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DIRECTIONAL RECURRENCE AND DIRECTIONAL RIGIDITY

FOR INFINITE MEASURE PRESERVING ACTIONS

OF NILPOTENT LATTICES

Alexandre I. Danilenko

Abstract. Let Γ be a lattice in a simply connected nilpotent Lie group G. Given an
infinite measure preserving action T of Γ and a “direction” in G (i.e. an element θ of

the projective space P (g) of the Lie algebra g of G), some notions of recurrence and
rigidity for T along θ are introduced. It is shown that the set of recurrent directions

R(T ) and the set of rigid directions for T are both Gδ . In the case where G = R
d

and Γ = Z
d, we prove that (a) for each Gδ-subset ∆ of P (g) and a countable subset

D ⊂ ∆, there is a rank-one action T such that D ⊂ R(T ) ⊂ ∆ and (b) R(T ) = P (g)

for a generic infinite measure preserving action T of Γ. This answers partly a question

from a recent paper by A. Johnson and A. Şahin. Some applications to the directional
entropy of Poisson actions are discussed. In the case where G is the Heisenberg group

H3(R) and Γ = H3(Z), a rank-one Γ-action T is constructed for which R(T ) is not
invariant under the natural “adjoint” G-action.

0. Introduction

Subdynamics is the study of the relationship between the dynamical properties
of the action of a group G, and those of the action restricted to subgroups of G.
In this paper we consider measure preserving actions defined on σ-finite standard
measure spaces. In the 1980’s Milnor generalized the study of sub-dynamics by
defining a concept of directional entropy of a Zd-action in every direction, including
the irrational directions for which there is no associated subgroup action [Mi]. To
this end he considered Zd as a lattice in Rd and he exploited the geometry of mutual
position of this lattice and the 1-dimensional subspaces (i.e. directions) in Rd. For
a detailed account on the directional entropy of Z2-actions and some applications
to topological dynamics (expansive subdynamics) we refer to [Pa] and references
therein. In a recent paper [JoSa], Johnson and Şahin applied the “directional
approach” to study recurrence properties of infinite measure preserving Z2-actions.
They were motivated by Feldman’s proof of the ratio ergodic theorem [Fel]. In
particular, they showed that for each such an action, say T , the set R(T ) of all
recurrent directions of T is aGδ-subset of the circle T. They also exhibited examples
of rank-one actions T and T ′ with R(T ) = ∅ and T 6= R(T ′) ⊃ {eπiq | q ∈ Q}.
They raised a question: which Gδ-subsets of T are realizable as recurrence sets, i.e.
appear as R(T ) for some T? We answer this question in part.

— We show that each countable Gδ is a recurrence set.
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— More generally, for each Gδ-subset ∆ of the projective space P (Rd) and a
countable subset D of ∆, there is a rank-one infinite measure preserving
free Zd-action T such that D ⊂ R(T ) ⊂ ∆ (Theorem 4.2).

— We also prove that a generic infinite measure preserving action T of Rd is
recurrent in every direction, i.e. R(T ) = P (Rd) (Theorem 5.6).

In parallel to this we introduce a concept of directional rigidity for Zd-actions and
obtain similar results for realization of Gδ-subsets of P (Rd) as rigidity sets.

As a byproduct, we obtain some examples of Poisson Rd-actions with the follow-
ing entropy properties:

— There is a Poisson action V = (Vg)g∈Rd of 0 entropy such that for each

non-zero g ∈ Rd, the transformation Vg is Bernoullian of infinite entropy
(Proposition 5.7).

— For each Gδ-subset ∆ ⊂ P (Rd) and a countable subset D of ∆, there is
a Poisson action V = (Vg)g∈Rd of 0 entropy such that for each nonzero
g 6∈

⋃
θ∈∆ θ, the transformation Vg is Bernoulli of infinite entropy and for

each g ∈
⋃

θ∈D θ, the transformation Vg is rigid and hence of 0 entropy
(Proposition 5.8).

In this connection we recall the main result from [FeKa]: there is a Gaussian action
V = (Vg)g∈Z2 of 0 entropy such that every transformation Vg, 0 6= g ∈ Z2, is
Bernoullian.

We extend the concepts of directional recurrence and directional rigidity to ac-
tions of lattices Γ in simply connected nilpotent Lie groups G. By a “direction”
we now mean a 1-parameter subgroup in G. Thus the set of all directions is the
projective space P (g), where g denotes the Lie algebra of G. As in the Abelian case
(considered originally in [JoSa]), we show that

— Given a measure preserving action T of Γ, the set R(T ) of all recurrent
directions of T is a Gδ in P (g) (Theorems 2.5 and 2.6).

Since G acts on P (g) via the adjoint representation, we define another invariant
ER(T ) of even recurrence for T as the largest G-invariant subset of R(T ).

— Some examples of rank-one actions T of the Heisenberg group H3(Z) are
constructed for which R(T ) is either empty (Theorem 6.1) or countably
infinite (Theorem 6.2) or uncountable (Theorem 6.3)1.

— An example of T is given such that ER(T ) 6= R(T ) (Theorem 6.2).

Given an action T of Γ, we can define a natural analog of the “suspension flow”

corresponding to T . This is the induced (in the sense of Mackey) action T̃ of

G associated with T . Since R(T ) coincides with the set R(T̃ ) of conservative R-

subactions of T̃ in the Abelian case [JoSa], it is natural to conjecture that ER(T ) =

R(T̃ ) in the genaral case. It remains an open problem. However the analogous claim
for the rigidity sets does not hold in the non-Abelian case (Remark 2.2).

The outline of the paper is as follows. In Section 1 we introduce the main con-
cepts and invariants related to the directional recurrence and rigidity. In Section 2
we discuss relationship between the directional recurrence and rigidity of an ac-
tion of a lattice in a nilpotent Lie group and similar properties of the suspension
flow, i.e. the induced action of the underlying Lie group. It is also shown there

1We consider H3(Z) as a lattice in the 3-dimensional real Heisenberg group H3(R).
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that the sets of recurrent and rigid directions are both Gδ. In Section 3 we re-
call the (C, F )-construction of rank-one actions and provide a sufficient condition
for directions to be recurrent in terms of the (C, F )-parameters. This condition is
used in Section 4 to construct rank-one actions of Zd with various sets of recurrent
directions. In Section 5 we prove that a generic Zd-action is recurrent in every
direction. This section contains also some applications to the directional entropy
of Poisson actions. In Section 6 we study directional recurrence of infinite measure
preserving actions of H3(Z). The final Section 7 contains a list of open problems
and concluding remarks.

Acknowledgements. I thank T. Meyerovitch and E. Roy for useful discussions
concerning the entropy of Poisson suspensions.

1. Recurrence, even recurrence, rigidity

and even rigidity along directions

Let G be a simply connected nilpotent Lie group, g the Lie algebra of G and
exp : g → G the exponential map. We note that exp is a diffeomorphism of g onto
G [Mal]. Let P (g) denote the set of lines (i.e. 1-dimensional subspaces) in g. We
endow P (g) with the usual topology of projective space. Then P (g) is a compact
manifold. The adjoint G-action on g induces a smooth G-action on P (g). We denote
this action by the symbol “·”. Given v ∈ g\{0}, we let exp(v) := {exp(tv) | t ∈ R}.
Then exp(v) is a closed 1-dimensional subgroup of G. We note that if w = tv for
some t ∈ R \ {0} then exp(w) = exp(v). Hence for each line θ ∈ P (g), the notation
exp(θ) is well defined. Moreover, g exp(θ)g−1 = exp(g · θ) for each g ∈ G.

Let R = (Rg)g∈G be a measure preserving action of G on a σ-finite standard
measure space (Y,Y, ν).

Definition 1.1.

(i) We recall that R is called conservative if for each subset B ∈ Y, ν(B) > 0,
and a compact K ⊂ G, there is an element g ∈ G \K, such that

ν(B ∩RgB) > 0.

(ii) We call R recurrent along a line θ ∈ P (g) if the flow (exp(tv))t∈R is conser-
vative for some (and hence for each) v ∈ θ \ {0}.

(iii) We recall that R is called rigid if there is a sequence (gn)n≥1 of elements in
G such that gn → ∞ and

lim
n→∞

ν(B ∩RgnB) = µ(B)

for each subset B ∈ Y of finite measure.
(iv) We call R rigid along a line θ ∈ P (g) if the flow (exp(tv))t∈R is rigid for

some (and hence for each) v ∈ θ \ {0}.

