in which the map Xi −→ Xi−1 fits in a homotopy pullback square

Xi

��

// L(Ai, ni)

��
Xi−1

// K(Ai, ni)

where ni ≥ 1 is an integer and Ai is an abelian subquotient of one of the homotopy group of X .
Since X is p-finite every Ai is a finite abelian p-group. Applying Lemma 7.3.5 inductively we may
conclude that each Xi is in Kp

nil, and hence X ∈ Kp
nil as desired. �

By Proposition 7.3.6 the fully faithful inclusion (Kp
nil)∞ −→ S∞ factors through a fully faithful

inclusion ιp : Kp
nil −→ Sp∞, and every object in Sp∞ is a retract of an object in the essential image of

ιp. As for the case of profinite spaces we hence obtain an equivalence after passing to pro-categories:

Corollary 7.3.7. The induced map

Pro(ιp) : Pro((Kp
nil)∞) −→ Pro (Sp∞)

is an equivalence of ∞-categories.

Proof. The proof is identical to the proof of Corollary 7.2.11. �

Applying Theorem 7.1.2 we may now conclude that Isaksen’s model category LKp Pro(S)∞ is a
model for the ∞-category of pro-p spaces. More precisely, we have the following

Corollary 7.3.8. The underlying ∞-category of LKp Pro(S) is naturally equivalent to the ∞-
category Pro(Sp∞) of pro-p spaces.
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7.4. Comparison with Quick and Morel model structures. Let F ⊆ Set denote the full

subcategory spanned by finite sets and let Ŝ denote the category of simplicial objects in Pro(F).

In [Qu11] Quick constructs a model structure on Ŝ in order to model profinite homotopy theory.
This model structure is fibrantly generated with sets of generating fibrations denoted by P and
set of generating trivial fibrations denoted by Q. We note that the domain and codomain of any
map in P or Q is isomorphic to an object of Kπ. Furthermore, for any object X ∈ Kπ, the map
X −→ ∗ is either contained in P ∪ Q or is a composition of two such maps. In particular, every
object in Kπ is fibrant in Quick’s model structure.

In this subsection we will construct a Quillen equivalence between Ŝ and Isaksen’s model category

LKπ Pro(S). Corollary 7.2.12 then implies that Ŝ is indeed a model for the ∞-category Pro(Sπ∞)
of profinite spaces.

The following proposition asserts that the category Ŝ can be naturally identified with the pro-
category of Sτ . This makes it easier to compare it with the Isaksen model structure considered in
the previous subsection.

Proposition 7.4.1. The natural full inclusion ι : Sτ −→ Ŝ induces an equivalence of categories

Pro(Sτ ) −→ Ŝ

Proof. According to (the classical version of) [Lu09, 5.4.5.1] what we need to check is that τ -finite

simplicial sets are ω-cocompact in Ŝ, that every object of Ŝ is a cofiltered limit of τ -finite simplicial

sets and that the inclusion Sτ −→ Ŝ is fully faithful.

We first show that the functor Sτ −→ Ŝ is fully faithful. This functor factors as a composition

Sτ −→ Fun(∆op,F) −→ Fun(∆op,Pro(F)) = Ŝ.

Now the first functor is fully faithful by definition of Sτ and the second functor is fully faithful

because F −→ Pro(F) is fully faithful. We hence obtain that Sτ −→ Ŝ is fully faithful.

Next, we show that any object X ∈ Ŝ is a cofiltered limit of τ -finite simplicial sets. Since the
natural map

X −→ lim
n

coskn(τn(X))

is an isomorphism it is enough to show that for every n ≥ 0, every n-coskeletal object in Ŝ is a
cofiltered limit of τn-finite simplicial sets. Unwinding the definitions, we wish to show that any
functor ∆op

≤n −→ Pro(F) is a cofiltered limit of functors ∆op
≤n −→ F. Since the category F is

essentially small and admits finite limits and since the category ∆op
≤n is finite we may use [Me80,

§4] to deduce that the inclusion F ⊆ Pro(F) induces an equivalence of categories

(13) Pro
(

Fun
(

∆op
≤n,F

))
≃
−→ Fun

(
∆op

≤n,Pro(F)
)
.

