
FINITENESS OF SIMPLE HOLOMORPHIC ETA

QUOTIENTS OF A GIVEN WEIGHT

SOUMYA BHATTACHARYA

Abstract. We provide a simplified proof of Zagier’s conjecture / Mers-
mann’s theorem which states that of any particular weight, there are
only finitely many holomorphic eta quotients, none of which is an inte-
gral rescaling of another eta quotient or a product of two holomorphic
eta quotients other than 1 and itself.

1. Introduction

The Dedekind eta function is defined by the infinite product:

(1.1) η(z) := q
1
24

∞∏
n=1

(1− qn) for all z ∈ H,

where qr = qr(z) := e2πirz for all r and H := {τ ∈ C | Im(τ) > 0}. Eta is a
holomorphic function on H with no zeros. This function comes up naturally
in many areas of Mathematics (see the Introduction in [2] for a brief overview
of them). The function η is a modular form of weight 1/2 with a multiplier
system on SL2(Z) (see [10]). An eta quotient f is a finite product of the
form

(1.2)
∏

ηXd
d ,

where d ∈ N, ηd is the rescaling of η by d, defined by

(1.3) ηd(z) := η(dz) for all z ∈ H

and Xd ∈ Z. Eta quotients naturally inherit modularity from η: The eta
quotient f in (1.2) transforms like a modular form of weight 1

2

∑
dXd with a

multiplier system on suitable congruence subgroups of SL2(Z): The largest
among these subgroups is

(1.4) Γ0(N) :=
{(

a b
c d

)
∈ SL2(Z)

∣∣∣ c ≡ 0 (mod N)
}
,

where

(1.5) N := lcm{d ∈ N |Xd 6= 0}.
We call N the level of f . Since η is non-zero on H, the eta quotient f is
holomorphic if and only if f does not have any pole at the cusps of Γ0(N).

We call an eta quotient f primitive if there does not exist any other eta
quotient h and any ν ∈ N such that f(z) = h(νz) for all z ∈ H. Let f ,
g and h be nonconstant holomorphic eta quotients on Γ0(M) (i. e. their
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levels divide M) such that f = g× h. Then we say that f is factorizable on
Γ0(M). We call a holomorphic eta quotient f of level N quasi-irreducible
(resp. irreducible), if it is not factorizable on Γ0(N) (resp. on Γ0(M) for
all multiples M of N). Here, it is worth mentioning that the notions of
irreducibility and quasi-irreducibility of holomorphic eta quotients are con-
jecturally equivalent (see [2]).

We say that a holomorphic eta quotient is simple if it is both primitive
and quasi-irreducible. Such eta quotients were first considered by Zagier,
who conjectured (see [16]) that:

There are only finitely many simple holomorphic eta quo-
tients of a given weight.

This conjecture was established by his student Mersmann in an excellent
Diplomarbeit [12]. The proof of this conjecture occupied more than half of
his 110 pages long thesis about which Köhler at p. 117 in [10] wrote:

“. . . the proof is rather long and can hardly be called lucid,
although doubtlessly it is ingenious. We were not able to sim-
plify it sufficiently so that we could reasonably incorporate
it into this monograph.”

Motivated by the above paragraph in Köhler’s book, here we simplify the
proof of Mersmann’s theorem by incorporating a few new ideas into it. We
recall from [3] that the following analog of Zagier’s conjecture also holds:
There are only finitely many simple holomorphic eta quotients of a given
level. In [2], we see an application of Mersmann’s theorem together with
its above analog to the fundamental problem of determining irreducibility
of holomorphic eta quotients. In his thesis, Mersmann also proved another
conjecture of Zagier on the exhaustiveness of Zagier’s list of simple holomor-
phic eta quotients of weight 1/2. We give a short proof of the last result
in [4]. We shall also see examples of simple holomorphic eta quotients of
arbitrarily large levels in [5].

2. Notations and the basic facts

By N we denote the set of positive integers. We define the operation
� : N× N→ N by

(2.1) d1 � d2 :=
d1d2

gcd(d1, d2)2
.

For N ∈ N, by DN we denote the set of divisors of N . For d ∈ DN , we say
that d exactly divides N and write d‖N if gcd(d,N/d) = 1. We denote the
set of such divisors of N by EN . It follows trivially that (EN ,�) is a boolean
group (i. e. each element of EN is the inverse of itself) and that EN acts on
DN by �. For X ∈ ZDN , we define the eta quotient ηX by

(2.2) ηX :=
∏
d∈DN

ηXd
d ,

where Xd is the value of X at d ∈ DN whereas ηd denotes the rescaling of η
by d. Clearly, the level of ηX divides N . In other words, ηX transforms like
a modular form on Γ0(N).
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An eta quotient on Γ0(N) is an eta quotient whose level divides N . For
N, k ∈ Z, let E!

