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EQUIDISTRIBUTION SPEED FOR FEKETE POINTS ASSOCIATED
WITH AN AMPLE LINE BUNDLE

TIEN-CUONG DINH, XIAONAN MA, AND VIET-ANH NGUYEN

ABSTRACT. Let K be the closure of a bounded open set with smooth boundary in C*. A
Fekete configuration of order p for K is a finite subset of K maximizing the Vandermonde
determinant associated with polynomials of degree < p. A recent theorem by Berman,
Boucksom and Witt Nystrom implies that Fekete configurations for K are asymptotically
equidistributed with respect to a canonical equilibrium measure, as p — oo. We give here
an explicit estimate for the speed of convergence. The result also holds in a general setting
of Fekete points associated with an ample line bundle over a projective manifold. Our
approach requires a new estimate on Bergman kernels for line bundles and quantitative
results in pluripotential theory which are of independent interest.
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RESUME. Soit K 'adhérence d’un ouvert borné a bord lisse dans C". Une configuration de Fekete
d’ordre p pour K est un sous-ensemble fini de K qui maximise le déterminant de Vandermonde
associé aux polynomes de degré < p. Un théoréme récent de Berman, Boucksom et Witt Nystrom
implique que les configurations de Fekete sont asymptotiquement équiréparties par rapport a une
mesure d’équilibre canonique quand p — oo. Nous donnons ici une estimation précise de la
vitesse de convergence. Le résultat est aussi valable dans un cadre général des points de Fekete
associés a un fibré en droites ample au-dessus d’une variété projective. Notre approche nécessite
une estimation nouvelle sur les noyaux de Bergman pour les fibrés en droites et des résultats
quantitatifs de la théorie du pluripotentiel qui sont d’intérét indépendant.
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Notation. Throughout the paper, L denotes an ample holomorphic line bundle over a
projective manifold X of dimension n. Fix also a smooth Hermitian metric hy on L whose
first Chern form, denoted by wy, is a Kahler form. For simplicity, we use the Kdhler metric
on X induced by wy. The induced distance is denoted by dist. Define p° := |[wg| " wd
the probability measure associated with the volume form w{. The space of holomorphic
sections of L? := L®P, the p-th power of L, is denoted by H°(X, L?). Its dimension is
denoted by NN,. The metric hq induces, in a canonical way, metrics on the line bundle
LP over X, the vector bundle of the product L? x - -- x LP (N, times) over X*» and the
determinant of the last one which is a line bundle over X"» and denoted by (L?)*"», For
simplicity, the norm, induced by hy, of a section of these vector bundles is denoted by | - |.
A general singular metric on L has the form h = e~2¥h, where 1 is an integrable func-
tion on X with values in R U {£o0}. Such a function ¢ is called a weight. It also induces
singular metrics on the above vector bundles, and we denote by | - |, the corresponding
norm of a section of L? or the associated determinant line bundle over X*». This is a
function on X or X" respectively. If K is a subset of X, the supremum on K or K"r
of this function is denoted by || - ||z (& py) OF || - [l Loo (™o pyy- Its L?(u) or L?*(u®*»)-norm
is denoted by || - [[z2(upy) OF || - [I12(u2Ns py)» Where i is a probability measure on X. We
sometimes drop the power N, for simplicity. In the same way, we often add the index
“” or “py”, if necessary, to inform the use of the weight ¢ for L and hence py for L*.
The notations p, (i, ¢), %,(u,¢) will be introduced in Subsection 2.3 BX(K,¢),
B (1, ®), Lo(K, ¢), Ly(1; 9), E(D), Eeq(I, ¢) in Subsection BT} and V,(¢1, ¢2), W(d1, d2),
€y, Dp(K, ¢) in Subsection [3.21 Let B(x,r) denote the ball of center = and radius r in
X or in an Euclidean space. Similarly, D(x,r) is the disc of center x and radius r in C,
D, :=D(0,7) and D := D(0, 1). The Lebesgue measure on an Euclidean space is denoted
by Leb. The operators d¢ and dd° are defined by
V-1 — V-1

d¢ = 7(8 — 8) and ddf := T

d0.

Form € Nand 0 < o < 1, €™ is the class of €™ functions/differential forms whose
partial derivatives of order m are Holder continuous with Holder exponent o«. We have
¢ = €™ except for « = 1. We use the natural norms on these spaces and for
simplicity, define || - ||, ;= 14 - |l¢m and || - ||m.a := 1 + || - [[¢ma. Denote by Lip the
space of Lipschitz functions which is also equal to ¥*! and by Lip the space of functions
v such that |v(z) — v(y)| < —dist(z,y) logdist(z, y) for x, y close enough. We endow the

last space with the norm
= |Jv]jetinf {A >0 |u(z)—v(y)| < —Adist(z,y) log dist(z,y) if dist(z,y) < 1/2}.

Il
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A function ¢ : X — RU{—oc} is called quasi-plurisubharmonic (quasi-p.s.h. for short)
if it is locally the sum of a plurisubharmonic (p.s.h. for short) and a smooth function. A
quasi-p.s.h. function ¢ is called wy-p.s.h. if dd“¢ +wy > 0 in the sense of currents. Denote
by PSH(X, wy) the set of such functions. If ¢ is a bounded function in PSH(X, wy), define
the associated Monge-Ampére measure and normalized Monge-Ampére measure by

MA(¢) := (dd°p +wo)" and NMA(@) = [MA()]'MA(9).

So MA(¢) is a positive measure and NMA(¢) is a probability measure on X. A quasi-
p.s.h. function ¢ is called strictly wy-p.s.h. if dd°¢ + wy is larger than a Kahler form in the
sense of currents, see [[10, [14] for the basic notions and results of pluripotential theory.