Denote by R(R) the set of all θ ∈ P (g) such that R is recurrent along θ. Denote
by Ri(R) the set of all θ ∈ P (g) such that R is rigid along θ. Of course, Ri(R) ⊂
R(R). It is easy to see that if a G-action R′ is isomorphic to R then R(R′) = R(R)
and Ri(R′) = Ri(R).
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Proposition 1.2. The sets R(R) and Ri(R) are G-invariant.

Proof. Let θ ∈ R(R). Fix an element g0 ∈ G. Take a subset B ⊂ Y of positive
measure and a compact K ⊂ G. Since R is recurrent along θ, there is g ∈ exp(θ)
such that g 6∈ K such that ν(B ∩RgB) > 0. Hence

0 < ν(Rg0B ∩Rg0RgB) = ν(Rg0B ∩Rg0gg
−1

0

Rg0B).

Since g0gg
−1
0 ∈ exp(g0 ·θ) and g0gg

−1
0 6∈ g0Kg−1

0 , it follows that the flow (Rg)g∈g0·θ

is conservative. Thus R(R) is G-invariant. In a similar way we can verify that
Ri(R) is G-invariant. �

From now on we fix a lattice Γ in G. We recall that there exists a lattice in
G if and only if the structural constants of g are all rational [Mal]. Moreover,
every lattice in G is uniform [Mal], i.e. co-compact. We fix a right-invariant metric
dist(., .) on G compatible with the topology.

Let T = (Tγ)γ∈Γ be a measure preserving action of Γ on a σ-finite standard
measure space (X,B, µ).

Definition 1.3.

(i) We call T recurrent along a line θ ∈ P (g) if for each ǫ > 0 and every subset
A ∈ B, µ(A) > 0, there are an element γ ∈ Γ \ {1Γ} and an element
g ∈ exp(θ) such that dist(γ, g) < ǫ and µ(A ∩ TγA) > 0.

(ii) We call T evenly recurrent along a line θ ∈ P (g) if T is recurrent along
every line from the G-orbit of θ.

(iii) We call T rigid along a line θ ∈ P (g) if there is a sequence (γn)n≥1 of
elements in Γ such that limn→∞ infg∈exp(θ) dist(γn, g) = 0 and

lim
n→∞

µ(A ∩ Tγn
A) = µ(A)

for each subset A ∈ B with µ(A) < ∞2.
(iv) We call T evenly rigid along a line θ ∈ P (g) if T is rigid along every line

from the G-orbit of θ.

We denote by R(T ) the set of all θ ∈ P (g) such that T is recurrent along θ. We
denote by Ri(T ) the set of all θ ∈ P (g) such that T is rigid along θ. In a similar
way, we denote by ER(T ) and ERi(T ) the set of all θ ∈ P (g) such that T is evenly
recurrent along them and evenly rigid along them respectively.

Of course, R(T ) ⊃ ER(T ), Ri(T ) ⊃ ERi(T ), R(T ) ⊃ Ri(T ) and ER(T ) ⊃
ERi(T ). For G Abelian, R(T ) = ER(T ) and Ri(T ) = ERi(T ). However, in
general R(T ) 6= ER(T ) (see Theorem 6.2 below) and Ri(T ) 6= ERi(T ).

Remark 1.4.

(i) It is easy to see that if θ is “rational”, i.e. the intersection Γ ∩ exp(θ) is
nontrivial, say there is γ0 6= 1Γ such that Γ ∩ exp(θ) = {γn

0 | n ∈ Z}, then
θ is recurrent if and only if γ0 (i.e. the action of Z generated by γ0) is
conservative. In a similar way, if θ is rigid if and only if γ0 is rigid.

(ii) If θ ∈ R(T ) then we have {γ · θ | γ ∈ Γ} ⊂ R(T ). In a similar way, if
θ ∈ Ri(T ) then we have {γ · θ | γ ∈ Γ} ⊂ Ri(T ). This can be shown in a
similar way as in Proposition 1.2 (plus the fact that diet is right-invariant).

2This means that Tγn → Id as n → ∞ in the weak topology on the group of all µ-reserving

invertible transformations of X.
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Given g ∈ G and θ ∈ P (g), we denote by dist(g, exp(θ)) the distance from g to
the closed subgroup exp(θ), i.e.

dist(g, exp(θ)) := inf
h∈exp(θ)

dist(g, h) = min
h∈exp(θ)

dist(g, h).

Since in Definition 1.3(i), there is no any estimation (from below) for the ratio
µ(A∩TγA)/µ(A), the following lemma—which is equivalent to Definition 1.3(i)—is
more useful for applications.

Lemma 1.5. Let θ ∈ R(T ). Then for each ǫ > 0, a compact K ⊂ G and a subset
A ⊂ X of finite measure, there is a Borel subset A0 ⊂ A and Borel one-to-one map
R : A0 → A and a Borel map ϑ : A0 ∋ x 7→ ϑx ∈ Γ \K such that µ(A0) ≥ 0.5µ(A)
and Rx = Tϑx

x and dist(ϑx, exp(θ)) < ǫ for all x ∈ A0.

Proof. We use a standard exhaustion argument. Let

Γǫ := {γ ∈ Γ \ {1} | dist(γ, exp(θ)) < ǫ}.

Enumerate the elements of Γǫ, i.e. let Γǫ = {γn}n≥1. We now set A1 := A∩T−1
γ1

A,

B1 := Tγ1
A1, A2 := (A \ (A1 ∪ B1)) ∩ T−1

γ2
(A \ (A1 ∪ B1)), B2 := Tγ2

A2 and
so on. Then we obtain two sequences (An)n≥1 and (Bn)n≥1 of Borel subsets of
A such that Ai ∩ Aj = Bi ∩ Bj = ∅ whenever i 6= j and Tγi

Ai = Bi for all i.
We let A0 :=

⊔
i≥1 Ai and B0 :=

⊔
i≥1 Bi. It follows from Definition 1.3(i) that

µ(A \ (A0 ∪ B0)) = 0. Since µ(A0) = µ(B0), it follows that µ(A0) ≥ 0.5µ(A). It
remains to let ϑx := γi for all x ∈ Ai, i ≥ 1. �

2. Recurrence and rigidity along directions

in terms of the induced G-actions

Denote by T̃ = (T̃g)g∈G the action of G induced from T (see [Ma], [Zi]). We recall

that the space of T̃ is the product space (G/Γ ×X, λ× µ), where λ is the unique

G-invariant probability measure on the homogeneous space G/Γ. To define T̃ we
first choose a Borel cross-section s : G/Γ → G of the natural projection G → G/Γ.
Moreover, we may assume without loss of generality that s(Γ) = 1G and s is a
homeomorphism when restricted to an open neighborhood of Γ, this neighborhood
is of full measure and the measure of the boundary of the neighborhood is 0. Define
a Borel map hs : G×G/Γ → Γ by setting

hs(g, g1Γ) = s(gg1Γ)
−1gs(g1Γ).

Then hs satisfies the 1-cocycle identity, i.e. hs(g2, g1gΓ)hs(g1, gΓ) = hs(g2g1, gΓ)
for all g1, g2, g ∈ Γ. We now set for g, g1 ∈ G and x ∈ X ,

T̃g(g1Γ, x) := (gg1Γ, Ths(g,g1Γ)x).

Then (T̃g)g∈G is a measure preserving action of G on (G/Γ ×X, λ× µ). We note

that the isomorphism class of T̃ does not depend on the choice of s.
5



Theorem 2.1. Let G = Rd and Γ = Zd, d ≥ 1. Then R(T̃ ) = R(T ) and Ri(T̃ ) =
Ri(T ).

Proof. We consider the quotient space G/Γ as [0, 1)d. Given g = (g1, . . . , gd) ∈ Rd,
we let [g] = (E(g1), . . . , E(gd)) and {g} := (F (g1), . . . , F (gd)), where E(.) and
F (.) denote the integer part and the fractional part of a real. If the cross-section
s : [0, 1)d → Rd is given by the formula s(y) := y then we have hs(g, y) = [g + y]
for all g ∈ G and y ∈ [0, 1)d.

(A) We first show that Ri(T ) = Ri(T̃ ). Let θ ∈ Ri(T ). Then there are γn ∈ Γ
and tn ∈ θ such that dist(γn, tn) → 0 and Tγn

→ IdX weakly as n → ∞. We claim

that T̃tn → Id(G/Γ)×X weakly as n → ∞. Indeed, let ǫn := tn − γn. Then

(2-1) T̃tn(y, x) = ({tn + y}, T[tn+y]x) = ({ǫn + y}, Tγn
T[ǫn+y]x).

