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CHARACTERISTIC CLASSES OF SYMMETRIC PRODUCTS

OF COMPLEX QUASI-PROJECTIVE VARIETIES

SYLVAIN E. CAPPELL, LAURENTIU MAXIM, JÖRG SCHÜRMANN, JULIUS L. SHANESON,
AND SHOJI YOKURA

To the memory of Friedrich Hirzebruch

Abstract. We prove generating series formulae for suitable twisted characteristic classes
of symmetric products of a singular complex quasi-projective variety. More concretely,
we study homology Hirzebruch classes for motivic coefficients, as well as for complexes
of mixed Hodge modules. As a special case, we obtain a generating series formula for
the (intersection) homology Hirzebruch classes of symmetric products. In some cases,
the latter yields a similar formula for twisted homology L-classes generalizing results of
Hirzebruch-Zagier and Moonen. Our methods also apply to the study of Todd classes of
(complexes of) coherent sheaves, as well as Chern classes of (complexes of) constructible
sheaves, generalizing to arbitrary coefficients results of Moonen and resp. Ohmoto.
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1. Introduction

Some of the most interesting examples of orbifolds are the symmetric products of alge-
braic varieties. The n-th symmetric product of a space X is defined by

X(n) :=

n times︷ ︸︸ ︷
X × · · · ×X /Σn,

i.e., the quotient of the product of n copies of X by the natural action of the symmetric
group on n elements, Σn.
The standard approach for computing invariants I(X(n)) of symmetric products is to

encode the respective invariants of all symmetric products in a generating series, i.e., an
expression of the form

SI(X) :=
∑

n≥0

I(X(n)) · tn,

provided I(X(n)) can be defined for all n. This is analogous to the zeta function of a
variety over a finite field. The aim is to calculate such an expression solely in terms of
invariants of X , so I(X(n)) is just the coefficient of tn in the resulting expression.
There is a well-known formula due to Macdonald [Mac] for the generating series of the

topological Euler characteristic. A class version of this formula was recently obtained by
Ohmoto in [O] for the Chern classes of MacPherson [M]. Moonen [Mo] obtained generating
series for the arithmetic genus of symmetric products of a projective manifold and, more
generally, for the Todd classes of symmetric products of any projective variety, as well as
for his generalized Todd classes τy (which he could only define for a projective orbifold
Y/G, with G a finite group of algebraic automorphisms acting on a projective manifold
Y ). In [Za], Hirzebruch and Zagier obtained such generating series for the signature and
L-classes of symmetric products of rational homology manifolds. More precise L-class
formulae for symmetric products of projective manifolds were obtained by Moonen [Mo]
as a specialization of his generalized Todd class formula at y = 1. Also, Borisov–Libgober
[BL] computed generating series for the Hirzebruch χy-genus and, more generally, for
elliptic genus of symmetric products of smooth compact varieties. Generating series for
the mixed Hodge numbers of complexes of mixed Hodge modules on symmetric products
of (possibly singular) quasi-projective varieties have been recently obtained in [MSa] by
relating symmetric group actions on external products to the theory of lambda rings (e.g.,
see [Yau]), but see also [MSS] for an alternative approach.

In this paper we assume that X is a (possibly singular) complex quasi-projective variety,
so its symmetric products X(n) are quasi-projective varieties as well.
The invariants of symmetric products considered in this paper are homology character-

istic classes such as the un-normalized Hirzebruch classes Ty∗ of Brasselet–Schürmann–
Yokura [BSY], (rationalized) Chern classes c∗ of MacPherson [M], and the Todd classes
td∗ of Baum-Fulton-MacPherson [BFM] and Moonen [Mo]. In fact, we derive our formu-
lae for characteristic classes with coefficients such as (complexes of) mixed Hodge mod-
ules, constructible or coherent sheaves. In particular, for X pure-dimensional, we obtain
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formulae for twisted intersection Hirzebruch classes ITy∗ as studied by Cappell–Maxim–
Shaneson [CMS]. Conjecturally, for a projective variety X , the specialization of these
twisted intersection Hirzebruch classes at y = 1 should equal (up to re-normalization) the
Cappell-Shaneson homology L-class (cf. [CS]) of the underlying self-dual twisted inter-
section cohomology classes. This identification is known in some cases when X is smooth
and projective.

Convention. To simplify the notation, we will often write cl∗(P) := cl∗([P]) for the value
of a characteristic class transformation cl∗(−) on the class of P in a suitable Grothendieck
group.

1.1. Motivic Hirzebruch classes. We first explain our results for the un-normalized
motivic Hirzebruch class transformation (see [BSY, SY, Yo]):

Ty∗ : K0(var/X)→ HBM
ev (X)⊗Q[y],

where HBM
ev (−) denotes the Borel–Moore homology in even degrees, and K0(var/X) is

the relative Grothendieck group of complex algebraic varieties over X (as introduced by
Looijenga [L]), which is freely generated by isomorphism classes of morphisms [Y → X ]
modulo the “scissor” relation

(1) [Y → X ] = [Z →֒ Y → X ] + [Y \ Z →֒ Y → X ],

for Z a Zariski closed subset in Y . If we let Z = Yred we deduce that these classes
[Y → X ] depend only on the underlying reduced spaces. By resolution of singularities,
K0(var/X) is generated by classes [Y → X ] with Y smooth, pure dimensional, and proper
over X . If X is a point space, we get the motivic Grothendieck group K0(var/C), and the
motivic Hirzebruch class transformation Ty∗ reduces in this case to a ring homomorphism
χy : K0(var/C)→ Z[y].
The un-normalized motivic Hirzebruch class and resp. the χy-genus of a complex alge-

braic variety X are defined by:

Ty∗(X) := Ty∗([idX ]) and χy(X) := Ty∗([X → pt]).

We point out that the homology class Ty∗(X) is an extension to the singular setting
of the un-normalized cohomology Hirzebruch class T ∗

y (−) appearing in the generalized
Hirzebruch–Riemann–Roch theorem [H], which in Hirzebruch’s philosophy corresponds

to the un-normalized power series Qy(α) = α(1+ye−α)
1−e−α ∈ Q[y][[α]]. More precisely, for X

smooth, we have

Ty∗(X) = T ∗
y (TX) ∩ [X ] :=

( dim(X)∏

i=1

Qy(αi)
)
∩ [X ],

with αi the Chern roots of the tangent bundle TX . The associated normalized power

series (needed in §5) is Q̂y(α) :=
Qy(α(1+y))

1+y
= α(1+y)

1−e−α(1+y) −αy, which defines the normalized

cohomology Hirzebruch class T̂ ∗
y (−). If we specialize the parameter y of T̂ ∗

y (−) to the
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three distinguished values y = −1, 0 and 1, we recover the cohomology Chern, Todd, and
L-class, respectively.

For any morphism f : X ′ → X we have a functorial push-forward

f! : K0(var/X
′)→ K0(var/X) , [Z

h
→ X ′] 7→ [Z

f◦h
→ X ].

Moreover, an external product

⊠ : K0(var/X)×K0(var/X
′)→ K0(var/X ×X

′)

is defined by the formula:

[Z → X ]⊠ [Z ′ → X ′] = [Z × Z ′ → X ×X ′].

These two structures on the relative motivic Grothendieck group allow us to introduce a
corresponding motivic Pontrjiagin ring similar to a well-known construction in homology.
More generally, let F be a functor to the category of abelian groups, defined on complex
quasi-projective varieties, covariantly functorial for all (proper) morphisms. Assume F is
also endowed with a commutative, associative and bilinear cross-product ⊠ commuting
with (proper) push-forwards (−)∗, with a unit 1 ∈ F (pt) for pt denoting the point space.
The only examples for F (X) needed in this paper are: the relative motivic Grothendieck
groupK0(var/X) and the Borel-Moore homologyH∗(X) := HBM

even(X)⊗R with coefficients
R = Q or Q[y].

Definition 1.1. For a fixed complex quasi-projective variety X we define the commutative
Pontrjagin ring (PF (X),⊙) by

PF (X) :=

∞∑

n=0

F (X(n)) · tn :=

∞∏

n=0

F (X(n)),

with product ⊙ induced via

⊙ : F (X(n))× F (X(m))
⊠
→ F (X(n) ×X(m))

(−)∗
→ F (X(n+m)),

and unit 1 ∈ F (X(0)) = F (pt).

It is easy to see that, if f : Y → X is a (proper) morphism, then we get an induced ring
homomorphism

f∗ := (f (n)
∗ )n : PF (Y )→ PF (X),

with f (n) : Y (n) → X(n) the corresponding (proper) morphism on the n-th symmetric
products. In our examples, properness of morphisms is needed for the case F = H∗ of
Borel-Moore homology.
We can now state our first result:

Theorem 1.2. Let f : Y → X be a morphism of complex quasi-projective varieties. Then
the following identity holds in the Pontrjagin ring PH∗(X):

(2)
∑

n≥0

T(−y)∗
([f (n)]) · tn = exp

(
∑

r≥1

Ψr

(
dr∗T(−y)∗

([f ])
)
·
tr

r

)
,
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where

(a) dr : X → X(r) is the composition of the diagonal embedding ir : X ≃ ∆r(X) →֒ Xr

with the projection πr : X
r → X(r).