Some remarks. The constants involved in our computations below may depend on
X, L, hy and hence on w, and ;°. However, they do not depend on the other weights
used for the line bundle L but only on the upper bounds of suitable norms (¢, I:i), ..r)
of these weights. This property can be directly seen in our arguments. For simplicity, we
will not repeat it in each step of the proofs. The notations 2 and < mean inequalities up
to a positive multiple constant.

1. INTRODUCTION

Let K be a non-pluripolar compact subset of C". The pluricomplex Green function of
K, denoted by V};(z), is the upper-semicontinuous regularization of the Siciak-Zahariuta
extremal function

Vic(2) == sup {u(z) : u p.s.h. on C", u|x < 0,u(w) —log ||w|| = O(1) as w — oo }.

This function V;; is locally bounded, p.s.h. and (dd°V};)" defines a probability measure
with support in K. It is called the equilibrium measure of K and denoted by (K ), see
(29, 32].

Let &7, be the set of holomorphic polynomials of degree < p on C". This is a complex
vector space of dimension

p+n 1, e
Np::( ):mp + O™ ).

n
Let (eq,...,en,) be abasis of &,. Define for P = (z1,...,zy,) € (C")"» the Vandermonde
determinant W (P) by
61(1‘1) el(pr)
W(P) := det
€Np(l‘1) e eNp(pr)

A point P € K» is called a Fekete configuration for K if the function |W(-)|, restricted to
KNe  achieves its maximal value at P. It is not difficult to check that this definition does
not depend on the choice of the basis (ei,. .., ey, ), see [28].

Recently, Berman, Boucksom and Witt Nystrom have proved that Fekete points
r1,...,xy, are asymptotically equidistributed with respect to the equilibrium measure
teq(K) as p tends to infinity [3]]. This property had been conjectured for quite some
time, probably going back to the pioneering work of Leja in [19, 20], where the dimen-
sion 1 case was obtained. See also [21], 28] for more recent references on this topic.
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More precisely, let

1
o = g 20
p i
7j=1
denote the probability measure equidistributed on z, ..., xy,. We call it a Fekete measure

of order p. The above equidistribution result says that in the weak-x topology
plggo Ip = feq(F).

In fact, this theorem by Berman, Boucksom and Witt Nystom holds in a more general
context of Fekete points associated with a line bundle. We will discuss this case later
together with an interesting new approach by Ameur, Lev and Ortega-Cerda [1, 23].

Fekete points are well known to be useful in several problems in mathematics and
mathematical physics. It is therefore important to study the speed of the above conver-
gence. For this purpose, it is necessary to make some hypothesis on the compact set K.
For instance, we have the following result, see also Corollary[1.6l

Theorem 1.1. Let K be the closure of a bounded non-empty open subset of C* with €*
boundary. Then for all 0 < v < 2 and € > 0, there is a constant ¢ = ¢(K,v,¢) > 0,
independent of p > 1, such that

|<'up - Meq(K), U>| < chH(gwp*“//BGJre

for every Fekete measure p, of order p and every test function v of class €7 on C".

In fact, our result is still true in a more general setting that we will state below after
introducing necessary notation and terminology.

Let L be an ample holomorphic line bundle over a projective manifold X of dimension
n. Fix a smooth Hermitian metric hy, on L whose first Chern form wy := %ROL is a Kahler
form, where R} is the curvature of the Chern connection on (L, hg).

Definition 1.2. We call weighted compact subset of X a data (K, ¢), where K is a non-
pluripolar compact subset of X and ¢ is a real-valued continuous function on K. The
function ¢ is called a weight on K. The equilibrium weight associated with (K, ¢) is the
upper semi-continuous regularization ¢} of the function

¢K(z) == sup {@Z)(z) 21 wo-p.s.h., ¥ < ¢ on K}.

We call equilibrium measure of (K, ¢) the normalized Monge-Ampére measure
teal K, &) := NMA(6).

Note that the equilibrium measure s, (K, ¢) is a probability measure supported by K
and ¢}, = ¢x almost everywhere with respect to this measure, see e.g., [2].

Definition 1.3. Denote by Py the projection onto PSH(X,w,) which associates ¢ with
¢5.. We say that (K, ¢) is regular if ¢, is upper semi-continuous, i.e., Px¢ = ¢x. Let
(E,|| ||[z) be a normed vector space of functions on K and (F,| ||r) a normed vector
space of functions on X. We say that K is (£, F')-regular if (K, ¢) is regular for ¢ € F
and if the projection Py sends bounded subsets of F into bounded subsets of F.
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We will see in Theorem below that when K is the closure of an open set with %™
boundary, then it is (¢’*, ¢*)-regular for 0 < a < 1, i.e., (E, F)-regular with £ = ¢*(K)
and F = ¢*(X).

Consider now an integrable real-valued function ¢ on X and the singular Hermitian
metric h := e~ 2¥h, on the line bundle L. We will use the notations given at the beginning
of the paper. Consider also a basis S, = (s, ..., sy, ) of the vector space H°(X, L*), where
N, := dim H°(X, L?). This basis can be seen as a section of the rank N,, vector bundle of
the product L? x --- x LP (N,-times) over X*». The determinant line bundle associated
with this vector bundle is denoted by (L?)*"». The determinant det(s;(z;))1<; <n, for
P = (x1,...,zy,) in X" defines a section of the last line bundle over X" that we will
denote by det S, or det(s;(x;)). The metric h, induces in a canonical way a metric (hf)*"
on (L?)®N». As mentioned above, we denote by |det(s;(x;))| the norm of det(s;(z;))
with respect to (hf)*"». For P = (xy,...,zy,) in X™», we will consider the weighted
Vandermonde determinant

| det(si(2))) |y := | det(s;(x;)) e PV rvlen),
The following notion does not depend on the choice of the basis S, = (s1,...,sy,).