Since the Lebesgue measure of the subset Yn := {y ∈ [0, 1)d | ǫn + y ∈ [0, 1)d} goes
to 1 as n → ∞ and {ǫn + y} = y and [ǫn + y] = 0 for all y ∈ Yn, it follows that

T̃tn → Id(G/Γ)×X as n → ∞. Thus we obtain that θ ∈ Ri(T̃ ).

Conversely, let θ ∈ Ri(T̃ ). Then there are tn ∈ θ, n ∈ N, such that

(2-2) T̃tn → Id(G/Γ)×X weakly as n → ∞.

It follows from (2-1) that the sequence of transformations y 7→ {tn + y} of G/Γ
converge to IdG/Γ as n → ∞. This, in turn, implies that there is a sequence
(γn)n∈N of elements of Γ such that limn→∞ dist(tn, γn) = 0. Therefore, Lebesgue
measure of the subset {y ∈ G/Γ | [tn+y] = γn} converges to 1 as n → ∞. Now (2-1)
and (2-2) yield that Tγn

→ IdX . Hence θ ∈ Ri(T ).

(B) We now show that3 R(T ) = R(T̃ ). Take θ ∈ R(T ). Given a subset A ⊂
G/Γ × X of positive measure, a compact K ⊂ G and ǫ > 0, we find two subsets
B ⊂ X and C ⊂ G/Γ of finite positive measure such that

(2-3) (Leb× µ)(A ∩ (B × C)) > 0.99Leb(B)µ(C).

For t ∈ G, we set Bt := {y ∈ B | t + y ∈ B and [t + y] = 0}. Then we find
ǫ1 > 0 so small that Leb(Bt) > 0.5Leb(B) for each t ∈ G such that dist(t, 0) < ǫ1.
By Lemma 1.5, there are elements γ1, . . . , γl ∈ Γ, t1, . . . , tl ∈ θ \ K and pairwise
disjoint subsets C1, . . . , Cl of C such that max1≤j≤l dist(γj , tj) < min(ǫ, ǫ1), the sets

Tγ1
A1, . . . , Tγl

Cl are mutually disjoint subsets of C and µ(
⊔l

j=1 Cj) > 0.4µ(C). We

now let A′ :=
⊔l

j=1 Btj × Cj . Of course, A′ is a subset of B × C. We have

T̃tj (b, c) = ({tj + b}, Tγj
c) ⊂ B × C if b ∈ Bj , and c ∈ Cj

for each j = 1, . . . , l. Moreover, the sets T̃tj (Bj × Cj), j = 1, . . . , l, are pairwise

disjoint and (Leb × µ)(
⊔l

j=1(Bj × Cj)) > 0.2(Leb × µ)(B × C). It now follows

from (2-3) that there is j ∈ {1, . . . , l} such that (Leb×µ)(T̃tj (A∩(Bj×Cj)∩A) > 0.

Hence θ ∈ R(T̃ ).

3Though this fact was originally stated in [JoSa] we give here an alternative proof because, on

our opinion, the proof of the inclusion R(T ) ⊂ R(T̃ ) was not completed there.
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Conversely, let θ ∈ R(T̃ ). Given ǫ > 0, let Y = [1/2, 1/2 + ǫ) ⊂ G/Γ. It is
easy to see that if gY ∩ Y 6= ∅ for some g ∈ G then dist(g,Γ) < ǫ and the map
Y ∋ y 7→ [g+y] ∈ Zd is constant. Let A be a subset of X of finite positive measure.
Then there is g ∈ θ such that dist(g, 0) > 100 and

0 < (Leb× µ)((Y × A) ∩ T̃g(Y × A)) = Leb(gY ∩ Y )µ(A ∩ TγA),

where γ := [g+y] ∈ Γ for all y ∈ Y . It follows that dist(γ, θ) < ǫ and γ 6= 0. Hence
θ ∈ R(T ). �

Remark 2.2. We note that the equality Ri(T̃ ) = ERi(T ) does not hold for non-
Abelian nilpotent groups. Consider, for instance, the case where G = H3(R) and
H = H3(Z) (see Section 6 for their definition). Let T be an ergodic action of H3(Z).

We claim that T̃ is not rigid and hence Ri(T̃ ) = ∅. Indeed, if T̃ were rigid then the
quotient G-action by translations on G/Γ is also rigid. However the latter action
is mixing relative to the subspace generated by all eigenfunctions [Au–Ha]. On the
other hand, there are examples of weakly mixing H3(Z)-actions T such that Ri(T )
contains the line passing through the center [Da3].

Corollary 2.3. Let G = Rd and Γ = Zd, d ≥ 1. If an action T of Γ is ergodic and

extends to an action T̂ of G on the same measure space where T is defined then

R(T ) = R(T̂ ).

Proof. It follows from the condition of the corollary that the induced G-action T̃ is

isomorphic to the product T̂×D, where D is the natural G-action by translations on

G/Γ [Zi, Proposition 2.10]. Since D is finite measure preserving, R(T̂ ×D) = R(T̂ )
(see Lemma 2.4(ii) below). It remains to apply Theorem 2.1. �

We leave the proof of the following non-difficult statement to the reader as an
exercise.

Lemma 2.4. Let F = (Ft)t∈R be a σ-finite measure preserving flow and let S =
(St)t∈R be a probability preserving flow.

(i) F is conservative if and only if the transformation F1 is conservative.
(ii) F is conservative if and only if the product flow (Ft×St)t∈R is conservative4.
(iii) F is rigid if and only if F1 is rigid.

We now describe the “topological type” ofR(T ) and ER(T ) as subspaces of P (g).
We first consider the Abelian case and provide a short proof of [JoSa, Theorem 1.3]
stating that R(T ) is a Gδ.

Theorem 2.5. Let G = Rd and Γ = Zd, d ≥ 1. The subsets R(T ) and Ri(T ) are
both Gδ in P (Rd).

Proof. Let (X̃, µ̃) be the space of T̃ . Denote by Aut(X̃, µ̃) the group of all µ̃-

preserving invertible transformations of X̃. We endow it with the standard weak

topology. Then Aut(X̃, µ̃) is a Polish group (see [DaSi] and references therein). Fix

a norm on Rd. Denote by S the unit ball in Rd. We define a map m : S → Aut(X̃, µ̃)

by setting m(v) := T̃v. It is obviously continuous. We recall that the subset R

4A similar claim for transformations (i.e. Z-actions) is proved in [Aa]. We note that (ii) follows

from that claim and (i).
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of conservative infinite measure preserving transformations of (X̃, µ̃) is a Gδ in

Aut(X̃, µ̃) [DaSi]. It follows from this fact and Lemma 2.4(i) that the set

m−1(R) = {v ∈ S | the flow (T̃tv)t∈R is conservative}

is a Gδ in S, i.e. the intersection of countably many open subsets. Since m−1(R)
is centrally symmetric (i.e. if v ∈ m−1(R) then −v ∈ m−1(R)), we may assume
without loss of generality that these open sets are also centrally symmetric. The
natural projection of S onto P (Rd) is just the ‘gluing’ the pairs of centrally sym-

metric points. We note that the projection of m−1(R) to P (Rd) is exactly R(T̃ ).

It follows that R(T̃ ) is a Gδ in P (g). It remains to apply Theorem 2.1.
To show that Ri(T ) is a Gδ argue in a similar way and use the fact that the set of

all rigid transformations is a Gδ in Aut(X̃, µ̃) [DaSi] and apply Lemma 2.4(iii). �

We now consider the general case (independently of Theorem 2.5).

Theorem 2.6. The subsets R(T ) and Ri(T ) are both Gδ in P (g).

Proof. Let Γ \ {1} = {γk | k ∈ N}.
(A) We first prove that R(T ) is a Gδ. For each g ∈ G, the map

(2-4) P (g) ∋ θ 7→ dist(g, exp(θ)) := inf
h∈exp(θ)

dist(g, h) ∈ R

is continuous. Now for a subset A ⊂ X with 0 < µ(A) < ∞ and ǫ > 0, we construct
a sequence A1, A2, . . . of subsets in A as follows (cf. with the proof of Lemma 1.5):

A1 :=

{
A ∩ T−1

γ1
A, if dist(γ1, exp(θ)) < ǫ

∅, otherwise,

A2 :=

{
(A \ (A1 ∪ Tγ1

A1)) ∩ T−1
γ2

(A \ (A1 ∪ Tγ1
A1)), if dist(γ2, exp(θ)) < ǫ

∅, otherwise,

and so on. Then (as in Lemma 1.5) Ai ∩Aj = ∅, Tγi
Ai ⊂ A and Tγi

Ai ∩Tγj
Aj = ∅

if i 6= j. For each m ∈ N, we set

Θǫ,A,m :=

{
θ ∈ P (g) |

∑

j≤m

µ(Aj) > 0.4µ(A)

}
.