(b) Ψr is the r-th homological Adams operation, which on HBM
2k (X(r);Q) (k ∈ Z) is

defined by multiplication by 1
rk
, together with y 7→ yr.

As special cases, we obtain for f = idX and, respectively, for the projection f : X×X ′ →
X the following:

Corollary 1.3. Let X and X ′ be complex quasi-projective varieties. Then the following
identities hold in the Pontrjagin ring PH∗(X):

(3)
∑

n≥0

T(−y)∗
(X(n)) · tn = exp

(
∑

r≥1

Ψr

(
dr∗T(−y)∗

(X)
)
·
tr

r

)
,

and

(4)
∑

n≥0

T(−y)∗

(
[(X ×X ′)(n) → X(n)]

)
· tn = exp

(
∑

r≥1

Ψrd
r
∗

(
χ−y(X

′) · T(−y)∗
(X)

)
·
tr

r

)
.

Remark 1.4. Formula (4) is one of the key ingredients for obtaining generating series
formulae for the push-forwards (under the Hilbert-Chow morphisms) of the motivic Hirze-
bruch classes of Hilbert schemes of points of a smooth quasi-projective variety, see our
recent preprint [CMOSY] for details.

To see that formula (4) is indeed a consequence of Theorem 1.2, we note that

[f : X ×X ′ → X ] = [idX ]⊠ [X ′ → pt],

so that

T(−y)∗
([f ]) = χ−y(X

′) · T(−y)∗
(X).

This is a special case of the fact that the motivic Hirzebruch class transformation Ty∗
commutes with cross-products, see [BSY].
Theorem 1.2 is a special case of a more general result about a corresponding generating

series for un-normalized Hirzebruch classes of (complexes of) mixed Hodge modules, as
we shall explain next. A mixed-Hodge-module-free proof of Theorem 1.2 will be given in
Section 2, by reducing it to the special case f = idM forM a smooth quasi-projective vari-
ety. The latter case is a corollary of Moonen’s generating series formula for his generalized
Todd classes τy(M

(n)) of symmetric products of a projective manifold M (see [Mo][Satz
2.1y, p.172]), together with the identification of

τy(M
(n)) = Ty∗(M

(n))

with the corresponding un-normalized Hirzebruch class.
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1.2. Hirzebruch classes of mixed Hodge modules. As shown in [BSY, Sch2], the
un-normalized motivic Hirzebruch class transformation factors through the Grothendieck
group K0(MHM(X)) of (algebraic) mixed Hodge modules on X [Sa2], by a transformation

(5) Ty∗ : K0(MHM(X))→ HBM
ev (X)⊗Q[y±1],

together with the natural group homomorphism

(6) χHdg : K0(var/X)→ K0(MHM(X)) , [f : Y → X ] 7→ [f!Q
H
Y ] ,

for QH
Y the constant mixed Hodge module complex on Y . So the un-normalized homology

Hirzebruch class Ty∗(X) can also be defined as Ty∗([Q
H
X ]).

One advantage of using mixed Hodge modules is that we can evaluate the transforma-
tion Ty∗ on other interesting “coefficients”. For example, a “good” (i.e., graded polariz-
able, admissible and with quasi-unipotent monodromy at infinity) variation L of mixed
Hodge structures on a smooth variety X yields twisted Hirzebruch classes Ty∗(X,L), the
shifted intersection cohomology Hodge module IC ′H

X := ICH
X [− dim(X)] yields, for X

pure-dimensional, similar intersection Hirzebruch classes ITy∗(X) := Ty∗([IC
′H
X ]), and for

a generically defined “good” variation L of mixed Hodge structures onX we obtain twisted
intersection Hirzebruch classes ITy∗(X,L) associated to the shifted twisted intersection
Hodge module IC ′H

X (L) := ICH
X (L)[− dim(X)].

Over a point space X = {pt}, the transformation Ty∗ (as well as its normalization
defined in §5 below) reduces to the χy-polynomial ring homomorphism

(7) χy : K0(MHSp)→ Z[y, y−1],

which is defined on the Grothendieck group K0(MHSp) of (graded) polarizable mixed
Hodge structures by:

(8) χy([H ]) :=
∑

p

dimCGr
p
F (H ⊗ C) · (−y)p,

with F • the Hodge filtration on H ∈ MHSp. So, if X is a compact variety, by pushing
down to a point the classes Ty∗(X) and ITy∗(X) (or their normalized counterparts from
§5), one gets that the degrees of their zero-dimensional components are the corresponding
Hodge polynomials χy(X) and Iχy(X), respectively, defined in terms of dimensions of
the graded parts of the Hodge filtration on the (intersection) cohomology of X . Similar
considerations apply of course to the twisted versions Ty∗(X,L) and resp. ITy∗(X,L) of
these classes, and we denote their corresponding degrees by χy(X,L) and resp. Iχy(X,L).

Before stating our main results on generating series of Hirzebruch classes in the mixed
Hodge module context, we need to recall the definition of symmetric powers of (complexes
of) mixed Hodge modules (see [MSS] for more details).
Let X be a complex quasi-projective variety, with n-th symmetric product X(n) and

projection πn : Xn → X(n). For a complex of mixed Hodge modules M ∈ DbMHM(X),
we let the n-th symmetric power ofM be defined by:

(9) M(n) := (πn∗M
⊠n)Σn ∈ DbMHM(X(n)),
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whereM⊠n ∈ DbMHM(Xn) is the n-th external product ofM with the Σn-action defined
as in [MSS], and (−)Σn is the projector on the Σn-invariant sub-object (which is well-
defined since DbMHM(X(n)) is a Karoubian additive category). The action of Σn onM⊠n

is, by construction, compatible with the natural action on the underlying Q-complexes
(see [MSS] for details). As special cases of (9), it was shown in [MSS][Rem.2.4(i)] that for
M = QH

X the constant Hodge sheaf on X , one obtains:

(10)
(
QH

X

)(n)
= QH

X(n) .

Moreover, it follows from the equivariant Künneth formula of [MSS][Sect.1.12] that for
M := f!Q

H
Y with f : Y → X an algebraic map, we get

(11)
(
f!Q

H
Y

)(n)
= f

(n)
! (QH

Y (n)).

Also, for L a polarizable variation of Hodge structure on a smooth open subvariety U of
an irreducible variety X , we get

(12)
(
IC ′H

X(L)
)(n)

= IC ′H
X(n)(L(n)),

where the “good” variation L(n) is generically defined on the regular part of X(n) (see
[MSS][Rem.2.4(ii)]). In particular, for the constant variation we have that

(13)
(
IC ′H

X

)(n)
= IC ′H

X(n).

The main result of this paper is the following generating series formula for the Hirzebruch
classes of the symmetric powersM(n) ∈ DbMHM(X(n)) of a fixed complex of mixed Hodge
modules on the variety X :

Theorem 1.5. Let X be a complex quasi-projective variety andM∈ DbMHM(X). Then
the following identity holds in the Pontrjagin ring PH∗(X):

(14)
∑

n≥0

T(−y)∗
(M(n)) · tn = exp

(
∑

r≥1

Ψr

(
dr∗T(−y)∗

(M)
)
·
tr

r

)
,

with dr : X → X(r) the canonical diagonal mapping, and Ψr the r-th homological Adams
operation.

The proof of Theorem 1.5 makes use of the Atiyah-Singer classes of [CMSS], combined
with the Lefschetz–Riemann–Roch theorem [BFQ, Mo], which in the context of symmetric
products is related to the singular Adams–Riemann–Roch transformation for coherent
sheaves (e.g., see [FL, Mo, N]).

If X is a projective variety, by pushing down to a point the result of Theorem 1.5,
we recover the generating series formula for the Hodge polynomials χy(X

(n),M(n)) :=
χy([H

∗(X(n);M(n)]) (cf. [MSa, MSS]), namely:

(15)
∑

n≥0

χ−y(X
(n),M(n)) · tn = exp

(
∑

r≥1

χ−yr(X,M) ·
tr

r

)
.
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Indeed, over a point space, the map dr is the identity, and the r-th Adams operation Ψr

becomes y 7→ yr.

If we letM be the constant Hodge sheaf QH
X , we get back (by using (10)) our formula

(3) for the motivic Hirzebruch classes. Similarly, for M = f!Q
H
Y with f : Y → X an

algebraic map, we get by (11) the generating series formula (2) of Theorem 1.2. Finally,

for the shifted twisted intersection chain sheaf IC ′H
X(L) we obtain by (12) the following

special case of formula (14), as announced in [MSb] for the case of the constant variation:

Corollary 1.6. For L a polarizable variation of Hodge structures on a smooth open sub-
variety U of an irreducible variety X, the following identity holds in PH∗(X):

(16)
∑

n≥0

IT(−y)∗
(X(n),L(n)) · tn = exp

(
∑

r≥1

Ψr

(
dr∗IT(−y)∗

(X,L)
)
·
tr

r

)
.

