DIRECTIONAL RECURRENCE AND DIRECTIONAL RIGIDITY FOR INFINITE MEASURE PRESERVING ACTIONS OF NILPOTENT LATTICES

ALEXANDRE I. DANILENKO

ABSTRACT. Let Γ be a lattice in a simply connected nilpotent Lie group G. Given an infinite measure preserving action T of Γ and a "direction" in G (i.e. an element θ of the projective space $P(\mathfrak{g})$ of the Lie algebra \mathfrak{g} of G), some notions of recurrence and rigidity for T along θ are introduced. It is shown that the set of recurrent directions $\mathcal{R}(T)$ and the set of rigid directions for T are both G_{δ} . In the case where $G = \mathbb{R}^d$ and $\Gamma = \mathbb{Z}^d$, we prove that (a) for each G_{δ} -subset Δ of $P(\mathfrak{g})$ and a countable subset $D \subset \Delta$, there is a rank-one action T such that $D \subset \mathcal{R}(T) \subset \Delta$ and (b) $\mathcal{R}(T) = P(\mathfrak{g})$ for a generic infinite measure preserving action T of Γ . This answers partly a question from a recent paper by A. Johnson and A. Şahin. Some applications to the directional entropy of Poisson actions are discussed. In the case where G is the Heisenberg group $H_3(\mathbb{R})$ and $\Gamma = H_3(\mathbb{Z})$, a rank-one Γ -action T is constructed for which $\mathcal{R}(T)$ is not invariant under the natural "adjoint" G-action.

0. INTRODUCTION

Subdynamics is the study of the relationship between the dynamical properties of the action of a group G, and those of the action restricted to subgroups of G. In this paper we consider measure preserving actions defined on σ -finite standard measure spaces. In the 1980's Milnor generalized the study of sub-dynamics by defining a concept of *directional entropy* of a \mathbb{Z}^d -action in every direction, including the irrational directions for which there is no associated subgroup action [Mi]. To this end he considered \mathbb{Z}^d as a lattice in \mathbb{R}^d and he exploited the geometry of mutual position of this lattice and the 1-dimensional subspaces (i.e. directions) in \mathbb{R}^d . For a detailed account on the directional entropy of \mathbb{Z}^2 -actions and some applications to topological dynamics (expansive subdynamics) we refer to Pa and references therein. In a recent paper [JoSa], Johnson and Sahin applied the "directional approach" to study *recurrence properties* of infinite measure preserving \mathbb{Z}^2 -actions. They were motivated by Feldman's proof of the ratio ergodic theorem [Fel]. In particular, they showed that for each such an action, say T, the set $\mathcal{R}(T)$ of all recurrent directions of T is a G_{δ} -subset of the circle T. They also exhibited examples of rank-one actions T and T' with $R(T) = \emptyset$ and $\mathbb{T} \neq \mathcal{R}(T') \supset \{e^{\pi i q} \mid q \in \mathbb{Q}\}.$ They raised a question: which G_{δ} -subsets of \mathbb{T} are realizable as recurrence sets, i.e. appear as R(T) for some T? We answer this question in part.

— We show that each countable G_{δ} is a recurrence set.

A part of this work was done during a visit of the author to MPIM, Bonn, in July 2014. The author thanks MPIM for the support and hospitality.

- More generally, for each G_{δ} -subset Δ of the projective space $P(\mathbb{R}^d)$ and a countable subset D of Δ , there is a rank-one infinite measure preserving free \mathbb{Z}^d -action T such that $D \subset \mathcal{R}(T) \subset \Delta$ (Theorem 4.2).
- We also prove that a *generic* infinite measure preserving action T of \mathbb{R}^d is recurrent in every direction, i.e. $\mathcal{R}(T) = P(\mathbb{R}^d)$ (Theorem 5.6).

In parallel to this we introduce a concept of directional rigidity for \mathbb{Z}^d -actions and obtain similar results for realization of G_{δ} -subsets of $P(\mathbb{R}^d)$ as rigidity sets.

As a byproduct, we obtain some examples of Poisson \mathbb{R}^d -actions with the following entropy properties:

- There is a Poisson action $V = (V_g)_{g \in \mathbb{R}^d}$ of 0 entropy such that for each non-zero $g \in \mathbb{R}^d$, the transformation V_g is Bernoullian of infinite entropy (Proposition 5.7).
- For each G_{δ} -subset $\Delta \subset P(\mathbb{R}^d)$ and a countable subset D of Δ , there is a Poisson action $V = (V_g)_{g \in \mathbb{R}^d}$ of 0 entropy such that for each nonzero $g \notin \bigcup_{\theta \in \Delta} \theta$, the transformation V_g is Bernoulli of infinite entropy and for each $g \in \bigcup_{\theta \in D} \theta$, the transformation V_g is rigid and hence of 0 entropy (Proposition 5.8).

In this connection we recall the main result from [FeKa]: there is a Gaussian action $V = (V_g)_{g \in \mathbb{Z}^2}$ of 0 entropy such that every transformation V_g , $0 \neq g \in \mathbb{Z}^2$, is Bernoullian.

We extend the concepts of directional recurrence and directional rigidity to actions of lattices Γ in simply connected nilpotent Lie groups G. By a "direction" we now mean a 1-parameter subgroup in G. Thus the set of all directions is the projective space $P(\mathfrak{g})$, where \mathfrak{g} denotes the Lie algebra of G. As in the Abelian case (considered originally in [JoSa]), we show that

— Given a measure preserving action T of Γ, the set $\mathcal{R}(T)$ of all recurrent directions of T is a G_{δ} in $P(\mathfrak{g})$ (Theorems 2.5 and 2.6).

Since G acts on $P(\mathfrak{g})$ via the adjoint representation, we define another invariant $\mathcal{ER}(T)$ of even recurrence for T as the largest G-invariant subset of $\mathcal{R}(T)$.

- Some examples of rank-one actions T of the Heisenberg group $H_3(\mathbb{Z})$ are constructed for which $\mathcal{R}(T)$ is either empty (Theorem 6.1) or countably infinite (Theorem 6.2) or uncountable (Theorem 6.3)¹.
- An example of T is given such that $\mathcal{ER}(T) \neq \mathcal{R}(T)$ (Theorem 6.2).

Given an action T of Γ , we can define a natural analog of the "suspension flow" corresponding to T. This is the *induced* (in the sense of Mackey) action \widetilde{T} of G associated with T. Since $\mathcal{R}(T)$ coincides with the set $\mathcal{R}(\widetilde{T})$ of conservative \mathbb{R} -subactions of \widetilde{T} in the Abelian case [JoSa], it is natural to conjecture that $\mathcal{ER}(T) = \mathcal{R}(\widetilde{T})$ in the genaral case. It remains an open problem. However the analogous claim for the rigidity sets does not hold in the non-Abelian case (Remark 2.2).

The outline of the paper is as follows. In Section 1 we introduce the main concepts and invariants related to the directional recurrence and rigidity. In Section 2 we discuss relationship between the directional recurrence and rigidity of an action of a lattice in a nilpotent Lie group and similar properties of the *suspension flow*, i.e. the induced action of the underlying Lie group. It is also shown there

¹We consider $H_3(\mathbb{Z})$ as a lattice in the 3-dimensional real Heisenberg group $H_3(\mathbb{R})$.

that the sets of recurrent and rigid directions are both G_{δ} . In Section 3 we recall the (C, F)-construction of rank-one actions and provide a sufficient condition for directions to be recurrent in terms of the (C, F)-parameters. This condition is used in Section 4 to construct rank-one actions of \mathbb{Z}^d with various sets of recurrent directions. In Section 5 we prove that a generic \mathbb{Z}^d -action is recurrent in every direction. This section contains also some applications to the directional entropy of Poisson actions. In Section 6 we study directional recurrence of infinite measure preserving actions of $H_3(\mathbb{Z})$. The final Section 7 contains a list of open problems and concluding remarks.

Acknowledgements. I thank T. Meyerovitch and E. Roy for useful discussions concerning the entropy of Poisson suspensions.

1. Recurrence, even recurrence, rigidity and even rigidity along directions

Let G be a simply connected nilpotent Lie group, \mathfrak{g} the Lie algebra of G and exp : $\mathfrak{g} \to G$ the exponential map. We note that exp is a diffeomorphism of \mathfrak{g} onto G [Mal]. Let $P(\mathfrak{g})$ denote the set of lines (i.e. 1-dimensional subspaces) in \mathfrak{g} . We endow $P(\mathfrak{g})$ with the usual topology of projective space. Then $P(\mathfrak{g})$ is a compact manifold. The adjoint G-action on \mathfrak{g} induces a smooth G-action on $P(\mathfrak{g})$. We denote this action by the symbol ".". Given $v \in \mathfrak{g} \setminus \{0\}$, we let $\exp(v) := \{\exp(tv) \mid t \in \mathbb{R}\}$. Then $\exp(v)$ is a closed 1-dimensional subgroup of G. We note that if w = tv for some $t \in \mathbb{R} \setminus \{0\}$ then $\exp(w) = \exp(v)$. Hence for each line $\theta \in P(\mathfrak{g})$, the notation $\exp(\theta)$ is well defined. Moreover, $g \exp(\theta)g^{-1} = \exp(g \cdot \theta)$ for each $g \in G$.

Let $R = (R_g)_{g \in G}$ be a measure preserving action of G on a σ -finite standard measure space (Y, \mathfrak{Y}, ν) .

Definition 1.1.

(i) We recall that R is called *conservative* if for each subset $B \in \mathfrak{Y}$, $\nu(B) > 0$, and a compact $K \subset G$, there is an element $g \in G \setminus K$, such that

$$\nu(B \cap R_g B) > 0.$$

- (ii) We call R recurrent along a line $\theta \in P(\mathfrak{g})$ if the flow $(\exp(tv))_{t \in \mathbb{R}}$ is conservative for some (and hence for each) $v \in \theta \setminus \{0\}$.
- (iii) We recall that R is called *rigid* if there is a sequence $(g_n)_{n\geq 1}$ of elements in G such that $g_n \to \infty$ and

$$\lim_{n \to \infty} \nu(B \cap R_{g_n}B) = \mu(B)$$

for each subset $B \in \mathfrak{Y}$ of finite measure.

(iv) We call R rigid along a line $\theta \in P(\mathfrak{g})$ if the flow $(\exp(tv))_{t \in \mathbb{R}}$ is rigid for some (and hence for each) $v \in \theta \setminus \{0\}$.

Denote by $\mathcal{R}(R)$ the set of all $\theta \in P(\mathfrak{g})$ such that R is recurrent along θ . Denote by $\mathcal{R}i(R)$ the set of all $\theta \in P(\mathfrak{g})$ such that R is rigid along θ . Of course, $\mathcal{R}i(R) \subset \mathcal{R}(R)$. It is easy to see that if a G-action R' is isomorphic to R then $\mathcal{R}(R') = \mathcal{R}(R)$ and $\mathcal{R}i(R') = \mathcal{R}i(R)$.

Proposition 1.2. The sets $\mathcal{R}(R)$ and $\mathcal{R}i(R)$ are *G*-invariant.

Proof. Let $\theta \in \mathcal{R}(R)$. Fix an element $g_0 \in G$. Take a subset $B \subset Y$ of positive measure and a compact $K \subset G$. Since R is recurrent along θ , there is $g \in \exp(\theta)$ such that $g \notin K$ such that $\nu(B \cap R_g B) > 0$. Hence

$$0 < \nu(R_{g_0}B \cap R_{g_0}R_gB) = \nu(R_{g_0}B \cap R_{g_0}g_0^{-1}R_{g_0}B)$$

Since $g_0gg_0^{-1} \in \exp(g_0 \cdot \theta)$ and $g_0gg_0^{-1} \notin g_0Kg_0^{-1}$, it follows that the flow $(R_g)_{g \in g_0 \cdot \theta}$ is conservative. Thus $\mathcal{R}(R)$ is *G*-invariant. In a similar way we can verify that $\mathcal{R}i(R)$ is *G*-invariant. \Box

From now on we fix a lattice Γ in G. We recall that there exists a lattice in G if and only if the structural constants of \mathfrak{g} are all rational [Mal]. Moreover, every lattice in G is uniform [Mal], i.e. co-compact. We fix a right-invariant metric dist(., .) on G compatible with the topology.