N,k (resp. EN,k) be the set of eta quotients (resp. holomorphic

eta quotients) of weight k/2 on Γ0(N). For n ∈ EN , we define the Atkin-
Lehner map aln,N : E!

N,k → E!
N,k by

(2.3) aln,N

( ∏
d∈DN

ηXd
d

)
:=

∏
d∈DN

ηXd
n�d.

Since EN is a boolean group and since it acts on DN by �, it follows trivially
that the map aln,N : E!

N,k → E!
N,k is an involution. It is easy to show that the

above definition is compatible with the usual definition (see [1]) of Atkin-
Lehner involutions of modular forms on Γ0(N) up to multiplication by a
complex number (see the Preliminaries in [6]). So, if f is an eta quotient on
Γ0(N) and n ∈ EN , then f is holomorphic if and only if so is aln,N (f). In

particular, the involution WN := alN,N from E!
N,k to E!

N,k is called Fricke
involution.

Recall that a holomorphic eta quotient f on Γ0(N) is an eta quotient on
Γ0(N) that does not have any poles at the cusps. Under the action of Γ0(N)
on P1(Q) by Möbius transformation, for a, b ∈ Z with gcd(a, b) = 1, we have

(2.4) [a : b] ∼Γ0(N) [a′ : gcd(N, b)]

for some a′ ∈ Z which is coprime to gcd(N, b) (see [7]). We identify P1(Q)
with Q ∪ {∞} via the canonical bijection that maps [α : λ] to α/λ if λ 6= 0
and to ∞ if λ = 0. For s ∈ Q ∪ {∞} and a weakly holomorphic modular
form f on Γ0(N), the order of f at the cusp s of Γ0(N) is the exponent of

q1/ws occurring with the first nonzero coefficient in the q-expansion of f at
the cusp s, where ws is the width of the cusp s (see [7], [14]). The following
is a minimal set of representatives of the cusps of Γ0(N) (see [7], [11]):

(2.5) SN :=
{a
t
∈ Q

∣∣ t ∈ DN , a ∈ Z, gcd(a, t) = 1
}
/ ∼ ,

where
a

t
∼ b

t
if and only if a ≡ b (mod gcd(t,N/t)). For d ∈ DN and for

s =
a

t
∈ SN with gcd(a, t) = 1, we have

(2.6) ords(ηd ; Γ0(N)) =
N · gcd(d, t)2

24 · d · gcd(t2, N)
∈ 1

24
N

(see [11]). It is easy to check the above inclusion when N is a prime power.
The general case follows by multiplicativity (see (2.9), (2.11) and (2.13)). It
follows that for all X ∈ ZDN , we have

(2.7) ords(η
X ; Γ0(N)) =

1

24

∑
d∈DN

N · gcd(d, t)2

d · gcd(t2, N)
Xd .

In particular, that implies

(2.8) orda/t(η
X ; Γ0(N)) = ord1/t(η

X ; Γ0(N))

for all t ∈ DN and for all the ϕ(gcd(t,N/t)) inequivalent cusps of Γ0(N)

represented by rational numbers of the form
a

t
∈ SN with gcd(a, t) = 1,

where ϕ denotes Euler’s totient function.
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We define the order map ON : ZDN → 1
24Z

DN of level N as the map

which sends X ∈ ZDN to the ordered set of orders of the eta quotient ηX at
the cusps {1/t}t∈DN

of Γ0(N). Also, we define order matrix AN ∈ ZDN×DN

of level N by

(2.9) AN (t, d) := 24 · ord1/t(ηd ; Γ0(N))

for all t, d ∈ DN . By linearity of the order map, we have

(2.10) ON (X) =
1

24
·ANX .

From (2.9) and (2.6), we note that the matrix AN is not symmetric. It
would have been much easier for us to work with AN if it would have been
symmetric (for example, see Lemma 2 and its proof in Section 5). So, we

define the symmetrized order matrix ÂN ∈ ZDN×DN by

(2.11) ÂN (t, ) = gcd(t,N/t) ·AN (t, ) for all t ∈ DN ,

where ÂN (t, ) (resp. AN (t, )) denotes the row of ÂN (resp. AN ) indexed
by t ∈ DN . For example, for a prime power pn, we have

(2.12) Âpn =



pn pn−1 pn−2 · · · p 1

pn−1 pn pn−1 · · · p2 p

pn−2 pn−1 pn · · · p3 p2

...
...