Definition 1.4. The point P = (z1,...,zy,) in K7 is called a Fekete configuration of
order p of (L, hy) in the weighted compact set (K, ¢) if the above weighted Vandermonde
determinant, restricted to K», achieves its maximal value at P. The associated proba-
bility measure
1
NP
on K is called a Fekete measure of order p.

(53[:1 + +5$Np)7

In order to study the speed of equidistribution of Fekete points, it is convenient to use
some distance notions on the space .# (X ) of (Borel) probability measures on X. For
v > 0, define the distance dist. between two measures p and p’ in .#(X) by

disty (u, p') = sup |(p— pt', )

llvlley <1

Y

where v is a test smooth real-valued function. This distance induces the weak topology
on .7 (X). By interpolation between Banach spaces (see [14, 31]]), for 0 < v < v/, there
exists ¢ > 0 such that

(1.1 dist,, < dist, < c[disty]“’/'yl.

Note that dist; is equivalent to the classical Kantorovich-Wasserstein distance.
Here is our main result which is the version of Theorem [I.1] in the general setting. It
is already interesting for K = X.

Theorem 1.5. Let X, L, hy be as above and K a non-pluripolar compact subset of X. Let
0<a<20<d <1land0 < v < 2 be constants. Assume that K is (Cﬁa,%o‘/)-regular.
Let ¢ be a € real-valued function on K and jiq(K, ¢) the equilibrium measure associated
with the weighted set (K, ¢). Then, there is ¢ > 0 such that for every p > 1 and every Fekete
measure i, of order p associated with (K, ¢), we have

dist, (fip, fteq (K, 0)) < cp™P(logp)®7 with B :=a'/(24 +12/).
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We will see later in Theorem that the hypothesis on K is satisfied for o = o/ < 1
when K is the closure of an open set with 4> boundary (we think that the techniques
we use can be applied to study other classes of compact sets but we don’t develop this
direction here). So the result below is a consequence of Theorem [I.5/for o = o’ < 1.

Corollary 1.6. Let X, L, hq be as above and K the closure of a non-empty open subset of X
with €* boundary. Let ¢ be a €* real-valued function on K, 0 < a < 1, and peq(K, ¢) the
equilibrium measure associated with (K, ¢). Then, for every 0 < v < 2, there is ¢ > 0 such
that for every p > 1 and every Fekete measure i, of order p associated with (K, ¢), we have

dist, (11, fteqg (K, @) < cp™P(logp)®"  with B := /(24 + 12a).

When X is the projective space P" and L is the tautological line bundle O(1) on P,
we can consider X as the natural compactification of C" and the sections in H°(X, L?) =
H°(P™, O(p)) can be identified to polynomials of degree < p on C". We then see that
Theorem [1.1]is a particular case of the last corollary.

Our theorem applies to the case where K = X and ¢ is a smooth function on X. If
the metric h := e 2?hy of L has strictly positive curvature form, our approach gives an
estimate better than the one in the last theorem. Namely, we have the following result,
see also Remark [3.15]

Theorem 1.7. Let X, L and h, be as above. Let ¢ be a € real-valued function on X such
that the first Chern form of the metric h := e~2?hy is strictly positive. Let ji.,(X, ¢) denote
the equilibrium measure associated with the weighted set (X, ¢). Then for any 0 < v < 3,
there is ¢ > 0 such that

disty (p1ps preq(X, 9)) < cp™ "/ (log p)?/*
for all p > 1 and all Fekete measures 11, of order p associated with (X, ¢).

This result is close to the one recently obtained by Lev and Ortega-Cerda in [23]. These
authors proved that when ¢ is smooth wy-strictly p.s.h., there is a constant ¢ > 0 such
that

(1.2) C_lp_l/Z < disty (p, feq(X, @) < Cp_l/Q

for all p and Fekete measures ., of order p associated with (X, ¢). Using (1.1}, we can
deduce similar estimates for dist, with 0 < v < 1. So the result of Lev and Ortega-Cerda
is optimal for 0 < v < 1 in their assumption. Although for 0 < v < 1 estimate in Theorem
[1.7. is weaker than (1.2)) and its interpolated version, our assumption of smoothness for
¢ is only ¢ and can be easily reduced to ¢ with similar estimates depending on «, see
Remark [3.15] Of course, in the case where the curvature of the metric induced by ¢ is
only semi-positive or even not semi-positive, one can apply Corollary[I.6lto K = X.

In their approach, Lev and Ortega-Cerda relate the equidistribution of Fekete points
to the problem of sampling and interpolation on line bundles as in a previous work
by Ameur and Ortega-Cerda [1]. The main ingredients of their method consist in us-
ing Toeplitz operators as well as known asymptotic expansions for the Bergman kernels
on/off the diagonal of X x X due to [8] 24, [30} 33]], cf. also [25, 26]. The key points
here are (1) the Fekete configurations are also sampling and interpolation, and (2) the
points of such a configuration are geometrically equidistributed. These crucial properties
are obtained using the assumption that the metric weight ¢ is smooth wy-strictly p.s.h.
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Our approach is different because our metric weight ¢ is, in general, only Holder
continuous and it may originally be defined on a proper compact set X C X. In this
context, Px¢ is only weakly wg-p.s.h., and moreover, not smooth in general. So the
result by Lev and Ortega-Cerda is not applicable in the general context.