Let $T = (T_{\gamma})_{\gamma \in \Gamma}$ be a measure preserving action of Γ on a σ -finite standard measure space (X, \mathfrak{B}, μ) .

Definition 1.3.

- (i) We call *T* recurrent along a line $\theta \in P(\mathfrak{g})$ if for each $\epsilon > 0$ and every subset $A \in \mathfrak{B}, \ \mu(A) > 0$, there are an element $\gamma \in \Gamma \setminus \{1_{\Gamma}\}$ and an element $g \in \exp(\theta)$ such that $\operatorname{dist}(\gamma, g) < \epsilon$ and $\mu(A \cap T_{\gamma}A) > 0$.
- (ii) We call T evenly recurrent along a line $\theta \in P(\mathfrak{g})$ if T is recurrent along every line from the G-orbit of θ .
- (iii) We call T rigid along a line $\theta \in P(\mathfrak{g})$ if there is a sequence $(\gamma_n)_{n\geq 1}$ of elements in Γ such that $\lim_{n\to\infty} \inf_{g\in\exp(\theta)} \operatorname{dist}(\gamma_n,g) = 0$ and

$$\lim_{n \to \infty} \mu(A \cap T_{\gamma_n} A) = \mu(A)$$

for each subset $A \in \mathfrak{B}$ with $\mu(A) < \infty^2$.

(iv) We call T evenly rigid along a line $\theta \in P(\mathfrak{g})$ if T is rigid along every line from the G-orbit of θ .

We denote by $\mathcal{R}(T)$ the set of all $\theta \in P(\mathfrak{g})$ such that T is recurrent along θ . We denote by $\mathcal{R}i(T)$ the set of all $\theta \in P(\mathfrak{g})$ such that T is rigid along θ . In a similar way, we denote by $\mathcal{ER}(T)$ and $\mathcal{ER}i(T)$ the set of all $\theta \in P(\mathfrak{g})$ such that T is evenly recurrent along them and evenly rigid along them respectively.

Of course, $\mathcal{R}(T) \supset \mathcal{ER}(T)$, $\mathcal{R}i(T) \supset \mathcal{ER}i(T)$, $\mathcal{R}(T) \supset \mathcal{R}i(T)$ and $\mathcal{ER}(T) \supset \mathcal{ER}i(T)$. For G Abelian, $\mathcal{R}(T) = \mathcal{ER}(T)$ and $\mathcal{R}i(T) = \mathcal{ER}i(T)$. However, in general $\mathcal{R}(T) \neq \mathcal{ER}(T)$ (see Theorem 6.2 below) and $\mathcal{R}i(T) \neq \mathcal{ER}i(T)$.

Remark 1.4.

- (i) It is easy to see that if θ is "rational", i.e. the intersection $\Gamma \cap \exp(\theta)$ is nontrivial, say there is $\gamma_0 \neq 1_{\Gamma}$ such that $\Gamma \cap \exp(\theta) = \{\gamma_0^n \mid n \in \mathbb{Z}\}$, then θ is recurrent if and only if γ_0 (i.e. the action of \mathbb{Z} generated by γ_0) is conservative. In a similar way, if θ is rigid if and only if γ_0 is rigid.
- (ii) If $\theta \in \mathcal{R}(T)$ then we have $\{\gamma \cdot \theta \mid \gamma \in \Gamma\} \subset \mathcal{R}(T)$. In a similar way, if $\theta \in \mathcal{R}i(T)$ then we have $\{\gamma \cdot \theta \mid \gamma \in \Gamma\} \subset \mathcal{R}i(T)$. This can be shown in a similar way as in Proposition 1.2 (plus the fact that diet is right-invariant).

²This means that $T_{\gamma_n} \to \text{Id}$ as $n \to \infty$ in the weak topology on the group of all μ -reserving invertible transformations of X.

Given $g \in G$ and $\theta \in P(\mathfrak{g})$, we denote by $\operatorname{dist}(g, \exp(\theta))$ the distance from g to the closed subgroup $\exp(\theta)$, i.e.

$$\operatorname{dist}(g, \exp(\theta)) := \inf_{h \in \exp(\theta)} \operatorname{dist}(g, h) = \min_{h \in \exp(\theta)} \operatorname{dist}(g, h).$$

Since in Definition 1.3(i), there is no any estimation (from below) for the ratio $\mu(A \cap T_{\gamma}A)/\mu(A)$, the following lemma—which is equivalent to Definition 1.3(i)—is more useful for applications.

Lemma 1.5. Let $\theta \in \mathcal{R}(T)$. Then for each $\epsilon > 0$, a compact $K \subset G$ and a subset $A \subset X$ of finite measure, there is a Borel subset $A_0 \subset A$ and Borel one-to-one map $R: A_0 \to A$ and a Borel map $\vartheta: A_0 \ni x \mapsto \vartheta_x \in \Gamma \setminus K$ such that $\mu(A_0) \ge 0.5\mu(A)$ and $Rx = T_{\vartheta_x}x$ and $\operatorname{dist}(\vartheta_x, \exp(\theta)) < \epsilon$ for all $x \in A_0$.

Proof. We use a standard exhaustion argument. Let

$$\Gamma_{\epsilon} := \{ \gamma \in \Gamma \setminus \{1\} \mid \operatorname{dist}(\gamma, \exp(\theta)) < \epsilon \}.$$

Enumerate the elements of Γ_{ϵ} , i.e. let $\Gamma_{\epsilon} = \{\gamma_n\}_{n\geq 1}$. We now set $A_1 := A \cap T_{\gamma_1}^{-1}A$, $B_1 := T_{\gamma_1}A_1, A_2 := (A \setminus (A_1 \cup B_1)) \cap T_{\gamma_2}^{-1}(A \setminus (A_1 \cup B_1)), B_2 := T_{\gamma_2}A_2$ and so on. Then we obtain two sequences $(A_n)_{n\geq 1}$ and $(B_n)_{n\geq 1}$ of Borel subsets of A such that $A_i \cap A_j = B_i \cap B_j = \emptyset$ whenever $i \neq j$ and $T_{\gamma_i}A_i = B_i$ for all i. We let $A_0 := \bigsqcup_{i\geq 1} A_i$ and $B_0 := \bigsqcup_{i\geq 1} B_i$. It follows from Definition 1.3(i) that $\mu(A \setminus (A_0 \cup B_0)) = 0$. Since $\mu(A_0) = \mu(B_0)$, it follows that $\mu(A_0) \geq 0.5\mu(A)$. It remains to let $\vartheta_x := \gamma_i$ for all $x \in A_i, i \geq 1$. \Box

2. Recurrence and rigidity along directions in terms of the induced G-actions

Denote by $\widetilde{T} = (\widetilde{T}_g)_{g \in G}$ the action of G induced from T (see [Ma], [Zi]). We recall that the space of \widetilde{T} is the product space $(G/\Gamma \times X, \lambda \times \mu)$, where λ is the unique G-invariant probability measure on the homogeneous space G/Γ . To define \widetilde{T} we first choose a Borel cross-section $s : G/\Gamma \to G$ of the natural projection $G \to G/\Gamma$. Moreover, we may assume without loss of generality that $s(\Gamma) = 1_G$ and s is a homeomorphism when restricted to an open neighborhood of Γ , this neighborhood is of full measure and the measure of the boundary of the neighborhood is 0. Define a Borel map $h_s : G \times G/\Gamma \to \Gamma$ by setting

$$h_s(g, g_1\Gamma) = s(gg_1\Gamma)^{-1}gs(g_1\Gamma).$$

Then h_s satisfies the 1-cocycle identity, i.e. $h_s(g_2, g_1g\Gamma)h_s(g_1, g\Gamma) = h_s(g_2g_1, g\Gamma)$ for all $g_1, g_2, g \in \Gamma$. We now set for $g, g_1 \in G$ and $x \in X$,

$$\widetilde{T}_g(g_1\Gamma, x) := (gg_1\Gamma, T_{h_s(g, g_1\Gamma)}x).$$

Then $(\widetilde{T}_g)_{g\in G}$ is a measure preserving action of G on $(G/\Gamma \times X, \lambda \times \mu)$. We note that the isomorphism class of \widetilde{T} does not depend on the choice of s.

Theorem 2.1. Let $G = \mathbb{R}^d$ and $\Gamma = \mathbb{Z}^d$, $d \ge 1$. Then $\mathcal{R}(\widetilde{T}) = \mathcal{R}(T)$ and $\mathcal{R}i(\widetilde{T}) = \mathcal{R}i(T)$.

Proof. We consider the quotient space G/Γ as $[0,1)^d$. Given $g = (g_1, \ldots, g_d) \in \mathbb{R}^d$, we let $[g] = (E(g_1), \ldots, E(g_d))$ and $\{g\} := (F(g_1), \ldots, F(g_d))$, where E(.) and F(.) denote the integer part and the fractional part of a real. If the cross-section $s : [0,1)^d \to \mathbb{R}^d$ is given by the formula s(y) := y then we have $h_s(g,y) = [g+y]$ for all $g \in G$ and $y \in [0,1)^d$.

(A) We first show that $\mathcal{R}i(T) = \mathcal{R}i(\widetilde{T})$. Let $\theta \in \mathcal{R}i(T)$. Then there are $\gamma_n \in \Gamma$ and $t_n \in \theta$ such that $\operatorname{dist}(\gamma_n, t_n) \to 0$ and $T_{\gamma_n} \to \operatorname{Id}_X$ weakly as $n \to \infty$. We claim that $\widetilde{T}_{t_n} \to \operatorname{Id}_{(G/\Gamma) \times X}$ weakly as $n \to \infty$. Indeed, let $\epsilon_n := t_n - \gamma_n$. Then

(2-1)
$$\widetilde{T}_{t_n}(y,x) = (\{t_n+y\}, T_{[t_n+y]}x) = (\{\epsilon_n+y\}, T_{\gamma_n}T_{[\epsilon_n+y]}x).$$

Since the Lebesgue measure of the subset $Y_n := \{y \in [0,1)^d \mid \epsilon_n + y \in [0,1)^d\}$ goes to 1 as $n \to \infty$ and $\{\epsilon_n + y\} = y$ and $[\epsilon_n + y] = 0$ for all $y \in Y_n$, it follows that $\widetilde{T}_{t_n} \to \mathrm{Id}_{(G/\Gamma) \times X}$ as $n \to \infty$. Thus we obtain that $\theta \in \mathcal{R}i(\widetilde{T})$.

Conversely, let $\theta \in \mathcal{R}i(\widetilde{T})$. Then there are $t_n \in \theta$, $n \in \mathbb{N}$, such that

(2-2)
$$\widetilde{T}_{t_n} \to \mathrm{Id}_{(G/\Gamma) \times X}$$
 weakly as $n \to \infty$.

It follows from (2-1) that the sequence of transformations $y \mapsto \{t_n + y\}$ of G/Γ converge to $\mathrm{Id}_{G/\Gamma}$ as $n \to \infty$. This, in turn, implies that there is a sequence $(\gamma_n)_{n\in\mathbb{N}}$ of elements of Γ such that $\lim_{n\to\infty} \mathrm{dist}(t_n, \gamma_n) = 0$. Therefore, Lebesgue measure of the subset $\{y \in G/\Gamma \mid [t_n+y] = \gamma_n\}$ converges to 1 as $n \to \infty$. Now (2-1) and (2-2) yield that $T_{\gamma_n} \to \mathrm{Id}_X$. Hence $\theta \in \mathcal{R}i(T)$.

