
Math. Ann. (2017) 368:971–986
DOI 10.1007/s00208-016-1457-3 Mathematische Annalen

Strongly nonnegative curvature

Renato G. Bettiol1,3 · Ricardo A. E. Mendes2

Received: 9 February 2016 / Revised: 10 July 2016 / Published online: 5 August 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We prove that all currently known examples of manifolds with nonnega-
tive sectional curvature satisfy a stronger condition: their curvature operator can be
modified with a 4-form to become positive-semidefinite.

Mathematics Subject Classification 53B20 · 53C20 · 53C21 · 53C30 · 53C35

1 Introduction

The geometry and topology of manifolds with nonnegative and positive sectional cur-
vature (sec ≥ 0 and sec > 0) have been of great interest since the early days of
global Riemannian geometry, and remain exciting research areas with many challeng-
ing problems. Despite the natural ties between the classes of manifolds with sec ≥ 0
and sec > 0, there is a sharp contrast in the number of constructions and examples, see
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972 R. G. Bettiol, R. A. E. Mendes

Wilking [22] and Ziller [23] for surveys. On the one hand, the only currently known
examples of closed manifolds with sec > 0 different from compact rank one sym-
metric spaces (CROSS) occur in dimensions 6, 7, 12, 13 and 24. On the other hand,
a wealth of examples of closed manifolds with sec ≥ 0 have been produced (beyond
homogeneous spaces and biquotients), notably by methods developed by Cheeger [7]
and Grove and Ziller [12,13]. It follows from our previous work [4,5] that almost all
known examples of closed manifolds with sec > 0 actually satisfy a stronger curva-
ture condition, called strongly positive curvature. The purpose of this paper is to show
that all known examples of manifolds with sec ≥ 0 have strongly nonnegative cur-
vature. This further corroborates the importance of strongly nonnegative and positive
curvature in the study of sec ≥ 0 and sec > 0.

A Riemannian manifold (M, g) is said to have strongly nonnegative curvature if,
for all p ∈ M , there exists a 4-form ω ∈ ∧4TpM such that the modified curvature
operator (R + ω) : ∧2 TpM → ∧2TpM is positive-semidefinite. This is an inter-
mediate condition between sec ≥ 0 and positive-semidefiniteness of the curvature
operator. It is worth recalling that manifolds satisfying the latter have been classi-
fied [6,22], see Sect. 2 for details. Some of the key properties of strongly nonnegative
curvature is that it is preserved by products, Riemannian submersions and Cheeger
deformations [4, Thm. A, Thm. B], see also [4, §6.4]. In particular, since any compact
Lie group G with bi-invariant metric has positive-semidefinite curvature operator, all
compact homogeneous spaces G/H and all compact biquotients G//H have metrics
with strongly nonnegative curvature.

Using a gluing method inspired by the construction of Berger spheres, Cheeger [7]
produced another class of closed manifolds with sec ≥ 0. Our first main result is that
all manifolds in this class also have strongly nonnegative curvature:

Theorem A The connected sum of any two compact rank one symmetric spaces (with
any orientation) admits a metric with strongly nonnegative curvature.

We remark that some manifolds in Theorem A are diffeomorphic to biquotients,
while others are not even homotopy equivalent to biquotients [21], see Remark 4.2.

A significant generalization of the gluing construction in [7] was achieved byGrove
and Ziller [12], in the context of cohomogeneity one manifolds. These are manifolds
with an isometric group action whose orbit space is 1-dimensional, see Sect. 3 for
details. Our second main result is that their method to produce metrics with sec ≥ 0
actually yields strongly nonnegative curvature:

Theorem B Every cohomogeneity onemanifoldwhose nonprincipal orbits have codi-
mension ≤ 2 admits an invariant metric with strongly nonnegative curvature.

The class ofmanifolds in TheoremB is surprisingly rich. For instance, it includes all
4 oriented diffeomorphism types homotopy equivalent toRP5, see [12, Thm.G]. Even
more interestingly, it includes a number of total spaces of principalG-bundles, which
can be used to construct metrics with strongly nonnegative curvature on associated
vector bundles and sphere bundles (see Corollary 3.4). Remarkably, in combination
with other techniques, this implies that all exotic 7-spheres admitmetrics with strongly
nonnegative curvature (see Sect. 3 for details).
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Strongly nonnegative curvature 973

Constructions of metrics with nonnegative sectional curvature on vector bundles
can be interpreted as instances the “converse” to the Soul Theorem of Cheeger and
Gromoll [8]. This celebrated result states that any complete open manifold M with
sec ≥ 0 has a totally convex compact submanifold S ⊂ M without boundary, called
the soul of M , such that M is diffeomorphic to the normal bundle of S in M . Observe
that if M has strongly nonnegative curvature, then so does its soul S, as it is a totally
geodesic submanifold [4, Prop. 2.6]. The “converse” question of which vector bundles
over closed manifolds with sec ≥ 0 admit a complete metric with sec ≥ 0 has been
studied by several authors. It follows from our results that all the progress made to
date regarding this problem can be transplanted to the context of strongly nonnegative
curvature (see Corollary 3.4).

