
ON FROBENIUS (COMPLETED) ORBIT CATEGORIES

ALFREDO NÁJERA CHÁVEZ

Abstract. Let E be a Frobenius category, P its subcategory of projective objects and
F : E → E an exact automorphism. We prove that there is a fully faithful functor from
the orbit category E/F into gpr(P/F ), the category of finitely-generated Gorenstein-
projective modules over P/F . We give sufficient conditions to ensure that the essential
image of E/F is an extension-closed subcategory of gpr(P/F ). If E is in addition Krull-
Schmidt, we give sufficient conditions to ensure that the completed orbit category E /̂F
is a Krull-Schmidt Frobenius category. Finally, we apply our results on completed orbit
categories to the context of Nakajima categories associated to Dynkin quivers and sketch
applications to cluster algebras.
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1. Introduction

Let E be an additive category and F : E → E an automorphism. The category of orbits
associated to this data was first introduced by Cibils and Marcos in [9]. It was further
studied by Asashiba in [1, 2] and by Keller in [21, 22]. By definition, the orbit category
E/F has the same objects as E , the set of morphisms from an object X to an object Y is
given by

(1.1) E/F (X,Y ) =
⊕
l∈Z
E(X,F l(Y ))

and the composition of morphisms is defined in a natural way (see (2.2)). Clearly E/F is
still an additive category and the canonical projection p : E → E/F is an additive functor.
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Now suppose that E is a Frobenius category and that F is an exact functor. We are inter-
ested in the following question:

Is there an exact structure on the orbit category such that E/F becomes a Frobenius cat-
egory and the canonical projection an exact functor?

In this article we give sufficient conditions for the answer to be positive. Recall that
Frobenius categories and triangulated categories are closely related: the stable category E
is canonically triangulated and F induces a triangulated automorphism F on E . Moreover,
the analogous question for triangulated categories was already studied in [21] where the
author defined the triangulated hull of the orbit category. In a similar way we show that
E/F embeds into a certain ambient exact category and give sufficient conditions to ensure
that E/F is an extension-closed subcategory of the ambient category. To be more precise,
let P be the full subcategory of E determined by its projective objects and gpr(P/F ) be the
category of finitely-generated Gorenstein-projective modules over P/F (see Definition 25).
The category gpr(P/F ) is an exact category, it is even a Frobenius category. Inspired by a
result of Chen [8], we prove that there is a full and faithful functor E/F ↪→ gpr(P/F ). We
prove the following theorem which is Theorem 43 of this note.

Theorem. Suppose that E/F is equivalent to its triangulated hull. If E/F has split idem-
potents, then E/F is closed under extensions in gpr(P/F ). Moreover, the induced exact
structure on E/F makes the canonical projection E → E/F exact and makes E/F a Frobe-
nius category whose stable category is triangle equivalent to E/F .

The ambient Frobenius category gpr(P/F ) should not be considered as the exact (or
Frobenius) hull of E/F since it may be too large. Still, gpr(P/F ) can be considered as
a canonical ambient category for E/F since the functor E/F ↪→ gpr(P/F ) is induced (in
a sense made precise in Definition 27) by the Yoneda functor E/F ↪→ Mod(E/F ). Even
more, the triangulated structure on the stable category gpr(P/F ) and on the triangulated
hull of E/F are compatible in the following sense: the inclusion E/F ↪→ gpr(P/F ) induces
a fully faithful triangulated functor from the triangulated hull of E/F into gpr(P/F ) (see
Theorem 41).

Orbit categories have appeared (perhaps sometimes in an implicit way) in the work of
many mathematicians (see for instances [15] [6], [21], [13], [28] and [32]). One of our main
motivations for studying orbit categories of Frobenius categories comes from representation
theory, and more concretely, from the additive categorification of acyclic cluster algebras
introduced in [6] (see also [11] and [23]). In particular, we are interested in the case where
E is in addition a Krull-Schmidt category. In general E/F fails to be Krull-Schmidt. Yet,
under certain finiteness conditions on F (stated explicitly in Section 6) we are able to give
sufficient conditions to prove the following theorem which is Theorem 42 of this note.

Theorem. If E is Krull-Schmidt (and F is as discribed above) then the completed orbit
category E /̂F admits the structure of a Frobenius category which makes the canonical
functor E → E /̂F exact and whose stable category is triangle equivalent to E/F .

The completed orbit category is defined just as the usual orbit category by replacing the
direct sum in (1.1) by the direct product. The composition formula (2.2) of usual orbit
categories defines a composition in the completed orbit category provided that, for every
pair of objects X and Y , the group E(X,F l(Y )) vanishes for l � 0. This last theorem
will allow us to give an explicit categorification of families of finite-type cluster algebras
with coefficients. In particular, we obtain a categorification of all skew-symmetric finite-
type cluster algebras with universal coefficients. We would like to stress that completed
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orbit categories already appeared in [17] where they are used to define continuous cluster
categories.

This article is organized as follows. In the Section 2 we survey Keller’s construction of the
triangulated hull associated to the orbit category of a triangulated category. In section 3
we recall a Theorem of Chen which shows that any Frobenius category is equivalent to
an extension-closed exact subcategory of the Frobenius category formed by Gorenstein-
projective modules over some additive category. This theorem will allow us to define the
embedding of E/F into gpr(P/F ). In section 4 we prove some general results on usual
and completed orbit categories which will be used intensively. In section 5 we prove the
compatibility of the triangulated structure of gpr(P/F ) and of the triangulated hull of E/F .
In section 6 we give a proof of the theorems stated above. In section 7 we apply our results
on completed orbit categories to the context of Nakajima categories associated to Dynkin
quivers to introduce explicit categorifications of families of finite-type cluster algebras with
coefficients. In particular, we obtain a categorification of all skew-symmetric finite-type
cluster algebras with universal coefficients.