(B) We now show that $\mathcal{R}(T) = \mathcal{R}(T)$. Take $\theta \in \mathcal{R}(T)$. Given a subset $A \subset G/\Gamma \times X$ of positive measure, a compact $K \subset G$ and $\epsilon > 0$, we find two subsets $B \subset X$ and $C \subset G/\Gamma$ of finite positive measure such that

(2-3)
$$(\operatorname{Leb} \times \mu)(A \cap (B \times C)) > 0.99 \operatorname{Leb}(B)\mu(C).$$

For $t \in G$, we set $B_t := \{y \in B \mid t+y \in B \text{ and } [t+y] = 0\}$. Then we find $\epsilon_1 > 0$ so small that $\operatorname{Leb}(B_t) > 0.5\operatorname{Leb}(B)$ for each $t \in G$ such that $\operatorname{dist}(t,0) < \epsilon_1$. By Lemma 1.5, there are elements $\gamma_1, \ldots, \gamma_l \in \Gamma, t_1, \ldots, t_l \in \theta \setminus K$ and pairwise disjoint subsets C_1, \ldots, C_l of C such that $\max_{1 \leq j \leq l} \operatorname{dist}(\gamma_j, t_j) < \min(\epsilon, \epsilon_1)$, the sets $T_{\gamma_1}A_1, \ldots, T_{\gamma_l}C_l$ are mutually disjoint subsets of C and $\mu(\bigsqcup_{j=1}^l C_j) > 0.4\mu(C)$. We now let $A' := \bigsqcup_{j=1}^l B_{t_j} \times C_j$. Of course, A' is a subset of $B \times C$. We have

$$\widetilde{T}_{t_j}(b,c) = (\{t_j + b\}, T_{\gamma_j}c) \subset B \times C \quad \text{if } b \in B_j, \text{ and } c \in C_j$$

for each j = 1, ..., l. Moreover, the sets $\widetilde{T}_{t_j}(B_j \times C_j)$, j = 1, ..., l, are pairwise disjoint and $(\text{Leb} \times \mu)(\bigsqcup_{j=1}^{l}(B_j \times C_j)) > 0.2(\text{Leb} \times \mu)(B \times C)$. It now follows from (2-3) that there is $j \in \{1, ..., l\}$ such that $(\text{Leb} \times \mu)(\widetilde{T}_{t_j}(A \cap (B_j \times C_j) \cap A) > 0$. Hence $\theta \in \mathcal{R}(\widetilde{T})$.

³Though this fact was originally stated in [JoSa] we give here an alternative proof because, on our opinion, the proof of the inclusion $\mathcal{R}(T) \subset \mathcal{R}(\widetilde{T})$ was not completed there.

Conversely, let $\theta \in \mathcal{R}(T)$. Given $\epsilon > 0$, let $Y = [1/2, 1/2 + \epsilon) \subset G/\Gamma$. It is easy to see that if $gY \cap Y \neq \emptyset$ for some $g \in G$ then $\operatorname{dist}(g, \Gamma) < \epsilon$ and the map $Y \ni y \mapsto [g+y] \in \mathbb{Z}^d$ is constant. Let A be a subset of X of finite positive measure. Then there is $g \in \theta$ such that $\operatorname{dist}(g, 0) > 100$ and

$$0 < (\text{Leb} \times \mu)((Y \times A) \cap \widetilde{T}_g(Y \times A)) = \text{Leb}(gY \cap Y)\mu(A \cap T_\gamma A),$$

where $\gamma := [g + y] \in \Gamma$ for all $y \in Y$. It follows that $\operatorname{dist}(\gamma, \theta) < \epsilon$ and $\gamma \neq 0$. Hence $\theta \in \mathcal{R}(T)$. \Box

Remark 2.2. We note that the equality $\mathcal{R}i(\tilde{T}) = \mathcal{E}\mathcal{R}i(T)$ does not hold for non-Abelian nilpotent groups. Consider, for instance, the case where $G = H_3(\mathbb{R})$ and $H = H_3(\mathbb{Z})$ (see Section 6 for their definition). Let T be an ergodic action of $H_3(\mathbb{Z})$. We claim that \tilde{T} is not rigid and hence $\mathcal{R}i(\tilde{T}) = \emptyset$. Indeed, if \tilde{T} were rigid then the quotient G-action by translations on G/Γ is also rigid. However the latter action is mixing relative to the subspace generated by all eigenfunctions [Au–Ha]. On the other hand, there are examples of weakly mixing $H_3(\mathbb{Z})$ -actions T such that $\mathcal{R}i(T)$ contains the line passing through the center [Da3].

Corollary 2.3. Let $G = \mathbb{R}^d$ and $\Gamma = \mathbb{Z}^d$, $d \ge 1$. If an action T of Γ is ergodic and extends to an action \widehat{T} of G on the same measure space where T is defined then $\mathcal{R}(T) = \mathcal{R}(\widehat{T})$.

Proof. It follows from the condition of the corollary that the induced G-action \widehat{T} is isomorphic to the product $\widehat{T} \times D$, where D is the natural G-action by translations on G/Γ [Zi, Proposition 2.10]. Since D is finite measure preserving, $\mathcal{R}(\widehat{T} \times D) = \mathcal{R}(\widehat{T})$ (see Lemma 2.4(ii) below). It remains to apply Theorem 2.1. \Box

We leave the proof of the following non-difficult statement to the reader as an exercise.

Lemma 2.4. Let $F = (F_t)_{t \in \mathbb{R}}$ be a σ -finite measure preserving flow and let $S = (S_t)_{t \in \mathbb{R}}$ be a probability preserving flow.

- (i) F is conservative if and only if the transformation F_1 is conservative.
- (ii) F is conservative if and only if the product flow $(F_t \times S_t)_{t \in \mathbb{R}}$ is conservative⁴.
- (iii) F is rigid if and only if F_1 is rigid.

We now describe the "topological type" of $\mathcal{R}(T)$ and $\mathcal{ER}(T)$ as subspaces of $P(\mathfrak{g})$. We first consider the Abelian case and provide a short proof of [JoSa, Theorem 1.3] stating that $\mathcal{R}(T)$ is a G_{δ} .

Theorem 2.5. Let $G = \mathbb{R}^d$ and $\Gamma = \mathbb{Z}^d$, $d \ge 1$. The subsets $\mathcal{R}(T)$ and $\mathcal{R}i(T)$ are both G_{δ} in $P(\mathbb{R}^d)$.

Proof. Let $(\tilde{X}, \tilde{\mu})$ be the space of \tilde{T} . Denote by $\operatorname{Aut}(\tilde{X}, \tilde{\mu})$ the group of all $\tilde{\mu}$ preserving invertible transformations of \tilde{X} . We endow it with the standard weak
topology. Then $\operatorname{Aut}(\tilde{X}, \tilde{\mu})$ is a Polish group (see [DaSi] and references therein). Fix
a norm on \mathbb{R}^d . Denote by \mathcal{S} the unit ball in \mathbb{R}^d . We define a map $\mathfrak{m} : \mathcal{S} \to \operatorname{Aut}(\tilde{X}, \tilde{\mu})$ by setting $\mathfrak{m}(v) := \tilde{T}_v$. It is obviously continuous. We recall that the subset \mathfrak{R}

⁴A similar claim for transformations (i.e. \mathbb{Z} -actions) is proved in [Aa]. We note that (ii) follows from that claim and (i).

of conservative infinite measure preserving transformations of $(\widetilde{X}, \widetilde{\mu})$ is a G_{δ} in $\operatorname{Aut}(\widetilde{X}, \widetilde{\mu})$ [DaSi]. It follows from this fact and Lemma 2.4(i) that the set

$$\mathfrak{m}^{-1}(\mathfrak{R}) = \{ v \in \mathcal{S} \mid \text{the flow } (\widetilde{T}_{tv})_{t \in \mathbb{R}} \text{ is conservative} \}$$

is a G_{δ} in \mathcal{S} , i.e. the intersection of countably many open subsets. Since $\mathfrak{m}^{-1}(\mathfrak{R})$ is centrally symmetric (i.e. if $v \in \mathfrak{m}^{-1}(\mathfrak{R})$ then $-v \in \mathfrak{m}^{-1}(\mathfrak{R})$), we may assume without loss of generality that these open sets are also centrally symmetric. The natural projection of \mathcal{S} onto $P(\mathbb{R}^d)$ is just the 'gluing' the pairs of centrally symmetric points. We note that the projection of $\mathfrak{m}^{-1}(\mathfrak{R})$ to $P(\mathbb{R}^d)$ is exactly $\mathcal{R}(\tilde{T})$. It follows that $\mathcal{R}(\tilde{T})$ is a G_{δ} in $P(\mathfrak{g})$. It remains to apply Theorem 2.1.

To show that $\mathcal{R}i(T)$ is a G_{δ} argue in a similar way and use the fact that the set of all rigid transformations is a G_{δ} in $\operatorname{Aut}(\widetilde{X}, \widetilde{\mu})$ [DaSi] and apply Lemma 2.4(iii). \Box

We now consider the general case (independently of Theorem 2.5).

Theorem 2.6. The subsets $\mathcal{R}(T)$ and $\mathcal{R}i(T)$ are both G_{δ} in $P(\mathfrak{g})$.

Proof. Let $\Gamma \setminus \{1\} = \{\gamma_k \mid k \in \mathbb{N}\}.$

(A) We first prove that $\mathcal{R}(T)$ is a G_{δ} . For each $g \in G$, the map

(2-4)
$$P(\mathfrak{g}) \ni \theta \mapsto \operatorname{dist}(g, \exp(\theta)) := \inf_{h \in \exp(\theta)} \operatorname{dist}(g, h) \in \mathbb{R}$$

is continuous. Now for a subset $A \subset X$ with $0 < \mu(A) < \infty$ and $\epsilon > 0$, we construct a sequence A_1, A_2, \ldots of subsets in A as follows (cf. with the proof of Lemma 1.5):

$$A_{1} := \begin{cases} A \cap T_{\gamma_{1}}^{-1}A, & \text{if } \operatorname{dist}(\gamma_{1}, \exp(\theta)) < \epsilon \\ \emptyset, & \text{otherwise}, \end{cases}$$
$$A_{2} := \begin{cases} (A \setminus (A_{1} \cup T_{\gamma_{1}}A_{1})) \cap T_{\gamma_{2}}^{-1}(A \setminus (A_{1} \cup T_{\gamma_{1}}A_{1})), & \text{if } \operatorname{dist}(\gamma_{2}, \exp(\theta)) < \epsilon \\ \emptyset, & \text{otherwise}, \end{cases}$$

and so on. Then (as in Lemma 1.5) $A_i \cap A_j = \emptyset$, $T_{\gamma_i} A_i \subset A$ and $T_{\gamma_i} A_i \cap T_{\gamma_j} A_j = \emptyset$ if $i \neq j$. For each $m \in \mathbb{N}$, we set

$$\Theta_{\epsilon,A,m} := \bigg\{ \theta \in P(\mathfrak{g}) \mid \sum_{j \le m} \mu(A_j) > 0.4\mu(A) \bigg\}.$$

We note that for each j > 0, the map $P(\mathfrak{g}) \ni \theta \mapsto \mu(A_j) \in \mathbb{R}$ is lower semicontinuous. Indeed, this map is (up to a multiplicative constant) is the indicator function of the subset $\{\theta \mid \operatorname{dist}(\gamma_j, \exp(\theta)) < \epsilon\}$ which is open because (2-4) is continuous. It follows that $\Theta_{\epsilon,A,m}$ is an open subset in $P(\mathfrak{g})$. Fix a countable family \mathfrak{D} of subsets of finite positive measure in X such that \mathfrak{D} is dense in \mathfrak{B} . We claim that

(2-5)
$$\mathcal{R}(T) = \bigcap_{D \in \mathfrak{D}} \bigcap_{l=1}^{\infty} \bigcup_{m=1}^{\infty} \Theta_{1/l,D,m}.$$

Indeed, if T is recurrent along a line $\theta \in P(\mathfrak{g})$ then for each $\epsilon > 0$ and each subset A of positive measure, $\mu(\bigsqcup_j A_j) \ge 0.5\mu(A)$ (as in Lemma 1.5). We then obtain

that there exists m > 0 with $\mu(\bigsqcup_{j=1}^{m} A_i) > 0.4\mu(A)$. Hence $\theta \in \Theta_{\epsilon,A,m}$. Let now A run \mathfrak{D} and let ϵ run $\{1/l \mid l \in \mathbb{N}\}$. Then θ belongs to the right-hand side of (2-5).