We note that for each j > 0, the map P (g) ∋ θ 7→ µ(Aj) ∈ R is lower semicontinu-
ous. Indeed, this map is (up to a multiplicative constant) is the indicator function
of the subset {θ | dist(γj, exp(θ)) < ǫ} which is open because (2-4) is continuous. It
follows that Θǫ,A,m is an open subset in P (g). Fix a countable family D of subsets
of finite positive measure in X such that D is dense in B. We claim that

(2-5) R(T ) =
⋂

D∈D

∞⋂

l=1

∞⋃

m=1

Θ1/l,D,m.

Indeed, if T is recurrent along a line θ ∈ P (g) then for each ǫ > 0 and each subset
A of positive measure, µ(

⊔
j Aj) ≥ 0.5µ(A) (as in Lemma 1.5). We then obtain
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that there exists m > 0 with µ(
⊔m

j=1 Ai) > 0.4µ(A). Hence θ ∈ Θǫ,A,m. Let now A

run D and let ǫ run {1/l | l ∈ N}. Then θ belongs to the right-hand side of (2-5).
Conversely, take θ from the right-hand side of (2-5). Let A be a subset of X of

positive measure. Then there is D ∈ D such that µ(A ∩ D) > 0.999µ(D). Take
l ∈ N. Select m > 0 such that θ ∈ Θ1/l,D,m. Then

µ

( ⊔

j≤m

Dj

)
> 0.4µ(D) and hence µ

( ⊔

j≤m

Tγj
Dj

)
> 0.4µ(D).

Therefore there is j < d with µ(Tγj
A ∩ A) > 0 and (because θ ∈ Θ1/l,D,m)

dist(γj, exp(θ)) < 1/m.
(B) To show that Ri(T ) is Gδ we first denote by τ a metric on Aut(X, µ) com-

patible with the weak topology. Now it suffices to note that

Ri(T ) =
∞⋂

k=1

∞⋂

N=1

⋃

{n>N|τ(Tγn ,Id)<1/k}

{θ ∈ P (g) | dist(γn, exp(θ)) < 1/k}.

and use (2-4). �

3. (C, F )-construction and directional recurrence

of rank-one actions

We first remind a (C, F )-construction of group actions (see [Da1] for a detailed
exposition and various applications).

Let (Cn)n>0 and (Fn)n≥0 be two sequences of finite subsets in Γ such that the
following conditions hold:

(I) F0 = {1}, 1 ∈ Cn and #Cn > 1 for all n,
(II) FnCn+1 ⊂ Fn+1 for all n,
(III) Fnc ∩ Fnc

′ = ∅ for all c 6= c′ ∈ Cn+1 and n and
(IV) γFnCn+1Cn+2 · · ·Cm ⊂ Fm+1 eventually in m for each γ ∈ Γ and every n.

Then the infinite product space Xn := Fn × Cn+1 × Cn+1 × · · · is a (compact)
Cantor set. It follows from (II) and (III) that the map

Xn ∋ (fn, cn+1, cn+2, cn+3, . . . ) 7→ (fncn+1, cn+2, cn+3, . . . ) ∈ Xn+1

is a continuous embedding. Denote by X the (topological) inductive limit of the
sequence X1 ⊂ X2 ⊂ · · · . Then X is a locally compact Cantor set. For a subset
A ⊂ Fn, we let [A]n := {x = (fn, cn+1, . . . ) ∈ Xn | fn ∈ A}. Then [A]n is a compact
open subset of X . We call it an n-cylinder. The family of all cylinders, i.e. the
family of all compact open subsets of X is a base of the topology in X . Given γ ∈ Γ
and x ∈ X , in view of (II) and (IV), there is n such that x = (fn, cn+1, · · · ) ∈ Xn

and γfn ∈ Fn. Then we let Tγx := (γfn, cn+1, . . . ) ∈ Xn ⊂ X . It is standard
to verify that Tγ is a well defined homeomorphism of X . Moreover, TγTγ′ = Tγγ′

for all γ, γ′ ∈ Γ, i.e. T := (Tγ)γ∈Γ is a continuous action of Γ on X . It is called
the (C, F )-action of Γ associated with (Cn, Fn−1)n>0 (see [dJ], [Da1], [Da3]). This
action is free and minimal. There is a unique (up to scaling) T -invariant σ-finite
Borel measure µ on X . It is easy to compute that

µ([A]n) =
#A

#C1 · · ·#Cn
9



for all subsets A ⊂ Fn, n > 0, provided that µ(X0) = 1. We note that µ(X) = ∞
if and only if

(3-1) lim
n→∞

#Fn

#C1 · · ·#Cn
= ∞.

Of course, (X, µ, T ) is an ergodic conservative dynamical system. It is of funny
rank one (see [Da1] and [Da3] for the definition). Conversely, every funny rank-
one free system appears this way, i.e. it is isomorphic to a (C, F )-system for an
appropriately chosen sequence (Cn, Fn−1)n≥1. We state without proof a lemma
from [Da3].

Lemma 3.1. Let A be a finite subset Fn and let g ∈ G. Then [A]n ∩ Tg[A]n 6= ∅
if and only if g ∈

⋃
m>n ACn+1 · · ·CmC−1

m · · ·C−1
n+1A

−1. Furthermore, if we let

N g,A
m := {(a, cn+1, . . . , cm) ∈ A×Cn+1 ×· · ·×Cm | gacn+1 · · · cm ∈ ACn+1 · · ·Cm}

then µ([A]n ∩ Tg[A]n) = limm→∞
#Ng,A

m

#C1···#Cm
.

To state the next assertion we need more notation. Denote by π : g\{0} → P (g)
the natural projection. Let κ stand for a metric on P (g) compatible with the
topology. Given two sequences (An)

∞
n=1 and (Bn)

∞
n=1 of finite subsets in G, we

write An ≫ Bn as n → ∞ if

lim
n→∞

max
a∈An,b∈Bn

κ(π(log(ab), π(log(a)) = 0.

Proposition 3.2. Let T = (Tγ)γ∈Γ be a (C, F )-action of Γ associated with a
sequence (Cn, Fn−1)

∞
n=1 satisfying (I)–(IV). Then

(i) R(T ) ⊂
⋂

γ∈Γ γ ·

(⋂∞
n=1

⋃
m≥n π(log(Cn · · ·CmC−1

m · · ·C−1
n \ {1}))

)
.

(ii) If, moreover, the group generated by all Cj, j > 0, is commutative and
Cj \ {1} ≫ C1 · · ·Cj−1 as j → ∞ then

R(T ) ⊂
⋂

γ∈Γ

γ ·

( ∞⋂

n=1

⋃

m≥n

π(log(CmC−1
m \ {1}))

)
.

(iii) If, in addition, there is cj ∈ Γ such that Cj = {1, cj} for each j > 0 then

R(T ) ⊂
⋂

γ∈Γ

γ ·

( ∞⋂

n=1

{π(log cm) | m ≥ n}

)
.

Proof. (i) Let θ ∈ R(T ). Then for each n > 0, there is a sequence (γm)∞m=1

of elements of Γ such that γm 6= 1 and µ(Tγm
[1]n ∩ [1]n) > 0 for each m and

dist(γm, exp(θ)) → 0 as m → ∞. Hence we deduce from Lemma 3.1 that

inf

{
dist(γ, exp(θ)) | γ ∈

⋃

m>n

Cn+1 · · ·CmC−1
m · · ·C−1

n+1 \ {1}

}
= 0.
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This yields that θ ∈ π

(
log

(⋃
m>n Cn+1 · · ·CmC−1

m · · ·C−1
n+1 \ {1}

))
. Therefore

R(T ) ⊂
⋂

n≥1

⋃

m>n

π(log(Cn+1 · · ·CmC−1
m · · ·C−1

n+1 \ {1})).