Acknowledgments. The work in this article is exposed in my Ph.D. thesis, supervised
by Professors Bernhard Keller and Lauren Williams. I would like to thank them for their
guidance and patience. I am grateful to Raika Dehy, Patrick Le Meur, Yann Palu and
Pierre-Guy Plamondon for the useful discussions. The final version of this note was written
at the Max Planck Institut for Mathematics, Bonn, during the 2015 fall semester. The
author is deeply grateful to this institution for the financial support and for providing ideal
working conditions.

2. Reminders on dg categories and their orbit categories

Throughout this chapter, we will freely use the theory of exact categories first introduced
by Quillen in [29]. Our main reference for this theory is the refined treatment presented in
[18, Appendix A] and the systematic study of [7]. We will also use the basic facts about
Frobenius categories. The reader is referred to [16] for a treatment of this topic. The set
of morphisms between two objects X and Y of a category A is denoted by A(X,Y ). If k
is a ring and A an additive k-category, a right A-module is by definition a k-linear functor
M : Aop → Mod k, where Mod k is the category of all right k-modules. The morphism
space between two A-modules L and M is denoted by HomA(L,M) or simply Hom(L,M)
when there is no risk of confusion.

2.1. Pretriangulated dg categories. In this section we recall some facts about dg cat-
egories and introduce notation. Our main reference for these results are [20] and [10]. We
work over an arbitrary field k. In this section, all categories, dg categories, functors, dg
functors, etc. are assumed to be k-linear.

A dg category B is a category whose morphism spaces have the structure of a differential
graded k-module, or equivalently, a complex of k-modules. For a dg category B we denote
by Z0(B) the category with the same objects as B, and with morphisms Z0(B)(X,Y ) =
Z0(B(X,Y )). The category H0(B) is defined analogously. Let Cdg(k) be the dg category
of differential graded k-modules.

Notation 1. Let B be a dg category. A right dg B-module is a dg functor L : Bop → Cdg(k).
We denote by Cdg(B) the dg category of right dg B-modules. Denote by C(B) and H(B)
the categories Z0(Cdg(B)) and H0(Cdg(B)), respectively. The derived category D(B) is the
localization of C(B) with respect to the quasi-isomorphisms.
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Remark 2. The category C(B) admits an exact structure by defining an admissible short
exact sequence (or conflation) to be a sequence L → M → N such that the underlying
sequence of graded B-modules is split short exact. Endowed with this structure, C(B)
becomes a Frobenius category whose stable category is H(B) (cf. [19, Lemma 2.2]).

Example 3. Let A be an additive category. We consider A as a dg category whose
morphism complexes are concentrated in degree 0. Then, the objects of Cdg(A) can be
thought of as complexes of right A-modules. The morphism complex

Hom(X,Y ) := Cdg(A)(X,Y )

between the complexes X = · · · → Xi → Xi+1 → · · · and Y = · · · → Yi → Yi+1 → · · · has
as nth component the k-module

(2.1) Homn(X,Y ) =
∏
i∈Z

HomA(Xi, Yi+n).

The differential on Hom(X,Y ) is given by

d(f) = (fidY − (−1)ndXfi+1)i∈Z

for f = (fi)i∈Z ∈ Homn(X,Y ). It follows that C(A) is the category of chain complexes of
A-modules and that H(A) is the homotopy category of chain complexes of A-modules.

Notation 4. If A is an additive category we denote by C(A)dg the dg category of complexes
with components in A. Its objects are the complexes with components in A and the
morphism complex between two objects is defined in the same way as in Example 3.

Warning 5. Notice the difference between the categories Cdg(A) and C(A)dg.

Remark 6. For each dg category B, the Yoneda functor B → Cdg(B) takes an object X
to the representable dg module Cdg(B)(−, X). Slightly abusing, we also call the induced
functors Z0(B)→ C(B) and H0(B)→ H(B) Yoneda functors.

Definition 7. We call B pretriangulated, if the image of the Yoneda functor Z0(B) ↪→
C(B) is closed under translations and extensions (with respect to the exact structure of
Remark 2). If B is pretriangulated then the category Z0(B) is a Frobenius subcategory
of C(B). A dg enhancement of a triangulated category T is a pair (B, ε), where B is a
pretriangulated dg category and ε : H0(B) → T is a triangle equivalence. We call T
algebraic if it admits a dg enhancement.

Example 8. Let A be an additive category. The dg category C(A)dg is a typical example
of a pretriangulated dg category. If B is a pretriangulated dg category and B′ is a sub-
category of B such that Z0(B′) is closed in Z0(B) under shifts and extensions, then B′ is
pretriangulated. In particular, if A is exact, P is a subcategory of A closed under direct
sums and we let Ac(P)dg be the full subcategory of C(A)dg formed by the acyclic complexes
with components in P, then Ac(P)dg is a pretriangulated dg category.

Example 9. Let E be a Frobenius category and let P be its full subcategory of projective-
injective objects. We denote by E the stable category of E , i.e. the quotient category of
E by the ideal of morphisms factorizing through elements of P. By Example 8, the dg
category Ac(P)dg is pretriangulated. Moreover Ac(P)dg is a (canonical) dg enhancement
of E . Indeed: the category Z0(Ac(P)dg) identifies with the category of acyclic complexes
with components in P. Is easy to see that there is triangle equivalence

Z0 : H0(Ac(P)dg)
∼−→ E

which takes a complex P · to its 0-cycles Z0(P ·) cf. [25, Section 1.5].
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Definition 10. If B is an arbitrary small dg category and B′ is a dg category, then the
category of dg functors Hom(B,B′) is a dg category in a natural way (see [20, Section 2.3]).
There is a universal dg functor B → pretr(B) to a pretriangulated dg category pretr(B),
i.e. a functor inducing an equivalence of dg categories Hom(B,B′) → Hom(pretr(B),B′)
for each pretriangulated dg category B′. The dg category pretr(B) is the pretriangulated
hull of B.

Remark 11. The pretriangulated hull of B is constructed explicitly in [4] (where it is
denoted by Pre-tr+(B)), cf. also [10] and [33].