If X is smooth and projective, and M is the constant Hodge sheaf QH
X , formula (14)

specializes to Moonen’s generating series formula for his generalized Todd classes τy(X
(n))

(cf. [Mo, p.172]). Indeed, as shown in equation (17) of [CMSS], Moonen’s generalized
Todd class τy(Y/G), which he could only define for a projective orbifold Y/G (with G a
finite group of algebraic automorphisms of the projective manifold Y ), coincides in this
context with the Brasselet–Schürmann–Yokura un-normalized Hirzebruch class Ty∗(Y/G)
considered in this paper.

1.3. Todd, L- and Chern classes. We conclude this introduction with a discussion on
other important special cases of the main Theorem 1.5 and its Corollary 1.6.

If y = 0 and M = QH
X , the formula for the corresponding classes T0∗(−) and IT0∗(−)

should be compared with Moonen’s generating series formula for the Todd classes td∗(X
(n))

of symmetric products of a projective variety (see [Mo][p.162–164]). However, while these
three classes satisfy the same generating series formula, they do not coincide in general,
except in very special cases, e.g., T0∗(X) = td∗(X) if X has only Du Bois singularities
(e.g., X is smooth or has only rational singularities) so that the symmetric products
X(n) also have only Du Bois singularities (see [KS][Cor.5.4]). If X is projective with
only Du Bois singularities, by taking the degrees of the zero-dimensional components
in the corresponding generating series formula, we recover Moonen’s generating series
formula for the arithmetic genus χa of symmetric products of such a projective variety (cf.
[Mo][Corollary 2.7, p.161-162]):

(17)
∑

n≥0

χa(X
(n))tn = exp

(
∑

r≥1

χa(X) ·
tr

r

)
= (1− t)−χa(X),

where χa(X) := χ([H∗(X ;OX)]).

Let us now consider the case y = −1, and assume that X is an irreducible projec-
tive variety of even complex dimension, with L a “good” polarizable variation of Hodge
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structures of even weight generically defined on X . Then by taking the degree of the zero-
dimensional components in (16), we recover the generating series formula of [MSa, MSS]
for the twisted Goresky–MacPherson intersection cohomology signature σ(X(n),L(n)) of
the symmetric products of X , i.e.,

(18)
∑

n≥0

σ(X(n),L(n)) · tn =
(1 + t)

σ(X,L)−Iχ(X,L)
2

(1− t)
σ(X,L)+Iχ(X,L)

2

,

with Iχ(X,L) := χ([IH∗(X ;L)]) the twisted intersection cohomology Euler characteristic
of X . Here, the twisted intersection cohomology IH∗(X ;L) gets an induced symmetric
intersection pairing in middle degree since L is of even weight, so that the corresponding
signature σ(X,L) is defined. Similarly for the twisted signatures σ(X(n),L(n)) of symmet-
ric products. Since X is of even complex dimension, the sheaf complex ICX(L) also has a
symmetric self-duality structure yielding the same signature as σ(X,L). Moreover, under
our assumptions, the pure Hodge module ICH

X (L) is also of even weight, so that we can
use Saito’s Hodge index theorem (e.g., see [MSS][Sect.3.6]) for the following identification
of the twisted intersection cohomology signature in terms of the Hodge polynomial:

σ(X,L) = Iχ1(X,L) = χy([IH
∗(X ;L)])|y=1.

If, moreover, X is smooth and L is the constant variation, formula (18) was proved by
Zagier [Za]. With regard to characteristic classes, formula (16) specialize forX smooth and
projective to the generating series for Moonen’s class τ1(X

(n)) of symmetric products of
X (see [Mo][Cor.2.13, p.173]). This class differs from the Thom–Milnor homology L-class
L∗(X

(n)) by a renormalization, defined by multiplying in each even degree by a suitable
power of 2. More precisely, for any projective G-manifold Y , with G a finite group of
algebraic automorphisms of Y , one has (cf. [Mo][Corollary 2.10, p.171]):

Ψ2T1∗(Y/G) = Ψ2τ1(Y/G) = L∗(Y/G),

with Ψ2 the second homological Adams operation (as defined in Theorem 1.2). A formula
for the Thom–Milnor L-classes of symmetric products was originally obtained by Zagier
[Za] in the manifold context, and then re-proved by Moonen in [Mo] in the case of complex
projective manifolds. For the specialization of our formula (16) to y = −1, we need to
identify the twisted classes IT−1∗(X,L) as well as IT1∗(X

(n),L(n)). By [Sch2][Prop.5.21],
we get in degree 2k that

IT−1,k(X,L) = (1 + y)kck(IC
′
X(L))|y=−1 ∈ H

BM
2k (X(n);Q)

(the reader should be aware that in loc. cit. the identification is in terms of normalized
Hirzebruch classes). Therefore,

IT−1∗(X,L) = c0(IC
′
X(L)) = Iχ(X,L)

is the degree-zero MacPherson Chern class of the underlying twisted intersection cohomol-
ogy complex, i.e., the corresponding twisted Euler characteristic under the identification
deg : HBM

0 (X) = H0(X) ≃ Q. Conjecturally,

Ψ2IT1∗(X
(n),L(n)) = L∗(X

(n),L(n)) := L∗(ICX(n)(L(n))),
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with L∗(ICX(n)(L(n))) the Cappell-Shaneson homology L-class [CS] of the underlying self-
dual constructible sheaf complex. At least for X smooth and L defined now on all of X ,
this identification follows from equation (23) in [CMSS] because then L(n) extends as a local
system on all of X(n). In this case, formula (16) specializes for y = −1 and composition
with Ψ2 to the following twisted version of Moonen’s L-class formula mentioned above
(the reader should be aware that the exponent 1

2
is missing from loc. cit.):

(19)
∑

n≥0

L∗(X
(n),L(n)) · tn = (1− t2)−

Iχ(X,L)
2 ·exp

(
∑

r≥1

Ψ2r−1

(
d2r−1
∗ L∗(X,L)

)
·
t2r−1

2r − 1

)
.

For y = 1, X projective andM = QH
X , by taking degrees in formula (14) we recover’s

MacDonald’s generating series formula for the Euler characteristics of symmetric products
[Mac]:

(20)
∑

n≥0

χ(X(n))tn = exp

(
∑

r≥1

χ(X) ·
tr

r

)
= (1− t)−χ(X).

Indeed, by (8), we see that χ−1 is just the usual Euler characteristic. Similarly, by taking
degrees in formula (16) for the constant variation, we obtain the generating series formula
for the intersection cohomology Euler characteristic Iχ(X(n)) of the symmetric products
of X , see [MSa, MSS]. Finally, after a suitable re-normalization (as explained in §5),
formula (14) specializes for the value y = 1 of the parameter andM = QH

X the constant
Hodge module complex to Ohmoto’s generating series formula [O] for the rationalized
MacPherson–Chern classes c∗(X

(n)) of the symmetric products of X (see §5 for details):

(21)
∑

n≥0

c∗(X
(n)) · tn = exp

(
∑

r≥1

dr∗c∗(X) ·
tr

r

)
.

Adapting our method of proving the main Theorem 1.5, we get similarly the following
counterparts for bounded sheaf complexes with constructible resp. coherent cohomology
sheaves:

Theorem 1.7. Let X be a complex quasi-projective variety. Then the following formulae
hold in the Pontrjagin ring PH∗(X) with Q-coefficients:

(a) For F ∈ Db
c(X) a constructible sheaf complex, we have:

(22)
∑

n≥0

c∗(F
(n)) · tn = exp

(
∑

r≥1

dr∗c∗(F) ·
tr

r

)
,

(b) For G ∈ Db
coh(X) a sheaf complex of OX-modules with coherent cohomology, we

have:

(23)
∑

n≥0

td∗(G
(n)) · tn = exp

(
∑

r≥1

Ψr

(
dr∗td∗(G)

)
·
tr

r

)
.
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Here the corresponding symmetric powers of sheaf complexes are defined as in the mixed
Hodge module context [MSS].
If the constructible sheaf complex F underlies a complex of mixed Hodge modules
M, then (22) is just a corollary of our main Theorem 1.5. In particular, for F = QX

the constant sheaf, we get back formula (21). Also, for X projective and G = OX the
structure sheaf on X , formula (23) specializes to Moonen’s generating series formula for
Todd classes of symmetric products. In fact, Moonen’s method of proof for OX also yields
this more general result for arbitrary coherent coefficients on a quasi-projective variety.
Finally, in the projective case, taking the degrees in formulae (22) and (23) yields the
generating series formulae for the corresponding Euler characteristics, as already obtained
in [MSa][Thm.1.4].
Our method of proof for the generating series formulae follows closely the strategy devel-

oped by Hirzebruch-Zagier [Za] and Moonen [Mo]. Moreover, it relies on the use of localized
characteristic class transformations for singular spaces, e.g., the Atiyah-Singer class trans-
formation of [CMSS], the Lefschetz-Riemann-Roch transformation of [BFQ, Mo], or the
localized Chern class transformation of [Sch1]. A corresponding localized L-class transfor-
mation is not available, so we derive our L-class formula from the corresponding one for
Hirzebruch classes of intersection cohomology complexes.

Acknowledgements. We thank Morihiko Saito for our joint work, and for discussions
about symmetric powers of mixed Hodge modules.
S. Cappell and J. Shaneson are partially supported by DARPA-25-74200-F6188. L.