Since R(T ) is invariant under Γ in view of Remark 1.4(ii), the claim (i) follows.
(ii) Denote by A the smallest closed Lie subgroup of G containing all Cj , j >

0. Since A is Abelian, the restriction of log to A is a group homomorphism.
Hence the condition Cj \ {1} ≫ C1 · · ·Cj−1 as j → ∞ implies CjC

−1
j \ {1} ≫

C1C
−1
1 · · ·Cj−1C

−1
j−1 as j → ∞. Now (ii) easily follows from (i).

(iii) It suffices to note that CmC−1
m \{1} = {cm, c−1

m } and π(log cm) = π(log c−1
m ).

�

4. Directional recurrence sets for actions of Abelian lattices

In this section we consider the case of Abelian G in more detail. Our purpose
here is to realize various Gδ-subsets of P (g) as R(T ) for rank-one actions T of G.
Since G is simply connected, there is d > 0 such that G = Rd. Hence g = Rd and
the maps exp and log are the identities. Replacing Γ with an automorphic lattice
we may assume without loss of generality that Γ = Zd. In the sequel we assume
that d > 1 (the case d = 1 is trivial). By dist(., .) we denote the usual distance
between a point and a closed subset of Rd. We also note that ER(T ) = R(T ) for
each measure preserving action T of Γ. We now restate Proposition 3.2 for the
Abelian case.

Proposition 4.1. Let T = (Tγ)γ∈Zd be a (C, F )-action of Zd associated with a
sequence (Cn, Fn−1)

∞
n=1 satisfying (I)–(IV). Then

(i) R(T ) ⊂
⋂∞

n=1 π(
∑

j≥n(Cj − Cj) \ {0}).

(ii) If, moreover, Cj \ {0} ≫ C1 ∪ · · · ∪ Cj−1 as j → ∞ then

R(T ) ⊂
∞⋂

n=1

⋃

m≥n

π((Cm − Cm) \ {0}).

(iii) In, in addition, there is cj ∈ Zd such that Cj = {0, cj} for each j > 0 then

R(T ) ⊂
∞⋂

n=1

{π(cm) | m ≥ n}.

The following two theorems are the main results of this section.

Theorem 4.2. Let ∆ be a Gδ-subset of P (Rd) and let D be a countable subset of
∆. Then there is a rank-one free infinite measure preserving action T of Zd such
that D ⊂ R(T ) ⊂ ∆. In particular, each countable Gδ-subset (e.g. each countable
compact) of P (Rd) is realizable as R(T ) for some rank-one free action T of Zd.

Proof. Suppose first that ∆ 6= ∅. Then without loss of generality we may think that
D 6= ∅. Let (δn)

∞
n=1 be a sequence such that δn ∈ D for each n and every element

of D occurs in this sequence infinitely many times. Let (ǫn)
∞
n=1 be a decreasing
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sequence of positive reals with limn→∞ ǫn = 0. There exists an increasing sequence
L1 ⊂ L2 ⊂ · · · of closed subsets in P (Rd) such that P (Rd) \ ∆ =

⋃
j≥1 Lj . Let

L+
1 ⊂ L+

2 ⊂ · · · be a sequence of open subsets in P (Rd) such that L+
j ⊃ Lj and

δj 6∈ L+
j for each j and

⋃
j≥1 L

+
j 6= P (Rd). We will construct inductively two

sequences (Fn)
∞
n=0 and (Cn)

∞
n=1 satisfying (I)–(IV) and (3-1). We note in advance

that in our construction #Cn = 2 and Fn is a symmetric cube in Zd, i.e. there is
an ∈ N such that

Fn = {(i1, . . . , id) | −an < ij ≤ an, j = 1, . . . , d},

for each n. Suppose that we have defined the subsets C1, F1, . . . , Cn−1, Fn−1. Our
purpose is to construct Cn and Fn. Choose cn ∈ Zd such that (cn+Fn−1)∩Fn−1 = ∅,
dist(cn, δn) < ǫn and

max
f∈Fn−1

dist(cn, cn + f) < ǫn,(4-1)

π(cn) 6∈ L+
n .(4-2)

For that use the fact that δn 6∈ L+
n . We now let Cn := {0, cn} and define Fn to be a

huge symmetric cube in Zd that contains Fn−1 +Cn. Continuing this construction
procedure infinitely many times we obtain infinite sequences (Fn)

∞
n=0 and (Cn)

∞
n=1.

It is easy to see that (I)–(IV) and (3-1) are all satisfied. Let T = (Tγ)γ∈Zd denote
the associated (C, F )-action. It is free and of rank one. Let (X, µ) be the space of
this action.

We first show that D ⊂ R(T ). Take δ ∈ D, ǫ > 0 and a cylinder B ⊂ X .
Then there are infinitely many n > 0 such that δ = δn and hence dist(cn, δ) <
ǫn < ǫ. If n is large enough, B = [Bn−1]n−1 for some subset Bn−1 ⊂ Fn−1.
Since [Bn−1]n ⊂ [Bn−1]n−1 and Tcn [Bn−1]n = [cn + Bn−1]n ⊂ [Bn−1]n−1 with
µ([Bn−1]n) = 0.5µ([Bn−1]n−1), we have

µ(TcnB ∩B) ≥ µ(Tcn [Bn−1]n ∩ [B]n−1) = µ([Bn−1 + cn]n) = 0.5µ(B).

Since each subset of finite measure in X can be approximated with a cylinder up
to an arbitrary positive real, we deduce that δ ∈ R(T ).

We now show thatR(T ) ⊂ ∆. It follows from (4-1) that {cn} ≫ Fn−1 as n → ∞.

Hence by Proposition 4.1(iii), R(T ) ⊂
⋂∞

n=1 {π(cm) | m ≥ n}. Applying (4-2), we
obtain that π(cm) 6∈ L+

m ⊃ L+
n ⊃ Ln for each m ≥ n. Hence R(T ) ∩ Ln = ∅ for

each n, which yields R(T ) ⊂ ∆.
It remains to consider the case where ∆ = ∅. Fix θ ∈ P (Rd). Suppose that

we have defined the subsets C1, F1, . . . , Cn−1, Fn−1. Choose cn ∈ Zd such that
(cn + Fn−1) ∩ Fn−1 = ∅, (4-1) is satisfied,

π(cn) is up to ǫn close to θ (in the metric on P (Rd)) and(4-3)

min
f∈Fn−1−Fn−1

dist(cn + f, θ) > 10.(4-4)

We now let Cn := {0, cn} and define Fn to be a huge symmetric cube in Zd that
contains Fn−1 +Cn. Continuing infinitely many times we obtain infinite sequences
(Fn)

∞
n=0 and (Cn)

∞
n=1. It is easy to see that (I)–(IV) and (3-1) are all satisfied.
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Let T = (Tγ)γ∈Zd denote the associated (C, F )-action. It follows from Proposi-
tion 4.1(iii), (4-1) and (4-3) that R(T ) ⊂ {θ}. If T were recurrent along θ then
there is γ ∈ Zd such that γ 6= 0, dist(γ, θ) < 0.1 and µ([0]n∩Tγ [0]n) > 0. It follows
from Lemma 3.1 that there is l > n such that, γ ∈ Fl−1−Fl−1+cl. This contradicts
to (4-4). Thus we obtain that R(T ) = ∅. �

Theorem 4.3. There is a rank-one free infinite measure preserving action T of
Zd such that R(T ) = P (Rd).

Proof. Given t ∈ N and N > 0, we let

Kt,N := {(i1, . . . , id) ∈ Zd | |ij | < N and t divides ij , j = 1, . . . , d}.

Then for each ǫ > 0 and each integer t > 0, there is N > 0 such that

(4-5) sup
δ∈P (Rm)

min
0 6=γ∈Kt,N

dist(γ, δ) < ǫ.

Fix a sequence of positive reals ǫn, n ∈ N, decreasing to 0. We will construct
inductively the sequences (Fn−1)n>0 and (Cn)n>0 satisfying (I)–(IV) and (3-1).
As usual, F0 = {0}. Suppose we have defined (Fj , Cj)

n
j=1. Suppose that Fn is a

symmetric cube. Denote by tn the length of an edge of this cube. We now construct
Cn+1 and Fn+1. By (4-5), there is Nn such that min0 6=γ∈K3tn,Nn

dist(γ, δ) < ǫn for

each δ ∈ P (Rd). Let Cn+1 := K3tn,Mn
, where Mn is an integer large so that

(4-6) #{γ ∈ K3tn,Mn
| γ +K3tn,Nn

⊂ K3tn,Mn
} > 0.5#K3tn,Mn

.