In the context of complete open manifolds with sec ≥ 0, Guijarro [14] proved the
existence of an “improved” metric which is isometric to a product outside a neighbor-
hood of the soul. Our third main result is that the same improvement can be obtained
with strongly nonnegative curvature:

Theorem C Let (M, g) be a complete open manifold with strongly nonnegative
curvature and soul S. There exists another metric g′ on M with strongly nonneg-
ative curvature, such that S remains a soul, and (M, g′) is isometric to a product
ν1(S) × [1,+∞) outside a compact neighborhood of S.

As a consequence of Theorem C, it is possible to construct metrics with strongly
nonnegative curvature on doubles of any open manifolds with strongly nonnegative
curvature. Recall that the double of an open manifold (or manifold with boundary)
M is the closed manifold obtained by gluing two copies of M together along their
boundary. For instance, one can build closed examples of manifolds with strongly
nonnegative curvature taking the double of any of the vector bundles in Corollary 3.4.

The constructions in Theorems A, B, and C comprise an exhaustive list of all the
currently known methods to produce manifolds with sec ≥ 0. Therefore, as claimed
in the first paragraph, all known examples of manifolds with sec ≥ 0 have strongly
nonnegative curvature.

Besides the fundamental fact that strongly nonnegative curvature is preserved under
Riemannian submersions [4], there are two main technical tools needed to prove
the above results. The first (Lemma 3.2) is that bi-invariant metrics on Lie groups
retain strongly nonnegative curvature after being dilated by a factor of up to 4

3 in
the direction of an abelian subalgebra. This result is a strengthening of a result in
Grove and Ziller [12, Prop. 2.4], see also Ziller [23, Lemma 2.9], using the same
key fact that such dilations are “backwards” Cheeger deformations, or submersions
from a certain semi-Riemannian manifold. The second technical result (Lemma 4.1)
asserts that certain disk bundleswhose boundary is a homogeneous spacewith strongly
positive curvature have ametricwith strongly nonnegative curvaturewhich is a product
near the boundary. This is proved through certain estimates that generalize those in
Cheeger [7].

This paper is organized as follows. Section 2 provides a recollection of the defin-
itions and basic properties of strongly nonnegative curvature, as well as a discussion
of basic examples. Constructions of metrics with strongly nonnegative curvature on
cohomogeneity one manifolds are given in Sect. 3, where Theorem B is proved and its
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974 R. G. Bettiol, R. A. E. Mendes

consequences for associated bundles are described. In Sect. 4, we explain a method to
endow certain disk bundles with strongly nonnegative curvature, leading to the proof
of Theorem A. Finally, Sect. 5 contains the proof of Theorem C.

2 Definitions and basic properties

A detailed account on strongly positive and nonnegative curvature can be found in
[1,3–5]. As a service to the reader, a short summary is provided below.

2.1 Modified curvature operators

Let (M, g) be a Riemannian manifold. Using the inner products induced by
g, identify all exterior powers ∧kTpM with their duals ∧kTpM∗. Denote by
Sym2(∧2TpM) the space of symmetric linear operators S : ∧2 TpM → ∧2TpM ,
and by b : Sym2(∧2TpM) → ∧4TpM the Bianchi map

b(S)(X,Y, Z ,W ) = 1
3

(
〈S(X ∧ Y ), Z ∧ W 〉 + 〈S(Y ∧ Z), X ∧ W 〉 + 〈S(Z ∧ X),Y ∧ W 〉

)
.

Furthermore, identify ∧4TpM as a subspace of Sym2(∧2TpM), by means of

〈ω(X ∧ Y ), Z ∧ W 〉 = ω(X,Y, Z ,W ), (2.1)

so that Sym2(∧2TpM) = ker b⊕∧4TpM is an orthogonal direct sum decomposition,
and b is the orthogonal projection operator onto ∧4TpM .

With the above setup, we may add to the curvature operator R ∈ ker b of (M, g)
any 4-form ω ∈ ∧4TpM , and the resulting modified curvature operator (R + ω) ∈
Sym2(∧2TpM) has the same sectional curvature function as R. Indeed, by (2.1), the
quadratic form associated to ω ∈ ∧4TpM vanishes on the Grassmannian of (oriented)
2-planes Gr2(TpM) = {X ∧ Y ∈ ∧2TpM : ‖X ∧ Y‖2 = 1}, and hence

sec(X ∧ Y ) = 〈R(X ∧ Y ), X ∧ Y 〉 = 〈(R + ω)(X ∧ Y ), X ∧ Y 〉. (2.2)

2.2 Strongly nonnegative curvature

The manifold (M, g) is said to have strongly nonnegative curvature if, for all p ∈ M ,
there exists ω ∈ ∧4TpM such that the modified curvature operator R + ω is positive-
semidefinite.

Strongly nonnegative curvature is clearly an intermediate curvature condition
between sec ≥ 0 and positive-semidefiniteness of the curvature operator. All these
curvature conditions are equivalent in dimensions ≤ 3, and strongly nonnegative cur-
vature remains equivalent to sec ≥ 0 in dimension 4, see [20] and [1, Prop. 6.83].
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Strongly nonnegative curvature 975

2.3 Basic properties

Elementary arguments show that products and totally geodesic submanifolds of man-
ifolds with strongly nonnegative curvature also have strongly nonnegative curvature
[4, §2]. In addition, strongly nonnegative curvature is preserved under Riemannian
submersions. This fundamental result was established in [4], by rewriting the Gray–
O’Neill formula [2, Thm. 9.28f] that relates curvature operators of a Riemannian
submersion π : M → M and its A-tensor as

〈R(X ∧ Y ), Z ∧ W 〉 = 〈R(X ∧ Y ), Z ∧ W 〉 + 3〈α(X ∧ Y ), Z ∧ W 〉
− 3b(α)(X ,Y , Z ,W ), (2.3)

where α ∈ Sym2(∧2TpM) is the positive-semidefinite operator α = A∗A, i.e.,

〈α(X ∧ Y ), Z ∧ W 〉 = 〈AXY, AZW 〉.