2.2. Quasi-functors. Let B and B′ be two dg categories. A B-B′-bimoduleM is an object
of Cdg(Bop ⊗ B′), i.e. M is a left B-module and a right B′-module. Let rep(B,B′) be the
full subcategory of the derived category D(Bop⊗B′) formed by the bimodules X such that
the derived tensor product

?
L
⊗B X : D(B)→ D(B′)

takes the representable B-modules to objects which are isomorphic to a representable B′-
modules.

Remark 12. Every object X in D(Bop⊗B′) is isomorphic to a cofibrant object of D(Bop⊗
B′). Therefore, in practice we will always assume that every object in rep(B,B′) is cofibrant
and we will consider it as a bimodule in Cdg(Bop⊗B′). In particular, we require thatX(B, ?)
is quasi-isomorphic to a representable B′-module for each object B of B. The category of B′-
modules which are quasi-isomorphic to a representable dg module is equivalent to H0(B′).
Therefore an object of rep(B,B′) defines a functor

H0(B)→ H0(B′).
For this reason, the objects in rep(B,B′) are called quasi-functors.

The bimodule bicategory rep has as objects all small dg categories; the morphism category
between two objects B and B′ is rep(B,B′); the composition bifunctor

rep(B′,B′′)× rep(B,B′)→ rep(B,B′′)

is given by the derived tensor product (X,Y ) 7→ X
L
⊗B′ Y . For each dg functor F : B →

B′,we have the dg bimodule

MF : (B,B′) 7→ B′(B′, F (B))

which clearly belongs to rep(B,B′).

2.3. Orbit categories. Let A be a k-linear category and F : A → A be an automorphism.
By definition, the orbit categoryA/F has the same objects asA and the morphisms between
two objects X and Y are given by

A/F (X,Y ) =
⊕
l∈Z
A(X,F l(Y )).

The composition is given by the formula

(2.2) (fa) ◦ (gb) =

( ∑
a+b=c

F b(fa) ◦ gb

)
,

where fa : Y → F a(Z), gb : X → F b(Y ) and a, b ∈ Z. Let p : A → A/F be the canonical
projection functor. It is endowed with a canonical isomorphism of functors φ : p → p ◦ F
given by φX = (. . . , 0, 1F−1(X), 0, . . . ) for each object X of A. Let A′ be another k-linear
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category. An F -invariant functor from A to A′ is given by a pair (G,φ), where G : A → A′
is a k-linear functor and φ : G → G ◦ F is an isomorphism of functors. A morphism of
F -invariant functors (G,φ)→ (G′, φ′) is given by a morphism of functors α : G→ G′ such
that the square

G
φ //

α
��

GF

αF
��

G′
φ′ // G′F

commutes. In this way, we obtain the category invF (A,A′) of F -invariant functors. In par-
ticular, (p, φ) is an F -invariant functor. The orbit category satisfies the following universal
property.

Theorem 13. ([1, Corollary 3.5]. See also [22]) Let funk(A/F,A′) be the category of k-
linear functors from A/F to A′. The functor

funk(A/F,A′)→ invF (A,A′), G 7→ G ◦ p

is an isomorphism of categories.

Remark 14. We may suppose without any risk that F is an autoequivalence. The theo-
retical justification for this can be found in Section 7 of [2].

The dg orbit category associated to a dg category B and a quasi-functor in rep(B,B) is
defined by a universal property. This property can be thought of as a lift of Theorem 13
to the dg world (see Remark 19 below). To state properly the universal property of the dg
orbit categories we need to introduce the following definition.

Definition 15. Suppose that B is small and that F ∈ rep(B,B) is given by a cofibrant
bimodule. For a dg category B′, define ẽff(B, F,B′) to be the category whose objects are
given by pairs (P, φ) where

• P is a quasi-functor in rep(B,B′),
• φ : P → PF is a quasi-isomorphism of dg bimodules,
• the morphisms from (P, φ) to (P ′, φ′) are obtained the morphisms f : P → P ′ of
dg bimodules, such that φ′ ◦ f = (fF ) ◦φ in the category of dg bimodules. In other
words, the following diagram commutes

P
φ //

f
��

PF

fF
��

P ′
φ′ // P ′F.

Let eff(B, F,B′) be the localization of ẽff(B, F,B′) with respect to the morphisms f which
are quasi-isomorphisms of dg bimodules.

Remark 16. The name eff comes from the french word effaçable which means erasable.

Theorem 17. ([21, Theorem 3 (b)]) Let B a dg category and F ∈ rep(B,B). Then the 2-
functor eff(B, F, ?) is 2-representable, i.e. there exist a dg category B/F and a pair (P0, φ0)
in eff(B, F,B/F ) such that for every small dg category B′, the functor

rep(B/F,B′)→ eff(B, F,B′), G 7→ G ◦ P0

is an equivalence.
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We call B/F the dg orbit category associated to B and F . If B is a dg category endowed
with an endomorphism F : B → B inducing an equivalence H0(F ) : H0(B)→ H0(B), then
B/F := B/MF can be described explicitly as follows: The objects of B/F are the same as
the objects of B. For X,Y ∈ B/F , we have

(2.3) B/F (X,Y ) := colimp

⊕
n≥0
B(Fn(X), F p(Y )),

where the transitions maps are given by F⊕
n≥0
B(Fn(X), F p(Y ))

F //
⊕
n≥0
B(Fn(X), F p+1(Y )).

Combining Theorem 17 with the universal property of the pretriangulated hull we obtain
the following universal property:

Theorem 18. ([21, Theorem 4]) Let B be a pretriangulated dg category and F ∈ rep(B,B).
Then for any pretriangulated dg category B′ there is an equivalence of categories

rep(pretr(B/F ),B′) ∼ // eff(B, F,B′).

Remark 19. If (P, φ) ∈ eff(B, F,B′) then H0(P ) is an H0(F )-invariant functor. By The-
orem 13 H0(P ) induces a functor G : H0(B)/H0(F ) → H0(B′). By Theorem 17 (P, φ)

corresponds to a quasi-functor G̃ such that H0(G̃) = G.