Maxim is partially supported by NSF-1005338 and by a research fellowship from the Max-
Planck-Institut für Mathematik, Bonn. J. Schürmann is supported by the SFB 878 “groups,
geometry and actions”. S. Yokura is partially supported by Grant-in-Aid for Scientific
Research (No. 24540085), the Ministry of Education, Culture, Sports, Science and Tech-
nology (MEXT), JAPAN.

2. Generating series for motivic Hirzebruch classes

In this section, we provide a mixed-Hodge-module-free proof of Theorem 1.2 from the
Introduction. As shown in [BSY], the motivic Hirzebruch class transformation Ty∗ is
functorial for proper push-forwards and it commutes with cross-products, so that Ty∗ also
commutes with the Pontrjagin product ⊙. We denote by the same symbol, Ty∗(−), the
induced functorial ring homomorphism

Ty∗(−) : (PK0(var/X),⊙)→ (PH∗(X),⊙).

By using the decomposition

(Z ∪ U)(n) ≃ ∪i+j=n(Z
(i) × U (j))

we get a well-defined (semi-)group homomorphism (commuting with push-forwards)

ζ : (K0(var/X),+)→ (PK0(var/X),⊙) , [f : Y → X ] 7→ 1+
∑

n≥1

[f (n) : Y (n) → X(n)] · tn
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with values in the group of multiplicative units of the Pontrjagin ring PK0(var/X). The
transformation ζ can be regarded as a relative version of the Kapranov zeta function [K],
which one gets back by lettingX be a point space. Therefore, formula (2) of Theorem 1.2 is
equivalent to the commutativity of the following diagram of (semi-)group homomorphisms:

(24)

(K0(var/X),+)
Ty∗

−−−→ (HBM
even(X)⊗Q[y],+)

ζ

y
yexp(

∑
r≥1 Ψrd

r
∗(−) t

r

r )

(PK0(var/X),⊙)
Ty∗

−−−→ (PH∗(X),⊙).

It is thus enough to check it on the generators of (K0(var/X),+) given by the classes
[f : M → X ] with M smooth and quasi-projective and f proper. By functoriality with
respect to proper push-forwards of (24), it suffices in fact to assume f = idM , with M
smooth and quasi-projective, i.e., to prove the formula

(25)
∑

n≥0

T(−y)∗
(M (n)) · tn = exp

(
∑

r≥1

Ψr

(
dr∗T(−y)∗

(M)
)
·
tr

r

)
.

Since the Hirzebruch class transformation T(−y)∗
commutes with open pull-backs (see

[BSY][Cor.3.1(iii)]), (by taking a smooth projective compactification of M) we can more-
over assume that M is smooth and projective. Formula (25) in this case is exactly Moo-
nen’s generating series formula [Mo][Satz 2.1y, p.172] for his generalized Todd classes
τy(M

(n)) of symmetric products of a projective manifold M , once we have the identifica-
tion

τy(M
(n)) = Ty∗(M

(n)).

A proof of the latter identity follows from the definition of the un-normalized homology
Hirzebruch classes in terms of the filtered DuBois complex (Ω•

X , F ), namely (see [BSY]):

Ty∗(X) :=
∑

i,p≥0

(−1)itd∗
(
Hi(grpF (Ω

•
X))
)
· (−y)p.

Indeed, for a (quasi-projective) orbifold X = Y/G with Y smooth and G a finite group of
algebraic automorphisms of Y , one gets by [DB][Thm.5.12] that grpF (Ω

•
X) is cohomologi-

cally concentrated in degree p, with:

Hp(grpF (Ω
•
X)) = (π∗(Ω

p
Y ))

G,

for π : Y → Y/G the projection map. So by the definition of τy(X) in [Mo][p.167], we get:

Ty∗(X) =
∑

p≥0

td∗
(
(π∗(Ω

p
Y ))

G
)
· yp =: τy(X).

�

Remark 2.1. Note that Moonen uses a slightly different notion of a homology Pontrja-
gin ring (Hev(X

(∞);R)[[t]], •) (with R = Q or Q[y]) for a compact topological space, see
[Mo][Ch.II, Sect.2]. Here X(∞) is defined as the limit of the directed system of all symmet-
ric products X(n), where the inclusion X(n) →֒ X(n+1) is well-defined only after choosing
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a basepoint in X . Since X is compact, there is no difference between homology and
Borel-Moore homology, and moreover, one gets injections H∗(X

(n);R) →֒ H∗(X
(∞);R).

Thus our Pontrjagin ring (PH∗(X),⊙) is just a subring of (Hev(X
(∞);R)[[t]], •). And by

definition, all of the above generating series live already in this subring. Finally, note that
Moonen’s notion of Pontrjagin ring only applies to projective (hence compact) varieties,
while the version used in this paper can also be used in the quasi-projective context.

3. Generating series for Hirzebruch, Todd and Chern classes

In this section, we prove our main Theorem 1.5 and Theorem 1.7.

3.1. Hirzebruch classes of symmetric powers of mixed Hodge modules. An es-
sential ingredient in the proof of Theorem 1.5 is the Atiyah–Singer class transformation
(cf. [CMSS])

Ty∗(−; g) : K0(MHMG(X))→ HBM
ev (Xg)⊗ C[y±1],

which is defined by combining Saito’s theory with the Lefschetz–Riemann–Roch transfor-
mation

td∗(−; g) : K0(Coh
G(X))→ HBM

ev (Xg;C)

of Baum–Fulton–Quart [BFQ] and Moonen [Mo]. These transformations are defined
for any complex quasi-projective variety X acted upon by a finite group G of alge-
braic automorphisms. Here K0(MHMG(X)) denotes the Grothendieck group of equi-
variant mixed Hodge modules, which is identified with a suitable Grothendieck group
of “weakly” equivariant complexes of mixed Hodge modules (see [CMSS, Appendix A]).
Also, K0(Coh

G(X)) denotes the Grothendieck group of G-equivariant algebraic coherent
sheaves on X . More details on the construction of the Atiyah–Singer class transformation
Ty∗(−; g) will be given in §4, as needed.

For the following notions and strategy of proof we follow Hirzebruch-Zagier [Za][Ch.II]
and Moonen [Mo][Ch.II, Sect.2], which deal with L-classes of symmetric products of a
rational homology manifold and, respectively, Todd classes of symmetric products of a
complex projective variety.

Let σ ∈ Σn have cycle partition λ = (k1, k2, · · · ), i.e., kr is the number of length r cycles
in σ and n =

∑
r r · kr. Let

πσ : (Xn)σ → X(n)

denote the composition of the inclusion of the fixed point set (Xn)σ →֒ Xn followed by
the projection πn : Xn → X(n). For a cycle A of σ, we let |A| denote its length. Then

(Xn)σ ≃
∏

A= cycle in σ

(X |A|)A ≃
∏

r

((Xr)σr)kr ≃
∏

r

∆r(X)kr ≃ Xk1+k2+··· ,

where σr denotes a cycle of length r, and ∆r(X) is the diagonal in Xr. Also, (X |A|)A ≃ X ,
diagonally embedded inX |A|. Here the inclusion X |A| →֒ Xn is given by Xj1×Xj2×· · · , for
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A = (j1, j2, · · · ) and with Xj on the j-th place in Xn. Then the projection πσ : (Xn)σ →
X(n) is the product (over cycles A of σ) of projections

πA : X → X(|A|)

defined by the composition

πA : X ≃ ∆|A|(X) →֒ X |A| → X(|A|),

with ∏

A

X(|A|) → X(n)

induced by the Pontrjagin product. In the notations of Theorem 1.5, this amounts to
saying that πσ is the product of projections

dr : X ≃ ∆r(X)
ir
→֒ Xr πr→ X(r),

where each r-cycle contributes a copy of dr.

Theorem 1.5 is a consequence of the following sequence of reductions:

Lemma 3.1 (Averaging property). ForM∈ DbMHM(X) and every n ≥ 0, we have:

(26) Ty∗(M
(n)) =

1

n!

∑

σ∈Σn

πσ
∗Ty∗(M

⊠n; σ).

Proof. This follows directly from [CMSS][Theorem 5.4], by regarding the external product
M⊠n with its Σn-action (as defined in [MSS]) as a weakly equivariant complex.

�

Lemma 3.2 (Multiplicativity). If σ ∈ Σn has cycle-type (k1, k2, · · · ), then:

(27) Ty∗(M
⊠n; σ) =

∏

r

(
Ty∗(M

⊠r; σr)
)kr

.

Therefore,

(28) πσ
∗Ty∗(M

⊠n; σ) =
∏

r

(
dr∗Ty∗(M

⊠r; σr)
)kr

Proof. This is a consequence of the multiplicativity property of the Atiyah–Singer class
transformation, see [CMSS][Corollary 4.2].

�

Lemma 3.3 (Localization). The following identification holds in HBM
ev (X) ⊗ Q[y±1] ⊂

HBM
ev (X)⊗ C[y±1]:

(29) T(−y)∗
(M⊠r; σr) = ΨrT(−y)∗

(M),

with Ψr the r-th homological Adams operation, which is defined on HBM
2k (X ;Q) (k ∈ Z)

by multiplication by 1
rk
, together with y 7→ yr.
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The localization property of Lemma 3.3 is the key technical point, and also the most
difficult one. Its proof will be given later on, in Section 4, while in the remaining part of
this section we concentrate on generating series formulae.