According to (2.3), if there existsω ∈ ∧4TpM such that R+ω is positive-semidefinite,
then ω = (

ω + 3b(α)
)|∧2TpM is such that R + ω is positive-semidefinite. Similar

arguments also show that strongly nonnegative curvature is preserved under Cheeger
deformations [4, §2.5].

2.4 Basic examples

The simplest examples of manifolds with strongly nonnegative curvature are those
whose curvature operator is positive-semidefinite. Closed manifolds with this prop-
erty have been classified, mainly through the work of Böhm and Wilking [6], see
Wilking [22, Thm. 1.13]. Namely, each factor in the de Rham decomposition of the
universal covering of such a manifold is isometric to one of:

(i) Euclidean space;
(ii) Sphere with positive-semidefinite curvature operator;
(iii) Compact irreducible symmetric space;
(iv) Compact Kähler manifold biholomorphic to CPn whose restriction of the cur-

vature operator to real (1, 1)-forms is positive-semidefinite.

An important subfamily are Lie groupsGwith a bi-invariant metric Q. Recall that the
curvature operator RG : ∧2g → ∧2g of (G, Q) is given by

〈RG(X ∧ Y ), Z ∧ W 〉 = 1
4Q([X,Y ], [Z ,W ]), (2.4)

which is clearly positive-semidefinite.
Since Riemannian submersions preserve strongly nonnegative curvature, all com-

pact homogeneous spaces G/H and all compact biquotients G//H have metrics with
strongly nonnegative curvature. For instance, one may take onG/H the so-called nor-
mal homogeneous metric, that is, the metric induced by the bi-invariant metric Q on
G via the quotient map, and similarly for G//H.
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976 R. G. Bettiol, R. A. E. Mendes

Remark 2.1 It is an interesting question whether the moduli spaces of homogeneous
metrics with strongly nonnegative curvature and sec ≥ 0 coincide on a given compact
homogeneous space. This has been studied forWallachflagmanifolds in [5] andBerger
spheres in [3,4]. In the former, these moduli spaces coincide, but that is not the case in
the latter. In fact, the spheres S4n+3 = Sp(n+1)/Sp(n) and S15 = Spin(9)/Spin(7)
endowed with the Berger metric gλ = λ gV ⊕ gH have sec ≥ 0 for all 0 < λ ≤ 4

3 , but
do not have strongly nonnegative curvature if λ is sufficiently close to 4

3 .

3 Cohomogeneity one manifolds

A cohomogeneity one manifold is a Riemannian manifold (M, g) with an isometric
action by a compact Lie group G such that the orbit space M/G is 1-dimensional. It
is natural to investigate strongly nonnegative curvature among these manifolds after
observing that all compact homogeneous (that is, cohomogeneity zero) spaces admit
strongly nonnegative curvature, see Sect. 2. After briefly describing the basic structure
of cohomogeneity one manifolds (see, e.g., [1,11,12] for details), we strengthen the
gluing construction of Grove and Ziller [12] from sec ≥ 0 to strongly nonnegative
curvature, proving Theorem B.

3.1 Topological structure

The orbit spaceM/G of a cohomogeneity onemanifoldM is, up to rescaling, isometric
to one ofR, S1, [0,+∞) or [−1, 1]. In the first two cases, all orbits are principal, and
hence the quotient map q : M → M/G is a fiber bundle. In the last two cases, there
are nonprincipal orbits S corresponding to boundary points of M/G, which are called
singular or exceptional, according to their dimension being respectively smaller or
equal to that of principal orbits.

If M/G = [0,+∞), then M is equivariantly diffeomorphic to the total space of a
disk bundle over the unique nonprincipal orbit S. More precisely, fix p ∈ S, denote by
K = Gp its isotropy group, and denote by V = νpS the normal space to S. The slice
representation ρ : K → O(V ) is transitive on spheres in V . By the Slice Theorem, M
is G-equivariantly diffeomorphic to the quotient G ×K V of the product G × V by
the action of K on G × V given by k · (g, v) = (gk−1, ρ(k)v). Fixing a unit vector
v0 ∈ V , the principal isotropy group is H = Kv0 , and the unit sphere S(V ) in V is
K-equivariantly diffeomorphic to K/H.

If M/G = [−1, 1], then M is G-equivariantly diffeomorphic to the union of two
disk bundles as above, one over each of the two nonprincipal orbits S± = G/K±,
glued along their common boundary, which is a principal orbit G/H.

3.2 Strongly nonnegative curvature

The construction of cohomogeneity one metrics with strongly nonnegative curvature
is straightforward in case M/G is one of R, S1, or [0,+∞). We thus focus on the
more involved case M/G = [−1, 1], which requires that nonprincipal orbits S± have
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Strongly nonnegative curvature 977

codimension ≤ 2. We follow the same strategy as in Grove and Ziller [12] to glue two
disk bundles. Namely, we construct metrics g± with strongly nonnegative curvature
on each “half” M± = G ×K± V±, which outside of a compact set are isometric to
G/H×[0, ε)with a product metric g0+dt2, where g0 is normal homogeneous. This is
achieved with a scale up/scale down procedure involving the bi-invariant metric onG.
Since the construction is the same on each half, we henceforth drop the subscripts ±.