... · · ·
...

...

p p2 p3 · · · pn pn−1

1 p p2 · · · pn−1 pn


.

For r ∈ N, if Y, Y ′ ∈ ZDr
N is such that Y −Y ′ is nonnegative at each element

of DrN , then we write Y ≥ Y ′. Otherwise, we write Y � Y ′. In particular,

for X ∈ ZDN , the eta quotient ηX is holomorphic if and only if ÂNX ≥ 0.

From (2.11), (2.9) and (2.6), we note that ÂN (t, d) is multiplicative in N
and in d, t ∈ DN . Hence, it follows that

(2.13) ÂN =
⊗
pn‖N
p prime

Âpn ,

where by ⊗, we denote the Kronecker product of matrices.∗

∗Kronecker product of matrices is not commutative. However, since any given ordering
of the primes dividing N induces a lexicographic ordering on DN with which the entries

of ÂN are indexed, Equation (2.13) makes sense for all possible orderings of the primes
dividing N .
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It is easy to verify that for a prime power pn, the matrix Âpn is invertible
with the tridiagonal inverse:

(2.14) Â−1
pn =

1

pn(1− 1
p2

)



1 −1
p

−1
p 1 + 1

p2
−1
p 0

−1
p 1 + 1

p2
−1
p

. . .
. . .

. . .

0 −1
p 1 + 1

p2
−1
p

−1
p 1


.

For general N , the invertibility of the matrix ÂN now follows by (2.13).
Hence, any eta quotient on Γ0(N) is uniquely determined by its orders at the
set of the cusps {1/t}t∈DN

of Γ0(N). In particular, for distinct X,X ′ ∈ ZDN ,

we have ηX 6= ηX
′
. The last statement is also implied by the uniqueness of

q-series expansion: Let ηX̂ and ηX̂
′

be the eta products (i. e. X̂, X̂ ′ ≥ 0)

obtained by multiplying ηX and ηX
′
with a common denominator. The claim

follows by induction on the weight of ηX̂ (or equivalently, the weight of ηX̂
′
)

when we compare the corresponding first two exponents of q occurring in

the q-series expansions of ηX̂ and ηX̂
′
.

For r ∈ N and Y ∈ ZDr
N , we define |Y | ∈ ZDr

N as the integer-valued
function on DrN , whose value at each element of DrN is the absolute value of

the value taken by Y at that point. We define 1N , p̂αN and l̂β.. N ∈ QDN by

(2.15) 1N (t) := 1 for all t ∈ DN ,

(2.16) p̂αN := (Â−1
N )T1N and l̂β.. N := |Â−1

N |
T1N .

Then we have

(2.17) p̂αN (t) =
ϕ(t′)

t′ψ(N)
and l̂β.. N (t) =

ψ(t′)

t′ϕ(N)
for all t ∈ DN ,

where t′ = gcd(t,N/t) and ϕ, ψ : N → N are Euler’s ϕ function and
Dedekind’s ψ function given by

(2.18) ϕ(N) := N
∏
p|N

p prime

(
1− 1

p

)
and ψ(N) := N

∏
p|N

p prime

(
1 +

1

p

)
.

Using (2.14), the assertions in (2.17) are easy to check if N is a prime power.
The general case again follows by multiplicativity.

Let X ∈ ZDN and let f = ηX be an eta quotient on Γ0(N) of weight k/2
for some k ∈ Z. We recall the linear relation between X and the orders of
f from (2.10). Since ÂN is invertible, so is AN . Since ÂN is symmetric and
since for X ∈ ZDN , the weight the eta quotient ηX is equal to 1

2

∑
d∈DN

Xd,

summing over the rows of A−1
N , from (2.10), (2.11), (2.16) and (2.17), we
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get:

(2.19)
∑
t∈DN

ϕ(gcd(t,N/t)) · ord1/t(f ; Γ0(N)) =
k · ψ(N)

24
.

The above equation is just a special case of the valence formula (see [2]).
Since ord1/t(f ; Γ0(N)) ∈ 1

24Z (see (2.6)), from (2.19) it follows that of any
particular weight, there are only finitely many holomorphic eta quotients on
Γ0(N). More precisely, the number of holomorphic eta quotients of weight
k/2 on Γ0(N) is at most the number of solutions of the following equation

(2.20)
∑
t∈DN

ϕ(gcd(t,N/t)) · xt = k · ψ(N)

in nonnegative integers xt. Also, Corollary 1 in the next section implies an-
other upper bound on the number of such eta quotients.