We now have all the ingredients for proving Theorem 1.5.

Proof. For a given partition Π = (k1, k2, · · · , kn) of n, i.e., n =
∑

r kr · r, denote by NΠ the
number of elements σ ∈ Σn of cycle-type Π. Then it’s easy to see that

NΠ =
n!

k1!k2! · · · 1k12k2 · · ·
.

Formula (14) follows now from the following sequence of identities:

∑

n

T(−y)∗
(M(n)) · tn

(26)
=

∑

n

tn ·
1

n!

∑

σ∈Σn

πσ
∗T(−y)∗

(M⊠n; σ)

(28)
=

∑

n

tn

n!
·

∑

Π=(k1,k2,···kn)

NΠ

n∏

r=1

(
dr∗T(−y)∗

(M⊠r; σr)
)kr

=
∑

n

∑

Π=(k1,k2,···kn)

tk1·1+k2·2+···

k1!k2! · · ·1k12k2 · · ·

n∏

r=1

(
dr∗T(−y)∗

(M⊠r; σr)
)kr

=
∑

n

∑

Π=(k1,k2,···kn)

n∏

r=1

tkr ·r

kr!rkr
·
(
dr∗T(−y)∗

(M⊠r; σr)
)kr

=

∞∏

r=1

(
∞∑

kr=0

tkr ·r

kr!rkr
·
(
dr∗T(−y)∗

(M⊠r; σr)
)kr
)

=
∞∏

r=1

(
∞∑

kr=0

1

kr!
·

(
dr∗T(−y)∗

(M⊠r; σr) ·
tr

r

)kr
)

=
∞∏

r=1

exp

(
dr∗T(−y)∗

(M⊠r; σr) ·
tr

r

)

= exp

(
∞∑

r=1

dr∗T(−y)∗
(M⊠r; σr) ·

tr

r

)

(29)
= exp

(
∞∑

r=1

Ψr

(
dr∗T(−y)∗

(M)
)
·
tr

r

)
,

where in the last equality we also use the functoriality with respect to proper push-down
of the homological Adams transformation Ψr.

�



16 S. E. CAPPELL, L. MAXIM, J. SCHÜRMANN, J. L. SHANESON, AND S. YOKURA

The proof of Theorem 1.7 proceeds formally in exactly the same way as the above proof,
once the averaging, multiplicativity and localization properties hold for the correspond-
ing Lefschetz-Riemann-Roch transformation td∗(−; g) of Baum–Fulton–Quart [BFQ] and
Moonen [Mo], and respectively, for the Schürmann’s localized Chern classes c∗(−; g) from
[Sch1][Ex.1.3.2]. These will be explained in the next subsections.

3.2. Lefschetz-Riemann-Roch transformation. Let Z be a complex quasi-projective
algebraic variety, and G a finite group of algebraic automorphisms of Z. Let

(30) td∗(−; g) : K0(Coh
G(Z))→ HBM

ev (Zg;C)

be the Lefschetz–Riemann–Roch transformation of Baum–Fulton–Quart [BFQ] and Moo-
nen [Mo], where K0(Coh

G(Z)) is the Grothendieck group of G-equivariant algebraic co-
herent sheaves on Z. Its values yield homology classes localized on the fixed-point set
Zg.
For a complex E ∈ Db

coh(Z) which is weakly G-equivariant in the sense of [CMSS], its
cohomology sheaves are G-equivariant coherent sheaves, so that we can define its class in
the Grothendieck group K0(Coh

G(Z)) as

[E ] :=
∑

i
(−1)i · [Hi(E)].

Let π : Z → Z/G be the quotient map. Then π∗E ∈ D
b
coh(Z/G) is a weakly G-equivariant

complex on Z/G. We can define its G-invariant part (π∗E)
G by using the corresponding

projector as in [CMSS][p.20] since Db
coh(Z) is a Q-linear additive Karoubian category. The

class [(π∗E)
G] ∈ K0(Coh(Z/G)) in the Grothendieck group is defined as above. With the

above notations, we now have the following

Lemma 3.4 (Averaging property).

(31) td∗

(
(π∗E)

G
)
=

1

|G|

∑

g∈G

πg
∗td∗(E ; g),

with πg : Zg → Z/G the induced map.

Proof. Since π∗ and (−)G are exact functors, it suffices to prove formula (31) for E a G-
equivariant coherent sheaf. For a projective variety Z, this fact follows from [Mo][p.170].
For a quasi-projective variety Z, it still holds true as soon as the Lefschetz–Riemann–Roch
transformation td∗(−; g) is extended to this quasi-projective context as in [Mo][Ch.III,
Sect.1].

�

Let now X be a quasi-projective variety with G ∈ Db
coh(X) given. Then we can view the

external product G⊠ with its induced Σn-action (e.g., see [MSS]) as a weakly equivariant
Σn-complex, and the n-th symmetric power G(n) of G is defined by

G(n) := (πn∗G
⊠)Σn ∈ Db

coh(X
(n)).
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The needed averaging property for the Lefschetz-Riemann-Roch transformation, i.e.,

(32) td∗(G
(n)) =

1

n!

∑

σ∈Σn

πσ
∗ td∗(G

⊠n; σ)

follows now from Lemma 3.4.

Let us now discuss the multiplicativity property for the Lefschetz-Riemann-Roch trans-
formation:

Lemma 3.5 (Multiplicativity). Let Z, Z ′ be complex quasi-projective algebraic varieties,
and G and G′ finite groups of algebraic automorphisms of Z and resp. Z ′. Then for
E ∈ Db

coh(Z) a weakly G-equivariant complex and E ′ ∈ Db
coh(Z

′) a weakly G′-equivariant
complex, one has for g ∈ G and g′ ∈ G′ the following identity:

(33) td∗(E ⊠ E
′; (g, g′)) = td∗(E ; g)⊠ td∗(E

′; g′).

Proof. The external product is an exact functor, thus we can assume that E and E ′ are
coherent sheaves. Moreover, we can assume that G = G′ since the Lefschetz-Riemann-
Roch transformation only depends on the cyclic group generated by the corresponding
group element. So the claim follows from [Mo][7.9, p.125].

�

Back in the case of symmetric products, Lemma 3.5 implies that for a fixed G ∈ Db
coh(X)

we have

(34) td∗(G
⊠n; σ) =

∏

r

(
td∗(G

⊠r; σr)
)kr

,

for σ ∈ Σn of cycle-type (k1, k2, · · · ).

Finally, we have the following localization property for the Lefschetz-Riemann-Roch
transformation:

Lemma 3.6. Let σr be an r-cycle. Then for any G ∈ Db
coh(X), the following identity

holds in HBM
ev (X ;Q):

(35) td∗(G
⊠r; σr) = Ψrtd∗(G)

under the identification (Xr)σr ≃ X.

Proof. For G = OX , this fact is proved by Moonen (see [Mo][Satz 2.4, p.162]). His proof in
this special case uses an embedding i : X →֒ M into a smooth complex algebraic variety
M , together with a bounded locally free resolution F of i∗G. Then ir : Xr →֒ M r is a
Σr-equivariant embedding, with F⊠r a Σr-equivariant locally free resolution of (i∗G)

⊠r ≃
ir∗(G

⊠r). Starting with G ∈ Db
coh(X) instead of OX , Moonen’s calculation of td∗(G

⊠r; σr)
applies directly to this more general context.

�
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Remark 3.7. Note that the homological Adams operation appearing in Lemma 3.6 is
induced from the K-theoretic Adams operation [At]

Ψr : K0(M,M \X)→ K0(M,M \X)⊗ C

appearing in Moonen’s proof of his localization formula [Mo][p.164] as

Ψr([F ]) := [∆∗
r(F

⊠r)](σr),

with ∆r :M → M r the diagonal embedding. Note that the 〈σr〉-equivariant vector bundle
complex ∆∗

r(F
⊠r) is exact off X , i.e., it defines a class

[∆∗
r(F

⊠r)] ∈ K0
〈σr〉(M,M \X) ≃ K0(M,M \X)⊗ R(〈σr〉),

where R(〈σr〉) is the complex representation ring of the cyclic group generated by σr.
Then

(σr) : K
0
〈σr〉(M,M \X) ≃ K0(M,M \X)⊗ R(〈σr〉)→ K0(M,M \X)⊗ C

is induced by taking the trace homomorphism tr(−; σr) : R(〈σr〉)→ C (see [Mo][p.67]).
Compare also with [N][Sect.3] for the relation between the Adams- and Lefschetz-

Riemann-Roch theorems in the algebraic geometric context.

3.3. Localized Chern classes. Let Z be a complex quasi-projective algebraic variety,
and G a finite group of algebraic automorphisms of Z. Let

(36) c∗(−; g) : K0(Constr
G(Z))

tr(−|Zg ;g)
−−−−−−→ F (Zg)⊗Q

c∗⊗Q
−−−→ HBM

ev (Zg;Q)

be Schürmann’s localized Chern class transformation of [Sch1][Ex.1.3.2], with ConstrG(−)
the abelian category of algebraically constructible G-equivariant sheaves ofQ-vector spaces
and F (−) the abelian group of Z-valued algebraically constructible functions. Here c∗
denotes the Chern class transformation of MacPherson [M], and tr(−|Zg ; g) is the group
homomorphism defined by

[F ] 7→
(
x 7→ tr(Fx; g)

)
∈ F (Zg).