The desired metric g on G ×K V is induced by a metric on G × V of the form
L + dt2 + f (t)2dθ2, where L is a left-G-invariant and right-K-invariant metric onG,
f (t) is an odd smooth function such that f ′(0) = 1 and f (t) > 0 for all t > 0,
and dθ2 is the round metric on the unit sphere S(V ). Let π : G × V → G ×K V
denote the quotient map, and h ⊂ k ⊂ g the Lie algebras of H ⊂ K ⊂ G. Write
L-orthogonal decompositions g = k ⊕ m and k = h ⊕ p. We use subscripts to denote
the components in these subspaces, e.g., Xk and Xm are the components of X ∈ g in k
andm respectively. Routine computations show that the vertical and horizontal spaces
of the Riemannian submersion π : G × V → G ×K V at (e, tv0) are given by

V = (h × 0) ⊕ {(−X, X∗
tv0

) | X ∈ p
}
,

H = (m × 0) ⊕ {(
f (t)2BY,Y ∗

tv0

) : Y ∈ p
} ⊕ span

{
∂
∂t

}
, (3.1)

where X∗
tv0 = d

ds ρ(exp(sX))tv0
∣∣
s=0 is the value at tv0 ∈ V of the action field X∗

induced by X ∈ p, and B is the L-symmetric automorphism B : p → p such that
L(·, B·) = dθ2.

The following description of the metric on the principal orbits can be obtained from
the above splitting, see for instance [7,12].

Lemma 3.1 (Scale down) Using the above notation, for each t > 0, we have:

(i) Themetric 〈·, ·〉 on the principal orbitG([e, tv0]
) ⊂ G×KV induced by themetric

L + dt2 + f (t)2dθ2 on G × V is given by L(·,C ·), where C : m ⊕ p → m ⊕ p
is the L-symmetric automorphism defined as

C = diag
(
Id, f (t)2 B (Id+ f (t)2B)−1).

(ii) Suppose that B = b Id for some b > 0, and f (t)2 > 1
b . Define a metric L

′(·, ·) =
L(·, D·) on g = m ⊕ k, where

D = diag
(
Id, f (t)2b

f (t)2b−1
Id

)
.

Then L ′ is AdK-invariant, and the metric L ′ + dt2 + f (t)2dθ2 onG× V induces
the metric L|m⊕p on the principal orbit G

([e, tv0]
)
.

The second key ingredient in the construction is the following strengthening of [12,
Prop. 2.4], which states that a bi-invariantmetric Q onG retains (strongly) nonnegative
curvature when it is dilated by a factor of up to 4

3 in the direction of an abelian subgroup
A ⊂ G. This is accomplished (just as in [12, Prop. 2.4]) by viewing this process as a
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“backwards” Cheeger deformation, that is, the enlarged metric on G is induced by a
submersion from G × A with a semi-Riemannian metric.

Lemma 3.2 (Scale up) Let (G, Q) be a Lie group with bi-invariant metric, a be an
abelian subalgebra of g, and n be its Q-orthogonal complement. The left-invariant
metrics Qt = t Q|a⊕Q|nonG have strongly nonnegative curvature for all 0 < t ≤ 4

3 .

Proof The result is obvious for t = 1, since the curvature operator of (G, Q) is
positive-semidefinite, hence (G, Q) trivially has strongly nonnegative curvature.

Consider t > 0, t �= 1, and let A be the unique connected Lie subgroup of G with
Lie algebra a. Endow G×A with the semi-Riemannian product metric Q + t

1−t Q|a.
A straightforward computation shows that the map

π :
(
G × A, Q + t

1−t Q|a
)

→ (G, Qt ), π(g, a) = a−1g, (3.2)

is a semi-Riemannian submersion. Indeed, the horizontal lift of X ∈ g is given by

X = (
Xn + t Xa, (t − 1)Xa

) ∈ g ⊕ a,

and
(
Q + t

1−t Q|a
)(
X ,Y

) = Qt (X,Y ) for all X,Y ∈ g.
The A-tensor of this semi-Riemannian submersion can be computed as

AXY = 1
2 [X ,Y ]V

= 1
2

([Xn + t Xa,Yn + tYa], 0
)V

= 1
2

(
(1 − t)[Xn,Yn]a, (1 − t)[Xn,Yn]a

)
.

Thus,

〈
α(X ∧ Y ), Z ∧ W

〉 = 〈
AXY , AZW

〉

= (
1 + t

1−t

)
Q

( 1
2 (1 − t)[Xn,Yn]a, 1

2 (1 − t)[Zn,Wn]a
)

= 1−t
4 Q

([Xn,Yn]a, [Zn,Wn]a
)
. (3.3)

By the Gray–O’Neill formula (2.3) and (2.4), the curvature operator of (G, Qt ) is

〈Rt (X ∧ Y ), Z ∧ W 〉t = 1
4Q

([Xn + t Xa,Yn + tYa], [Zn + t Za,Wn + tWa]
)

+ 3〈α(X ∧ Y ), Z ∧ W 〉 − 3b(α)(X ,Y , Z ,W ),

where b is the Bianchi map. Let us expand the above first term, by separating the
components in a and in n and using that [a, n] ⊂ n.