Conversely, take θ from the right-hand side of (2-5). Let A be a subset of X of positive measure. Then there is $D \in \mathfrak{D}$ such that $\mu(A \cap D) > 0.999\mu(D)$. Take $l \in \mathbb{N}$. Select m > 0 such that $\theta \in \Theta_{1/l,D,m}$. Then

$$\mu\left(\bigsqcup_{j\leq m} D_j\right) > 0.4\mu(D)$$
 and hence $\mu\left(\bigsqcup_{j\leq m} T_{\gamma_j} D_j\right) > 0.4\mu(D).$

Therefore there is j < d with $\mu(T_{\gamma_j}A \cap A) > 0$ and (because $\theta \in \Theta_{1/l,D,m}$) dist $(\gamma_j, \exp(\theta)) < 1/m$.

(B) To show that $\mathcal{R}i(T)$ is G_{δ} we first denote by τ a metric on $\operatorname{Aut}(X,\mu)$ compatible with the weak topology. Now it suffices to note that

$$\mathcal{R}i(T) = \bigcap_{k=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{\{n > N \mid \tau(T_{\gamma_n}, \mathrm{Id}) < 1/k\}} \{\theta \in P(\mathfrak{g}) \mid \mathrm{dist}(\gamma_n, \exp(\theta)) < 1/k\}.$$

and use (2-4).

3. (C, F)-construction and directional recurrence of rank-one actions

We first remind a (C, F)-construction of group actions (see [Da1] for a detailed exposition and various applications).

Let $(C_n)_{n>0}$ and $(F_n)_{n\geq 0}$ be two sequences of finite subsets in Γ such that the following conditions hold:

- (I) $F_0 = \{1\}, 1 \in C_n \text{ and } \#C_n > 1 \text{ for all } n,$
- (II) $F_n C_{n+1} \subset F_{n+1}$ for all n,
- (III) $F_n c \cap F_n c' = \emptyset$ for all $c \neq c' \in C_{n+1}$ and n and

(IV) $\gamma F_n C_{n+1} C_{n+2} \cdots C_m \subset F_{m+1}$ eventually in m for each $\gamma \in \Gamma$ and every n.

Then the infinite product space $X_n := F_n \times C_{n+1} \times C_{n+1} \times \cdots$ is a (compact) Cantor set. It follows from (II) and (III) that the map

$$X_n \ni (f_n, c_{n+1}, c_{n+2}, c_{n+3}, \dots) \mapsto (f_n c_{n+1}, c_{n+2}, c_{n+3}, \dots) \in X_{n+1}$$

is a continuous embedding. Denote by X the (topological) inductive limit of the sequence $X_1 \subset X_2 \subset \cdots$. Then X is a locally compact Cantor set. For a subset $A \subset F_n$, we let $[A]_n := \{x = (f_n, c_{n+1}, \ldots) \in X_n \mid f_n \in A\}$. Then $[A]_n$ is a compact open subset of X. We call it an *n*-cylinder. The family of all cylinders, i.e. the family of all compact open subsets of X is a base of the topology in X. Given $\gamma \in \Gamma$ and $x \in X$, in view of (II) and (IV), there is n such that $x = (f_n, c_{n+1}, \cdots) \in X_n$ and $\gamma f_n \in F_n$. Then we let $T_{\gamma}x := (\gamma f_n, c_{n+1}, \ldots) \in X_n \subset X$. It is standard to verify that T_{γ} is a well defined homeomorphism of X. Moreover, $T_{\gamma}T_{\gamma'} = T_{\gamma\gamma'}$ for all $\gamma, \gamma' \in \Gamma$, i.e. $T := (T_{\gamma})_{\gamma \in \Gamma}$ is a continuous action of Γ on X. It is called the (C, F)-action of Γ associated with $(C_n, F_{n-1})_{n>0}$ (see [dJ], [Da1], [Da3]). This action is free and minimal. There is a unique (up to scaling) T-invariant σ -finite Borel measure μ on X. It is easy to compute that

$$\mu([A]_n) = \frac{\#A}{\#C_1 \cdots \#C_n}$$

for all subsets $A \subset F_n$, n > 0, provided that $\mu(X_0) = 1$. We note that $\mu(X) = \infty$ if and only if

(3-1)
$$\lim_{n \to \infty} \frac{\#F_n}{\#C_1 \cdots \#C_n} = \infty.$$

Of course, (X, μ, T) is an ergodic conservative dynamical system. It is of funny rank one (see [Da1] and [Da3] for the definition). Conversely, every funny rankone free system appears this way, i.e. it is isomorphic to a (C, F)-system for an appropriately chosen sequence $(C_n, F_{n-1})_{n\geq 1}$. We state without proof a lemma from [Da3].

Lemma 3.1. Let A be a finite subset F_n and let $g \in G$. Then $[A]_n \cap T_g[A]_n \neq \emptyset$ if and only if $g \in \bigcup_{m>n} AC_{n+1} \cdots C_m C_m^{-1} \cdots C_{n+1}^{-1} A^{-1}$. Furthermore, if we let

$$\mathcal{N}_m^{g,A} := \{(a, c_{n+1}, \dots, c_m) \in A \times C_{n+1} \times \dots \times C_m \mid gac_{n+1} \cdots c_m \in AC_{n+1} \cdots C_m\}$$

then $\mu([A]_n \cap T_g[A]_n) = \lim_{m \to \infty} \frac{\#\mathcal{N}_m^{g,A}}{\#C_1 \cdots \#C_m}.$

To state the next assertion we need more notation. Denote by $\pi : \mathfrak{g} \setminus \{0\} \to P(\mathfrak{g})$ the natural projection. Let κ stand for a metric on $P(\mathfrak{g})$ compatible with the topology. Given two sequences $(A_n)_{n=1}^{\infty}$ and $(B_n)_{n=1}^{\infty}$ of finite subsets in G, we write $A_n \gg B_n$ as $n \to \infty$ if

$$\lim_{n \to \infty} \max_{a \in A_n, b \in B_n} \kappa(\pi(\log(ab), \pi(\log(a))) = 0.$$

Proposition 3.2. Let $T = (T_{\gamma})_{\gamma \in \Gamma}$ be a (C, F)-action of Γ associated with a sequence $(C_n, F_{n-1})_{n=1}^{\infty}$ satisfying (I)–(IV). Then

(i)
$$\mathcal{R}(T) \subset \bigcap_{\gamma \in \Gamma} \gamma \cdot \left(\bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n} \pi(\log(C_n \cdots C_m C_m^{-1} \cdots C_n^{-1} \setminus \{1\}))} \right).$$

(ii) If, moreover, the group generated by all C_j , j > 0, is commutative and $C_j \setminus \{1\} \gg C_1 \cdots C_{j-1}$ as $j \to \infty$ then

$$\mathcal{R}(T) \subset \bigcap_{\gamma \in \Gamma} \gamma \cdot \left(\bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n} \pi(\log(C_m C_m^{-1} \setminus \{1\}))}\right)$$

(iii) If, in addition, there is $c_j \in \Gamma$ such that $C_j = \{1, c_j\}$ for each j > 0 then

$$\mathcal{R}(T) \subset \bigcap_{\gamma \in \Gamma} \gamma \cdot \bigg(\bigcap_{n=1}^{\infty} \overline{\{\pi(\log c_m) \mid m \ge n\}} \bigg).$$

Proof. (i) Let $\theta \in \mathcal{R}(T)$. Then for each n > 0, there is a sequence $(\gamma_m)_{m=1}^{\infty}$ of elements of Γ such that $\gamma_m \neq 1$ and $\mu(T_{\gamma_m}[1]_n \cap [1]_n) > 0$ for each m and $\operatorname{dist}(\gamma_m, \exp(\theta)) \to 0$ as $m \to \infty$. Hence we deduce from Lemma 3.1 that

$$\inf\left\{\operatorname{dist}(\gamma, \exp(\theta)) \mid \gamma \in \bigcup_{m > n} C_{n+1} \cdots C_m C_m^{-1} \cdots C_{n+1}^{-1} \setminus \{1\}\right\} = 0.$$
10

This yields that $\theta \in \overline{\pi\left(\log\left(\bigcup_{m>n} C_{n+1} \cdots C_m C_m^{-1} \cdots C_{n+1}^{-1} \setminus \{1\}\right)\right)}$. Therefore $\mathcal{R}(T) \subset \bigcap_{n \ge 1} \overline{\bigcup_{m \ge n} \pi(\log(C_{n+1} \cdots C_m C_m^{-1} \cdots C_{n+1}^{-1} \setminus \{1\}))}.$

Since $\mathcal{R}(T)$ is invariant under Γ in view of Remark 1.4(ii), the claim (i) follows.

(ii) Denote by A the smallest closed Lie subgroup of G containing all C_i , j > j0. Since A is Abelian, the restriction of log to A is a group homomorphism. Hence the condition $C_j \setminus \{1\} \gg C_1 \cdots C_{j-1}$ as $j \to \infty$ implies $C_j C_j^{-1} \setminus \{1\} \gg$ $C_1C_1^{-1}\cdots C_{j-1}C_{j-1}^{-1}$ as $j \to \infty$. Now (ii) easily follows from (i). (iii) It suffices to note that $C_mC_m^{-1}\setminus\{1\}=\{c_m,c_m^{-1}\}$ and $\pi(\log c_m)=\pi(\log c_m^{-1})$.

4. Directional recurrence sets for actions of Abelian lattices

In this section we consider the case of Abelian G in more detail. Our purpose here is to realize various G_{δ} -subsets of $P(\mathfrak{g})$ as $\mathcal{R}(T)$ for rank-one actions T of G. Since G is simply connected, there is d > 0 such that $G = \mathbb{R}^d$. Hence $\mathfrak{g} = \mathbb{R}^d$ and the maps exp and log are the identities. Replacing Γ with an automorphic lattice we may assume without loss of generality that $\Gamma = \mathbb{Z}^d$. In the sequel we assume that d > 1 (the case d = 1 is trivial). By dist(.,.) we denote the usual distance between a point and a closed subset of \mathbb{R}^d . We also note that $\mathcal{ER}(T) = \mathcal{R}(T)$ for each measure preserving action T of Γ . We now restate Proposition 3.2 for the Abelian case.

Proposition 4.1. Let $T = (T_{\gamma})_{\gamma \in \mathbb{Z}^d}$ be a (C, F)-action of \mathbb{Z}^d associated with a sequence $(C_n, F_{n-1})_{n=1}^{\infty}$ satisfying (I)-(IV). Then

- (i) $\mathcal{R}(T) \subset \bigcap_{n=1}^{\infty} \overline{\pi(\sum_{j \ge n} (C_j C_j) \setminus \{0\})}.$ (ii) If, moreover, $C_j \setminus \{0\} \gg C_1 \cup \cdots \cup C_{j-1}$ as $j \to \infty$ then

$$\mathcal{R}(T) \subset \bigcap_{n=1}^{\infty} \overline{\bigcup_{m \ge n} \pi((C_m - C_m) \setminus \{0\})}.$$

(iii) In, in addition, there is $c_j \in \mathbb{Z}^d$ such that $C_j = \{0, c_j\}$ for each j > 0 then

$$\mathcal{R}(T) \subset \bigcap_{n=1}^{\infty} \overline{\{\pi(c_m) \mid m \ge n\}}.$$

The following two theorems are the main results of this section.