We will follow the original method of Berman, Boucksom and Witt Nystrom [2, [3].
We will need, among other things, a controlled regularization for quasi-p.s.h. functions,
quantitative properties of quasi-p.s.h. envelopes of functions and an estimate of Bergman
kernels associated with holomorphic line bundles. These results are of independent in-
terest and will be presented in the next section while the proofs of the main results will
be given in the last section.

Acknowledgment. The paper was partially written during the visits of the second and
the third authors at National University of Singapore, University of Cologne and Max-
Planck institute for mathematics in Bonn. They would like to thank these organizations
for their very warm hospitality.

2. QUASI-P.S.H. FUNCTIONS, EQUILIBRIUM WEIGHT AND BERGMAN FUNCTIONS

Let X be a compact Kiahler manifold of dimension n and let wy be a fixed Kahler form
on X. We will use later the equilibrium weight Py ¢ associated with a regular weighted
compact set (K, ¢) of X. This is a quasi-p.s.h. function which is not smooth in general.
So we will need to approximate it by smooth quasi-p.s.h. functions and control the cost
of this regularization procedure.

In this section, we will give a version of the theorem of regularization for Holder
continuous quasi-p.s.h. functions and study the Holder continuity of equilibrium weights.
The behavior of Bergman functions associated with the powers of a line bundle with small
positive curvature is crucial in our approach. This question will also be considered here
in the last subsection.

2.1. Regularization of quasi-p.s.h. functions. The purpose of this subsection is to es-
tablish the following regularization theorem for Holder continuous quasi-p.s.h. functions
with a control of positivity and controlled ¥ norms.

Theorem 2.1. For each 0 < « < 1, there exist ¢ > 0 which only depends on X, wy, o, and
¢m > 0 which only depends on X, wy, « and m € N* satisfying the following property. Let ¢
be an wy-p.s.h. function on X of class €%*. Then, for each 0 < ¢ < 1, there exists a smooth
function ¢, such that

a) ¢, is wo-p.s.h.;

b) ||pe — &lloc < ce¥||@]l0.o (see the beginning of the paper for notation);

Q) [[@ellemx) < cme ™ (| @llo.0 for m € N™.

We are inspired by Demailly’s regularization theorem [[10, [11]] and a technique of
Blocki-Kolodziej [7]. First, we construct suitable regularized maximum functions. Fix a
function ¥ € ¥ (R, R") with supportin [—1, 1] such that [, J(h)dh = 1 and [, hd(h)dh =
0. For each 0 < ¢ < 1 and each integer [ > 1, consider the regularized maximum function
max, : R' — R defined by

!
max(ty,...,t) = / max(t; + h, ...t + hy)e H V(hi/€)dhy .. .dh,.
R!

i=1
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Here are some properties of max, which will be used later. The notation (¢, ..., e, t)

below means that the component ¢; is omitted in the expression.

Lemma 2.2. a) max(t1,...,t) is non-decreasing in all variables, smooth and convex
on R!:

b) max(tq,...,t) < max.(ti,...,t) < e+ max(ty,...,t);
C) maxe(tl, . 7tl) = maxe(tl, e 7ti7 e ,tl) Iftl + 2¢ < max(tl, e 7ti7 R ,tl);

d) if uy,...,u; are p.s.h. functions defined on some domain D in C", then so is
max(uy, ..., u).
e) If uy,...,u are real-valued functions in €™ (D), where m € N* and D is a domain

in C", then there is a constant c;,, > 0 depending only on [, m and ¥ such that
|lmaxe(ur, ..., w)|lgm < €+ supl | willco + Ciim Z 1= H ||
1<i< S
- Tij ,J

the sum being taken over all r;; > Owith 1 < i <land j > 1such that ) jr;; < m.

7‘2]

%3

Proof. Assertions a)-d) are contained in Lemma 1.5.18 of [10], where the above proper-
ties of ¥ are used. We turn to assertion e). Note that assertion b) allows us to bound
the sup-norm of max,(uy,...,w), and hence explains the presence of € + sup ||u;||o in
assertion e).

Observe that the function max is Lipschitz. Therefore, any partial derivative of order 1

of max(uq,...,u;), seen as a function in D, is a finite sum of integrals of type
l
(2.1) v/ O(uy + hy,. o+ W)e [ 0(ha/€)dhy ... dh,
R! i=1

where & is a partial derivative of order 1 of max and v is a partial derivative of order 1
of a function u,. Note that ® is bounded.
Performing the change of variables u; + h; = s;, the expression in (2.1) is equal to

!
v/ @(51,...,sl)e’lHﬁ(Q)dsl...dsl,
[si—ui|<e i=1

which is a function in D. We see that any derivative up to order m — 1 of this function is
bounded by a constant times
Yo I e,
i?j

7‘2]
where the sum is taken over all r;; > 0 with 1 < ¢ <[ and j > 1 such that > jr;; < m.
This, together with the control of the sup-norm using b), implies assertion e). O

Recall the following standard regularization by convolution. Let p(z) := p(|z]) €
%5°(C") be a radial function such that > 0, p(t) = 0fort > 1, [, pd Leb = 1, where Leb
is the Lebesgue measure on C". For § > 0 we set ps(z) := §2"p(z/¢). For every function
uwon an open set U C C" and every subset U’ € U, define

n

(2.2) us(2) = (u*ps)(2) = / u(z — dw)p(w)d Leb(w) with z e U,

for 0 < ¢ < dist(U’,bU). If w is in €%*(U) then us is in €>°(U’) and we have

(2.3)  lus — ullovr < 020 T for m e N*.

000 and |lusl|em@eny S |lu
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If v is p.s.h. then us is also p.s.h. and wu; is decreasing to v as 6 \, 0. We need the
following elementary lemma, whose proof is left to the reader, see also [7]].