The dg orbit category is functorial in (B, F ) in the following sense.

Lemma 20. (cf. [21, Section 9.4]) Let

B X //

F
��

B′

F ′

��
B X // B′

be an square in rep and let γ : F ′X → XF be an isomorphism in rep(B,B′). Then there is
a morphism X : B/F → B′/F ′ such that if

B′ X′ //

F ′

��

B′′

F ′′

��
B′ X′ // B′

is another diagram in rep as above, then the quasi-functors X ′ ◦X and X ′ ◦X are isomor-
phic.

Definition 21. Let T = H0(B) be an algebraic triangulated category, and F̃ : B → B a dg
functor inducing an equivalence F : T → T . Then the triangulated hull of T /F is defined
as the triangulated category

H0(pretr(B/F̃ )).

Definition 22. Let T be a triangulated category endowed with an autoequivalence F :

T → T . Suppose that Tdg is a dg enhancement of T and that F̃ ∈ rep(Tdg, Tdg) is a dg
lift of F . The triangulated hull of (T , F ) with respect to Tdg is the triangulated category
H0(pretr(Tdg/F̃ )). We say that T /F is triangulated with respect to (Tdg, F̃ ) if T /F is
equivalent to the triangulated hull defined by Tdg and F̃ .



8 ALFREDO NÁJERA CHÁVEZ

Remark 23. Let H be a hereditary abelian category and F : Db(H) → Db(H) an au-
toequivalence. In [21], Keller gives sufficient conditions on F to ensure that Db(H)/F is
triangulated with respect to Db(H)dg.

3. The ambient Frobenius category

3.1. Frobenius categories and Gorenstein-projective modules. In this subsection
we recall a general result on Frobenius categories due to Chen [8]. It allows us to embed any
Frobenius category E into a module category (over an additive category). More precisely,
let P be the full subcategory of E formed by its projective objects, then E is equivalent,
as an exact category, to an extension-closed exact subcategory of gpr(P), the category
of finitely-generated Gorenstein-projective (or maximal Cohen-Macaulay) modules over P.
This theorem is crucial for our construction of an ambient Frobenius category in which the
orbit category E/F embeds.

Notation 24. Let A be an additive Z-category. We denote by Mod(A) the category of all
right modules over A and by mod(A) its full subcategory of finitely presented modules. We
let proj(A) be the full subcategory of mod(A) formed by the finitely-generated projective
A-modules.

Definition 25. An A-module M is finitely generated Gorenstein projective if there is an
acyclic complex

PM : · · · → P1 → P0 → P 0 → P 1 → · · ·
of objects in proj(A) such that M ∼= cok(P1 → P0) and the complex HomA(PM , P

′) is still
acyclic for each module P ′ in proj(A). Denote by gpr(A) the full subcategory of mod(A)
formed by the Gorenstein projective modules. In the situation described above we call PM
a complete projective resolution of M .

Notice that every finitely generated projective A-module P lies in gpr(A), since we may
take its complete resolution as · · · → 0→ P

∼−→ P → 0→ · · · .
Lemma 26. The category gpr(A) is a Frobenius category whose subcategory of projective–
injective objects is proj(A), the category of finitely-generated projective A-modules.

Proof. By [3, Proposition 5.1] the category gpr(A) is an extension-closed subcategory of
Mod(A) and thus, it is an exact category. Let P and P ′ be finitely-generated projective
A-modules. A complex of the form (· · · → 0 → P = P → 0 → · · · ) is acyclic and
remains acyclic after applying the functor Hom(?, P ′). Therefore proj(A) identifies with the
subcategory of projective objects of gpr(A). LetM be a module in gpr(A) and PM = (· · · →
P1 → P0 → P 0 → P 1 → · · · ) a complete resolution of M . Since the complex Hom(PM , P )
is acyclic, we have that Ext1A(M,P ) = 0. Therefore P is also injective in gpr(A). The
sequences 0 → Z−1(PM ) → P0 → M → 0 and 0 → M → P 0 → Z1(PM ) → 0 are short
exact sequences of mod(P) which lie in gpr(P). Therefore gpr(A) has enough projectives
and enough injectives. Moreover each injective object in gpr(A) must be projective too.
This completes the proof. �

Definition 27. Let V be a subcategory of A. Then the assignment

X 7→ A(?, X)|V
induces a functor A → Mod(V), which we call the restricted Yoneda functor.

Lemma 28. Let E be an exact category and let P be its full subcategory of projective objects.
Let 0→ A→ B → C → 0 be an exact sequence in E. Then the induced sequence

0 // E(?, A)|P // E(?, B)|P // E(?, C)|P // 0
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is exact in Mod(P).

Proof. This follows from the fact that E(P, ?) is exact for every P ∈ P. �

Corollary 29. Suppose E is a Frobenius category. Then the essential image of the restricted
Yoneda functor E → Mod(P) is contained in gpr(P).

Proof. It follows from Lemma 28 that the complete resolution

· · · // P1
//

  AAAAAAAA P0
//

��???????? P 0 //

  AAAAAAAA P 1 //

!!CCCCCCCCCC · · ·

· · ·

=={{{{{{{{{
X1

>>~~~~~~~~
X

??~~~~~~~~
X1

>>}}}}}}}}
· · ·

obtained by splicing the admissible short exact sequences 0 → Xi+1 → Pi → Xi → 0 and
0→ Xi → P i → Xi+1 → 0 for i ≥ 0 and X0 = X = X0 is sent to the complete resolution

(?, P1) //

··· $$IIIIIIIII
(?, P0) //

$$HHHHHHHHH
(?, P 0) //

$$JJJJJJJJJ
(?, P 1)

(?, X1)

::uuuuuuuuu
(?, X)

::uuuuuuuuu
(?, X1)

···

::uuuuuuuuu

where we abbreviate E(?, ?)|P by (?, ?). The claim follows easily. �

The following theorem is a version of [8, Theorem 4.2] that can be deduced from Lemma 28
and Corollary 29. It allows us to think of E as a full exact subcategory of gpr(P).