It hence follows that every object in Fun
(

∆op
≤n,Pro(F)

)
is a cofiltered limit of objects in Fun

(
∆op

≤n,F
)

,

as desired.
Finally, we show that every τ -finite simplicial set is ω-cocompact in Ŝ. Let X be a τ -finite

simplicial set. We need to show that the functor Hom
Ŝ
(−, X) sends cofiltered limits to filtered col-

imits. Let n be such that X is n-coskeletal. Then Hom
Ŝ
(Z,X) ∼= Hom

Ŝ
(τn(Z), τn(X)). Since the

functor τn preserves limits it is enough to show that τn(X) is ω-cocompact in Fun
(

∆op
≤n,Pro(F)

)
.

But this again follows from the equivalence 13. �

Using the equivalence of categories Ŝ ∼= Pro(Sτ ) we may consider Quick’s model structure as a
model structure on Pro(Sτ ), which is fibrantly generated by the sets P and Q described in [Qu11,
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Theorem 2.3]1 (where we consider now P and Q as sets of maps in Sτ ⊆ Pro(Sτ )). We note that
Sτ is not a weak fibration category and that this model structure is not a particular case of the
model structure of Theorem 4.2.5. This follows, in particular, from the following observation:

Proposition 7.4.2. There exist maps in Ŝ ∼= Pro(Sτ ) which are weak equivalences with respect to
Quick’s model structure but that are not isomorphic to levelwise weak equivalences.

Proof. Let Ab denote the category of abelian groups. The first homology functor H1 : Sτ −→ Ab
induces a functor Pro(H1) : Pro(Sτ ) −→ Pro(Ab). We now note that if f : X −→ Y is a map in

Sτ which is a weak equivalence in Quick’s model structure (when considered as a map in Ŝ) then f
induces an isomorphism on homology with all finite coefficients and hence an isomorphism on H1

by the universal coefficients theorem (recall that H1(X) is finitely generated for every X ∈ Sτ ).
It then follows that every levelwise weak equivalence in Pro(Sτ ) is mapped by Pro(H1) to an

isomorphism in Pro(Ab). It will hence suffice to exhibit a weak equivalence in Ŝ which is not
mapped to an isomorphism in Pro(Ab).

Since the nerve of any category is 2-coskeletal it follows that Sτ contains the nerve of any finite
category. In particular, Sτ contains the nerve of the finite groupoid BZ/n with one object and
automorphism group Z/n, as well as the nerve of the category I with two objects 0, 1 and two
non-identity morphisms α, β, both going from 0 to 1. We note that NI is weakly equivalent to
S1. Now for every n we have a functor fn : I −→ BZ/n which sends α to 1 ∈ Z/n and β to
0 ∈ Z/n. Furthermore, if n|n′ then the quotient map Z/n′ −→ Z/n which sends 1 ∈ Z/n′ to
1 ∈ Z/n is compatible with fn and f ′

n. We may hence assemble the nerves NBZ/n into a pro-
object {NBZ/n}n∈N ∈ Pro(Sτ ) indexed by the inverse poset (N, |), in which case the maps fn
determine a map F : NI −→ {NBZ/n}n∈N in Pro(Sτ ). Now π1(NI) = π1(S1) ∼= Z and for each n
the map Nfn : NI −→ NBZ/n induces the natural quotient Z −→ Z/n on the level of homotopy
groups. The map F is hence a model for the profinite completion of the circle, and as such is a
weak equivalence in Quick’s model structure. However, the corresponding map Z −→ {Z/n}n∈N

in Pro(Ab) is not an isomorphism. �

Remark 7.4.3. The opposite model category Ŝop is an ω-combinatorial model category: the underly-

ing category Ŝop ∼= Ind(Sopτ ) is ω-presentable and the generating cofibrations and trivial cofibrations

have their domains and codomains in Sopτ . However, the full subcategory W ⊆ (Ŝop)[1] spanned
by weak equivalences is not an ω-accessible category. Indeed, the ω-compact objects in W are the

weak equivalences between objects of Sopτ and by Proposition 7.4.2 not all weak equivalences in Ŝop

are filtered colimits of such. This settles negatively a question raised by G. Raptis.