Lemma 2.3. Let F' : W — W' be a biholomorphic map between two open subsets W and
W' of C". Let u € PSH(W)N€"*(W) with 0 < o < 1. Then, for every set U € W we
can find a constant &y > 0 such that for 0 < § < &y, the function uf := (uo F~')s0 F is
well-defined on a neighborhood of U. Moreover, there are ¢y > 0 and cy,,, > 0 for m € N*
such that when 0 < § < ¢y,

lef —ulloo < cullullnad®  and Jjuf lenw) < cvmlulond™™ .

End of the proof of Theorem Denote for simplicity M := ||¢||o... The constants
we will use below do not depend on M. Observe that we only need to construct a
(1 + ¢ Me*)wy-p.s.h. function ¢, such that

(2.4) e — Pl < cMe* and  ||¢c|lgm < cruMe ™ for m > 1,

where ¢, ¢ and ¢, are constants. Indeed, we can just multiply it by (1+¢'Me®)~! in order
to obtain a function as in Theorem [2.1l We can also add to this function a constant times
Me~ if we want to get a function larger or smaller than ¢.

First fix a finite cover of X by small enough local charts (U;),c;. We also choose a finite
cover of X by local charts (V});c; indexing by the same index set J such that V; € U;.
For each j € J fix a smooth function f; defined on a neighborhood of U, such that

(2.5) dd°f; = wy on a neighborhood of U;.
Then the function
(2.6) uj = ¢+ fj

satisfies dd“u; = dd°¢ + dd°f; = dd°¢ + wy > 0. So u; is p.s.h. on Uj.

Let j and £ be in J such that U; N U, # @. There are two natural ways to regularize the
restriction u;|y,~y, using formula (2.2). The first one is to use the local chart of U}, i.e.,
U; will play the role of U in (2.2), and we get a function u; .. Similarly, the second way is
to use the local chart of Uj. Let F' be the change of coordinates on U; N Uy, from U; to U.
Denote by uf s the function given by Lemma which corresponds to the regularization
of u; using the local chart of Uj. Write

F
Uje — Upe = Uje — U+ (u; —ug)e on U;NUy,

where the term (u; — uy). is the regularization of u; — u;, by formula (2.2)) using the local
chart of Uj. Recall from that u; — u, = f; — fr which is a smooth function. This
together with the previous equality and Lemma [2.3] imply

(2.7) |(wje — uge) — (fj = fe)lloo S Me* on  U; NU.

~Y

Fix a constant ¢ > 0 large enough. For each j € J let n); be a smooth function defined
in U; such that ; = 0 on V; and that ; = —c away from a compact subset of U;. We
have that dd“n; > —c'w, for some constant ¢’ > 0. For each € > 0 and j € J, consider the
function

(28) Vj = Uje — fj -+ MEaT]j on Uj.
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We identify J with {1,...,(} and set
(2.9) b == Me* P max, (Mflelfavl, ey Mﬁlelfavl).

Note that to define ¢.(z), z € X, we remove M 'e'~“v; from the last formula if = & U;.

We first show that the function ¢, is smooth on X. For this purpose, we only need to
prove the property in a neighborhood of an arbitrary fixed point of X. Since each v; is
well-defined and smooth on U;, using (2.9) and assertion a) in Lemma [2.2] it is enough
to prove the following claim.

Claim 1. For all = € U, close enough to bU;, we have
max, (M~ vy, ..., M~'e" ") (2)

= maxX, (Mflelfavl, e M*/1€1\’°‘Uj, ceey M71€1iavl)<37)-

Let k € J such that x € V. We infer from and the equality 7, (z) = 0 that
k(%) = ur () — fu(2).
The same argument using the equality 7;(z) = —c gives
0j(2) = () — fi(2) — eMe®,

Putting the two last equalities together with (2.7), and using that ¢ > 0 is large enough,
we infer

vg(x) > vj(x) + 2Me*.
This, combined with assertion c) in Lemma [2.2] implies Claim 1.
Claim 2. The function ¢, belongs to PSH(X, (1 + ¢’ Me*)wy).

It is enough to work in a small open set 1/ in X. By Claim 1, we can remove from the
definition of ¢, all functions M~'e!~*v; if W ¢ U;. So we have W C U; for the
indexes j considered below. Since u; is p.s.h., so is u; .. Therefore, we deduce from (2.5)
and that

ddv; = ddu;. — wo + Me“dd‘n; > —(1 + ¢ M€ )wy.

Choose a function f on W such that dd°f = M~'e!=*(1 + ¢ Me*)wy. We deduce from
(2.9) and the construction of max, that

be = Me* ! max, (Mflelfavl +f o M Ty 4 f) — Me*tf.

Since M ~'e!~*v; + f is p.s.h. on W, applying assertion d) in Lemma [2.2], we obtain that
¢ belongs to PSH(X, (1 + ¢ Me*)wy), thus proving Claim 2.

We continue the proof of the theorem. By (2.6) and (2.8), we get on V
16 = vjlloo = 1(uj = f5) = (wje = fj + Men)|loc < |lug — tjelloo + Me® |0yl S Me.

This and assertion b) in Lemma [2.2] prove the first estimate in (2.4). For the second
estimate, we infer from assertion e) of Lemma [2.2] that

|pellgm = Me*? HmaXE(Mflelfavl, o MR ) gm
(2.10) < Me* + sup ||vi]|oo + Mea1 1= MLl villgs n‘j’
sup [l 2. 11 lerlles)

Tij 1,J
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the sum being taken over all r;; > 0 with 1 < ¢ <[ and j > 1 such that ) jr;; < m. On
the other hand, by (2.3) and (2.8), we have

villgs = l[tie — fi + Me“n;||gs < Me 7t

~

Inserting these estimates into (2.10), we obtain that ¢, satisfies the second inequality in
(2.4). The theorem follows. Note that we can get similar estimates for every m € R,. [

Remark 2.4. We can prove in the same way the existence of constants ¢ > (0 depending
only on X, wy, and ¢,, > 0 depending only on X,wy, m € N*, satisfying the following
property. Let ¢ be an wy-p.s.h. function in ITif)(X ). Then, for each 0 < ¢ < 1/2, there
exists a smooth function ¢, such that

a) ¢, is wy-p.s.h.;

b) [|ge = lloc < —c(1 + [|]g5;)eloge;

O éellomey < —em(1+ llig)e ™+ log e for m € N*.