Note that for x ∈ Zg, g acts on the finite-dimensional stalk Fx for a constructible G-
equivariant sheaf F .
For the trivial group element id ∈ G, c∗(F) := c∗([F ]; id) defines the MacPherson-

Chern class of a constructible sheaf F as the MacPherson Chern class of the constructible
function given by the stalkwise Euler characteristic.
For a complex F ∈ Db

c(Z) which is weakly G-equivariant in the sense of [CMSS], its
cohomology sheaves are G-equivariant constructible sheaves, so that we can define its class
in the Grothendieck group K0(Constr

G(Z)) as

[F ] :=
∑

i
(−1)i · [Hi(F)].

Let π : Z → Z/G be the quotient map. Then π∗F ∈ D
b
c(Z/G) is a weakly G-equivariant

complex on Z/G. We can define its G-invariant part (π∗F)
G using the corresponding
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projector as in [CMSS][p.20] since Db
c(Z) is a Q-linear additive Karoubian category. Sim-

ilarly, the class [(π∗F)
G] ∈ K0(Constr(Z/G)) in the Grothendieck group is defined as

above. With the above notations, we now have the following

Lemma 3.8 (Averaging property).

(37) c∗((π∗F)
G) =

1

|G|

∑

g∈G

πg
∗c∗(F ; g),

with πg : Zg → Z/G the induced map.

Proof. Since π∗ and (−)G are exact functors, it suffices to prove formula (37) for a G-
equivariant constructible sheaf. By functoriality of c∗(−; g), this case follows from the
constructible function identity:

(38) tr((π∗F)
G; id) =

1

|G|

∑

g∈G

πg
∗tr(F ; g).

Pointwise, at π(x) ∈ Z/G, the left-hand side of the above equality reduces to the Euler
characteristic of the following vector space:

((π∗F)π(x))
G ≃ (IndG

Gx
Fx)

G ≃ (Fx)
Gx ,

with Gx the stabilizer of x ∈ Z. The right-hand side of (38) can be calculated by the
G-equivariance of F as:

( 1

|G|

∑

g∈G

πg
∗tr(F ; g)

)
(π(x)) =

1

|G|

∑

x′,π(x′)=π(x)

( ∑

g∈Gx′

tr(Fx′; g)
)

=
|G/Gx|

|G|

( ∑

g∈Gx

tr(Fx; g)
)
.

So the identity (38) reduces pointwise to the well-known identity for the rational Gx-
representation Fx:

χ(FGx

x ) =
1

|Gx|

∑

g∈Gx

tr(Fx; g).

�

Let now X be a quasi-projective variety with F ∈ Db
c(X) given. The n-th symmetric

power F (n) of F is defined as before by

F (n) := (πn∗F
⊠)Σn ∈ Db

c(X
(n)).

The needed averaging property for the localized Chern class transformation, i.e.,

(39) c∗(F
(n)) =

1

n!

∑

σ∈Σn

πσ
∗ c∗(F

⊠n; σ)

follows now from Lemma 3.8.
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Similarly, the multiplicativity property

(40) c∗(F
⊠n; σ) =

∏

r

(
c∗(F

⊠r; σr)
)kr

.

for σ ∈ Σn of cycle-type (k1, k2, · · · ) follows from the following

Lemma 3.9 (Multiplicativity). Let Z, Z ′ be complex quasi-projective algebraic varieties,
and G and G′ finite groups of algebraic automorphisms of Z and resp. Z ′. Then for
F ∈ Db

c(Z) a weakly G-equivariant complex and F ′ ∈ Db
c(Z

′) a weakly G′-equivariant
complex, one has for g ∈ G and g′ ∈ G′ the following identity:

(41) c∗(F ⊠ F ′; (g, g′)) = c∗(F ; g)⊠ c∗(F
′; g′).

Proof. The external product is an exact functor, thus we can assume that F and F ′ are
constructible sheaves. Moreover, we can assume that G = G′ since the localized Chern
class transformation only depends on the cyclic group generated by the corresponding
group element. So the claim follows by the multiplicativity of the Chern class transforma-
tion (see [BSY]) and multiplicativity of traces.

�

Finally, we have the following localization property for the localized Chern class trans-
formation:

Lemma 3.10. Let σr be an r-cycle. Then for any F ∈ Db
c(X), the following identity holds

in HBM
ev (X ;Q):

(42) c∗(F
⊠r; σr) = c∗(F)

under the identification (Xr)σr ≃ X.

Proof. It suffices to show the constructible function identity:

tr(F⊠r; σr) = tr(F ; id).

This can be checked pointwise, so we can assume that X is a point space. Choosing a free
resolution, we can moreover assume that F is a bounded complex of finite dimensional
rational vector spaces. By Atiyah’s definition of the Adams operation (e.g., see [At][Sect.2]
and [MSa][Sect.3]), one gets

tr(F⊠r; σr) = χ(Ψr([F ])),

with Ψr the r-th Adams operation acting on the Grothendieck group K0(Vect) of finite
dimensional rational vector spaces. But the Euler characteristic χ : K0(Vect) → Z is a
λ-ring isomorphism, hence Ψr acts in fact trivially on K0(Vect). This yields

tr(F⊠r; σr) = χ(F).

�

Altogether, this finishes the proof of our Theorem 1.7.
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4. Localization of Hirzebruch classes

The aim of this section is to supply a proof of the technical Lemma 3.3. We begin by
recalling in §4.1 the construction of the Atiyah–Singer class transformation from [CMSS].
In §4.2, we specialize to the case of symmetric products and study how Saito’s functors
grF∗ DR behave with respect to external powers. Then we finish the proof of Lemma 3.3.

4.1. The Atiyah–Singer class transformation. Let Z be a (possibly singular) quasi-
projective variety acted upon by a finite groupG of algebraic automorphisms. The Atiyah–
Singer class transformation

Ty∗(−; g) : K0(MHMG(Z))→ HBM
ev (Zg)⊗ C[y±1]

is constructed in [CMSS] in two stages. First, by using Saito’s theory of algebraic mixed
Hodge modules [Sa2], we construct an equivariant version of the motivic Chern class
transformation of [BSY] (see also [Sch2, Yo]), i.e., the equivariant motivic Chern class
transformation:

(43) MHCG
y : K0(MHMG(Z))→ K0(Coh

G(Z))⊗ Z[y±1],

for K0(Coh
G(Z)) the Grothendieck group of G-equivariant algebraic coherent sheaves on

Z. Secondly, we employ the Lefschetz–Riemann–Roch transformation of Baum–Fulton–
Quart [BFQ] and Moonen [Mo]:

(44) td∗(−; g) : K0(Coh
G(Z))→ HBM

ev (Zg;C)

to obtain (localized) homology classes on the fixed-point set Zg.

In order to define the equivariant motivic Chern class transformation MHCG
y , we work in

the category Db,GMHM(Z) of G-equivariant objects in the derived category DbMHM(Z)

of algebraic mixed Hodge modules on Z, and similarly for Db,G
coh(Z), the category of G-

equivariant objects in the derived category Db
coh(Z) of bounded complexes of OZ-sheaves

with coherent cohomology. Let us recall that in both cases, a G-equivariant elementM is
just an element in the underlying additive category (e.g., DbMHM(Z)), with a G-action
given by isomorphisms

ψg :M→ g∗M (g ∈ G),

such that ψid = id and ψgh = g∗(ψh) ◦ ψg for all g, h ∈ G (see [MSa][Appendix]). These
“weak equivariant derived categories” Db,G(−) are not triangulated in general. Nev-
ertheless, one can define a suitable Grothendieck group, by using “equivariant distin-
guished triangles” in the underlying derived category Db(−), and get isomorphisms (cf.
[CMSS][Lemma 6.7]):

K0(D
b,GMHM(Z)) = K0(MHMG(Z)) and K0(D

b,G
coh(Z)) = K0(Coh

G(Z)).

The equivariant motivic Chern class transformation MHCG
y is defined by noting that

Saito’s natural transformations of triangulated categories (cf. [Sa1][Sect.2.2], [Sa2][proof
of Prop.2.33], [Sa3][(1.3.4)])

grFpDR : DbMHM(Z)→ Db
coh(Z)
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commute with the push-forward g∗ induced by each g ∈ G, thus inducing equivariant
transformations (cf. [CMSS][Example 6.6])

grFpDR
G : Db,GMHM(Z)→ Db,G

coh(Z).

Note that for a fixed M ∈ Db,GMHM(Z), one has that grFpDR
G(M) = 0 for all but

finitely many p ∈ Z. This yields the following definition (cf. [CMSS]):

Definition 4.1. The G-equivariant motivic Chern class transformation

MHCG
y : K0(MHMG(Z))→ K0(D

b,G
coh(Z))⊗ Z[y±1] = K0(Coh

G(Z))⊗ Z[y±1]

is defined by:

(45) MHCG
y ([M]) :=

∑

p

[
grF−pDR

G(M)
]
·(−y)p =

∑

i,p

(−1)i
[
Hi(grF−pDR

G(M))
]
·(−y)p.