We end this section with a set of notations which we shall use later:

X+ : the positive component of X ∈ RDN, i. e. X+ = 1
2(X + |X|).

X− : the negative component of X ∈ RDN, i. e. X− = 1
2(X − |X|).

σ(X) : the sum of the values of X ∈ RDN . So, σ(X) = σ(X+) + σ(X−).
‖X‖ : the L1 norm of X ∈ RDN , i. e. ‖X‖ = σ(|X|) = σ(X+)− σ(X−).
‖X‖± : the L1 norm of X± ∈ RDN , i. e. ‖X‖± = ‖X±‖ = ±σ(X±).

3. Generalization of a result of Mersmann / Rouse-Webb

The following lemma will be crucial in our proof of Mersmann’s theorem:

Lemma 1. For X ∈ ZDN , let ηX be an eta quotient of weight k/2 on Γ0(N).
Then we have

(3.1) ‖X‖ ≤ k · F (N) +G(N) · ‖ÂNX‖−,
where

F (N) :=
ψ(N)

ϕ(N)
·
∏

p prime
p2 |N

p+ 1

p− 1
, G(N) :=

(
1

ψ(N)
+

1

ϕ(N)

)
·
∏

p prime
p2 |N

(
1 +

1

p

)

and ψ, ϕ : N→ N are as defined in (2.18).

We recall that for X ∈ ZDN , ηX is holomorphic if and only if ÂNX ≥ 0.
So, from the above lemma, we obtain:

Corollary 1 (Mersmann / Rouse-Webb). For X ∈ ZDN , let ηX be a holo-
morphic eta quotient of weight k/2 on Γ0(N). Then we have

(3.2) ‖X‖ ≤ kF (N).

Aside. The last inequality implies that the number of holomorphic eta
quotients of weight k/2 on Γ0(N) is less than (2kF (N))d(N), where d(N)
denotes the number of divisors of N . But the dimension of the space of
modular forms of any fixed even weight on Γ0(N) becomes arbitrarily large
as N → ∞ (see [7]). So, if we fix the number of divisors of N along with
a k ∈ 4N, then except only finitely many possibilities for N , the space of
modular forms of weight k/2 on Γ0(N) never contains enough eta quotients
to constitute a basis. This gives a partial answer to a question asked by
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Ono in [13] about classification of the spaces of modular forms which are
spanned by eta quotients.

Remark. Mersmann actually proved a variant of the above corollary in
1991. As a part of my doctoral research, I proved Lemma 1 and obtained
the above consequences in 2011 (and presented them at the 1st EU-US Con-
ference on Automorphic Forms and Related Topics at Aachen in 2012). In-
dependent of both Mersmann’s and my earlier works (see [12] and Chapter 3
in [6]), Rouse and Webb also proved the same statement as of Corollary 1
(see Theorem 2 in [15]) in 2013 and drew a similar conclusion as above on
the spaces of modular forms being spanned by eta quotients (in fact, they
studied the spaces spanned by eta quotients in much greater details in [15]).

Corollary 2. Let f = ηX be a weakly holomorphic eta quotient of weight
k/2 on Γ0(N) with ‖X‖ ≥ kF (N) + ε. Then we have

(3.3) ‖ÂNX‖− ≥ ε/G(N) .

Corollary 3. Let f = ηX 6= 1 be a weakly holomorphic eta quotient of
weight k/2 on Γ0(N), where k ≤ 0. Then we have

(3.4) ‖ÂNX‖− ≥
{

2/G(N) if k = 0
|k| · (F (N) + 1)/G(N) otherwise.

Proof. We have ‖X‖ ≥ |σ(X)| = |k|. Since ηX 6= 1, X 6= 0. So, if σ(X) =
k = 0, then X ∈ ZDN has at least two nonzero entries. Hence, we have
‖X‖ ≥ max{2, |k|} for all k. The claim now follows from (3.1). �

Proof of Lemma 1. Let Y := ÂNX. Then we have

(3.5) ‖X‖ = ‖Â−1
N Y ‖ ≤ ‖Â−1

N Y+‖+ ‖Â−1
N Y−‖.