Theorem 4.2. Let Δ be a G_{δ} -subset of $P(\mathbb{R}^d)$ and let D be a countable subset of Δ . Then there is a rank-one free infinite measure preserving action T of \mathbb{Z}^d such that $D \subset \mathcal{R}(T) \subset \Delta$. In particular, each countable G_{δ} -subset (e.g. each countable compact) of $P(\mathbb{R}^d)$ is realizable as $\mathcal{R}(T)$ for some rank-one free action T of \mathbb{Z}^d .

Proof. Suppose first that $\Delta \neq \emptyset$. Then without loss of generality we may think that $D \neq \emptyset$. Let $(\delta_n)_{n=1}^{\infty}$ be a sequence such that $\delta_n \in D$ for each n and every element of D occurs in this sequence infinitely many times. Let $(\epsilon_n)_{n=1}^{\infty}$ be a decreasing sequence of positive reals with $\lim_{n\to\infty} \epsilon_n = 0$. There exists an increasing sequence $L_1 \subset L_2 \subset \cdots$ of closed subsets in $P(\mathbb{R}^d)$ such that $P(\mathbb{R}^d) \setminus \Delta = \bigcup_{j\geq 1} L_j$. Let $L_1^+ \subset L_2^+ \subset \cdots$ be a sequence of open subsets in $P(\mathbb{R}^d)$ such that $L_j^+ \supset L_j$ and $\delta_j \notin \overline{L_j^+}$ for each j and $\bigcup_{j\geq 1} L_j^+ \neq P(\mathbb{R}^d)$. We will construct inductively two sequences $(F_n)_{n=0}^{\infty}$ and $(C_n)_{n=1}^{\infty}$ satisfying (I)–(IV) and (3-1). We note in advance that in our construction $\#C_n = 2$ and F_n is a symmetric cube in \mathbb{Z}^d , i.e. there is $a_n \in \mathbb{N}$ such that

$$F_n = \{ (i_1, \dots, i_d) \mid -a_n < i_j \le a_n, j = 1, \dots, d \},\$$

for each *n*. Suppose that we have defined the subsets $C_1, F_1, \ldots, C_{n-1}, F_{n-1}$. Our purpose is to construct C_n and F_n . Choose $c_n \in \mathbb{Z}^d$ such that $(c_n + F_{n-1}) \cap F_{n-1} = \emptyset$, dist $(c_n, \delta_n) < \epsilon_n$ and

(4-1)
$$\max_{f \in F_{n-1}} \operatorname{dist}(c_n, c_n + f) < \epsilon_n,$$

(4-2)
$$\pi(c_n) \notin L_n^+.$$

For that use the fact that $\delta_n \notin \overline{L_n^+}$. We now let $C_n := \{0, c_n\}$ and define F_n to be a huge symmetric cube in \mathbb{Z}^d that contains $F_{n-1} + C_n$. Continuing this construction procedure infinitely many times we obtain infinite sequences $(F_n)_{n=0}^{\infty}$ and $(C_n)_{n=1}^{\infty}$. It is easy to see that (I)–(IV) and (3-1) are all satisfied. Let $T = (T_{\gamma})_{\gamma \in \mathbb{Z}^d}$ denote the associated (C, F)-action. It is free and of rank one. Let (X, μ) be the space of this action.

We first show that $D \subset \mathcal{R}(T)$. Take $\delta \in D$, $\epsilon > 0$ and a cylinder $B \subset X$. Then there are infinitely many n > 0 such that $\delta = \delta_n$ and hence $\operatorname{dist}(c_n, \delta) < \epsilon_n < \epsilon$. If n is large enough, $B = [B_{n-1}]_{n-1}$ for some subset $B_{n-1} \subset F_{n-1}$. Since $[B_{n-1}]_n \subset [B_{n-1}]_{n-1}$ and $T_{c_n}[B_{n-1}]_n = [c_n + B_{n-1}]_n \subset [B_{n-1}]_{n-1}$ with $\mu([B_{n-1}]_n) = 0.5\mu([B_{n-1}]_{n-1})$, we have

$$\mu(T_{c_n}B \cap B) \ge \mu(T_{c_n}[B_{n-1}]_n \cap [B]_{n-1}) = \mu([B_{n-1} + c_n]_n) = 0.5\mu(B).$$

Since each subset of finite measure in X can be approximated with a cylinder up to an arbitrary positive real, we deduce that $\delta \in \mathcal{R}(T)$.

We now show that $\mathcal{R}(T) \subset \Delta$. It follows from (4-1) that $\{c_n\} \gg F_{n-1}$ as $n \to \infty$. Hence by Proposition 4.1(iii), $\mathcal{R}(T) \subset \bigcap_{n=1}^{\infty} \overline{\{\pi(c_m) \mid m \geq n\}}$. Applying (4-2), we obtain that $\pi(c_m) \notin L_m^+ \supset L_n^+ \supset L_n$ for each $m \geq n$. Hence $\mathcal{R}(T) \cap L_n = \emptyset$ for each n, which yields $\mathcal{R}(T) \subset \Delta$.

It remains to consider the case where $\Delta = \emptyset$. Fix $\theta \in P(\mathbb{R}^d)$. Suppose that we have defined the subsets $C_1, F_1, \ldots, C_{n-1}, F_{n-1}$. Choose $c_n \in \mathbb{Z}^d$ such that $(c_n + F_{n-1}) \cap F_{n-1} = \emptyset$, (4-1) is satisfied,

(4-3)
$$\pi(c_n)$$
 is up to ϵ_n close to θ (in the metric on $P(\mathbb{R}^d)$) and

(4-4)
$$\min_{f \in F_{n-1} - F_{n-1}} \operatorname{dist}(c_n + f, \theta) > 10$$

We now let $C_n := \{0, c_n\}$ and define F_n to be a huge symmetric cube in \mathbb{Z}^d that contains $F_{n-1} + C_n$. Continuing infinitely many times we obtain infinite sequences $(F_n)_{n=0}^{\infty}$ and $(C_n)_{n=1}^{\infty}$. It is easy to see that (I)–(IV) and (3-1) are all satisfied.

Let $T = (T_{\gamma})_{\gamma \in \mathbb{Z}^d}$ denote the associated (C, F)-action. It follows from Proposition 4.1(iii), (4-1) and (4-3) that $\mathcal{R}(T) \subset \{\theta\}$. If T were recurrent along θ then there is $\gamma \in \mathbb{Z}^d$ such that $\gamma \neq 0$, dist $(\gamma, \theta) < 0.1$ and $\mu([0]_n \cap T_{\gamma}[0]_n) > 0$. It follows from Lemma 3.1 that there is l > n such that, $\gamma \in F_{l-1} - F_{l-1} + c_l$. This contradicts to (4-4). Thus we obtain that $\mathcal{R}(T) = \emptyset$. \Box

Theorem 4.3. There is a rank-one free infinite measure preserving action T of \mathbb{Z}^d such that $\mathcal{R}(T) = P(\mathbb{R}^d)$.

Proof. Given $t \in \mathbb{N}$ and N > 0, we let

$$\mathcal{K}_{t,N} := \{ (i_1, \ldots, i_d) \in \mathbb{Z}^d \mid |i_j| < N \text{ and } t \text{ divides } i_j, j = 1, \ldots, d \}.$$

Then for each $\epsilon > 0$ and each integer t > 0, there is N > 0 such that

(4-5)
$$\sup_{\delta \in P(\mathbb{R}^m)} \min_{0 \neq \gamma \in \mathcal{K}_{t,N}} \operatorname{dist}(\gamma, \delta) < \epsilon.$$

Fix a sequence of positive reals ϵ_n , $n \in \mathbb{N}$, decreasing to 0. We will construct inductively the sequences $(F_{n-1})_{n>0}$ and $(C_n)_{n>0}$ satisfying (I)–(IV) and (3-1). As usual, $F_0 = \{0\}$. Suppose we have defined $(F_j, C_j)_{j=1}^n$. Suppose that F_n is a symmetric cube. Denote by t_n the length of an edge of this cube. We now construct C_{n+1} and F_{n+1} . By (4-5), there is N_n such that $\min_{0 \neq \gamma \in \mathcal{K}_{3t_n,N_n}} \operatorname{dist}(\gamma, \delta) < \epsilon_n$ for each $\delta \in P(\mathbb{R}^d)$. Let $C_{n+1} := \mathcal{K}_{3t_n,M_n}$, where M_n is an integer large so that

(4-6)
$$\#\{\gamma \in \mathcal{K}_{3t_n, M_n} \mid \gamma + \mathcal{K}_{3t_n, N_n} \subset \mathcal{K}_{3t_n, M_n}\} > 0.5 \# \mathcal{K}_{3t_n, M_n}.$$

Now let F_{n+1} be a huge symmetric cube in \mathbb{Z}^d such that $F_{n+1} \supset F_n + C_{n+1}$. Continuing this construction process infinitely many times we define the infinite sequences $(F_n)_{n\geq 0}$ and $(C_n)_{n\geq 1}$ as desired. Let T be the (C, F)-action of \mathbb{Z}^d associated with these sequences. It is free and of rank-one. Denote by (X, μ) the space of this action. We claim that $\mathcal{R}(T) = P(\mathbb{R}^d)$. Indeed, take $\epsilon > 0, \delta \in P(\mathbb{R}^d)$ and a cylinder $B \subset X$. Then there is n > 0 and a subset $B_n \subset F_n$ such that $B = [B_n]_n$ and $\epsilon_n < \epsilon$. There is $\gamma \in \mathcal{K}_{3t_n,N_n} \setminus \{0\}$ such that $\operatorname{dist}(\gamma, \delta) < \epsilon_n$. By (4-6), $\#(C_{n+1} \cap (C_{n+1} - \gamma)) \geq 0.5 \# C_{n+1}$. Therefore

$$\mu(T_{\gamma}B \cap B) \ge \mu(T_{\gamma}[B_n + (C_{n+1} \cap (C_{n+1} - \gamma))]_{n+1} \cap [B_n]_n)$$

= $\mu([B_n + (C_{n+1} \cap (C_{n+1} + \gamma))]_{n+1})$
 $\ge 0.5\mu(B).$

The standard approximation argument implies that T is recurrent along δ . \Box Remark 4.4.

(i) If we choose M_m in the above construction large so that the inequality

$$\#\{\gamma \in \mathcal{K}_{3t_n, M_n} \mid \gamma + \mathcal{K}_{3t_n, N_n} \subset \mathcal{K}_{3t_n, M_n}\} > (1 - n^{-1}) \# \mathcal{K}_{3t_n, M_n}$$

holds in place of (4-6) then the corresponding (C, F)-action T will possess the stronger property $\mathcal{R}i(T) = P(\mathbb{R}^d)$.

(ii) In a similar way, the statement of Theorem 4.2 remains true if we replace $\mathcal{R}(T)$ with $\mathcal{R}i(T)$.

5. Generic \mathbb{Z}^d -action is recurrent in every direction

Let (X, μ) be a σ -finite non-atomic standard measure space. We recall that the group of all μ -preserving invertible transformations of X is denoted by $\operatorname{Aut}(X, \mu)$. It is endowed with the weak (Polish) topology. For a nilpotent Lie group G, we denote by \mathcal{A}^G_{μ} the set of all μ -preserving actions of G on (X, μ) . We consider every element $A \in \mathcal{A}^G_{\mu}$ as a continuous homomorphism $g \mapsto A_g$ from G to $\operatorname{Aut}(X, \mu)$. The group $\operatorname{Aut}(X, \mu)$ acts on \mathcal{A}^G_{μ} by conjugation, i.e. $(S \cdot A)_g := SA_gS^{-1}$ for all $g \in G$, $S \in \operatorname{Aut}(X, \mu)$ and $A \in \mathcal{A}^G_{\mu}$. We endow \mathcal{A}^G_{μ} with the compact-open topology, i.e. the topology of uniform convergence on the compact subsets of G.