Now let Fn+1 be a huge symmetric cube in Zd such that Fn+1 ⊃ Fn + Cn+1.
Continuing this construction process infinitely many times we define the infinite
sequences (Fn)n≥0 and (Cn)n≥1 as desired. Let T be the (C, F )-action of Zd as-
sociated with these sequences. It is free and of rank-one. Denote by (X, µ) the
space of this action. We claim that R(T ) = P (Rd). Indeed, take ǫ > 0, δ ∈ P (Rd)
and a cylinder B ⊂ X . Then there is n > 0 and a subset Bn ⊂ Fn such that
B = [Bn]n and ǫn < ǫ. There is γ ∈ K3tn,Nn

\ {0} such that dist(γ, δ) < ǫn.
By (4-6), #(Cn+1 ∩ (Cn+1 − γ)) ≥ 0.5#Cn+1. Therefore

µ(TγB ∩B) ≥ µ(Tγ [Bn + (Cn+1 ∩ (Cn+1 − γ))]n+1 ∩ [Bn]n)

= µ([Bn + (Cn+1 ∩ (Cn+1 + γ))]n+1)

≥ 0.5µ(B).

The standard approximation argument implies that T is recurrent along δ. �

Remark 4.4.

(i) If we choose Mm in the above construction large so that the inequality

#{γ ∈ K3tn,Mn
| γ +K3tn,Nn

⊂ K3tn,Mn
} > (1− n−1)#K3tn,Mn

.

holds in place of (4-6) then the corresponding (C, F )-action T will possess
the stronger property Ri(T ) = P (Rd).

(ii) In a similar way, the statement of Theorem 4.2 remains true if we replace
R(T ) with Ri(T ).
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5. Generic Zd-action is recurrent in every direction

Let (X, µ) be a σ-finite non-atomic standard measure space. We recall that the
group of all µ-preserving invertible transformations of X is denoted by Aut(X, µ).
It is endowed with the weak (Polish) topology. For a nilpotent Lie group G, we
denote by AG

µ the set of all µ-preserving actions of G on (X, µ). We consider every

element A ∈ AG
µ as a continuous homomorphism g 7→ Ag from G to Aut(X, µ). The

group Aut(X, µ) acts on AG
µ by conjugation, i.e. (S ·A)g := SAgS

−1 for all g ∈ G,

S ∈ Aut(X, µ) and A ∈ AG
µ . We endow AG

µ with the compact-open topology, i.e.
the topology of uniform convergence on the compact subsets of G.

The following lemma is well known. We state it without proof.

Lemma 5.1. AG
µ is a Polish space. The action of Aut(X, µ) on this space is

continuous.

Let S1 be the unit sphere in g and let K := exp(S1).

Lemma 5.2. Let µ(X) = 1. Then the subset

Z := {A ∈ AG
µ | h(Ag) = 0 for each g ∈ K}

is an invariant Gδ in AG
µ .

Proof. Denote by P the set of all finite partitions of X . Fix a countable subset
P0 ⊂ P which is dense in P in the natural topology. For each P ∈ P0 and n > 0,
the map

AG
µ ×K ∋ (A, g) 7→ H

(
P

∣∣∣∣
n∨

j=1

A−j
g P

)
∈ R

is continuous. Therefore the map

mP,n : AG
µ ∋ A 7→ mP,n(A) := max

g∈K
H

(
P

∣∣∣∣
n∨

j=1

A−j
g P

)
∈ R

is well defined and continuous. Hence the subset

Z ′ :=
⋂

P∈P0

∞⋂

r=1

∞⋂

N=1

⋃

l>N

{
A ∈ AG

µ

∣∣∣∣mP,l(A) < 1/r

}

is a Gδ in AG
µ . We now show that Z ′ = Z. It is easy to see that Z ′ ⊂ Z because

h(Ag) = supP∈P0
H(P |

∨∞
j=1 A

−j
g P ). Conversely, let A ∈ Z. Fix P ∈ P0, r > 1

and N > 0. Then for each g ∈ K, there is lg > N such that H(P |
∨lg

j=1 A
−j
g P ) <

1/r. Of course, this inequality holds in a neighborhood of g in G. Since K is
compact and the map N ∋ n 7→ H(P |

∨n
j=1 A

−j
g P ) decreases, there is l > N such

that H(P |
∨l

j=1 A
−j
g P ) < 1/r for all g ∈ K, i.e. mP,l(A) < 1/r. This means that

A ∈ Z ′. It is obvious that Z is Aut(X, µ)-invariant. �

Let Γ be a co-compact lattice in G. Fix a a cross-section s : G/Γ → G of the
natural projection G → G/Γ such that the subset s(G/Γ) is relatively compact in
G. Denote by hs the corresponding 1-cocycle. Given a Γ-action T on (X, µ), we

construct (via hs) the induced G-action T̃ on the space (G/Γ ×X, λ× µ). In the
following lemma we show that the “inducing” functor is continuous.
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Lemma 5.3. The map AΓ
µ ∋ T 7→ T̃ ∈ AG

λG/Γ×µ is continuous.

Idea of the proof. It is enough to note that for each compact subset K ⊂ G, the
set F := {hs(g, y) | g ∈ K, y ∈ G/Γ} ⊂ Γ is finite. Therefore, given two Γ-
actions T and T ′, if the transformation Tγ is “close” to T ′

γ for each γ ∈ F then the

transformation T̃g is “close” to T̃ ′
g uniformly on K. �

From now on let µ(X) = ∞. Denote by (X•, µ•) the Poisson suspension of
(X, µ). Given R ∈ Aut(X, µ), let R• stand for the Poisson suspension of R (see
[Ro], [Ja–Ru]). We note that Aut(X•, µ•) is a topological Aut(X, µ)-module.

Lemma 5.4. The map Aut(X, µ) ∋ R 7→ R• ∈ Aut(X•, µ•) is a continuous
homomorphism.

Idea of the proof. Let UR and UR• denote the Koopman unitary operators generated
by R and R• respectively. Then it is enough to note that UR• is unitarily equivalent
in a canonical way to the exponent

⊕
n≥0 U

⊙n
R (see [Ne], [Ro]) and the map UR 7→

U⊙n
R is continuous in the weak operator topology for each n. �

Lemma 5.5. Let a transformation R ∈ Aut(X, µ) be non-conservative. If there is
an ergodic countable transformation subgroup N ⊂ Aut(X, µ) such that

(5-1) {SRnx | n ∈ Z} = {RnSx | n ∈ Z} at a.e. x ∈ X for each S ∈ N

then R• is a Bernoulli transformation of infinite entropy.

Proof. We consider Hopf decomposition of X , i.e. a partition of X into two R-
invariant subsetsXd andXc such that the restriction ofR toXd is totally dissipative
and the restriction of R to Xd is conservative (see [Aa]). By condition of the lemma,
µ(Xd) > 0. It follows from (5-1) that Xd is invariant under N . Since N is ergodic,
µ(Xc) = 0, i.e. R is totally dissipative, i.e. there is a subset W ⊂ X such that
X =

⋃
n∈Z R

nW (mod 0) and RnW ∩TmW = ∅ if n 6= m. Therefore R• is Bernoulli
[Ro]. Since µ ↾ W is not purely atomic, h(R•) = ∞ [Ro]. �

We now state the main result of this section.

Theorem 5.6. The subset V of Zd-actions T on (X, µ) with R(T ) = P (Rd) is

residual in AZd

µ .