We define the set QN ⊂ DN by QN := {d | d2 ∈ DN}. Then for all t ∈ DN ,
we have (t,N/t) ∈ QN and for all d ∈ QN , we have (d,N/d) = d. For
d ∈ QN , let

(3.6) yd :=
∑
t∈DN
Yt<0

(t,N/t)=d

|Yt|.

Since ÂN is symmetric, from (2.16) and (2.17), we get

(3.7) 1T
N Â
−1
N Y− = −

∑
d∈QN

yd
ϕ(d)

dψ(N)

and

(3.8) ‖Â−1
N Y−‖ ≤ 1T

N |Â−1
N | |Y−| =

∑
d∈QN

yd
ψ(d)

dϕ(N)
.
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Again from (2.16), (2.17) and (3.7), we obtain

1

ψ(N)

(
min
d∈QN

ϕ(d)

d

)
1T
NY+ ≤ 1T

N Â
−1
N Y+ = k − 1T

N Â
−1
N Y−

= k +
∑
d∈QN

yd
ϕ(d)

dψ(N)
.(3.9)

It follows that

‖Â−1
N Y+‖ ≤ 1T

N |Â−1
N |Y+ ≤

1

ϕ(N)

(
max
d∈QN

ψ(d)

d

)
1T
NY+

≤ ψ(N)

ϕ(N)

(
max
d∈QN

ψ(d)

ϕ(d)

)(
k +

∑
d∈QN

yd
ϕ(d)

dψ(N)

)
(3.10)

where the first inequality is trivial, the second follows from (2.16) and (2.17),
whereas and the third inequality follows from (3.9) and from the fact that
ψ(d)/d and ϕ(d)/d attain respectively the maximum and minimum for the
same values of d in QN .

Now, from (3.5), (3.8) and (3.10), we get

‖X‖ ≤ k · F (N) +
(

max
d∈QN

ψ(d)

d

)( 1

ϕ(N)
+

1

ψ(N)

)
·
∑
d∈QN

yd(3.11)

≤ k · F (N) +G(N) · ‖ÂNX‖− .
�

4. Proof of the finiteness

Mersmann’s finiteness theorem follows from (2.19) or (3.2), if for any
given k ∈ N the existence of a simple holomorphic eta quotient of weight
k/2 and level N implies only finitely many possibilities for N . Below we
show that this is indeed true:

Let N = P r11 P r22 · · ·P rmm , where P1 < P2 < · · · < Pm are primes. For

any d‖N , there exists a canonical bijection between ZDN and ZDN/d×Dd . If

d = P rii , then we denote the image of X ∈ ZDN by X(i) under this bijection,

i. e. if we set Ni := N
P

ri
i

then

(4.1) X
(i)

ν,P j
i

= X
νP j

i
, ν|Ni and 0 ≤ j ≤ ri .

For any nonnegative integer j ≤ ri, we call X
(i)
j := {X

ν,P j
i
}ν∈D(Ni) the j-th

column of X(i). Let Fm := F (p2
1p

2
2 · · · p2

m), where p1 = 2, p2 = 3, . . . , pm are
the first m primes and the function F is as defined in Lemma 1. It is easy to
note that F (N) ≤ Fm and from Mertens’ theorem (see [8]), it follows that
that Fm = O(log4m) as m → ∞. Later in this section, we shall show that
for k ∈ N, there exists a constant Ck such that if ηX is a simple holomorphic
eta quotient of level N and weight k/2, then for all primes Pi |N , we have

(4.2) P δii ≤ CkF (N)(F (N) + 1)2,

where δi := 1 + the highest number of consecutive zero columns in X(i). In
particular, from (4.2) for i = m we get Pm = Ok(log12m). Since the Prime
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Number Theorem (see [8]) implies that Pm ≥ pm ∼ m logm, Inequality (4.2)
puts a bound on m as well as on all primes Pi|N . ∗

For each i, X(i) has ri + 1 columns. Since ηX is primitive, the first
column of X(i) is nonzero and since ηX is of level N , the last column of X(i)

is nonzero. Therefore, the number of nonzero columns in X(i) is at least
ri
δi

+ 1. Hence, from (3.2) we get

(4.3)
ri
δi

+ 1 ≤ kF (N).

Since (4.2) and (4.3) together impose a bound on ri, we have only finitely
many possibilities for N if k is given. �

Now, we construct a decreasing function g : Z → Q>0 such that if ηX is
a simple holomorphic eta quotient of weight k/2 and level N , then for any
prime Pi|N , (4.2) is satisfied if we put

(4.4) Ck =
k

2g(k − 1)
.