2.2. Regularity of equilibrium weight. In this subsection, we study the equilibrium
weight associated with a weighted compact subset (K, ¢) of X. We start with the fol-
lowing tautological maximum principle, and we refer the reader to the beginning of the
paper and the Introduction for the notation used below.

Proposition 2.5. Let (K, ¢) be a regular weighted subset of X and let Pk ¢ be the associated
equilibrium weight. Then for every wy-p.s.h. function ) on X, we have

sup(y) — ¢) = sup(¢ — Px¢) = sup(¢) — Pr o).
K K X
In particular, for every section s € H°(X, L?) we have

[ oe (k.pp) = [I8]| oo (i .pPrcs) = 18]l L0 (X pPrco)-
Proof. By Definition[1.2], we have Px¢ < ¢ on K. Hence,
sup(¢ — @) < sup(¢ — Pxo) < sup(¢ — Px¢).
K K X

To prove the converse inequality, observe that 1) —sup, (¢ — ¢) < ¢ on K. This, combined
with Definition [I.2] and the fact that ¢ is wy-p.s.h., implies that ) — sup () — ¢) < Pko
on X. We deduce v — Px¢ < supy (1) — ¢) and then the first assertion in the proposition.

Next, observe that

1 1
dd‘=log|s| = —=[s = 0] — wy > —wo,
p p

where [s = 0] is the current of integration on the hypersurface {s = 0}. So %log |s| is
wo-p.s.h. Applying the first assertion of the proposition to this function instead of v gives
the second assertion. O

The following basic result has been stated in [2, Lemma 2.14].

Lemma 2.6. Let K be a non-pluripolar compact subset of X. Then the projection P is
non-decreasing, concave, and continuous along decreasing sequences of continuous weights
¢ on K. It is also 1-Lipschitz continuous, that is,

sup | Px¢1 — Prda| < sup |¢1 — ¢s
X K

for all continuous weights ¢, and ¢, on K.
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Proof. We only give the proof of the inequality in the lemma and leave the verification of
the other statements to the reader. Since ¢; < ¢ + supy |¢1 — ¢2| on K, it follows from
Definitions [I.2] and [1.3] that

Pr¢y < Pio +sup |1 — 2| on  X.
K

This and the similar estimate which is obtained by interchanging ¢; and ¢,, imply the
desired inequality. O

The following theorem is the main result of this subsection. It gives us a class of
compact sets K satisfying regularity properties mentioned in the Introduction.

Theorem 2.7. Let K be the closure of a non-empty open subset of X with ¢ boundary.
Then K is (¢*,€*)-regular for every 0 < a < 1.

It is known that such a compact set is regular. To prove this property, it is enough
to show that Py ¢ is continuous when ¢ is Holder continuous and then obtain the same
property for continuous ¢ by approximation. Thus, the regularity of K can be also ob-
tained with the arguments given below.

Proof of Theorem [2.7]in the case K = X. Let ¢ be a ¥“ function on X with bounded
¢“-norm. We have to show that ¢ := Px¢ has bounded ¥“-norm. We will need to
regularize ¢ using the method introduced by Demailly in [[11]. Recall that for simplicity
we use here the metric on X induced by the Kéahler form wy.

Consider the exponential map associated with the Chern connection on the tangent
bundle T'X of X. The formal holomorphic part of its Taylor expansion is denoted by

exph: TX — X with T,X > (+ exph,({).

It is approximatively the part of the exponential map which is holomorphic in ¢, see [11]]
for details. Let x : R — [0, 00) be a smooth function with support in (—oo, 1] defined by

const 1
X(t) = meXp m fOl‘ t < 1, X(t) =0 fOI' t Z 17
where the constant const is adjusted so that f‘ <1 x(|¢|*)d Leb(¢) = 1 with respect to the
Lebesgue measure d Leb(¢) on C" ~ T, X. Fix a constant J, > 0 small enough. Define

@11 Wz 1) ;:/C  wleph (ON(CRLC)  for  (st) € X x [0.6].

By [11]], there is a constant b > 0 such that the function ¢ — ¥(z,¢) + bt is increasing
for ¢ in [0, dp]. Observe also that W(z,0) = ¢(z). By definition, v = Px¢ is bounded by
min ¢ and max ¢. The values of V(z,¢) are averages of values of i). So ¥(z,t) is also
bounded by the same constants min ¢ and max ¢.

Consider for ¢ > 0 and § € (0, dy] the Kiselman-Legendre transform

(2.12) Yes(2) = inf (\I/(z, t) + bt —bd — clog %)

te(0,6]

Since t < § < ¢y, we see that ¢ 5 is bounded below by min ¢ — b, and taking ¢ = 6 we
also see that 1. 5 is bounded above by max ¢.
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Using a result by Kiselman, it is not difficult to show (see [11], see also [4, Lemma
1.12]) that ¢ s is quasi-p.s.h. and

wo + dd*4e5 > —(ac + b8)w,

where ¢ > 0 is a constant, see also [[17,[18]]. Therefore, we have
wc 4

dde— 7%

1+ ac+ bd

From now on, we take ¢ = 6*. We have seen that ¢ s is bounded uniformly in ¢, ¢ for ¢
and ¢ as above. Hence,

+wy >0 forall ¢>0.