Proof. Let λ denote the Lebesgue measure on the torus Rd/Zd. If follows from
Lemmata 5.3 and 5.4 that the mapping

AZd

µ ∋ T 7→ T̃ • ∈ ARd

λ×µ

is continuous. Let Z := {A ∈ ARd

(λ×µ)• | h(Ag) = 0 for each g ∈ Rd}. By Lemma 5.2,

Z is a Gδ in ARd

µ . Hence the subset W := {T ∈ AZd

µ | T̃ • ∈ Z} is an Gδ

in AZd

µ . Of course, W is Aut(X, µ)-invariant. It is well known that the sub-

set E := {T ∈ AZd

µ | T is ergodic} is an Aut(X, µ)-invariant Gδ in AZd

µ . Hence

the intersection W ∩ E is also an Aut(X, µ)-invariant Gδ in AZd

µ . Take an action

T ∈ AZd

∩E and a line θ ∈ P (Rd). If θ 6∈ R(T ) then θ 6∈ R(T̃ ). Since T is ergodic, T̃

is also ergodic. Hence the Qd-action (T̃q)q∈Qd is also ergodic. Then by Lemma 5.5,
15



h(T̃ •
r ) = ∞ for each r ∈ θ, r 6= 0. Therefore T 6∈ W. This yields that W∩E ⊂ V. It

remains to show that W ∩E is dense in AZd

µ . Let T be an ergodic free action of Zd

such that Ri(T ) = P (Rd) (see Remark 4.4(i) and Theorem 4.3). By Theorem 2.1,

Ri(T̃ ) = P (Rd). Then in view of Lemma 5.4, for each g ∈ Rd, the transformation

T̃ •
g is rigid. Hence h(T̃ •

g ) = 0. Thus, T ∈ W ∩ E . It follows from Rokhlin lemma

for the infinite measure preserving free Zd-actions that the conjugacy class of T ,

i.e. the Aut(X, µ)-orbit of T , is dense in AZd

µ (see, e.g. [DaSi]). Of course, the
conjugacy class of T is a subset of W ∩ E . �

Using some ideas from the proof of the above theorem we can show the following
proposition.

Proposition 5.7. There is a Poisson action5 V of Rd of 0 entropy such that for
each 0 6= g ∈ Rm, the transformation Vg is Bernoullian and of infinite entropy.

Proof. By Theorem 4.2, there exists rank-one (by cubes) infinite measure preserving

action T of Zd such thatR(T ) = ∅. Then T̃ • is a Poisson (finite measure preserving)

action of Rd. We note that h(T̃ •) = h(T̃ • ↾ Zd) = h((T̃ ↾ Zd)•). We note T̃ ↾ Zd =
I × T , where I denotes the trivial action of Zd on the torus (Rd/Zd, λ). It follows
from [Ja–Ru] that h((I × T )•) = h(T •). Since T is of rank one, h(T •) = 0 by

[Ja–Ru]6. Thus we obtain that h(T̃ •) = 0. On the other hand, arguing as in the
proof of Theorem 5.6, we deduce from Theorem 2.1 and Lemma 5.5 that for each

g ∈ Rd \ {0}, the transformation T̃ •
g is Bernoulli and of infinite entropy. �

In a similar way, using Remark 4.4(ii) we can show the following more general
statement.

Proposition 5.8. Let ∆ be a Gδ-subset of P (Rd) and let D be a countable subset
of ∆. Then there is a Poisson action V of Rd of 0 entropy such that for each
nonzero g 6∈

⋃
θ∈∆ θ, the transformation Vg is Bernoulli and of infinite entropy and

for each g ∈
⋃

θ∈D θ, the transformation Vg is rigid (and hence of 0 entropy).

6. Directional recurrence for actions of the Heisenberg group

Consider now the 3-dimentional real Heisenberg group H3(R) which is perhaps
the simplest example of a non-commutative simply connected nilpotent Lie group.
We recall that

H3(R) =

{


1 t1 t3
0 1 t2
0 0 1




∣∣∣∣∣ t1, t2, t3 ∈ R

}
.

We introduce the following notation:

a(t) :=




1 t 0
0 1 0
0 0 1


 , b(t) :=




1 0 0
0 1 t
0 0 1


 , c(t) :=




1 0 t
0 1 0
0 0 1


 .

5We recall that a probability preserving action of a group G is called Poisson if it is isomorphic

to the Poisson suspension of an infinite measure preserving action of G.
6This fact was proved in [Ja–Ru] only for d = 1. However in the general case the proof is

similar.
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Then the maps R ∋ t 7→ a(t) ∈ H3(R), R ∋ t 7→ b(t) ∈ H3(R),R ∋ t 7→ c(t) ∈ H3(R)
are continuous homomorphisms, the subset {c(t) | t ∈ R} is the center of H3(R),
a(t1)b(t2) = b(t2)a(t1)c(t1t2) for all t1, t2 ∈ R and




1 t1 t3
0 1 t2
0 0 1


 = c(t3)b(t2)a(t1) for all t1, t2, t3 ∈ R.

We also note that the Lie algebra of H3(R) is

h3(R) :=

{


0 t1 t3
0 0 t2
0 0 0




∣∣∣∣∣α, β, γ ∈ R

}
.

The exponential map exp : h3(R) → H3(R) is given by the formula

exp




0 t1 t3
0 0 t2
0 0 0


 =




1 t1 t3 +
t1t2
2

0 1 t2
0 0 1


 .

The adjoint action of H3(R) on h3(R) is given by the formula




1 x z
0 1 y
0 0 1


 ·




0 α γ
0 0 β
0 0 0


 =




0 α γ + xβ − yα
0 0 β
0 0 0


 .

We also give an example of a right-invariant metric d on H3(R):

d(c(t3)b(t2)a(t1), c(t
′
3)b(t

′
2)a(t

′
1)) := |t1 − t′1|+ |t2 − t′2|+ |t3 − t′3 + t′2(t

′
1 − t1)|.

Let Γ be a lattice in H3(R). It is well known (see, e.g. [DaLe]) that there is k > 0
such that Γ is automorphic to the following lattice:

{c(n3/k)b(n2)a(n1) | n1, n2, n3 ∈ Z}.

From now on we will assume that k = 1 and hence

Γ = H3(Z) := {c(n3)b(n2)a(n1) | n1, n2, n3 ∈ Z}.

Let Fn := {c(j3)b(j2)a(j1) | |j1| < Ln, |j2| < Ln, |j3| < Mn}, where Ln and Mn are
positive integers. It is easy to verify that if Ln → ∞, Mn → ∞ and Ln/Mn → 0
as n → ∞ then (Fn)≥1 is a Følner sequence in H3(Z).

In the following three theorems we construct rank-one actions of H3(Z) with
various sets of recurrence and rigidity: empty, countable and uncountable.

Theorem 6.1. There is a rank-one free infinite measure preserving action T of
H3(Z) such that R(T ) = ∅.

Proof. Let Cn := {1, a(tn)}, where (tn)n∈N is a sequence of integers that grows
fast, and let (Fn)n≥0 be a Følner sequence in H3(R) such that (I)–(IV) and (3-1)
are satisfied and, in addition, Cn \ {1} ≫ C1 · · ·Cn−1 as n → ∞. Denote by T the
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(C, F )-action of H3(Z) associated with (Cn, Fn−1)n∈N. Let θ ∈ P (h3(R)) stand for

the line in h3(R) passing through the vector




0 1 0
0 0 0
0 0 0


. Since π(log a(tn)) = θ,

we deduce from Proposition 3.2(iii),

R(T ) ⊂
⋂

γ∈Γ

γ ·

( ∞⋂

n=1

{π(log a(tm)) | m ≥ n}

)
⊂

⋂

γ∈Γ

{γ · θ} = ∅.

�

Given t ∈ R, let θt ∈ P (h3(R)) be the line in h3(R) passing through the vector


0 1 t
0 0 0
0 0 0


. Then exp(θt) ∋ c(t)a(1). We also denote by θ∞ the line in h3(R)

passing through the vector




0 0 1
0 0 0
0 0 0


. Of course, the set {θl | l ∈ Z} is the

H3(Z)-orbit {γ · θ0 | γ ∈ H3(Z} of θ0. The point θ∞ is the only limit point of this
orbit in P (h3(R)). In a similar way, the set {θt | t ∈ R} is the H3(R)-orbit of θ0.
The closure of this orbit is the union of this orbit with the limit point θ∞.

Theorem 6.2. There is a rank-one free infinite measure preserving action T of
H3(Z) such that R(T ) = {θl | l ∈ Z} ∪ {θ∞}. Therefore ER(T ) = {θ∞} and hence
R(T ) 6= ER(T ).

Proof. We let

Fn := {c(j3)b(j2)a(j1) | |j1| < Ln, |j2| < Ln, |j3| < Mn} and

Cn := {c(ikn)a(jkn) | j = 0, 1 and |i| ≤ In},

where (Ln)n≥1, (Mn)n≥1, (kn)n≥1 and (In)n≥1 are sequence of integers chosen in
such a way such that

(•) (I)–(IV) from Section 3 and (3-1) are satisfied
(∗) Cn \ {1} ≫ C1 · · ·Cn−1 as n → ∞,
(⋄) Ln → ∞, Mn → ∞, Ln/Mn → 0 and
(◦) In → +∞, Ln−1/In → 0.