For all n < 0, we set g(n) = 2 · |n| and we set g(0) = 2. For n > 0, below
we define g(n) inductively. Let G be the function as defined in Lemma 1.
Since G(N)→ 0 as N →∞, for all sufficiently large M ∈ N, we have

(4.5) G(M) < g(n− 1) .

Let Mn be the least positive integer M for which (4.5) holds and let

(4.6) cn := G(Mn).

As before, Mertens’ theorem and Prime Number Theorem (see [8]) together
imply that there are only finitely many M ∈ N such that for each prime
power pr‖M , we have

(4.7)
M2G(M)

2prn(M)ϕ(M)
(n(F (M) + 1) + cn) ≥ g(n− 1)− cn ,

where
rn(M) :=

r

nF (M) + cn − 1
.

Let M ′n be the greatest positive integer M for which (4.7) holds and let

(4.8) Nn := max{Mn,M
′
n}.

We define

(4.9) g(n) := min
Mn≤M≤Nn

G(M).

In order to prove (4.2), we require the following lemmas:

Lemma 2. For N ∈ N, X ∈ ZDN and any prime power P rii ‖N , we have†

(ÂNX)(i) = ÂNiX
(i)ÂP ri

i
,

∗ In general, this naive bound is very large. For example, we have C1 = 1/4. The order
of magnitude of the largest prime pm for which the inequation pm < Fm(Fm +1)2/4 holds
is 1018. Whereas actually, the greatest prime divisor of the level of a simple holomorphic
eta quotient of weight 1/2 is at most 3 (see [16], [12] or [4]).
† In fact, for any d‖N , if we denote by X [d] the image of X ∈ ZDN in ZDN/d×Dd , then

we have (ÂNX)[d] = ÂN/dX
[d]Âd (see Section 4 in [4]).
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where (ÂNX)(i) and X(i) are defined similarly as in (4.1).

For N,Pi and ri as above, for X ∈ ZDN and for a real interval I ⊆ [0, ri],

by X
(i)
I we denote the submatrix of X(i) consisting of successive columns of

it with indices in I. For N ∈ N and M ∈ DN , by πN,M : ZDN → ZDM we

denote the projection map, i. e.

πN,M (X)d = Xd for all X ∈ ZDN and d ∈ DM .

Lemma 3. Let N,Pi and ri as above. Let X ∈ ZDN and let a, b ∈ Z with

0 ≤ a < b ≤ ri such that X
(i)
(a,b) ∈ ∅ (i. e. b = a + 1) or X

(i)
(a,b) = 0. Let

N ′ := P ai Ni. Then

‖ÂNX‖− ≥ P ri−ai ·
∥∥∥ÂN ′ πN,N ′(X)

∥∥∥
−
− N2

P b−ai ϕ(N)
· ‖X‖+ .

Lemma 4. For N ∈ N and X ∈ ZDN , if ÂNX � 0, then

‖ÂNX‖− ≥
g(σ(X))

G(N)
.

We shall prove these lemmas in the next section. Let sM,N : ZDM → ZDN

be a section of the projection πN,M such that for all X ∈ ZDM and d ∈ DN ,
we have

sM,N (X)d =

{
Xd if d|M
0 otherwise.

We define s̃M,N := sM,N ◦ πN,M .

Proof of (4.2). Let a, b ∈ Z with 0 ≤ a < b ≤ ri such that X
(i)
(a,b) = 0 and

a−b = δi. For ease of notation, we write p = Pi, N
′ = paNi and r = ri. Since

ηX is primitive, s̃N ′,N (X) 6= 0 and since ηX is of level N , s̃N ′,N (X) 6= X.
Let k1 := σ(s̃N ′,N (X)) and k2 := σ(X − s̃N ′,N (X)). So, k1 + k2 = k. Now,

if k1 or k2 ≤ 0, then by (3.4), we have respectively ÂN s̃N ′,N (X) � 0 or

ÂN (X − s̃N ′,N (X)) � 0. Otherwise, 0 < k1, k2 < k. Since ηX is irreducible,

we still have either ÂN s̃N ′,N (X) � 0 or ÂN (X − s̃N ′,N (X)) � 0. Therefore

if necessary, replacing X by X̃ where ηX̃ = aln,N (ηX) for some n ∈ EN with
p|n (hence, replacing a by r− b and b by r−a), we may assume that k1 < k
and

(4.10) ÂN s̃N ′,N (X) � 0 .