Theorem 30. The restricted Yoneda functor E → gpr(P) is full and faithful. Moreover,
its essential image is an exact-closed subcategory of gpr(P).

3.2. The ambient Frobenius category for the orbit category. Suppose that E is a
essentially small Frobenius category endowed with an exact automorphism F : E → E . Let
p : E → E/F be the natural projection. It induces a pair of adjoint functors

Mod(E)

π

��
Mod(E/F ),

p∗

OO

where p∗ is the restriction functor and its left adjoint π is the extension of p to Mod(A)
(cf. [26, Lemma 2.4]). It is clear that the full subcategory of E/F defined by the objects in
P is equivalent to P/F . Therefore, we will consider P/F as a full subcategory of E/F .

Theorem 31. The restricted Yoneda functor E/F → Mod(P/F ) is full and faithful, its
essential image is contained in gpr(P/F ) and there is a commutative diagram

E �
� //

p

��

gpr(P)

π|
��

E/F �
� // gpr(P/F ),

where π| denotes is the restriction of π to gpr(P).

Recall that Ac(P)dg is the canonical dg enhancement of E (see Example 9). Let F̃ :
Ac(P)dg → Ac(P)dg be the dg functor given by F componentwise and let F : E → E be the
automorphism induced by F on E . The following is a key result to prove our main theorem.
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Theorem 32. Suppose that E/F is triangulated with respect to (Ac(P)dg,MF̃
). Then there

is full and faithful triangulated functor E/F → gpr(P/F ) which makes the following diagram
commutative up to isomorphism

E �
� //

p

��

gpr(P)

π

��
E/F �

� // gpr(P/F ).

Remark 33. Theorem 31 and Theorem 32 can be stated for completed orbit categories.
The statements and the proofs in both settings are essentially the same. In section 6 we
will give a proof of these theorems for completed orbit categories cf. Corollary 40 and
Remark 37. For this reason, we will omit the proofs of these statements.

4. Completed orbit categories

Let k be a field and A an essentially small additive category. Let F : A → A be an
automorphism of A such that for all objects X, Y of A, the space A(X,F l(Y )) vanishes
for all integers l � 0 (whenever we make reference to completed orbit categories we will
implicitly assume this condition). We define the completed orbit category A /̂F as the
category whose objects are the same as those of A and with morphism spaces

(4.1) A/̂F (X,Y ) =
∏
l∈Z
A(X,F l(Y )).

Notice that the vanishing condition imposed on the spaces A(X,F l(Y )) ensures that the
composition in A/̂F defined as for the usual orbit category in (2.2) is a well-defined opera-
tion. Clearly, the category A/̂F is k-linear and essentially small. Let p : A → A/̂F be the
natural projection. As before, p induces a pair of adjoint functors

Mod(A)

π
��

Mod(A/̂F ),

p∗

OO

where p∗ is the restriction functor and its left adjoint π takes a projective module A(?, X)

to the projective module A/̂F (?, p(X)). We denote by F∗ the automorphismM 7→M ◦F−1
of Mod(A) induced by F .

Lemma 34. Let M be a finitely presented A-module. Then
(i) we have a canonical isomorphism

p∗π(M)
∼ //
∏
l∈Z
F l∗(M),

(ii) let L be an A-module admitting a resolution · · · → P1 → P0 → L → 0 by finitely-
generated projective A-modules Pi. Then the complex

· · · // π(P1) // π(P0) // π(L) // 0

is a resolution of π(L) by finitely-generated projective A/̂F -modules,



ON FROBENIUS (COMPLETED) ORBIT CATEGORIES 11

(iii) for each A-module L admitting a resolution by finitely-generated projective A-modules,
there are canonical isomorphisms

Exti
Mod(A /̂F )

(π(L), π(M)) ∼=
∏
l∈Z

ExtiMod(A)(L,F
l
∗(M))

for all i ≥ 0,
(iv) if E is an exact subcategory of mod(A) stable under the action of F , then we have

a square commutative up to isomorphism

E �
� //

p
��

Mod(A)

π
��

E /̂F �
� // Mod(A/̂F )

with fully faithful horizontal arrows.

Proof. (i) Since π(A(?, X)) = A/̂F (?, p(X)) =
∏
l∈Z F

l
∗(A(?, X)), we have that p∗π(P ) =∏

l∈Z F
l
∗(P ) for all projective modules of finite type. Since p∗π is right exact, we have

(4.2) p∗π(M) =
∏
l∈Z

F l∗(M)

for all M in mod(A).
(ii) By (i) the complex · · · → p∗π(P1) → p∗π(P0) → p∗π(L) → 0 is exact and for all

l ≥ 0, π(Pl) is a finitely-generated projective A /̂F -module. Since p∗ is the restriction
functor, the claim follows.

(iii) We have the following isomorphisms

HomA /̂F (π(L), π(M)) ∼= HomA(L, p∗π(M))

∼= HomA(L,
∏
l∈Z

F l∗(M))(4.3)

∼=
∏
l∈Z

HomA(L,F l∗(M)).

By (ii), the complex · · · → π(P1) → π(P0) → πL → 0 is a projective resolution of π(L).
After applying the functor HomA /̂F (?, π(M)) to this resolution and the last isomorphism
in (4.3) the claim follows.
(iv) This is immediate from (4.3). �

Lemma 35. (i) If X is an object of A such that A(X,X) is local and A(X,F l(X))

vanishes for all l < 0, then A/̂F (p(X), p(X)) is local.
(ii) If A is a Krull-Schmidt category such that for each indecomposable object X, the

ring A(X,X) is local and A(X,F l(X)) vanishes for all l < 0, then A /̂F is a
Krull-Schmidt category whose indecomposables are the images of those of A.

Proof. (i) We can easily see that (fi) ∈ A/̂F (p(X), p(X)) is non-invertible if and only if
f0 : X → X is non-invertible. This shows that A/̂F (p(X), p(X)) is local.