〈Rt (X ∧ Y ), Z ∧ W 〉t = 1
4Q

([Xn,Yn]a, [Zn,Wn]a
)

+ 1
4Q

([Xn,Yn]n, [Zn,Wn]n
)

+ t2Q([Xn,Ya] + [Xa,Yn], [Zn,Wa] + [Za,Wn])
+ 3〈α(X ∧ Y ), Z ∧ W 〉 − 3b(α)(X ,Y , Z ,W ),
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Substituting (3.3) in the above and combining with the first term, we conclude that

〈Rt (X ∧ Y ), Z ∧ W 〉t = 4−3t
4 Q

([Xn,Yn]a, [Zn,Wn]a
)

+ 1
4Q

([Xn,Yn]n, [Zn,Wn]n
)

+ t2Q([Xn,Ya] + [Xa,Yn], [Zn,Wa] + [Za,Wn])
− 3b(α)(X ,Y , Z ,W ).

Therefore, setting ωt (X,Y, Z ,W ) := 3b(α)(X ,Y , Z ,W ), we have that if 0 < t ≤ 4
3 ,

then Rt + ωt is a sum of positive-semidefinite operators, hence positive-semidefinite.
Thus, (G, Qt ) has strongly nonnegative curvature for all 0 < t ≤ 4

3 . ��
We now use Lemmas 3.1 and 3.2 to prove Theorem B, in analogy with the sec ≥ 0

construction of Grove and Ziller [12, Thm. 2.6].

Proof of Theorem B The other cases being straightforward, letM be a cohomogeneity
one G-manifold with M/G = [−1, 1]. Let S± = G/K± be the nonprincipal orbits,
and consider separately each of the two “halves” G ×K± V± of M , which are disk
bundles over S±. Fix a bi-invariant metric Q on G. We will construct a metric g
on each disk bundle G ×K V that has strongly nonnegative curvature, and near the
boundary is isometric to G/H× [0, ε) with a product metric, where G/H is endowed
with the normal homogeneous metric defined by Q. Gluing these two halves together
along their common boundary G/H yields the desired metric on M .

If S = G/K is exceptional, i.e., has codimension 1, then the metric induced on
G ×K V by the product metric Q + dt2 on G × V clearly has the desired properties.
Thus, assume that S = G/K has codimension 2, which means that dim p = 1. This
implies that p is an abelian subalgebra of g, and the standard metric dθ2 on the circle
S1 is given by Q(·, B·) where B = b Id for some b > 0, cf. Lemma 3.1 (ii). Let
f (t) be an odd smooth function such that f ′(0) = 1, f (t) > 0 and f ′′(t) ≤ 0 for
all t > 0, and f (t) ≡ a is constant for t ≥ t0, where a satisfies a ≥ 2√

b
so that

a2b
a2b−1

≤ 4
3 . The cigar metric dt

2+ f (t)2dθ2 on V has positive-semidefinite curvature
operator, hence trivially has strongly nonnegative curvature. Consider the scaled up
metric L ′(·, ·) = Q(·, E ·) on g = m⊕ k, where E : m⊕ p⊕ h → m⊕ p⊕ h is given
by

E = diag
(
Id, a2b

a2b−1
Id, Id

)
. (3.4)

Since this metric L ′ on G has strongly nonnegative curvature by Lemma 3.2, the
product metric L ′ +dt2+ f (t)2dθ2 onG×V also has strongly nonnegative curvature.
It is easy to see that L ′ is AdK-invariant [12, p. 341], and as K acts orthogonally on
V , we have that L ′ + dt2 + f (t)2dθ2 descends to a scaled downmetric g onG×K V .
The quotient map π : G × V → G ×K V is hence a Riemannian submersion, so
(G×K V, g) has strongly nonnegative curvature. Finally, Lemma 3.1 (ii) implies that,
for any t ≥ t0, the metric induced by g on the principal orbitG

([e, tv0]
)
is the normal

homogeneous metric defined by Q. This concludes the construction of the desired
metric with strongly nonnegative curvature on each half of M . ��
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980 R. G. Bettiol, R. A. E. Mendes

Remark 3.3 Instead of gluing the two halves (G ×K± V±, g±) of M identifying their
common boundary G/H via the identity map, one may use any other isometry φ of
G/H. Despite being the union of the same two cohomogeneity one disk bundles, the
resulting manifold M ′ = G ×K− V− ∪φ G ×K+ V+ is in general not diffeomorphic
to M , and unless φ ∈ N(H)/H, it does not have a global isometric G-action, but
has strongly nonnegative curvature. Obviously, one may also replace one of the disk
bundlesG×K+V+ by any other disk bundle with the same boundary; e.g., gluing two
copies of the same disk bundle G ×K− V− one produces the double of that bundle.

For instance, consider the cohomegeneity one 2-disk bundle determined by the
groups H = U(n − 1), K = U(n − 1)U(1), and G = U(n). This is the normal disk
bundle of CPn−1 ⊂ CPn , and is diffeomorphic to the complement of a disk in CPn ,
see Sect. 4 for details. Gluing with the identity map on G/H = S2n−1, the result
is CPn#CP

n
, while with the antipodal map it is CPn#CPn . The former manifolds

admit a cohomogeneity one G-action, however the latter do not for n = 2, 3 [16,17].