We have

s̃N ′,N (X)(i)Âpr =
(
πN,N ′(X)(i)

∣∣0)( pr−aÂpa B
0 0

)
where the j-th column of B = pr−a−j( the last column of Âpa), for all
j ≤ r − a. Hence from (4.10), via Lemma 2 we get

(4.11) ÂN ′πN,N ′(X) � 0 .
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Since ‖X‖+ = (‖X‖+ k)/2, from Lemma 3 we have

(4.12) ‖ÂNX‖− ≥ pr−a‖AN ′ πN,N ′(X)‖− −
N2

2pb−aϕ(N)
(‖X‖+ k) .

Since ηX is holomorphic, ‖ÂNX‖− = 0. So, from (4.12), (4.11), Lemma 4
and (3.2) , we get

(4.13)
kN2

2pb−aϕ(N)
(F (N) + 1) ≥ pr−a g(k1)

G(N ′)
≥ g(k − 1)

G(N)
,

where the last inequality holds since g is a decreasing function and since
pr−aG(N) ≥ G(N ′). It follows trivially from the definitions of F and G that

(4.14)
N2G(N)

ϕ(N)
≤ F (N)(F (N) + 1).

Now, Inequality (4.2) follows from (4.13), (4.14) and (4.4). �

5. Proofs of the lemmas

Proof of Lemma 2. Follows from the facts that ÂN = ÂP ri
i
⊗ ÂNi and that

these matrices are symmetric (see Lemma 4.3.1 in [9]). �

Proof of Lemma 3. To lighten the notation, we write p = Pi and r = ri.
From Lemma 2, we have

(5.1) (ÂNX)(i) = ÂNi s̃N ′,N (X)(i)Âpe + ÂNi

(
X(i) − s̃N ′,N (X)(i)

)
Âpe .

Therefore,

s̃N ′,N (ÂNX)(i) =
(
πN,N ′(ÂNX)(i)

∣∣0) =
(

(ÂNX)
(i)
[0,a]

∣∣0)
= ÂNi

(
πN,N ′(X)(i)

∣∣0)( pr−aÂpa 0
0 0

)
(5.2)

+ ÂNi

(
X(i) − s̃N ′,N (X)(i)

) 0 0
p
r−|j−`|

b≤j≤r
0≤`≤a

0

 ,

where the first two equalities are trivial and the third follows from (5.1) and
(2.12). By Lemma 2, the absolute value of the sum of the negative entries in

the 1st term of (5.2) is pr−a‖ÂN ′πN,N ′(X)‖− . The sum of positive entries

in the 2nd term of (5.2) is less than or equal to

1T
Ni
ÂNiX

(i)
+

 0 0
p
r−|j−`|

b≤j≤r
0≤`≤a

0

1pr .

We have

(5.3) 1T
Ni
ÂNi ≤

N2
i

ϕ(Ni)
1T
Ni
.
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The above inequality follows from (2.12) if Ni is a prime power. The general
case then follows by multiplicativity (see (2.13)). Since

(5.4)

 0 0
p
r−|j−`|

b≤j≤r
0≤`≤a

0

1pr ≤
pr−(b−a)

1− 1
p

1pr ,

the sum of the positive entries in the second term of (5.2) is less than or
equal to

pr−(b−a)N2
i

(1− 1
p)ϕ(Ni)

1T
Ni
X

(i)
+ 1pr =

N2

pb−aϕ(N)
‖X‖+ .

Thus, we have

‖ÂNX‖− ≥ ‖ s̃N ′,N (ÂNX)‖−

≥ pr−a‖ÂN ′πN,N ′(X)‖− −
N2

pb−aϕ(N)
‖X‖+ .

�

Proof of Lemma 4. For X ∈ ZDN , we have ÂNX ∈ ZDN . So, the lemma
holds trivially for N = 1. We proceed by induction on N . Let M > 1 be
an integer and let us assume that the lemma holds for all N < M . Let
X ∈ ZDM such that AMX � 0. Let n := σ(X). If n ≤ 0, then the lemma
holds by (3.4). So, let us assume that n > 0. By the definition of g, the
lemma holds trivially for M if M ≤ Nn, where Nn is as defined in (4.8). So,
we may assume that

(5.5) M > Nn.

Since cn ≥ g(n) (see (4.6) and (4.9)), if ‖X‖ ≥ nF (M) + cn, the claim holds
by (3.3). So, we may also assume that

(5.6) ‖X‖ < nF (M) + cn.