The Atiyah–Singer class transformation is defined by the composition

(46) Ty∗(−; g) := td∗(−; g) ◦MHCG
y ,

with

(47) td∗(−; g) : K0(Coh
G(Z))→ HBM

ev (Zg;C)

the Lefschetz–Riemann–Roch transformation (extended linearly over Z[y±1]).

4.2. Atiyah-Singer classes for external products. In this section we finish the proof
of Lemma 3.3, after first developing the needed prerequisites.

Lemma 4.2. Let X be a complex quasi-projective variety and fixM∈ DbMHM(X). Then
there is a Σr-equivariant isomorphism of bounded graded objects in Db

coh(X
r):

(48) grF∗ DR(M
⊠r) ≃

(
grF∗ DR(M)

)⊠r
,

where the left-hand side underlies the weakly equivariant complex grF∗ DR
Σr(M⊠r), and

the Σr-action on the right-hand side is the usual action on external products of graded
complexes.

Proof. Since X is quasi-projective, we can assume X is embedded in a smooth complex
algebraic variety M . We have DbMHM(X) ≃ DbMHMX(M), by using the identification
of the category MHM(X) of mixed Hodge modules on X with the category MHMX(M) of
mixed Hodge modules on M supported on X ([Sa2][Sect.4]). In this case, Saito’s functor
grF∗ DR is induced from the graded transformation associated to a filtered de Rham functor

DR : DbMHMX(M)→ Db
cohF (OM ,Diff)

taking values in Saito’s category of bounded filtered differential complexes on M whose
graded pieces are bounded complexes of OM -modules with coherent cohomology sheaves
([Sa1][§2.2]). Moreover, this filtered de Rham functor is induced from a corresponding
functor of complexes

DR : CbMHM(M)→ CbF (DM)→ CbF (OM ,Diff),
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associating to a complex of mixed Hodge modules on M the filtered de Rham complex of
the underlying complex of filtered right DM -modules. Note that forM ∈ CbMHMX(M),
one has by [Sa1][Lem.3.2.6] that grFp DR(M) ∈ Db

coh(X) for all p (compare also with

[Sa2][proof of Prop.2.33]), with grFp DR(M) ≃ 0 for all but finitely many p ∈ Z (see
[Sa4][Lem.1.14]).
By [MSS][Remark 1.6], forM∈ CbMHM(M) there is a canonical map

can : DR(M⊠r)→ DR(M)⊠r

commuting with the corresponding Σr-actions as defined in [MSS]. This induces a Σr-
equivariant map

gr(can) : grF∗ DR(M
⊠r)→

(
grF∗ DR(M)

)⊠r

of the associated graded complexes. Moreover, gr(can) is a (graded) quasi-isomorphism, as
can be checked locally using a suitable “locally free” resolution as in [Sa1][Lemma 2.1.17].
Finally, by the multiple Künneth formula for push-forwards of mixed Hodge modules

([MSS][Sect.1.11]), the induced Σr-equivariant isomorphism (48) does not depend on the
choice of the embedding.

�

The above result together with Lemma 3.6 yield the following:

Proposition 4.3. Let X be a complex quasi-projective variety and fixM ∈ DbMHM(X).
Then the following identity holds for σr an r-cycle:

(49) td∗([gr
F
p DR

Σr(M⊠r)]; σr) =

{
Ψrtd∗([gr

F
q DR(M)]) , if p = q · r ,

0 , if p 6≡ 0 mod r.

Proof. By taking the degree p part in (48), we have that:

(50) grFp DR
Σr(M⊠r) =

⊕
∑r

j=1 qj=p

grFq1DR(M)⊠ · · ·⊠ grFqrDR(M),

where the action of the r-cycle σr on the right-hand side is the (graded anti-symmetric)
action by cyclic permutations of the factors in the multiple external product of complexes
(as explained e.g., in [MSS]).
Fix a multi-index (q1, · · · , qr) ∈ Zr, with

∑r

j=1 qj = p. If q1 = · · · = qr = q (with

p = q · r), we get by Lemma 3.6 that

(51) td∗([gr
F
q DR(M)⊠r]; σr) = Ψrtd∗([gr

F
q DR(M)]).

Otherwise, the orbit of (q1, · · · , qr) under the permutation action of σr on Zr has length
r. This implies:

td∗

([ r⊕

j=1

G
σ
j
r(q1)

⊠ · · ·⊠ G
σ
j
r(qr)

]
; σr

)
= 0 ,
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for Gq := grFq DR(M), q ∈ Z. This can be seen as follows: we first choose an embedding
i : X →֒ M into a smooth complex algebraic variety M , together with a bounded locally
free resolution Fq of i∗Gq (q ∈ Z). Then

r⊕

j=1

F
σ
j
r(q1)

⊠ · · ·⊠ F
σ
j
r(qr)

is a σr-equivariant locally free resolution of

ir∗

( r⊕

j=1

G
σ
j
r(q1)

⊠ · · ·⊠ G
σ
j
r(qr)

)
.

Let ∆r :M →M r denote the diagonal embedding, with ∆r(M) ≃ (M r)σr . Then

(52) ∆∗
r

( r⊕

j=1

F
σ
j
r(q1)

⊠ · · ·⊠ F
σ
j
r(qr)

)

is a complex, whose components are direct sums of terms of the form
(
Fk1

q1
⊗ · · · ⊗ Fkr

qr

)
⊗
(
⊕r

j=1OM

)
,

for Fk
q the k-th degree component of the complex Fq, and with σr acting (up to suitable

signs) by cyclic permutation of order r on the summands in ⊕r
j=1OM .

By using Alexander duality H∗(M,M \X ;C) ≃ HBM
∗ (X ;C), the localized Todd class

td∗

([⊕r

j=1 Gσj
r(q1)

⊠ · · ·⊠ G
σ
j
r(qr)

]
; σr

)
is defined as (see [Mo][Defn.4.5, p.72]):

td∗(TM) ∪
ch∗X

([
∆∗

r

(⊕r

j=1 Fσ
j
r(q1)

⊠ · · ·⊠ F
σ
j
r(qr)

) ]
(σr)

)

ch∗
([

Λ−1NMM r

]
(σr)

) .

Here we identify X andM with the fixed point sets (Xr)σr and resp. (M r)σr as before, with
NMM

r the normal bundle of M in M r, and ch∗X is a suitable localized Chern character.
Note that by construction the 〈σr〉-equivariant vector bundle complex of (52) is exact off
X , i.e., it defines a class

[
∆∗

r

( r⊕

j=1

F
σ
j
r(q1)

⊠ · · ·⊠ F
σ
j
r(qr)

)]
∈ K0

〈σr〉(M,M \X) ≃ K0(M,M \X)⊗ R(〈σr〉),

where R(〈σr〉) is the complex representation ring of the cyclic group generated by σr.
Then

(σr) : K
0
〈σr〉(M,M \X) ≃ K0(M,M \X)⊗ R(〈σr〉)→ K0(M,M \X)⊗ C

is induced by taking the trace homomorphism tr(−; σr) : R(〈σr〉) → C (see [Mo][p.67]).
Finally, we get

[
∆∗

r

( r⊕

j=1

F
σ
j
r(q1)

⊠ · · ·⊠ F
σ
j
r(qr)

)]
(σr) =

[
⊕ Fk1

q1
⊗ · · · ⊗ Fkr

qr

]
⊗ tr(⊕r

j=1C; σr) = 0
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since the corresponding trace of the (signed) cyclic permutation of order r is zero.
Together with the additivity of td∗(−; σr), this yields (49).

�

We now have all the ingredients for proving Lemma 3.3.

Proof.

T(−y)∗
(M⊠r; σr) := td∗(−; σr) ◦MHCΣr

−y(M
⊠r)

:= td∗(−; σr)

(
∑

p

[grF−pDR
Σr(M⊠r)] · yp

)

=
∑

p

td∗([gr
F
−pDR

Σr(M⊠r)]; σr) · y
p

(49)
=

∑

q

Ψrtd∗([gr
F
−qDR(M)]) · (yr)q

= Ψrtd∗

(
∑

q

[grF−qDR(M)] · yq

)

= Ψr (td∗ ◦MHC−y(M))

= ΨrT(−y)∗
(M).

�

5. Comparison with Chern class formulae

In this section we first show how Ohmoto’s generating series formula (21) for the
MacPherson Chern classes of symmetric products can be derived as a special case of
a suitable re-normalization of our motivic Hirzebruch class formula (3). Secondly, we
explain how formula (22) for Chern classes of symmetric powers of a constructible sheaf
complex underlying a complex of mixed Hodge modules can similarly be deduced from
our Hirzebruch class formula of the main Theorem 1.5.