1/1(:,5
1+ ac+bd

For t := 0 we obtain from (2.12) that
Yes(z) < U(z,9).

On the other hand, we deduce from (2.11]) that the value of ¥(z,¢) is an average of the
values 1 in the ball B(z, AJ) in X for some constant A depending only on X and wy.
Since ¢ < ¢ and the ¥’*-norm of ¢ is bounded, we have

U(z,0) < ¢(z) + O(%).
This, coupled with (2.13), gives

(2.13) — o] S 69

,QZ)C(S «
1+ ac+ bd < ¢+ 00

Since the left hand side is an wy-p.s.h. function, the identity ) = Py ¢ implies

wcé «
1+ ac+ bd <9 +0(5°%)

Then, using that ¢ = §¢, we get

Yes <P+ O(0%).
This and (2.12) imply the existence of ¢, € (0, d] such that
(2.14) U(z,t,) +bt, <P(z) + clog%’z + O(6Y).

Recall that the function ¢ — W(z,t) + bt is increasing and observe that its value at t = 0
is equal to ¥ (z). So the last identity implies

clog%z +0(6%) > 0.

Therefore, since ¢ = §%, we have 06 < t, < ¢, where 0 < # < 1 is a constant. By (2.14)
and using again that ¢t — W(z,¢) + bt is increasing, we obtain

(2.15) U(z,08) — (2) < O(6).

Fix a point z € X and local coordinates in a neighborhood of z so that the metric on X
coincides at z with the standard metric given by the coordinates. The function ¢ is the
difference between a p.s.h. function ¢’ and a smooth function. In particular, Ay — Ay’
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is smooth. Denote by p the positive measure defined by Ay’. Consider the following
quantity involving the mass of ;. on the ball B(z, r)

™~

lplleern for 0<r< 1.

Note that if instead of u we use the measure defined by A, then the last quantity is
changed by a term O(r?). So in the following computation, the use of A’ is equivalent
to the one of At. The advantage of A’ is that by Lelong’s theorem, the above function
v(r) is increasing.

According to [11, (4.5)] and using that yx is strictly positive on [0, 1), we have the
following Lelong-Jensen type inequality

U(at) —(z) — /Odii\p(z,T)dT

> [E[ [ e - o)

T

tdr 9 2
> [ T L] - o)

/27

t
> / P2l sy dr — O(F)
t/2

2 7 pllsg,e — O().
Combining this and (2.15]), we obtain

B S t2n=2te for t< 1.

The estimate is uniform in z € X. Applying Lemma [2.8 below gives the result. O

To complete the proof of Theorem 2.7 for K = X, it remains to prove the following
elementary result, see also [13]. For the reader’s convenience, we give here a proof.

Lemma 2.8. Let ¢ be a subharmonic function in a neighborhood U of B(0,1) C R™ and
0 < a < 1. Suppose there are constants A > 0 and t, > 0 such that ||¢||.c < A, and for
every x € B(0,1) and 0 < t < ty, we have

(2.16) [AG|[pry < AL,

Then ¢ is of class €* and its €*-norm on B(0, 1) is bounded by a constant depending only
on U, A, ty and «. The result still holds for a = 1 if we replace ¢“ by Lip.

Proof. For simplicity, we only consider 0 < o < 1 and m > 3. In this case, the Newton
kernel F(z) for z € R™ is equal to a negative constant times |x|>~™ and A(E * p) = p
for all measure ;. with compact support, see [[16, Theorem 3.3.2]. We can assume that
U = B(0,1+4r,) for some constant ry < to/4 and that A¢ has finite mass in U. So
holds for ¢ < 4ry. Define u := A¢ on U and f := F * u. The function f — ¢ is harmonic
on U. Therefore, we only need to show that f has bounded ¢“-norm on B(0, 1).

1

Fix two points z,y € B(0, 1) and define r := 3|z — y|. Since ||¢||« < A, we only need

to show that |f(z) — f(y)| < r® for r < ry. Define
Dy :=B(x,r), Dy:=B(y,r), D3:=B(x,rg)\ (D1UDs),Dy:=B(0,1+ 4ry) \ B(x, 1)
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and
foim [ flo= =P = ly = 2 d(z)
Dy,

Observe that | f(z) — f(y)| < I1 + I> + I3 + I4. So it is enough to bound 13, I, I3, I4.
Consider the integral ;. The case of /; can be treated in the same way. Since |z — z| <
|y — z| for z € Dy, we have

(2.17) I < 2/ |z — 2> " dp(2).
B(z,r)

Recall that 1 = A¢ and it satisfies (2.16]). Observe that |x — z|>~™ can be bounded by a
constant times the following combination of the characteristic functions of balls

‘ZL’ - ’Z‘Qim SJ Z(Qikr)zimlB(mQ_kr)-
k=0

The integral in (2.17) is bounded by a constant times

o0 0o ppkEly 2r
> oF) T Abllpwer S Y / ) | A dT = / 71| AQ || B dT.
k=0 k=0 Y 27" 0

We then deduce from (2.16)) that I; < r«.
Consider now the integral /3. Observe that |x — z| ~ |y — z| when z € D; U D,. Hence

(2.18) H:c—z\Q_m— |y—z|2_m‘ §r|x—z\1_m

I3 < r/ |z — 2" dp(2).
B(z,r0)\B(z,r)

We need to bound the last integral by O(r*~!) and we can assume that z = (. Observe
that we have on the domain r < |z| < o,

and

—logy r
1

—k\1—-m
|Z|m_1 Sx Z (2 ) 1]]3(072*’“)'

k=—1logy 0

Hence, we obtain the following inequalities which imply the desired estimate for I3

—logyr —logy T

dﬂ(z) —k\1-m CEva—1
/7:<|Z|<T0 |Z|m_1 S Z (2 ) HMHB(O,Q*k) 5 Z (2 ) .

k=—1logy 10 k=—1logy 0

Finally, for the integral I, with z € D,, observe that (2.18) implies

- Z|2fm

|z —ly =2 <

The estimate I, < r follows immediately. This completes the proof of the lemma. O

We continue the proof of Theorem 2.7 We need the following lemma. For » > 0 and
w € C, denote by D(w, ) the disc of center w and radius r in C.