Denote by T the (C, F )-action of H3(Z) associated with (Cn, Fn−1)n∈N. It is well
defined in view of (•). Moreover, (Fn)n≥1 is a Følner sequence in H3(Z) in view
of (⋄). It is standard to verify that

⋃

m>n

π(log(CmC−1
m \ {1})) = {θl | l ∈ Z} ∪ {θ∞}

for each n > 0. Hence by Proposition 3.2(ii), R(T ) ⊂ {θn | n ∈ Z} ∪ {θ∞}.
In view of Remark 1.4(ii), to prove the converse inclusion it suffices to show that
θ1, θ∞ ∈ R(T ). For n ≥ 1, take a subset D ⊂ Fn−1. It follows from the definition of
Fn−1 that for each γ ∈ D, there is j ∈ Z such that |j| < Ln−1 and a(kn)γa(−kn) =
γc(jkn). Let

(6-1) C′
n := {w ∈ Cn | c(jkn)a(kn)w ∈ Cn whenever |j| < Ln−1}.
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Then C′
n = {c(ikn) | |i| < In, |i±Ln−1| < In}. Hence #C′

n/#Cn → 1/2 as n → ∞
in view of (◦) and hence

(6-2) max
D⊂Fn−1

|µ([D]n−1)/µ([DC′
n]n)− 1/2| → 0

as n → ∞. On the other hand, in view of (6-1), we have

Ta(kn)[DC′
n]n =

⊔

γ∈D

Ta(kn)[γC
′
n]n =

⊔

γ∈D

[a(kn)γa(−kn)a(kn)C
′
n]n ⊂

⊔

γ∈D

[γCn]n.

Thus Ta(kn)[DC′
n]n ⊂ [D]n−1. Since a(kn) ∈ exp(θ1) and (6-2) holds, it follows that

T is recurrent along θ1. To prove that θ∞ ∈ R(T ), we let

C′′
n := {w ∈ Cn | c(kn)w ∈ Cn}.

Then #C′′
n/#Cn → 1 and and hence maxD⊂Fn−1

|µ([D]n−1)/µ([DC′
n]n) − 1| → 0

as n → ∞. Moreover, Tc(kn)[DC′′
n ]n ⊂ [DCn]n = [D]n−1. Hence T is recurrent

along θ∞. �

Theorem 6.3. There is a rank-one free infinite measure preserving action T of
H3(Z) such that R(T ) = Ri(T ) = {θt | t ∈ R} ∪ {θ∞} = ER(T ) = ERi(T ).

Proof. Let

Fn := {c(j3)b(j2)a(j1) | |j1| < Ln, |j2| < Ln, |j3| < Mn},

Cn := {c(jkn)a(ikn) | |j| ≤ lnJn, |i| ≤ lnIn},

C0
n := {c(jkn)a(ikn) | |j| ≤ ln, |i| ≤ ln},

where (Ln)n≥1, (Mn)n≥1, (kn)n≥1, (In)n≥1, (Jn)n≥1 and (ln)n≥1 are sequence of
integers such that (•), (∗), (⋄) hold,

(△) supt∈R∪{∞} min1 6=γ∈C0
n
dist(γ, θt) < 1/n and

(N) #({w ∈ Cn |
⋃

d∈Fn−1

⋃
c∈C0

n
d−1cdw ⊂ Cn}) > (1− 1/n)#Cn

for each n ∈ N. Denote by T the (C, F )-action ofH3(Z) associated with (Cn, Fn−1)n∈N.
It is standard to verify that

⋃

m>n

π(log(CmC−1
m \ {1})) = {θt | t ∈ R} ∪ {θ∞}.

Hence by Proposition 3.2(ii), R(T ) ⊂ {θt | t ∈ R} ∪ {θ∞}. To prove the converse
inclusion, we take θt for some t ∈ R∪{∞}. By (△), there is γ ∈ C0

n \ {1} such that
dist(γ, θt) < 1/n. Let

C′
n :=

{
w ∈ Cn

∣∣∣∣
⋃

d∈Fn−1

d−1γdwC0
n ⊂ Cn

}
.

Then #C′
n/#Cn > 1− 1/n in view of (N) and hence for each subset D ⊂ Fn−1, we

have µ([D]n−1 \ [DC′
n]n) < µ([D]n)/n. On the other hand,

Tγ [DC′
n]n =

⊔

d∈D

Tγ [dC
′
n]n =

⊔

d∈D

[dd−1γdC′
n]n ⊂

⊔

d∈D

[dCn]n = [D]n−1.

It follows that T is rigid along θt. Thus we showed that {θt | t ∈ R} ∪ {θ∞} ⊂
Ri(T ). �
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7. Some open problems and concluding remarks

(1) Which Gδ-subsets of P (g) are realizable as R(T ) or Ri(T ) for an ergodic
infinite measure preserving action T of Γ? In particular, let θ ∈ P (g).
Whether the subset P (g) \ {θ} is realizable? In the case where G = R2 and
Γ = Z2, P (g) is homeomorphic to the circle. Whether a proper arc of this
circle is realizable?

(2) Suppose that a subset of P (g) is realizable as R(T ) or Ri(T ). Whether T
can be chosen in the class of rank-one actions?

(3) In view of Theorem 2.1 and Remark 2.2, whether R(T̃ ) = ER(T ) in the
non-Abelian case?

(4) Does Corollary 2.3 extends to the non-Abelian case, i.e. whether ER(T ) =

R(T̂ ), where T̂ is an extension of T to a G-action on the same measure
space where T is defined?

(5) A multiple recurrence (and even recurrence) along directions can be defined
in the following way. Let T be a measure preserving action of Γ on a σ-
finite measure space (X, µ) and let p ∈ N. We call T p-recurrent along a line
θ ∈ P (g) if for each ǫ > 0 and every subset A ⊂ X of positive measure, there
is an element γ ∈ Γ\{1Γ} and an element g ∈ exp(θ) such that dist(γ, g) < ǫ
and µ(A ∩ TγA ∩ · · · ∩ T p

γA) > 0. Denote by Rp(T ) the set of all θ ∈ P (g)
such that T is p-recurrent along θ. Then R(T ) = R1(T ) ⊃ R2(T ) ⊃ · · ·
and

⋂
p≥1 Rp(T ) ⊃ Ri(T ). We note that all these inclusions are strict and

every set Rp(T ) is a Gδ . The results obtained in this work for R(T ) extends
to Rp(T ) with similar proofs for each p.

(6) Let T be a (C, F )-action of Γ associated with a sequence (Cn, Fn−1)n≥1

satisfying (I)–(IV) and (3-1) from Section 3. Given d > 0, we denote by
C⊗d

n and F⊗d
n the d-th Cartesian power of Cn and Fn respectively. Then the

sequence (C⊗d
n , F⊗d

n−1)n≥1 of subsets in Γd satisfies (I)–(IV) and (3-1) from

Section 3. It is easy to see that the (C, F )-action T⊗d of Γd is canonically

isomorphic to the d-th tensor product of T , i.e. T⊗d
(γ1,...,γd)

= Tγ1
× · · ·× Tγd

for all γ1, . . . , γd ∈ Γ. The Lie algebra gd of Gd is g ⊗ · · · ⊗ g (d times).
There is a natural shiftwise action of the permutation group Σd on gd. This
action pushes down to the protective space P (gd). It is easy to see that the
sets R(T⊗d) and Ri(T⊗d) are invariant under Σd. In the case where G = R

and Γ = Z, Theorem 4.2 can be refined in the following way: given a Σd-
invariant subset ∆ ⊂ P (Rd) and a countable Σd-invariant subset D of ∆,
there is a rank-one free infinite measure preserving action T of Z such that
D ⊂ R(T⊗d) ⊂ ∆. In particular, each countable Σd-invariant Gδ-subset
D of P (Rd) is realizable as R(T⊗d) for some rank-one free action T of Z.
This generalizes and refines partly7 one of the main results from the recent
paper by Adams and Silva [AdSi]: for each Σ2-invariant subset D of rational
directions, there is a rank-one action T of Z such that D is the intersection
of R(T⊗2) with the set of all rational directions in R2. We also note that
the Zd-action T constructed in Theorem 4.3 has the form T = S⊗d for a
(C, F )-action S of Z.

(7) The theory of directional recurrence can be generalized in a natural way

7This refinement is partial because we consider only the recurrence set while Adams and Silva

studied simultaneously the set of rational ergodic directions for T⊗2.
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from the infinite measure preserving Γ-actions to the nonsingular Γ-actions.
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