Since M > Nn ≥ M ′n (see (4.8) and (4.7)), there exists a prime p dividing
M such that

(5.7)
M2G(M)

2prn(M)ϕ(M)
(n(F (M) + 1) + cn) < g(n− 1)− cn,

where

(5.8) rn(M) :=
r

nF (M) + cn − 1
,

where r ∈ N such that pr‖M . Since AMX � 0, X is nonzero. For Pi := p,

ri := r and Mi := M/pr, we define X(i) ∈ Z
DMi

×D
P
ri
i by (4.1), replacing Ni

with Mi in it.

First we consider the case where at least one of the columns X
(i)
0 or X

(i)
r

is entirely zero. If X
(i)
r 6= 0 and X

(i)
0 = 0, then we replace X by X̃ (thereby

interchanging the columns X
(i)
0 and X

(i)
r ), where ηX̃ is the image under the

Fricke involution WM . As ÂM (M � t,M � d) = ÂM (t, d) for all t, d ∈ ZDM,
from the definition of Fricke involution (see (2.3)), it follows indeed that

(5.9) ‖ÂMX‖− = ‖ÂMX̃‖− .
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So, we may assume that X
(i)
r = 0. Let a ∈ N be such that X

(i)
a 6= 0 and

X
(i)
b = 0 for all b with a < b ≤ r. Let M ′ := M

pr−a . Then we have

(5.10) s̃M ′,M (X) = X.

Since AM s̃M ′,M (X) � 0, the same argument which led us from (4.10) to
(4.11) also implies that AM ′πM,M ′(X) � 0. So, we obtain

(5.11) ‖AMX‖− ≥ ‖ s̃M ′,M (AMX)‖− = pr−a‖AM ′ πM,M ′(X)‖− ,

where the last equality follows from (5.2), (5.10) and Lemma 2. Now, by
the induction hypothesis, we get

(5.12) pr−a‖AM ′ πM,M ′(X)‖− ≥ pr−a
g(n)

G(M ′)
≥ g(n)

G(M)
,

where the first inequality holds since σ(πM,M ′(X)) = σ(X) = n and the
second inequality holds since pr−aG(M) ≥ G(M ′). Thus, from (5.11) and
(5.12) the claim follows in this case.

Now, we consider the remaining case where neither of the columns X
(i)
0

and X
(i)
r are entirely zero. We choose a, b ∈ Z with 0 ≤ a < b ≤ r such that

neither X
(i)
a nor X

(i)
b is entirely zero but X

(i)
j = 0 for all j ∈ Z ∩ (a, b) and

b − a − 1 = the highest number of consecutive zero columns in X(i). Since
X(i) has r + 1 columns and since none of its extremal columns are entirely
zero, number of nonzero columns of X(i) is at least r/(b− a) + 1. Hence,
from (5.6) we get

(5.13)
r

b− a
+ 1 ≤ nF (M) + cn.

LetM ′ := M
pr−a and n1 := σ(πM,M ′(X)). SinceAMX � 0, eitherAM s̃M ′,M (X)

� 0 or AM (X − s̃M ′,M (X)) � 0. If necessary, replacing X by X̃ where ηX̃

is the image of ηX under the Fricke involution WN (see (5.9)) and using an
argument similar to what we used at the beginning of the proof of (4.2) (see
(4.10)), we may assume that n1 < n and AM s̃M ′,M (X) � 0. As before, that
implies: AM ′πM,M ′(X) � 0. Since ‖X‖+ = (‖X‖+n)/2, from Lemma 3 we
have

(5.14) ‖AMX‖− ≥ pr−a‖AM ′πM,M ′(X)‖− −
M2

2pb−aϕ(M)
(‖X‖+ n).

From (5.14), (5.6) and from the induction hypothesis, it follows that

‖AMX‖− ≥ pr−a
g(n1)

G(M ′)
− M2

2pb−aϕ(M)
(n(F (M) + 1) + cn)

≥ g(n− 1)

G(M)
− M2

2pb−aϕ(M)
(n(F (M) + 1) + cn),(5.15)

where the last inequality holds since g is a decreasing function and since
pr−aG(M) ≥ G(M ′). Since (5.13) implies that b − a ≥ rn(M) (see (5.8)),
from (5.7) we get

(5.16) g(n− 1)− M2G(M)

2pb−aϕ(M)
(n(F (M) + 1) + cn) > cn ≥ g(n),
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where the last inequality follows from the definition of g (see (4.6) and (4.9)).
From (5.15) and (5.16), the claim follows. �
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