(ii) By part (i), the image p(X) of each indecomposable X of A is indecomposable
with local endomorphism ring. Hence, since each object of A decomposes into a sum of
indecomposables, the same holds for A/̂F . �

Suppose that A has enough projectives and let P denote its full subcategory of projective
objects. The essential image of A under p is canonically identified with P/̂F . Let 〈P/̂F 〉 be
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the ideal of morphisms of A/̂F which factor through P/̂F . Denote by F the automorphism
in A induced by F . The canonical projection p : A → A/̂F induces an F -invariant functor
A −→ A /̂F/〈P /̂F 〉. By the universal property of orbit categories we obtain a functor
ψ : E/F −→ E /̂F/〈P /̂F 〉.

Proposition 36. The functor ψ is faithful. Moreover, if for all objects X, Y of A we have
that A(X,F l(Y )) = 0 for l� 0, then ψ is fully.

Proof. For simplicity, along the proof we will denote A/̂F/〈P /̂F 〉 by A/̂F . Let P f→ Y be
a projective cover in A. Then the morphism

F l(P )
F l(f) // F l(Y )

is a projective cover for all l ∈ Z. In particular, every morphism p(P ′) → p(Y ) in A/̂F
with P ′ ∈ P can be factorized through p(f). Moreover, since p(f) is concentrated in one
degree we obtain the following isomorphisms

A/̂F (p(X), p(Y )) ∼= cok
(
A/̂F (p(X), p(P ))→ A/̂F (p(X), p(Y ))

)
∼= cok

(∏
l∈Z
A(X,F l(P ))→

∏
l∈Z
A(X,F l(Y ))

)
∼=
∏
l∈Z

(
cok

(
A(X,F l(P ))→ A(X,F l(Y )

))
∼=
∏
l∈Z
A(X,F l(Y ))

= A/̂F (X,Y ).

We consider A/F as a subcategory of A/̂F . One checks that, up to equivalence, the functor
A/F → A/̂F is given by this chain of isomorphisms at the level of morphisms. Both claims
follow. �

Remark 37. Lemma 34 and Proposition 36 can be stated for usual orbit categories. The
statements and the proofs are essentially the same. Notice that for usual orbit categories
the functor ψ : A/F −→ A/F/〈P/F 〉 is always full and faithful.

5. Comparison of the triangulated structures

We use the universal property of dg orbit categories to construct a triangulated functor
which will be crucial in the proof of the main theorem. Let E be a Frobenius category
endowed with an exact automorphism F : E → E . The restriction of F to P induces an
automorphism of P. We denote by F̃ : Ac(P)dg → Ac(P)dg the dg functor given by F
componentwise. Notice that M

F̃
induces a triangle functor on E which is equivalent to F .

We identify E with an exact subcategory of Mod(P) via the restricted Yoneda embedding.
The adjoint functors π : Mod(P) � Mod(P /̂F ) : p∗ induce a pair of adjoint functors

Cdg(P)

π̃
��

Cdg(P /̂F ).

p̃∗

OO
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defined componentwise. We consider Ac(proj(P))dg (resp. Ac(proj(P /̂F ))dg) as a full
subcategory of Cdg(P) (resp. Cdg(P /̂F )), see Example 9 and Notation 24.

Lemma 38. The functor π̃ restricts to a functor

π̃ : Ac(proj(P))dg → Ac(proj(P /̂F ))dg.

Proof. Let P · : · · · → P−1 → P0 → P1 → · · · be a complex in Ac(proj(P))dg. Then the
complex π̃(P ·) = · · · → π(P1)→ π(P0)→ π(P−1)→ · · · is a complex of finitely-generated
projective P /̂F -modules. For each i ∈ Z consider the truncated complex

· · · → π(Pi−1)→ π(Pi)→M → 0,

i.e. M = cok(π(Pi−1) → π(Pi)). It follows from Lemma 34 that this complex is acyclic.
Since i ∈ Z is arbitrary then π(P ·) is acyclic. �

Lemma 39. The functor π : Mod(P) → Mod(P /̂F ) restricts to a functor π : gpr(P) →
gpr(P /̂F ).

Proof. Let M be a module of gpr(P). In particular, there are objects (Pi)i∈Z of P and an
acyclic complex

P · : · · · → P(?, Pi)→ P(?, Pi−1)→ · · ·
such that M ∼= Z0(P ·). By Lemma 38, the complex

π̃(P ·) = · · · → P(?, p(Pi))→ P(?, p(Pi−1))→ · · ·

is acyclic and π(M) ∼= Z0(π(P ·)). If X and Y are arbitrary objects of P then, by part (i)
of Lemma 34 and the Yoneda lemma, we obtain an isomorphism

Hom(P /̂F (?, p(X)),P /̂F (?, p(Y ))) ∼=
∏
i

P(X,F l∗(Y )).

It follows that Hom(π(P ·), P ′) is still acyclic for each module P ′ in proj(P /̂F ). �

The functor π : gpr(P)→ gpr(P/̂F ) preserves projectives, therefore it induces a functor
π : gpr(P)→ gpr(P /̂F ).

Corollary 40. There is a square commutative up to isomorphism

E //

p

��

gpr(P)

π
��

E/F // gpr(P /̂F ),

with faithful horizontal arrows. If for all X and Y we have that E(X,F l(Y )) = 0 for l� 0,
then E/F → gpr(P /̂F ) is fully faithful.

Proof. By Lemma 34 and Lemma 39 there is a commutative diagram

E �
� //

p
��

gpr(P)

π
��

E /̂F �
� // gpr(P /̂F ).
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with faithful horizontal arrows. The functor E /̂F ↪→ gpr(P /̂F ) identifies P /̂F with
proj(P /̂F ). Therefore there is a commutative diagram

E //

��

gpr(P)

π
��

E /̂F/〈P /̂F 〉 // gpr(P /̂F ).