Since the inclusion ϕ : Sτ −→ S is fully faithful and preserves finite limits it follows that the
induced functor

Φ : Pro(Sτ ) −→ Pro(S)

is fully faithful and preserves all limits. The functor Φ admits a left adjoint

Ψ : Pro(S) −→ Pro(Sτ )

whose value on simple objects X ∈ S is given by

Ψ(X) = {X ′}(X−→X′)∈(Sτ )X/

Remark 7.4.4. Since Φ is fully faithful we see that for every X ∈ Pro(Sτ ) the counit map

Ψ(Φ(X)) −→ X

1Note that there is a small mistake in the generating fibrations in [Qu11]. An updated version of this paper
can be found on the author’s webpage http://www.math.ntnu.no/~gereonq/. In this version the relevant result is
Theorem 2.10.

http://www.math.ntnu.no/~gereonq/
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is an isomorphism.

Proposition 7.4.5. The adjunction

Ψ : Pro(S) ⇄ Pro(Sτ ) : Φ

is a Quillen adjunction between Isaksen’s strict model structure on the left, and Quick’s model
structure on the right.

Proof. We need to check that Φ preserves fibrations and trivial fibrations. Since the model structure
on Pro(Sτ ) is fibrantly generated by P and Q, which are sets of maps in Sτ , it is enough to check
that all the maps in P are Kan fibrations of simplicial sets and all the maps in Q are trivial Kan
fibrations. This fact can be verified directly by examining the definition of P and Q. �

Lemma 7.4.6. The Quillen adjunction of the previous proposition descends to a Quillen adjunc-
tion

ΨKπ : LKπ Pro(S) ⇄ Pro(Sτ ) : ΦKπ .

Proof. We need to verify that ΦKπ is still a right Quillen functor. Since the trivial fibrations in
LKπ Pro(S) are the same as the trivial fibrations in Pro(S) it is enough to check that all the maps
in Φ(P ) are fibrations in LKπ Pro(S). We now observe that the domain and codomain of every
map in P is in Kπ and hence Kπ-local. By [Hi03, Proposition 3.3.16] the maps in P are also
fibrations in LKπ Pro(S). �

Lemma 7.4.7. A map f : X −→ Y in Pro(S) is an equivalence in LKπ Pro(S) if and only if Ψ(f)
is an equivalence in Pro(Sτ ).

Proof. From Theorem 4.2.4 (3) it follows that every object in Pro(S) (and hence in LKπ Pro(S)) is
cofibrant. Thus, by Lemma 7.4.6, ΨKπ must preserve weak equivalences. It hence suffices to show
that Ψ detects weak equivalences.

By definition the weak equivalences in LKπ Pro(S) are exactly the maps f : X −→ Y such that
the induced map

MaphPro(S)(Y,A) −→ MaphPro(S)(X,A)

is a weak equivalence for every A ∈ Kπ. Since A is a fibrant simplicial set it is fibrant in Pro(S).
On the other hand, every A ∈ Kπ is fibrant in Quick’s model structure. By adjunction we get for
every X ∈ Pro(S) a natural weak equivalence

MaphPro(S)(X,A) = MaphPro(S)(X,Φ(A)) ≃MaphPro(Sτ )(Ψ(X), A)

It follows that if f : X −→ Y is a map such that Ψ(f) is a weak equivalence in Pro(Sτ ) then f is
a weak equivalence in LKπ Pro(S). �

Theorem 7.4.8. The Quillen adjunction

Ψ : Pro(S) ⇄ Pro(Sτ ) : Φ

descends to a Quillen equivalence

ΨKπ : LKπ Pro(S) ⇄ Pro(Sτ ) : ΦKπ .

Proof. By Lemma 7.4.6, the adjunction ΨKπ ⊣ ΦKπ is a Quillen adjunction. In order to show
that it is also a Quillen equivalence we need to show that the derived unit and counit are weak
equivalences. Since all objects of Pro(C) are cofibrant the same holds for LKπ Pro(C). It follows
that if X ∈ Pro(Sτ ) is fibrant then the actual counit

ΨKπ(ΦKπ(X)) −→ X

is equivalent to the derived counit. But this counit is an isomorphism by Remark 7.4.4. It is left
to show that the derived unit is a weak equivalence.
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Let X ∈ LKπ Pro(S) be a cofibrant object and consider the map

X −→ ΦKπ((ΨKπ (X))fib).