3.3 Principal and associated bundles

The class of manifolds that can be shown to admit metrics with strongly nonnegative
curvature due to Theorem B extends far beyond that of cohomogeneity one manifolds,
thanks to the associated bundle construction. Recall that given a principalG-bundle P
and an isometricG-action on a manifold F , the associated bundle P ×G F is the orbit
space of a freeG-action on P × F , see [1, §3.2]. Strongly nonnegative curvature, just
as sec ≥ 0, is preserved under products and Riemannian submersions [4]; so if both
P and F have strongly nonnegative curvature, then so does P ×G F . In the remainder
of this section, we list all currently known applications of this technique.

As an important example, all principal SO(k)-bundles over S4 have a cohomo-
geneity one SO(3) × SO(k)-action with singular orbits of codimension 2, see [12,
Thm. F] and [23, Thm. 2.10], and hence metrics with strongly nonnegative curva-
ture by Theorem B. Via the associated bundle construction, it follows that all vector
bundles and sphere bundles over S4 have complete metrics with strongly nonnegative
curvature. This accounts for 20 of the 28 oriented diffeomorphism types of spheres in
dimension 7, which includes allMilnor exotic spheres. It has been announced that the
8 remaining exotic 7-spheres are orbit spaces of freeSp(1)-actions on cohomogeneity
one manifolds of dimension 10 with codimension 2 singular orbits [9], hence they also
admit metrics with strongly nonnegative curvature by Theorem B.

Using these techniques on other principal G-bundles, one obtains the following
comprehensive list of instances where the “converse” to the Soul Theorem of Cheeger
and Gromoll [8] explained in the Introduction is currently known to hold:

Corollary 3.4 The total space of the following vector bundles, and the corresponding
sphere bundles, admit complete metrics with strongly nonnegative curvature:

(i) All vector bundles over S4 and S5;
(ii) All vector bundles over S7 of rank 3, and 88 of the 144 of rank 4;
(iii) All vector bundles over CP2 with nontrivial second Stiefel-Whitney class;
(iv) All complex rank 2 vector bundles over CP2 whose first Chern class c1 is odd,

or whose c1 is even and the discriminant� := c21 −4c2 satisfies� ≡ 0 mod 8;
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(v) All vector bundles of rank ≥ 6 over CP2, S2 × S2 and CP2#CP
2
;

(vi) A representative of any class of stable vector bundles over any compact rank one
symmetric space.

Details on how to construct a homogeneous or cohomogeneity one structure with
singular orbits of codimension ≤ 2 on the corresponding principal G-bundles can be
found in Grove and Ziller [12, Thm. B, Prop. 3.14] and Rigas [19] for (i), Grove and
Ziller [12, Cor. 3.13] for (ii), Grove and Ziller [13, Thm. 1, Thm. 2, Cor.] for (iii), (iv),
and (v), respectively, and Rigas [19] and González-Álvaro [10] for (vi).

4 Connected sum of two compact rank one symmetric spaces

One of the main inspirations for the cohomogeneity one gluing construction of Grove
and Ziller [12] described in the previous section was an earlier result of Cheeger [7]
about gluing two compact rank one symmetric spaces (CROSS). In this section, we
also strengthen this construction from sec ≥ 0 to strongly nonnegative curvature,
proving Theorem A.

We follow the same strategy as in Cheeger [7], showing that the complement of a
ball in each CROSS admits a metric with strongly nonnegative curvature, which near
the boundary is isometric to the round cylinder Sd−1×[0, ε). In this way, any two such
objects of the same dimension d can be glued together along their boundary Sd−1,
with an identification that preserves or reverses the orientation.

4.1 Geometric structure

There is a natural cohomogeneity one G-action with a fixed point S− = {p} on each
CROSS, see e.g. [1, §6.3] for details. Using the notation from Sect. 3, the groups in
these actions are given in Table 1.

All inclusions above are matrix block embeddings, except for Spin(8) ⊂ Spin(9)
which comes from the spin representation. We may restrict our attention to the last 3
cases, since Sn and RPn clearly have metrics with these desired properties.1

Denote the above projective spaces by KPn , where K is one of the real normed
division algebras R, C, H, or Ca, and set k = dimRK. The principal orbits G/H
are Berger spheres Skn−1, which are boundaries of metric balls centered at p. The
other singular orbit S+ = G/K+ is a totally geodesic KPn−1, which is the cut locus
of p, and the homogeneous bundles K+/H → G/H → G/K+ are Hopf bundles
Sk−1 → Skn−1 → KPn−1. Thus, the complement M of a metric ball centered at p
is diffeomorphic to the normal bundle of Cut(p) = KPn−1. In particular, this “half”
M ∼= G×K+V+ of the cohomogeneity one manifold is a disk bundle exactly as those
in the previous section. However, note that the codimension of S+ inKPn is k, so the
gluingmethod in the proof of TheoremBdoes not apply unlessK = C, cf. Remark 3.3.
In addition, we remark that the normal homogeneous metric on G/H = Skn−1 is

1 In addition, these cases can be ignored since M#Sn ∼= M , and M#RPn is double-covered by M#M ,
where M denotes M with the reversed orientation.
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Table 1 Cohomogeneity one actions with a fixed point in a CROSS