The claim follows from Proposition 36. �

The functor E/F → gpr(P /̂F ) corresponds to the F -invariant functor G given by the
composition

G : E ↪→ gpr(P)→ gpr(P /̂F ).

We denote by G̃ the composition

G̃ : Ac(P)dg // Ac(proj(P))dg
π̃ // Ac(proj(P /̂F ))dg,

where the first arrow is given by applying the Yoneda functor P ↪→ proj(P) componentwise.
Notice that Ac(proj(P))dg is a dg enhancement of gpr(P) and that H0(G̃) = G.

Theorem 41. Suppose that E/F is triangulated with respect to (Ac(P)dg,MF̃
). Then the

functor E/F → gpr(P /̂F ) is triangulated.

Proof. It is enough to prove that there is a quasi-isomorphism of quasi-functors φ : G̃ →
G̃M

F̃
such that (G̃, φ) ∈ eff(Ac(P)dg,MF̃

,Ac(proj(P /̂F )). In other words, we have to
prove that for all complexes P · ∈ Ac(P)dg and Q· ∈ Ac(proj(P /̂F ))dg, there is a quasi-
isomorphism

Hom(Q·, G̃(P ·)) // Hom(Q·, G̃F̃ (P ·)).

The complex P · is of the form

· · · −→ Pi −→ Pi+1 −→ · · · ,

where Pi is object in P for each i ∈ Z. Then the complex G̃(P ·) is given by

· · · −→ P /̂F (?, p(Pi)) −→ P /̂F (?, p(Pi+1)) −→ · · ·

and the complex G̃F̃ (P ·) is given by

· · · −→ P /̂F (?, pF (Pi)) −→ P /̂F (?, pF (Pi+1)) −→ · · · .

For each i ∈ Z the objects Pi and F (Pi) are isomorphic in P /̂F . Therefore there is an
isomorphism P /̂F (?, p(Pi)) → P /̂F (?, pF (Pi)). In particular, the complexes G̃(P ·) and
G̃F̃ (P ·) are isomorphic. The claim follows. �

6. The main theorems

We keep the notation of the preceding section and suppose that E/F is equivalent to its
triangulated hull with respect to (Ac(P)dg,MF̃

).

Theorem 42. Suppose that E is Krull-Schmidt such that
• for each indecomposable object X, the ring E(X,X) is local and E(X,F l(X)) van-
ishes for all l < 0,
• for every pair of objects Y and Z, the space E(Y, F l(Z)) vanishes for l� 0.
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Then E /̂F admits the structure of a Krull-Schmidt Frobenius category which makes the
canonical projection E → E /̂F exact and whose stable category is triangle equivalent to
E/F .

Proof. By part (iv) of Lemma 34, Lemma 39 and Corollary 40 there is a commutative
diagram

E

p
��

� � // gpr(P)

π
��

E /̂F

��

� � // gpr(P /̂F )

��

E/F // gpr(P /̂F ).

The first two horizontal arrows are full and faithful. So we may think of E (resp. E/̂F ) as a
full subcategory of gpr(P) (resp. gpr(P/̂F )). In particular, we identify p with the restriction
of π to E . We first show that E /̂F is an extension-closed subcategory of gpr(P /̂F ). Let
0 → π(X) → E → π(Y ) → 0 be an extension in gpr(P /̂F ) between two objects of E /̂F .
By part (iii) of Lemma 34, we have an isomorphism

Ext1
gpr(P /̂F )

(π(Y ), π(X)) ∼=
∏
l∈Z

Ext1gpr(P)(Y, F
l
∗(X))

∼=
∏
l∈Z

Ext1E(Y, F
l(X)).

Since E(X,F l(Y )) = 0 for l � 0 the categories E /̂F and E/F are isomorphic. In par-
ticular, there is an isomorphisms

∏
l∈Z

Ext1E(Y, F
l(X)) ∼= Ext1E/F (Y, F l(X)) and therefore, an

isomorphism

(6.1) Ext1
gpr(P /̂F )

(π(Y ), π(X)) ∼= Ext1E/F (Y,X).

Let
X // E′ // Y // ΣX

be the triangle in E/F corresponding to the extension 0→ π(X)→ E → π(Y )→ 0 under
(6.1). By Theorem 41, there is a commutative diagram in gpr(P /̂F )

π(X) //

∼=
��

E

a

��

// π(Y ) //

∼=
��

Σπ(X)

∼=
��

π(X) // π(E′) // π(Y ) // Σπ(X).

The first row corresponds to the triangle associated to the extension 0 → π(X) → E →
π(Y ) → 0, the second row is the image of the triangle X → E′ → Y → ΣX under the
triangle functor E/F → gpr(P /̂F ). Notice that the square on the right commutes by the
choice of X → E′ → Y → ΣX. Therefore we obtain the arrow E

a→ π(E′) by the axiom of
triangulated categories. The Yoneda functor sends each of the rows of this diagram to a long
exact sequence (to the left). We apply the five lemma to conclude that a is an isomorphism.
Thus, π(E) is a direct factor of the sum of E′ with a finitely-generated projective module.
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By Lemma 35, we have that E /̂F is Krull-Schmidt. In particular, it has split idempotents
and it follows that π(E) lies in E /̂F . Hence E /̂F is stable under extensions in gpr(P /̂F ).
Notice that the projective-injective objects of gpr(P /̂F ) belong to E /̂F and are precisely
the image of the projectives of E under the right exact functor π. Therefore E /̂F is an
exact category with enough projectives and such that projectives are injectives. Since E/̂F
is closed under Σ in gpr(P/̂F ) it also has enough injectives. Now it is easy to see that E /̂F
is triangle equivalent to E/F . The exactness of the canonical functor E → E/̂F follows from
the fact that the induced functor E → E/F is triangulated. �

We can use Theorem 31, Theorem 32 and Remark 37 to prove the following theorem.
The proof is essentially the same as the proof of Theorem 42.

Theorem 43. Suppose that E/F has split idempotents. Then E/F admits the structure of
a Frobenius category which makes the canonical projection E → E/F exact and whose stable
category is triangle equivalent to E/F .