By Lemma 7.4.7 it is enough to check that the map

ΨKπ(X) −→ ΨKπ(ΦKπ ((ΨKπ(X))fib))

is a weak equivalence. By Remark 7.4.4 the latter is naturally isomorphic to (ΨKπ(X))fib and the
desired result follows.

�

Corollary 7.4.9. There is an equivalence of ∞-categories

Ŝ∞ ≃ Pro(Sτ )∞ ≃ Pro(Sπ∞)

In [Mo96] Morel constructed a model structure on the category Ŝ ∼= Pro(Sτ ) in order to study
pro-p homotopy theory. Let us denote this model structure by Pro(Sτ )p. The cofibrations
in Pro(Sτ )p are the same as the cofibrations in Quick’s model structure Pro(Sτ ), but the weak
equivalences are more numerous. More precisely, the weak equivalences in Pro(Sτ )p are the maps
which induce isomorphism on cohomology with Z/pZ coefficients, whereas those of Pro(Sτ ) can be
characterized as the maps which induce isomorphism on cohomology with coefficients in any finite
local system. In particular, Pro(Sτ )p is a left Bousfield localization of Pro(Sτ ). This implies that
the adjunction

Ψ : Pro(S) ⇄ Pro(Sτ )p : Φ

is still a Quillen adjunction.

Lemma 7.4.10. A map f : X −→ Y in Pro(S) is an equivalence in LKp Pro(S) if and only if
Ψ(f) is an equivalence in Pro(Sτ )p.

Proof. The proof is similar to the proof of Lemma 7.4.7, using the fact that every A ∈ Kp is fibrant
in Pro(Sτ )p (see [Mo96, Lemme 2]). �

Theorem 7.4.11. The Quillen adjunction

Ψ : Pro(S) ⇄ Pro(Sτ )p : Φ

descends to a Quillen equivalence

ΨKp : LKp Pro(S) ⇄ Pro(Sτ )p : ΦKp .

Proof. Since LKp Pro(S) and Pro(Sτ )p are left Bousfield localizations of LKπ Pro(S) and Pro(Sτ )
respectively, it follows from Theorem 7.4.8 that ΨKp preserves cofibrations and from Lemma 7.4.10
that ΨKp preserves trivial cofibrations. The rest of the proof is identical to the proof of Theo-
rem 7.4.8 using Lemma 7.4.10 instead of Lemma 7.4.7. �

Remark 7.4.12. A slightly weaker form of this theorem is proved by Isaksen in [Is05, Theorem 8.7.].
Isaksen constructs a length two zig-zag of adjunctions between LKp Pro(S) and Pro(Sτ )p and the
middle term of this zig-zag is not a model category but only a relative category.

References

[AR94] Adamek J. and Rosicky J. Locally Presentable and Accessible Categories, Cambridge University Press,
Cambridge, 1994.

[An78] Anderson, D. W. Fibrations and geometric realizations, Bulletin of the American Mathematical Society,
84.5, 1978, p. 765–788.

[AGV72] Artin M., Grothendieck A. and Verdier J.-L. Théorie des topos et cohomologie étale des schémas-
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[Is05] Isaksen D. C. Completions of pro-spaces, Mathematische Zeitschrift 250.1, 2005, p. 113–143.
[Ja87] Jardine J. F. Simplicial presheaves, J. Pure and Applied Algebra, 47, 1987, p. 35–87.
[Ja07] Jardine J. F. Fields lectures: Simplicial presheaves, Unpublished notes, 2007.
[Jo08] Joyal A. The theory of quasi-categories and its applications, 2008.
[Jo83] Joyal A. A letter to Grothendieck, unpublished manuscript, 1983.
[KS] Kapulkin K. and Szumi lo K. Quasicategories of Frames in Cofibration Categories, in preparation.
[Lu09] Lurie J. Higher Topos Theory, Annals of Mathematics Studies, 170, Princeton University Press, Prince-

ton, NJ, 2009.
[Lu11] Lurie J. Rational and p-adic homotopy theory, 2011, available at

http://math.harvard.edu/~lurie/papers/DAG-XIII.pdf.
[Lu14] Lurie J. Higher Algebra, 2014, available at http://www.math.harvard.edu/~lurie/papers/higheralgebra.pdf.
[Me80] Meyer C. V. Approximation filtrante de diagrammes finis par Pro-C, Annales des sciences
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