G K− K+ H V− V+

Sn SO(n) SO(n) SO(n) SO(n − 1) Rn Rn

RPn SO(n) SO(n) S(O(n − 1)O(1)) SO(n − 1) Rn R

CPn U(n) U(n) U(n − 1)U(1) U(n − 1) Cn C ∼= R2

HPn Sp(n) Sp(n) Sp(n − 1)Sp(1) Sp(n − 1) Hn H ∼= R4

CaP2 Spin(9) Spin(9) Spin(8) Spin(7) Ca2 Ca ∼= R8

not isometric to the round metric unless kn = 2 or 4, so a different construction is
required.2

4.2 Strongly nonnegative curvature

In order to carry out the abovementioned strategy, we need to construct a metric on the
disk bundle M ∼= G×KV (we drop the subscript + to simplify notation) with strongly
nonnegative curvature, which is isometric to a round cylinder near the boundaryG/H.
The cases of CPn and HPn can be easily dealt with because K = H × L, where L
is respectively U(1) and Sp(1), and the slice representation ρ : K → O(V ) factors
through L. This implies that M ∼= G ×K V ∼= (G/H) ×L V , so that a metric on M
with (strongly) nonnegative curvature may be produced from L-invariant metrics with
(strongly) nonnegative curvature on the sphere G/H and the vector space V . This is
precisely the argument found in Cheeger [7]. On the other hand, the case of the Cayley
plane CaP2 does not admit such a simplification, and a more delicate (but ultimately
analogous) argument is required. For the sake of completeness, we state it below in
greater generality than what is needed for proving TheoremA, using the same notation
as in Lemma 3.1.

Lemma 4.1 Let G ×K V be the normal disk bundle of a singular orbit in a coho-
mogeneity one manifold. Let f (t) be an odd smooth function such that f ′(0) = 1,
f (t) > 0 and f ′′(t) ≤ 0 for all t > 0. If the metric onG/H induced by L has strongly
nonnegative curvature (respectively, sec ≥ 0), then the metric onG×K V induced by
L + dt2 + f (t)2dθ2 has strongly nonnegative curvature (respectively, sec ≥ 0).

Proof We restrict ourselves to the claims regarding strongly nonnegative curvature,
as the case of sec ≥ 0 is similar and less involved.

Since G acts on G ×K V with cohomogeneity one, it is enough to consider points
along a radial geodesic γ (t) = π(e, tv0), t ≥ 0. Moreover, we may assume t > 0,
since strongly nonnegative curvature is a closed condition. Applying the Gray-O’Neill
formula (2.3) to the Riemannian submersion π : G × V → G ×K V , we have

RG×KV = RG×V |∧2H + 3α − 3b(α),

2 Note that if d > 4 and a metric on Sd−1 is invariant under more than one transitive G-action with G
among U(n), Sp(n) and Spin(9), then this metric is round.
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whereα = A∗A, and A : ∧2H → V is theGray-O’Neill tensor A(X∧Y ) = 1
2 [X,Y ]V .

We proceed by estimating from below the first 2 terms in the right hand side of the
above formula.

Regarding the first term RG×V , since G × V is endowed with the product metric
L +dt2 + f (t)2dθ2 and f (t) is concave, we have that for all β ∈ ∧2H ⊂ ∧2(g×V ),

〈RG×Vβ, β〉 = 〈RGβ1, β1〉 + 〈RVβ2, β2〉 ≥ 〈RGβ1, β1〉, (4.1)

where β = β1 + β2 + β3 has components β1 ∈ ∧2g, β2 ∈ ∧2V , and β3 ∈ g ⊗ V .
Note that by (3.1), we have β1 ∈ ∧2(m ⊕ p).

To estimate the second term 3α, we write A = A1 + A2 according to the splitting
(3.1) of the vertical space V . Namely, A1 is the component of A with image in h×{0}
and A2 in

{(−X, X∗
tv0

) : X ∈ p
}
. It then follows that

〈α(β), β〉 = 〈A1β, A1β〉 + 〈A2β, A2β〉 ≥ 〈A1β, A1β〉 = 〈αG/Hβ1, β1〉, (4.2)

where αG/H = A∗
G/HAG/H, and AG/H : ∧2 (m ⊕ p) → h is the A-tensor of the

Riemannian submersion G → G/H. The last equality in (4.2) follows from writing
β = ∑

Xi ∧ Y i , for Xi ,Y i ∈ H, where Xi = (Xi
1, X

i
2),Y

i = (Y i
1,Y

i
2) ∈ g⊕ V , and

computing

〈A1β, A1β〉 =
〈∑

i

1
2 [Xi ,Y i ]h×{0},

∑
j

1
2 [X j ,Y j ]h×{0}

〉

=
〈∑

i

1
2 [Xi

1,Y
i
1]h,

∑
j

1
2 [X j

1 ,Y
j
1 ]h

〉

= αG/H(β1, β1).

Since G/H has strongly nonnegative curvature, there is a 4-form ωG/H ∈ ∧4(m ⊕ p)

such that RG/H + ωG/H is positive-semidefinite. Define ω ∈ ∧4H by

ω(β) = ωG/H(β1) + 3b(α)(β) − 3b(αG/H)(β1).