5.1. Ohmoto’s Chern class formula. We begin with a general discussion on normalized
motivic Hirzebruch classes.
The power series Qy(α) = α(1+ye−α)

1−e−α ∈ Q[y][[α]] mentioned in the introduction is not
normalized, as its zero-degree part is 1+y, instead of 1. So one can consider the normalized
power series

(53) Q̂y(α) :=
Qy (α(1 + y))

1 + y
=

α(1 + y)

1− e−α(1+y)
− αy

which defines the normalized cohomology Hirzebruch class T̂ ∗
y (−). For y = −1, this class

specializes to the total cohomology Chern class.
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In the singular context, the corresponding normalized motivic Hirzebruch class trans-

formation T̂y∗ is obtained from the transformation Ty∗ of Section 1.1 by a simple re-
normalization procedure (e.g., see [BSY]). More precisely, for a complex algebraic variety

X we let T̂y∗ be defined by the composition

(54) T̂y∗ : K0(var/X)
Ty∗→ HBM

ev (X)⊗Q[y]
Ψ(1+y)
→ HBM

ev (X)⊗Q[y, (1 + y)−1],

with the normalization functor Ψ(1+y) given in degree 2k by multiplication by (1 + y)−k.
The corresponding normalized motivic Hirzebruch class of the variety X is defined by:

T̂y∗(X) := T̂y∗([idX ]).

It follows from [BSY] that T̂y∗(X) ∈ HBM
ev (X)⊗Q[y]. Moreover, by loc. cit., if y = −1

one gets that

(55) T̂−1∗(X) = c∗(X)⊗Q

is the rationalized homology Chern class of MacPherson [M].

For simplicity, the main results of this paper are formulated only in terms of the un-
normalized Hirzebruch class transformation. However, for the purpose of comparing our
formula (3) with Ohmoto’s generating series formula (21) for the MacPherson-Chern
classes of symmetric products of a quasi-projective variety [O], we need to say a few
words about the normalized version of our formula (3).
By applying the normalization functor Ψ(1−y) (note that due to our indexing conven-

tions, y is replaced here by −y) to the left-hand side of (3), we get the generating series∑
n≥0 T̂(−y)∗(X

(n)). Applying the same procedure to the right-hand side of (3), we first note
that the normalization functor Ψ(1−y) commutes with push-forward for proper maps, as
well as with external products, therefore Ψ(1−y) also commutes with the Pontrjagin prod-

uct and the exponential. But Ψ(1−y)ΨrT(−y)∗
(X) is not in general equal to T̂−t∗(X)|t=yr .

Only in the case y = 1 we get the following:

Lemma 5.1. With the above notations, the following identification holds:

(56) lim
y→1

Ψ(1−y)ΨrT(−y)∗
(X) = T̂−1∗(X) = c∗(X)⊗Q.

The first equality of Lemma 5.1 follows by applying the following identity of transfor-
mations to the distinguished element [idX ] ∈ K0(var/X).

Lemma 5.2. With the above notations, the following identification of transformations
holds:

(57) lim
y→1

Ψ(1−y)ΨrT(−y)∗
(−) = T̂−1∗(−) : K0(var/X)→ HBM

ev (X ;Q) .

Proof. Since both sides of (61) are defined by functorial group homomorphisms, this iden-
tity can be checked on generators. So, by functoriality for proper push-downs, it suffices
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to check it in the case when X is smooth. In this case, we have

(58) T(−y)∗
(X) = T ∗

(−y)(TX) ∩ [X ] =
( dim(X)∏

i=1

Q(−y)(αi)
)
∩ [X ],

with αi ∈ H2(X ;Q) the Chern roots of the tangent bundle TX and Qy(α) = α(1+ye−α)
1−e−α

the power series defining the un-normalized cohomological Hirzebruch class T ∗
y (−). By

applying the r-th homological Adams operation to (58), we get

(59) ΨrT(−y)∗
(X) =

( dim(X)∏

i=1

Q(−yr)(rαi)
)
∩ (r−dim(X)[X ]) =

( dim(X)∏

i=1

Q(−yr)(rαi)

r

)
∩ [X ].

Similarly,

Ψ(1−y)ΨrT(−y)∗
(X) =

( dim(X)∏

i=1

Q(−yr)(rαi(1− y))

r

)
∩
(
(1− y)−dim(X)[X ]

)

=
( dim(X)∏

i=1

Q(−yr)(rαi(1− y))

r(1− y)

)
∩ [X ]

=
( dim(X)∏

i=1

αi

(
1− yre−rαi(1−y)

)

1− e−rαi(1−y)

)
∩ [X ].

(60)

By l’Hôpital’s rule, we have:

lim
y→1

α
(
1− yre−rα(1−y)

)

1− e−rα(1−y)
= lim

y→1

α (−ryr−1 − rαyr) e−rα(1−y)

−rαe−rα(1−y)
=
−r − rα

−r
= 1 + α.

Thus, we get:

(61) lim
y→1

Ψ(1−y)ΨrT(−y)∗
(X) =

( dim(X)∏

i=1

(1 + αi)
)
∩ [X ] = c∗(TX) ∩ [X ] = c∗(X).

�

Therefore, by specializing to y = 1 in our formula (3), we recover as a corollary Ohmoto’s
Chern class formula [O]:

Corollary 5.3. For any quasi-projective complex algebraic variety X, the following for-
mula holds in the homology Pontrjagin ring PH∗(X) with Q-coefficients:

(62)
∑

n≥0

c∗(X
(n)) · tn = exp

(
∑

r≥1

dr∗c∗(X) ·
tr

r

)
,

with c∗(−) denoting the rationalized homology Chern class of MacPherson.
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5.2. Chern classes of constructible sheaf complexes. The above arguments can be
extended to obtain as a corollary of our main Theorem 1.5 the generating series for-
mula (22) for the rationalized MacPherson–Chern classes of symmetric products of a
constructible sheaf complex F underlying a complex of mixed Hodge modules M. For

mixed Hodge module complexes, the normalized Hirzebruch class transformation T̂y∗(−)
is defined as before by the composition

(63) T̂y∗ : K0(MHM(X))
Ty∗→ HBM

ev (X)⊗Q[y±1]
Ψ(1+y)
→ HBM

ev (X)⊗Q[y±1, (1 + y)−1].

As shown in [Sch2, Proposition 5.21], the transformation T̂y∗ of (63) takes in fact values
in HBM

ev (Z)⊗ Q[y±1], so in particular one is allowed to specialize the parameter y of the
transformation to the value y = −1.
In order to extend the above arguments to the setting of constructible sheaves considered

here, we use the commutativity of the following diagram (see [Sch2][Proposition 5.21]):

(64)

K0(MHM(X))
rat
−−−→ K0(D

b
c(X))

T̂−1∗

y
yχstalk

HBM
ev (X ;Q) ←−−−

c∗⊗Q
F (X)

Here, rat : DbMHM(X) → Db
c(X) is the forgetful functor associating to a complex of

mixed Hodge modules the underlying constructible sheaf complex, and χstalk is defined by
taking the Euler characteristics of the stalk complexes. Then we have:

Corollary 5.4. For any quasi-projective complex algebraic variety X and F = rat(M)
the underlying constructible sheaf complex of a complex of mixed Hodge modules M ∈
DbMHM(X), the following formula holds in the Pontrjagin ring PH∗(X):

(65)
∑

n≥0

c∗(F
(n)) · tn = exp

(
∑

r≥1

dr∗c∗(F) ·
tr

r

)
,

with c∗(F) := c∗(χstalk(F)).

The proof is exactly the same as above, and is based on the fact that the functor
rat commutes with symmetric products (see [MSS]), together with the identification of
transformations:

(66) lim
y→1

Ψ(1−y)ΨrT(−y)∗
(−) = T̂−1∗(−) : K0(MHM(X))→ HBM

ev (X ;Q)

which follows from combining (61) with the proof of [Sch2][Proposition 5.21].
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[Mac] I. G. Macdonald, The Poincaré polynomial of a symmetric product, Proc. Cambridge Philos.

Soc. 58, 1962, 563–568.
[M] R. MacPherson, Chern classes for singular algebraic varieties, Ann. of Math. (2) 100 (1974),

423–432.
[Mo] B. Moonen, Das Lefschetz–Riemann–Roch Theorem für singuläre Varietäten, Bonner Mathe-
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[SY] J. Schürmann and S. Yokura, A survey of characteristic classes of singular spaces, in ”Singular-
ity Theory” (Denis Cheniot et al, ed.), Dedicated to Jean-Paul Brasselet on his 60th birthday,
Proceedings of the 2005 Marseille Singularity School and Conference, World Scientific (2007),
865–952,

[Yau] D. Yau, Lambda-Rings, World Sci. Publ., 2010.
[Yo] S. Yokura, Motivic characteristic classes, “Topology of Stratified Spaces”, 375–418, Math. Sci.

Res. Inst. Publ. 58, Cambridge Univ. Press, Cambridge, 2011.
[Za] D. Zagier, Equivariant Pontrjagin classes and applications to orbit spaces. Applications of the

G-signature theorem to transformation groups, symmetric products and number theory, Lecture
Notes in Mathematics, Vol. 290. Springer-Verlag, Berlin-New York, 1972.

S. E. Cappell: Courant Institute, New York University, 251 Mercer Street, New

York, NY 10012, USA

E-mail address : cappell@cims.nyu.edu

L. Maxim : Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln

Drive, Madison, WI 53706-1388, USA.

E-mail address : maxim@math.wisc.edu
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