The following lemma is well known. We state it without proof.

Lemma 5.1. \mathcal{A}^G_{μ} is a Polish space. The action of $\operatorname{Aut}(X,\mu)$ on this space is continuous.

Let S^1 be the unit sphere in \mathfrak{g} and let $K := \exp(S^1)$.

Lemma 5.2. Let $\mu(X) = 1$. Then the subset

$$\mathcal{Z} := \{ A \in \mathcal{A}^G_\mu \mid h(A_g) = 0 \text{ for each } g \in K \}$$

is an invariant G_{δ} in \mathcal{A}_{μ}^{G} .

Proof. Denote by \mathcal{P} the set of all finite partitions of X. Fix a countable subset $\mathcal{P}_0 \subset \mathcal{P}$ which is dense in \mathcal{P} in the natural topology. For each $P \in \mathcal{P}_0$ and n > 0, the map

$$\mathcal{A}^G_\mu \times K \ni (A,g) \mapsto H\left(P \left| \bigvee_{j=1}^n A_g^{-j} P\right) \in \mathbb{R}$$

is continuous. Therefore the map

$$m_{P,n}: \mathcal{A}^G_\mu \ni A \mapsto m_{P,n}(A) := \max_{g \in K} H\left(P \middle| \bigvee_{j=1}^n A_g^{-j} P\right) \in \mathbb{R}$$

is well defined and continuous. Hence the subset

$$\mathcal{Z}' := \bigcap_{P \in \mathcal{P}_0} \bigcap_{r=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{l>N} \left\{ A \in \mathcal{A}_{\mu}^G \, \middle| \, m_{P,l}(A) < 1/r \right\}$$

is a G_{δ} in \mathcal{A}_{μ}^{G} . We now show that $\mathcal{Z}' = \mathcal{Z}$. It is easy to see that $\mathcal{Z}' \subset \mathcal{Z}$ because $h(A_g) = \sup_{P \in \mathcal{P}_0} H(P \mid \bigvee_{j=1}^{\infty} A_g^{-j} P)$. Conversely, let $A \in \mathcal{Z}$. Fix $P \in \mathcal{P}_0, r > 1$ and N > 0. Then for each $g \in K$, there is $l_g > N$ such that $H(P \mid \bigvee_{j=1}^{l_g} A_g^{-j} P) < 1/r$. Of course, this inequality holds in a neighborhood of g in G. Since K is compact and the map $\mathbb{N} \ni n \mapsto H(P \mid \bigvee_{j=1}^n A_g^{-j} P)$ decreases, there is l > N such that $H(P \mid \bigvee_{j=1}^l A_g^{-j} P) < 1/r$ for all $g \in K$, i.e. $m_{P,l}(A) < 1/r$. This means that $A \in \mathcal{Z}'$. It is obvious that \mathcal{Z} is $\operatorname{Aut}(X, \mu)$ -invariant. \Box

Let Γ be a co-compact lattice in G. Fix a cross-section $s: G/\Gamma \to G$ of the natural projection $G \to G/\Gamma$ such that the subset $s(G/\Gamma)$ is relatively compact in G. Denote by h_s the corresponding 1-cocycle. Given a Γ -action T on (X, μ) , we construct (via h_s) the induced G-action \widetilde{T} on the space $(G/\Gamma \times X, \lambda \times \mu)$. In the following lemma we show that the "inducing" functor is continuous. **Lemma 5.3.** The map $\mathcal{A}^{\Gamma}_{\mu} \ni T \mapsto \widetilde{T} \in \mathcal{A}^{G}_{\lambda_{G/\Gamma} \times \mu}$ is continuous.

Idea of the proof. It is enough to note that for each compact subset $K \subset G$, the set $F := \{h_s(g, y) \mid g \in K, y \in G/\Gamma\} \subset \Gamma$ is finite. Therefore, given two Γ -actions T and T', if the transformation T_{γ} is "close" to T'_{γ} for each $\gamma \in F$ then the transformation \widetilde{T}_g is "close" to \widetilde{T}'_q uniformly on K. \Box

From now on let $\mu(X) = \infty$. Denote by $(X^{\bullet}, \mu^{\bullet})$ the Poisson suspension of (X, μ) . Given $R \in \operatorname{Aut}(X, \mu)$, let R^{\bullet} stand for the Poisson suspension of R (see [Ro], [Ja–Ru]). We note that $\operatorname{Aut}(X^{\bullet}, \mu^{\bullet})$ is a topological $\operatorname{Aut}(X, \mu)$ -module.

Lemma 5.4. The map $\operatorname{Aut}(X,\mu) \ni R \mapsto R^{\bullet} \in \operatorname{Aut}(X^{\bullet},\mu^{\bullet})$ is a continuous homomorphism.

Idea of the proof. Let U_R and $U_{R^{\bullet}}$ denote the Koopman unitary operators generated by R and R^{\bullet} respectively. Then it is enough to note that $U_{R^{\bullet}}$ is unitarily equivalent in a canonical way to the exponent $\bigoplus_{n\geq 0} U_R^{\odot n}$ (see [Ne], [Ro]) and the map $U_R \mapsto U_R^{\odot n}$ is continuous in the weak operator topology for each n. \Box

Lemma 5.5. Let a transformation $R \in Aut(X, \mu)$ be non-conservative. If there is an ergodic countable transformation subgroup $N \subset Aut(X, \mu)$ such that

(5-1)
$$\{SR^n x \mid n \in \mathbb{Z}\} = \{R^n Sx \mid n \in \mathbb{Z}\} \text{ at a.e. } x \in X \text{ for each } S \in N$$

then R^{\bullet} is a Bernoulli transformation of infinite entropy.

Proof. We consider Hopf decomposition of X, i.e. a partition of X into two R-invariant subsets X_d and X_c such that the restriction of R to X_d is totally dissipative and the restriction of R to X_d is conservative (see [Aa]). By condition of the lemma, $\mu(X_d) > 0$. It follows from (5-1) that X_d is invariant under N. Since N is ergodic, $\mu(X_c) = 0$, i.e. R is totally dissipative, i.e. there is a subset $W \subset X$ such that $X = \bigcup_{n \in \mathbb{Z}} R^n W \pmod{0}$ and $R^n W \cap T^m W = \emptyset$ if $n \neq m$. Therefore R^{\bullet} is Bernoulli [Ro]. Since $\mu \upharpoonright W$ is not purely atomic, $h(R^{\bullet}) = \infty$ [Ro]. \Box

We now state the main result of this section.

Theorem 5.6. The subset \mathcal{V} of \mathbb{Z}^d -actions T on (X, μ) with $\mathcal{R}(T) = P(\mathbb{R}^d)$ is residual in $\mathcal{A}_{\mu}^{\mathbb{Z}^d}$.

Proof. Let λ denote the Lebesgue measure on the torus $\mathbb{R}^d/\mathbb{Z}^d$. If follows from Lemmata 5.3 and 5.4 that the mapping

$$\mathcal{A}^{\mathbb{Z}^d}_{\mu} \ni T \mapsto \widetilde{T}^{\bullet} \in \mathcal{A}^{\mathbb{R}^d}_{\lambda \times \mu}$$

is continuous. Let $\mathcal{Z} := \{A \in \mathcal{A}_{(\lambda \times \mu)^{\bullet}}^{\mathbb{R}^{d}} \mid h(A_{g}) = 0 \text{ for each } g \in \mathbb{R}^{d}\}$. By Lemma 5.2, \mathcal{Z} is a G_{δ} in $\mathcal{A}_{\mu}^{\mathbb{R}^{d}}$. Hence the subset $\mathcal{W} := \{T \in \mathcal{A}_{\mu}^{\mathbb{Z}^{d}} \mid \widetilde{T}^{\bullet} \in \mathcal{Z}\}$ is an G_{δ} in $\mathcal{A}_{\mu}^{\mathbb{Z}^{d}}$. Of course, \mathcal{W} is $\operatorname{Aut}(X, \mu)$ -invariant. It is well known that the subset $\mathcal{E} := \{T \in \mathcal{A}_{\mu}^{\mathbb{Z}^{d}} \mid T \text{ is ergodic}\}$ is an $\operatorname{Aut}(X, \mu)$ -invariant G_{δ} in $\mathcal{A}_{\mu}^{\mathbb{Z}^{d}}$. Hence the intersection $\mathcal{W} \cap \mathcal{E}$ is also an $\operatorname{Aut}(X, \mu)$ -invariant G_{δ} in $\mathcal{A}_{\mu}^{\mathbb{Z}^{d}}$. Take an action $T \in \mathcal{A}^{\mathbb{Z}^{d}} \cap \mathcal{E}$ and a line $\theta \in P(\mathbb{R}^{d})$. If $\theta \notin \mathcal{R}(T)$ then $\theta \notin \mathcal{R}(\widetilde{T})$. Since T is ergodic, \widetilde{T} is also ergodic. Hence the \mathbb{Q}^{d} -action $(\widetilde{T}_{q})_{q \in \mathbb{Q}^{d}}$ is also ergodic. Then by Lemma 5.5, $h(\widetilde{T}_r^{\bullet}) = \infty$ for each $r \in \theta, r \neq 0$. Therefore $T \notin \mathcal{W}$. This yields that $\mathcal{W} \cap \mathcal{E} \subset \mathcal{V}$. It remains to show that $\mathcal{W} \cap \mathcal{E}$ is dense in $\mathcal{A}_{\mu}^{\mathbb{Z}^d}$. Let T be an ergodic free action of \mathbb{Z}^d such that $\mathcal{R}i(T) = P(\mathbb{R}^d)$ (see Remark 4.4(i) and Theorem 4.3). By Theorem 2.1, $\mathcal{R}i(\widetilde{T}) = P(\mathbb{R}^d)$. Then in view of Lemma 5.4, for each $g \in \mathbb{R}^d$, the transformation $\widetilde{T}_g^{\bullet}$ is rigid. Hence $h(\widetilde{T}_g^{\bullet}) = 0$. Thus, $T \in \mathcal{W} \cap \mathcal{E}$. It follows from Rokhlin lemma for the infinite measure preserving free \mathbb{Z}^d -actions that the conjugacy class of T, i.e. the $\operatorname{Aut}(X,\mu)$ -orbit of T, is dense in $\mathcal{A}_{\mu}^{\mathbb{Z}^d}$ (see, e.g. [DaSi]). Of course, the conjugacy class of T is a subset of $\mathcal{W} \cap \mathcal{E}$. \Box

Using some ideas from the proof of the above theorem we can show the following proposition.

Proposition 5.7. There is a Poisson action⁵ V of \mathbb{R}^d of 0 entropy such that for each $0 \neq g \in \mathbb{R}^m$, the transformation V_g is Bernoullian and of infinite entropy.

Proof. By Theorem 4.2, there exists rank-one (by cubes) infinite measure preserving action T of \mathbb{Z}^d such that $\mathcal{R}(T) = \emptyset$. Then \widetilde{T}^{\bullet} is a Poisson (finite measure preserving) action of \mathbb{R}^d . We note that $h(\widetilde{T}^{\bullet}) = h(\widetilde{T}^{\bullet} \upharpoonright \mathbb{Z}^d) = h((\widetilde{T} \upharpoonright \mathbb{Z}^d)^{\bullet})$. We note $\widetilde{T} \upharpoonright \mathbb{Z}^d = I \times T$, where I denotes the trivial action of \mathbb{Z}^d on the torus $(\mathbb{R}^d/\mathbb{Z}^d, \lambda)$. It follows from [Ja–Ru] that $h((I \times T)^{\bullet}) = h(T^{\bullet})$. Since T is of rank one, $h(T^{\bullet}) = 0$ by [Ja–Ru]⁶. Thus we obtain that $h(\widetilde{T}^{\bullet}) = 0$. On the other hand, arguing as in the proof of Theorem 5.6, we deduce from Theorem 2.1 and Lemma 5.5 that for each $g \in \mathbb{R}^d \setminus \{0\}$, the transformation $\widetilde{T}_q^{\bullet}$ is Bernoulli and of infinite entropy. \Box

In a similar way, using Remark 4.4(ii) we can show the following more general statement.