Combining the estimates (4.1), (4.2), and the Gray-O’Neill formula (2.3) applied to
the Riemannian submersions G → G/H and G × V → G ×K V , we have

〈(
RG×KV + ω

)
β, β

〉
=

〈
RG×V (β) + 3α(β) + ωG/H(β1) − 3b(αG/H)(β1), β

〉

≥
〈
RG(β1) + 3αG/H(β1) − 3b(αG/H)(β1) + ωG/H(β1), β1

〉

≥
〈(
RG/H + ωG/H

)
β1, β1

〉
≥ 0

concluding the proof that G ×K V has strongly nonnegative curvature. ��
We are finally ready to give a proof of Theorem A, using Lemmas 3.1 and 4.1.
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Proof of Theorem A. As discussed above, it suffices to construct ametricwith strongly
nonnegative curvature on the complement of a ball in CPn , HPn , and CaP2, which
is isometric to a round cylinder near the boundary. Each of these manifolds is dif-
feomorphic to a disk bundle G ×K V , where G, K and V are given in Table 1. In all
cases, p is AdH-irreducible, hence the assumption that B = b Id in Lemma 3.1 (ii)
is satisfied due to Schur’s Lemma. Assume that f (t) is a function as in Lemma 4.1
and f (t) ≡ a is constant for t ≥ t0, with a2 > 1

b . Let L be the left-G-invariant and
right-K-invariant metric on g which induces the round metric on the sphereG/H, and
consider the scaled upmetric L ′(·, ·) = L(·, E ·) on g, where E is given by (3.4). Since
L ′ converges to L as a → ∞, and L induces a metric with strongly positive curvature
on G/H (which is an open condition), it follows that the constant a can be chosen
sufficiently large so that L ′ also induces a metric with strongly positive curvature on
G/H. Therefore, the metric onG×K V induced by L ′ + dt2 + f (t)2dθ2 has strongly
nonnegative curvature, by Lemma 4.1. Finally, according to Lemma 3.1 (ii), the disk
bundle G ×K V with this metric is isometric to a round cylinder near the boundary,
concluding the proof. ��
Remark 4.2 Some connected sums of two CROSS, such as CPn#CP

n
, HPn#HP

n
,

and CaP2#CaP
2
are diffeomorphic to biquotients, providing an alternative way of

endowing them with metrics of strongly nonnegative curvature. Nevertheless, there
are also some connected sums of CROSS, such as CP8#CaP2, HP4#CaP2, and
CaP2#CaP2, that are not even homotopy equivalent to biquotients [21, Thm. 2.1].

Remark 4.3 By the proof of Theorem A, it suffices that G/H has strongly positive
curvature and p is irreducible, for the disk bundle G ×K V to have a metric with
strongly nonnegative curvature which is product near the boundary. Thus, one is led
to asking what manifolds can be obtained by gluing two such disk bundles along
their common boundary. Combining the classifications of homogeneous spaces G/H
with strongly positive curvature [4,5] and homogeneous structures K/H on spheres,
it follows that the only possibilities are the above connected sums of two CROSS,
besides doubles, homogeneous spaces, and biquotients. Thus, despite the relatively
general framework provided above, this method cannot produce any new examples.

5 Open manifolds and their souls

The celebrated Soul Theorem of Cheeger and Gromoll [8] states that a complete open
manifold M with sec ≥ 0 is diffeomorphic to the normal bundle νS of a totally convex
(hence totally geodesic) compact submanifold S without boundary, called a soul of
M . Note that if M has strongly nonnegative curvature, then its soul S also has strongly
nonnegative curvature [4, Prop. 2.6].

Theorem C in the Introduction is a direct consequence of the following, which is
the analogue of a result of Guijarro [14, Thm. A] for strongly nonnegative curvature.

Theorem 5.1 Let (M, g) be a compact convex manifold with smooth boundary,
strongly nonnegative curvature, and soul S. There exists a complete metric g′ on
the interior of M with strongly nonnegative curvature, such that S remains a soul, and

123



Strongly nonnegative curvature 985

(M, g′) is isometric to the product ν1(S)×[0,+∞) outside a compact neighborhood
of S.

Proof It follows from Perelman [18] that there exists r∗ > 0, smaller than the focal
radius of the soul S, such that the tubular neighborhood Dr of radius r around S is
convex for all 0 ≤ r ≤ r∗ and the Sharafutdinov retraction sh : Dr∗ → S is C∞,
see Guijarro [14, Lemma 2.2] and Guijarro and Walschap [15, Prop. 2.4]. Using this
fact, Guijarro [14] constructed a smooth convex hypersurface N ⊂ Dr∗ × R, given
by the union of the graph of a function � : Dr1 → R that vanishes identically on Dr0 ,
and the cylinder ∂Dr1 × [1,+∞), for some 0 < r0 < r1 < r∗. In particular, N is
diffeomorphic to the normal bundle νS, and hence to M . Since (M ×R, g+ dt2) has
strongly nonnegative curvature and N ⊂ M × R is convex, the induced metric on N
also has strongly nonnegative curvature by the Gauss equation. The desired metric g′
is obtained pulling back this induced metric by the diffeomorphism N ∼= M . ��

Aconsequence ofTheorem5.1 is the existence of ametricwith strongly nonnegative
curvature on the double of the normal disk bundle to the soul S of any open manifold
with strongly nonnegative curvature, cf. Guijarro [14, Thm. 1.2].
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