Remark 44. If we want to use the results in [21] to determine if E/F is triangulated we
may assume that E is Ext-finite, since Keller considers Hom-finite triangulated categories.

Remark 45. We don not have a criterion to determine if E/F has split idempotents.

7. Applications to cluster algebras (sketch)

In this section we use the theory of Nakajima categories introduced in [24]. The reader
is referred to this article for some of the definitions and relevant background. We can use
Theorem 42 to obtain explicit categorifications of families of finite-type cluster algebras
with coefficients. In particular, we obtain a categorification of all skew-symmetric finite-
type cluster algebras with universal coefficients.

7.1. Nakajima categories. Let Q be a finite and acyclic quiver. The repetition quiver
(cf. [31]) ZQ is the quiver obtained from Q as follows

• the set of vertices of ZQ is (ZQ)0 = Q0 × Z.
• For each arrow α : i −→ j of Q and each p ∈ Z, ZQ has the arrows

(α, p) : (i, p) // (j, p) and σ(α, p) : (j, p− 1) // (i, p).

• ZQ has no more arrows than the ones described above.
There is a bijection on the set of arrows σ : (ZQ)1 → (ZQ)1 given by

σ(β) =

{
σ(α, p) if β = (α, p),

(α, p− 1) if β = σ(α, p).

Let τ : ZQ→ ZQ be the automorphism of ZQ given by the translation by one unit :

τ(i, p) = (i, p− 1) and τ(β) = σ2(β)

for each vertex (i, p) and each arrow β of ZQ.
Let k be a field. Following [14] and [30], we define the mesh category k(ZQ) to be the

quotient of the path category kZQ by the ideal generated by the mesh relators, i.e. the
k-category whose objects are the vertices of ZQ and whose morphism space from a to b is
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the space of all k-linear combinations of paths from a to b modulo the subspace spanned
by all elements urxv, where u and v are paths and

rx =
∑
β:y→x

βσ(β) :

y1
β1

��;;;;;;

τ(x)

σ(β1)
>>|||||

σ(βs)   BBBBBB

... x

ys
βs

AA������

is the mesh relator associated with a vertex x of ZQ. Here the sum runs over all arrows
β : y → x of ZQ.

Definition 46. The framed quiver Q̃ associated to Q is the quiver obtained from Q by
adding, for each vertex i, a new vertex i′ and a new arrow i → i′. We call the vertices in
(ZQ̃)0 of the form (i′, n), i ∈ Q0, n ∈ Z, frozen vertices. The regular Nakajima category
R associated to Q is the quotient of the path category kZQ̃ by the ideal generated by the
mesh relators associated to the non-frozen vertices. The singular Nakajima category S is
the full subcategory of R whose objects are the frozen vertices.

Remark 47. Note that there is a bijection σ : (ZQ̃)0 → (ZQ̃)0 given by σ : (i, n) 7→
(i′, n− 1) and (i′, n) 7→ (i, n) for i a vertex of Q and n an integer.

Assumption 48. From now on we let Q be an orientation of a simply laced Dynkin
diagram ∆ and denote the bounded derived category of mod(kQ) by DbQ.

Definition 49. Let C be a subset of (ZQ)0. Denote by RC the quotient of R by the ideal
generated by the identities of the frozen vertices not belonging to σ−1(C) and by SC its
full subcategory formed by the vertices in σ−1(C). We call C an admissible configuration
of ZQ if the sequences

(7.1) 0→ RC(?, x)→
⊕
x→y
RC(?, y) and 0→ RC(x, ?)→

⊕
y→x
RC(y, ?)

are exact, where the sums range over all arrows of ZQ̃ whose source (respectively, target) is
x. We denote by ZQ̃C the quiver obtained from ZQ̃ by removing the vertices not belonging
to σ−1(C). We refer the reader to Section 3.3 of [24] for an account of sufficient conditions
on C in which (7.1) holds.

Theorem 50. ([24]) Let C be an admissible configuration of ZQ. Then
(i) the restriction functor ModRC → ModSC induces an equivalence between the full

subcategory of finitely generated projective RC-modules proj(RC) and the category
gpr(SC). In particular, it yields an isomorphism of ZQ̃C onto the Auslander-
Reiten quiver of gpr(SC) so that the vertices of σ−1(C) correspond to the projective–
injective objects,

(ii) there is a triangle equivalence Φ : gpr(SC)→ DbQ.

7.2. Categorification of cluster algebras with coefficients. Let τ : DbQ → DbQ be the
Auslander-Reiten translation and Σ : DbQ → DbQ be the suspension functor of DbQ. The
cluster category CQ was introduced in [6] and is defined as the orbit category

CQ = DbQ/Σ ◦ τ−1.
The category CQ is triangulated. Its triangulated structure comes from the dg category
Cb(proj kQ)dg.
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We denote Σ ◦ τ−1 by FD. By a well know result of Happel [15], we know that the
Auslander-Reiten quiver of the category DbQ is canonically isomorphic to ZQ. Therefore,
FD induces an automorphism of translation quivers F : ZQ → ZQ. Let C ⊂ ZQ be an
admissible configuration which is invariant under F . By Theorem 50, F induces a functor

F∗ : gpr(SC)→ gpr(SC)

which is in fact exact. Theorem 42 is fundamental to prove the following results.

Lemma 51. The completed orbit category gpr(S)/̂F∗ admits the structure of a Frobenius
category whose stable category is triangle equivalent to CQ.

Theorem 52. (i) Let C ⊂ ZQ be an admissible configuration which is invariant under F .
Then gpr(SC)/̂F is a 2-Calabi-Yau realization (in the sense of [5]) of a cluster algebra with
coefficients of type ∆,

(ii) if C = ZQ then gpr(SC)/̂F is a 2-Calabi-Yau realization of the cluster algebra with
universal coefficients of type ∆.

The proofs of Lemma 51 and Theorem 52, the details of this section and further appli-
cations will be given in a forthcoming paper [27].
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