Proposition 5.8. Let Δ be a G_{δ} -subset of $P(\mathbb{R}^d)$ and let D be a countable subset of Δ . Then there is a Poisson action V of \mathbb{R}^d of 0 entropy such that for each nonzero $g \notin \bigcup_{\theta \in \Delta} \theta$, the transformation V_g is Bernoulli and of infinite entropy and for each $g \in \bigcup_{\theta \in D} \theta$, the transformation V_g is rigid (and hence of 0 entropy).

6. DIRECTIONAL RECURRENCE FOR ACTIONS OF THE HEISENBERG GROUP

Consider now the 3-dimensional real Heisenberg group $H_3(\mathbb{R})$ which is perhaps the simplest example of a non-commutative simply connected nilpotent Lie group. We recall that

$$H_3(\mathbb{R}) = \left\{ \left. \begin{pmatrix} 1 & t_1 & t_3 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{pmatrix} \right| t_1, t_2, t_3 \in \mathbb{R} \right\}.$$

We introduce the following notation:

$$a(t) := \begin{pmatrix} 1 & t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ b(t) := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{pmatrix}, \ c(t) := \begin{pmatrix} 1 & 0 & t \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

⁵We recall that a probability preserving action of a group G is called Poisson if it is isomorphic to the Poisson suspension of an infinite measure preserving action of G.

⁶This fact was proved in [Ja–Ru] only for d = 1. However in the general case the proof is similar.

Then the maps $\mathbb{R} \ni t \mapsto a(t) \in H_3(\mathbb{R}), \mathbb{R} \ni t \mapsto b(t) \in H_3(\mathbb{R}), \mathbb{R} \ni t \mapsto c(t) \in H_3(\mathbb{R})$ are continuous homomorphisms, the subset $\{c(t) \mid t \in \mathbb{R}\}$ is the center of $H_3(\mathbb{R}), a(t_1)b(t_2) = b(t_2)a(t_1)c(t_1t_2)$ for all $t_1, t_2 \in \mathbb{R}$ and

$$\begin{pmatrix} 1 & t_1 & t_3 \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{pmatrix} = c(t_3)b(t_2)a(t_1) \text{ for all } t_1, t_2, t_3 \in \mathbb{R}.$$

We also note that the Lie algebra of $H_3(\mathbb{R})$ is

$$\mathfrak{h}_3(\mathbb{R}) := \left\{ \left. \begin{pmatrix} 0 & t_1 & t_3 \\ 0 & 0 & t_2 \\ 0 & 0 & 0 \end{pmatrix} \right| \alpha, \beta, \gamma \in \mathbb{R} \right\}.$$

The exponential map $\exp: \mathfrak{h}_3(\mathbb{R}) \to H_3(\mathbb{R})$ is given by the formula

$$\exp\begin{pmatrix} 0 & t_1 & t_3 \\ 0 & 0 & t_2 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & t_1 & t_3 + \frac{t_1 t_2}{2} \\ 0 & 1 & t_2 \\ 0 & 0 & 1 \end{pmatrix}.$$

The adjoint action of $H_3(\mathbb{R})$ on $\mathfrak{h}_3(\mathbb{R})$ is given by the formula

$$\begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & \alpha & \gamma \\ 0 & 0 & \beta \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & \alpha & \gamma + x\beta - y\alpha \\ 0 & 0 & \beta \\ 0 & 0 & 0 \end{pmatrix}$$

We also give an example of a right-invariant metric d on $H_3(\mathbb{R})$:

$$d(c(t_3)b(t_2)a(t_1), c(t'_3)b(t'_2)a(t'_1)) := |t_1 - t'_1| + |t_2 - t'_2| + |t_3 - t'_3 + t'_2(t'_1 - t_1)|.$$

Let Γ be a lattice in $H_3(\mathbb{R})$. It is well known (see, e.g. [DaLe]) that there is k > 0 such that Γ is automorphic to the following lattice:

$$\{c(n_3/k)b(n_2)a(n_1) \mid n_1, n_2, n_3 \in \mathbb{Z}\}.$$

From now on we will assume that k = 1 and hence

$$\Gamma = H_3(\mathbb{Z}) := \{ c(n_3)b(n_2)a(n_1) \mid n_1, n_2, n_3 \in \mathbb{Z} \}.$$

Let $F_n := \{c(j_3)b(j_2)a(j_1) \mid |j_1| < L_n, |j_2| < L_n, |j_3| < M_n\}$, where L_n and M_n are positive integers. It is easy to verify that if $L_n \to \infty$, $M_n \to \infty$ and $L_n/M_n \to 0$ as $n \to \infty$ then $(F_n)_{\geq 1}$ is a Følner sequence in $H_3(\mathbb{Z})$.

In the following three theorems we construct rank-one actions of $H_3(\mathbb{Z})$ with various sets of recurrence and rigidity: empty, countable and uncountable.

Theorem 6.1. There is a rank-one free infinite measure preserving action T of $H_3(\mathbb{Z})$ such that $\mathcal{R}(T) = \emptyset$.

Proof. Let $C_n := \{1, a(t_n)\}$, where $(t_n)_{n \in \mathbb{N}}$ is a sequence of integers that grows fast, and let $(F_n)_{n \geq 0}$ be a Følner sequence in $H_3(\mathbb{R})$ such that (I)–(IV) and (3-1) are satisfied and, in addition, $C_n \setminus \{1\} \gg C_1 \cdots C_{n-1}$ as $n \to \infty$. Denote by T the

(C, F)-action of $H_3(\mathbb{Z})$ associated with $(C_n, F_{n-1})_{n \in \mathbb{N}}$. Let $\theta \in P(\mathfrak{h}_3(\mathbb{R}))$ stand for the line in $\mathfrak{h}_3(\mathbb{R})$ passing through the vector $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Since $\pi(\log a(t_n)) = \theta$, we deduce from Proposition 3.2(iii),

$$\mathcal{R}(T) \subset \bigcap_{\gamma \in \Gamma} \gamma \cdot \left(\bigcap_{n=1}^{\infty} \overline{\{\pi(\log a(t_m)) \mid m \ge n\}}\right) \subset \bigcap_{\gamma \in \Gamma} \{\gamma \cdot \theta\} = \emptyset.$$

Given $t \in \mathbb{R}$, let $\theta_t \in P(\mathfrak{h}_3(\mathbb{R}))$ be the line in $\mathfrak{h}_3(\mathbb{R})$ passing through the vector $\begin{pmatrix} 0 & 1 & t \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Then $\exp(\theta_t) \ni c(t)a(1)$. We also denote by θ_∞ the line in $\mathfrak{h}_3(\mathbb{R})$

passing through the vector $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$. Of course, the set $\{\theta_l \mid l \in \mathbb{Z}\}$ is the

 $H_3(\mathbb{Z})$ -orbit $\{\gamma \cdot \theta_0 \mid \gamma \in H_3(\mathbb{Z})\}$ of θ_0 . The point θ_∞ is the only limit point of this orbit in $P(\mathfrak{h}_3(\mathbb{R}))$. In a similar way, the set $\{\theta_t \mid t \in \mathbb{R}\}$ is the $H_3(\mathbb{R})$ -orbit of θ_0 . The closure of this orbit is the union of this orbit with the limit point θ_∞ .

Theorem 6.2. There is a rank-one free infinite measure preserving action T of $H_3(\mathbb{Z})$ such that $\mathcal{R}(T) = \{\theta_l \mid l \in \mathbb{Z}\} \cup \{\theta_\infty\}$. Therefore $\mathcal{ER}(T) = \{\theta_\infty\}$ and hence $\mathcal{R}(T) \neq \mathcal{ER}(T)$.

Proof. We let

$$F_n := \{ c(j_3)b(j_2)a(j_1) \mid |j_1| < L_n, |j_2| < L_n, |j_3| < M_n \} \text{ and}$$
$$C_n := \{ c(ik_n)a(jk_n) \mid j = 0, 1 \text{ and } |i| \le I_n \},$$

where $(L_n)_{n\geq 1}$, $(M_n)_{n\geq 1}$, $(k_n)_{n\geq 1}$ and $(I_n)_{n\geq 1}$ are sequence of integers chosen in such a way such that

- (•) (I)–(IV) from Section 3 and (3-1) are satisfied
- (*) $C_n \setminus \{1\} \gg C_1 \cdots C_{n-1}$ as $n \to \infty$,
- (\diamond) $L_n \to \infty$, $M_n \to \infty$, $L_n/M_n \to 0$ and
- (o) $I_n \to +\infty, L_{n-1}/I_n \to 0.$

Denote by T the (C, F)-action of $H_3(\mathbb{Z})$ associated with $(C_n, F_{n-1})_{n \in \mathbb{N}}$. It is well defined in view of (\bullet) . Moreover, $(F_n)_{n \geq 1}$ is a Følner sequence in $H_3(\mathbb{Z})$ in view of (\diamond) . It is standard to verify that

$$\overline{\bigcup_{m>n} \pi(\log(C_m C_m^{-1} \setminus \{1\}))} = \{\theta_l \mid l \in \mathbb{Z}\} \cup \{\theta_\infty\}$$

for each n > 0. Hence by Proposition 3.2(ii), $\mathcal{R}(T) \subset \{\theta_n \mid n \in \mathbb{Z}\} \cup \{\theta_\infty\}$. In view of Remark 1.4(ii), to prove the converse inclusion it suffices to show that $\theta_1, \theta_\infty \in \mathcal{R}(T)$. For $n \ge 1$, take a subset $D \subset F_{n-1}$. It follows from the definition of F_{n-1} that for each $\gamma \in D$, there is $j \in \mathbb{Z}$ such that $|j| < L_{n-1}$ and $a(k_n)\gamma a(-k_n) = \gamma c(jk_n)$. Let

(6-1)
$$C'_n := \{ w \in C_n \mid c(jk_n)a(k_n)w \in C_n \text{ whenever } |j| < L_{n-1} \}.$$

18

Then $C'_n = \{c(ik_n) \mid |i| < I_n, |i \pm L_{n-1}| < I_n\}$. Hence $\#C'_n/\#C_n \to 1/2$ as $n \to \infty$ in view of (\circ) and hence

(6-2)
$$\max_{D \subset F_{n-1}} |\mu([D]_{n-1})/\mu([DC'_n]_n) - 1/2| \to 0$$

as $n \to \infty$. On the other hand, in view of (6-1), we have

$$T_{a(k_n)}[DC'_n]_n = \bigsqcup_{\gamma \in D} T_{a(k_n)}[\gamma C'_n]_n = \bigsqcup_{\gamma \in D} [a(k_n)\gamma a(-k_n)a(k_n)C'_n]_n \subset \bigsqcup_{\gamma \in D} [\gamma C_n]_n.$$

Thus $T_{a(k_n)}[DC'_n]_n \subset [D]_{n-1}$. Since $a(k_n) \in \exp(\theta_1)$ and (6-2) holds, it follows that T is recurrent along θ_1 . To prove that $\theta_\infty \in \mathcal{R}(T)$, we let

$$C_n'' := \{ w \in C_n \mid c(k_n)w \in C_n \}.$$

Then $\#C_n''/\#C_n \to 1$ and and hence $\max_{D \subset F_{n-1}} |\mu([D]_{n-1})/\mu([DC_n']_n) - 1| \to 0$ as $n \to \infty$. Moreover, $T_{c(k_n)}[DC_n'']_n \subset [DC_n]_n = [D]_{n-1}$. Hence T is recurrent along θ_{∞} . \Box

Theorem 6.3. There is a rank-one free infinite measure preserving action T of $H_3(\mathbb{Z})$ such that $\mathcal{R}(T) = \mathcal{R}i(T) = \{\theta_t \mid t \in \mathbb{R}\} \cup \{\theta_\infty\} = \mathcal{ER}(T) = \mathcal{ER}i(T).$

Proof. Let

$$F_n := \{c(j_3)b(j_2)a(j_1) \mid |j_1| < L_n, |j_2| < L_n, |j_3| < M_n\},\$$

$$C_n := \{c(jk_n)a(ik_n) \mid |j| \le l_n J_n, |i| \le l_n I_n\},\$$

$$C_n^0 := \{c(jk_n)a(ik_n) \mid |j| \le l_n, |i| \le l_n\},\$$

where $(L_n)_{n\geq 1}$, $(M_n)_{n\geq 1}$, $(k_n)_{n\geq 1}$, $(I_n)_{n\geq 1}$, $(J_n)_{n\geq 1}$ and $(l_n)_{n\geq 1}$ are sequence of integers such that (\bullet) , (*), (\diamond) hold,

 $(\Delta) \sup_{t \in \mathbb{R} \cup \{\infty\}} \min_{1 \neq \gamma \in C_n^0} \operatorname{dist}(\gamma, \theta_t) < 1/n \text{ and }$

$$(\blacktriangle) \ \#(\{w \in C_n \mid \bigcup_{d \in F_{n-1}} \bigcup_{c \in C_n^0} d^{-1}cdw \subset C_n\}) > (1 - 1/n) \#C_n$$

for each $n \in \mathbb{N}$. Denote by T the (C, F)-action of $H_3(\mathbb{Z})$ associated with $(C_n, F_{n-1})_{n \in \mathbb{N}}$. It is standard to verify that

$$\bigcup_{m>n} \pi(\log(C_m C_m^{-1} \setminus \{1\})) = \{\theta_t \mid t \in \mathbb{R}\} \cup \{\theta_\infty\}.$$

Hence by Proposition 3.2(ii), $\mathcal{R}(T) \subset \{\theta_t \mid t \in \mathbb{R}\} \cup \{\theta_\infty\}$. To prove the converse inclusion, we take θ_t for some $t \in \mathbb{R} \cup \{\infty\}$. By (Δ) , there is $\gamma \in C_n^0 \setminus \{1\}$ such that $\operatorname{dist}(\gamma, \theta_t) < 1/n$. Let

$$C'_n := \bigg\{ w \in C_n \, \bigg| \, \bigcup_{d \in F_{n-1}} d^{-1} \gamma dw C_n^0 \subset C_n \bigg\}.$$

Then $\#C'_n/\#C_n > 1 - 1/n$ in view of (\blacktriangle) and hence for each subset $D \subset F_{n-1}$, we have $\mu([D]_{n-1} \setminus [DC'_n]_n) < \mu([D]_n)/n$. On the other hand,

$$T_{\gamma}[DC'_n]_n = \bigsqcup_{d \in D} T_{\gamma}[dC'_n]_n = \bigsqcup_{d \in D} [dd^{-1}\gamma dC'_n]_n \subset \bigsqcup_{d \in D} [dC_n]_n = [D]_{n-1}.$$

It follows that T is rigid along θ_t . Thus we showed that $\{\theta_t \mid t \in \mathbb{R}\} \cup \{\theta_\infty\} \subset \mathcal{R}i(T)$. \Box

7. Some open problems and concluding remarks

- (1) Which G_{δ} -subsets of $P(\mathfrak{g})$ are realizable as $\mathcal{R}(T)$ or $\mathcal{R}i(T)$ for an ergodic infinite measure preserving action T of Γ ? In particular, let $\theta \in P(\mathfrak{g})$. Whether the subset $P(\mathfrak{g}) \setminus \{\theta\}$ is realizable? In the case where $G = \mathbb{R}^2$ and $\Gamma = \mathbb{Z}^2$, $P(\mathfrak{g})$ is homeomorphic to the circle. Whether a proper arc of this circle is realizable?
- (2) Suppose that a subset of $P(\mathfrak{g})$ is realizable as $\mathcal{R}(T)$ or $\mathcal{R}i(T)$. Whether T can be chosen in the class of rank-one actions?
- (3) In view of Theorem 2.1 and Remark 2.2, whether $\mathcal{R}(\tilde{T}) = \mathcal{ER}(T)$ in the non-Abelian case?
- (4) Does Corollary 2.3 extends to the non-Abelian case, i.e. whether $\mathcal{ER}(T) = \mathcal{R}(\hat{T})$, where \hat{T} is an extension of T to a G-action on the same measure space where T is defined?
- (5) A multiple recurrence (and even recurrence) along directions can be defined in the following way. Let T be a measure preserving action of Γ on a σ finite measure space (X, μ) and let $p \in \mathbb{N}$. We call T *p*-recurrent along a line $\theta \in P(\mathfrak{g})$ if for each $\epsilon > 0$ and every subset $A \subset X$ of positive measure, there is an element $\gamma \in \Gamma \setminus \{1_{\Gamma}\}$ and an element $g \in \exp(\theta)$ such that $\operatorname{dist}(\gamma, g) < \epsilon$ and $\mu(A \cap T_{\gamma}A \cap \cdots \cap T_{\gamma}^{p}A) > 0$. Denote by $\mathcal{R}_{p}(T)$ the set of all $\theta \in P(\mathfrak{g})$ such that T is *p*-recurrent along θ . Then $\mathcal{R}(T) = \mathcal{R}_{1}(T) \supset \mathcal{R}_{2}(T) \supset \cdots$ and $\bigcap_{p\geq 1} \mathcal{R}_{p}(T) \supset \mathcal{R}_{i}(T)$. We note that all these inclusions are strict and every set $\mathcal{R}_{p}(T)$ is a G_{δ} . The results obtained in this work for $\mathcal{R}(T)$ extends to $\mathcal{R}_{p}(T)$ with similar proofs for each p.
- (6) Let T be a (C, F)-action of Γ associated with a sequence $(C_n, F_{n-1})_{n\geq 1}$ satisfying (I)–(IV) and (3-1) from Section 3. Given d > 0, we denote by $C_n^{\otimes d}$ and $F_n^{\otimes d}$ the *d*-th Cartesian power of C_n and F_n respectively. Then the sequence $(C_n^{\otimes d}, F_{n-1}^{\otimes d})_{n\geq 1}$ of subsets in Γ^d satisfies (I)–(IV) and (3-1) from Section 3. It is easy to see that the (C, F)-action $T^{\otimes d}$ of Γ^d is canonically isomorphic to the *d*-th tensor product of *T*, i.e. $T_{(\gamma_1,\ldots,\gamma_d)}^{\otimes d} = T_{\gamma_1} \times \cdots \times T_{\gamma_d}$ for all $\gamma_1,\ldots,\gamma_d \in \Gamma$. The Lie algebra \mathfrak{g}^d of G^d is $\mathfrak{g} \otimes \cdots \otimes \mathfrak{g}$ (*d* times). There is a natural shiftwise action of the permutation group Σ_d on \mathfrak{g}^d . This action pushes down to the protective space $P(\mathfrak{g}^d)$. It is easy to see that the sets $\mathcal{R}(T^{\otimes d})$ and $\mathcal{R}i(T^{\otimes d})$ are invariant under Σ_d . In the case where $G = \mathbb{R}$ and $\Gamma = \mathbb{Z}$, Theorem 4.2 can be refined in the following way: given a Σ_d invariant subset $\Delta \subset P(\mathbb{R}^d)$ and a countable Σ_d -invariant subset D of Δ , there is a rank-one free infinite measure preserving action T of \mathbb{Z} such that $D \subset \mathcal{R}(T^{\otimes d}) \subset \Delta$. In particular, each countable Σ_d -invariant G_{δ} -subset D of $P(\mathbb{R}^d)$ is realizable as $\mathcal{R}(T^{\otimes d})$ for some rank-one free action T of Z. This generalizes and refines partly⁷ one of the main results from the recent paper by Adams and Silva [AdSi]: for each Σ_2 -invariant subset D of rational directions, there is a rank-one action T of \mathbb{Z} such that D is the intersection of $\mathcal{R}(T^{\otimes 2})$ with the set of all rational directions in \mathbb{R}^2 . We also note that the \mathbb{Z}^d -action T constructed in Theorem 4.3 has the form $T = S^{\otimes d}$ for a (C, F)-action S of \mathbb{Z} .
- (7) The theory of directional recurrence can be generalized in a natural way

⁷This refinement is partial because we consider only the recurrence set while Adams and Silva studied simultaneously the set of rational ergodic directions for $T^{\otimes 2}$.

from the infinite measure preserving Γ -actions to the nonsingular Γ -actions.

References

- [Aa] J. Aaronson, Introduction to infinite ergodic theory, Mathematical Surveys and Monographs, vol. 50, Amer. Math. Soc., Providence, R.I., 1997.
- [AdSi] T. M. Adams and C. E. Silva, On infinite transformations with maximal control of ergodic two-fold product powers, ArXiv: 1402.1818v1.
- [Au-Ha] L. Auslander, L. W. Green and F. Hahn, Flows on homogeneous spaces, Princeton University Press, Princeton, N.J., 1963.
- [Da1] A. I. Danilenko, (C, F)-actions in ergodic theory, Progr. Math., vol. 265, Birkhäuser, Basel, 2008, pp. 325–351.
- [Da2] _____, Mixing actions of the Heisenberg group, Erg. Th. & Dynam. Sys. **34** (2014), 1142–1167.
- [Da3] _____, Actions of finite rank: weak rational ergodicity and partial rigidity, arXiv: 1403.2012.
- [DaLe] A. I. Danilenko and M. Lemańczyk, Odometer actions of the Heisenberg group, J. d'Anal. Math. (to appear).
- [DaSi] A. I. Danilenko and C. E. Silva, Ergodic theory: nonsingular transformations, Encyclopedia of Complexity and Systems Science, Springer, New York, 2009, pp. 3055–3083.
- [Fel] J. Feldman, A ratio ergodic theorem for commuting, conservative, invertible transformations with quasi-invariant measure summed over symmetric hypercubes, Erg. Th. & Dynam. Sys. 27 (2007), 1135–1142.
- [FeKa] S. Ferenczi and B. Kamiński, Zero entropy and directional Bernoullicity of a Gaussian Z²-action, Proc. Amer. Math. Soc. **123** (1995), 3079–3083.
- [Ja-Ru] E. Janvresse, T. Meyerovitch, E. Roy and T. de la Rue, Poisson suspensions and entropy for infinite transformations, Trans. Amer. Math. Soc. 362 (2010), 3069–3094.
- [JoSa] A. S. A. Johnson and A. A. Şahin, Directional recurrence for infinite measure preserving \mathbb{Z}^{d} -actions, Erg. Th. & Dynam. Sys. (to appear).
- [Ma] G. Mackey, Induced representations of locally compact groups. I, Ann. Math. 55 (1952), 101–139.
- [Mal] A. I. Malcev, On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat. 13 (1949), 9–32. (Russian)
- [Mi] J. Milnor, On the entropy geometry of cellular automata, Complex Systems 2 (1988), 357–385.
- [Ne] Yu. Neretin, Categories of symmetries and infinite-dimensional groups, London Mathematical Society Monographs. New Series, 16. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1996.
- [Pa] K. K. Park, On directional entropy functions, Isr. J. Math. **113** (1999), 243–267.
- [Ro] E. Roy, Poisson suspensions and infinite ergodic theory, Erg. Th. & Dynam. Sys. 29 (2009), 667–683.
- [Zi] R. J. Zimmer, Induced and amenable ergodic actions of Lie groups, Ann. Sci. Ecole Norm. Sup. 11 (1978), 407–428.

INSTITUTE FOR LOW TEMPERATURE PHYSICS & ENGINEERING OF NATIONAL ACADEMY OF SCIENCES OF UKRAINE, 47 LENIN AVE., KHARKOV, 61164, UKRAINE

E-mail address: alexandre.danilenko@gmail.com