Lemma 2.9. Let o > 0 be a constant. Let u be a quasi-subharmonic function on a neighbor-
hood of D(—1, 3) such that Au > —1, u < 1on D(—1,3) and u(z) < |2|* for all z € D(1,1).
Then there is a constant ¢ > 0 depending only on « such that for all t € [—1/2,0] we have

u(t) <t if o £ 1 and u(t) < —clt|log|t| if o = 1.
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Proof. Replacing o by min(2, «) allows us to assume that o < 2. Observe that the function
|2|? is smooth and its Laplacian is equal to 2. So replacing u(z) by 5 [u(z) + |2|?] allows
us to assume, from now on, that u is subharmonic. Let 2 denote the domain D(—1, 3) \
D(1,1). Let ® : © — D(0,1) be a bi-holomorphic map which sends —4,0 and [—4, 0]
to —1,1 and [—1, 1], respectively. Since b2 \ {2} is smooth analytic real, by Schwarz
reflexion, ® can be extended to a holomorphic map in a neighborhood of this curve and
®’ does not vanish there.

Define 2/ = ®(z) and v(2') := u o ®71(2') = u(z). We deduce from u(z) < |z|* that
v(z') < |2/ — 1] for 2/ € bID(0,1). Let ¢ be as in the statement of the lemma and define
t':=®(t) and s := 1 —¢. We have s € [0,2] and s < |t| < s. We only have to show that
v(t) < s™na) if o £ 1 and v(#') < —slogs if @ = 1. Since v is subharmonic, it satisfies
the following inequality involving the Poisson integral on the unit circle

™ /|2
o) < / L= e)an.

. |€i6 _ t/|2

Observe that 1 — |¢/|> < s and |e?? — '|? > s* + 0%, The last inequality is clear for § < 4s
because | — /| > s as ¢’ cannot be too close to —1, and it is also clear when 6 > 4s. We
then deduce from the estimate of v on the unit circle that

™ I w/s 9’| oo |y |
U(ﬂ)g/‘ S| | de_sa/ | | dGISSa/ | | de/

82462 o —n/51+6'2 1407

When « < 1, the last integral is finite and the lemma follows. Using the integral before
the last one, we also see that if & = 1 then v(#') < —slog s which also implies the lemma
in this case. Consider now the case a > 1. We deduce from the above inequality that

v(z) < s/ 0] 2df < s.

This completes the proof of the lemma. O

Proof of Theorem [2.7] in the case K # X. Consider a weight ¢ of bounded ¢“-norm
on K with 0 < o < 1. Adding to ¢ a constant allows us to assume that ¢ > 0. Dividing
¢ and wy by a constant allows us to assume that ||¢||z= < 1/100. We have to show that
Pk ¢ is of class €.

Fix a large constant A >> ||¢

5@) :=min [¢(y) + Adist(z,y)*] for =€ X.
yeK

¢« and define

Since ¢ is ¢ and A is large, gg is an extension of ¢ to X, i.e., gg = ¢ on K. Moreover, if
the above minimum is achieved at a point y, € K, by definition of ¢, we have for 2’ € X

(') — b(x) < (o) + Adist(yo, 2')*) — (S(yo) + Adist(yo, v)) < Adist(x, ')

Therefore, the function ¢ is €.

The idea is to reduce the problem to the case K = X which was already treated above.
We only need to show that Px¢ < ¢ because this inequality implies that Px¢ = Pxo.
Moreover, since Pk¢ is bounded and A is large enough, we only need to check that
Pid(z) < ¢(x) for z outside K and close enough to K.

Fix a finite atlas with local holomorphic coordinates (that we always denote by z =
(z1,...,2,)) on open subsets U; of X satisfying the following properties
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(1) Each open set U; corresponds to a ball B(a;, 10) of radius 10 centered at some
point a; in C";

(2) If V; C U, denotes the open set corresponding to B(a;, 1), then these V; cover X;

(3) ¢ restricted to K N U; is identified to a function on a subset of B(a;, 10); we still
denote this function by ¢; it satisfies ||¢||4= < 1/100; for simplicity, K N U; will be
also written as K N B(a;, 10);

(4) Pk¢ restricted to U; is identified to a quasi-p.s.h. function on B(a;, 10) that we
still denote by Pr¢; it satisfies Px¢p < ¢ on K N B(a;, 10) and dd°Px¢ > —wy >
—1dd°||z||* on B(a;, 10);

(5) For any point y in bK N B(a;,2), K contains a ball B of radius 2 such that y € bB
and bB is tangent to bK at y. This can be done because K has ¢ boundary.

This choice of atlas does not depend on A. So we can increase the value of A when
necessary.

Now, x belongs to some V. In what follows, we drop the index i for simplicity, e.g. we
will write a instead of a;. Recall that the point z is assumed to be outside and near the
set K. Let y, be as above and denote by x, the projection of z to the boundary of K, i.e.,
|z — x| = inf ek |z — y|. Here, we use the standard metric on C". This point z is unique
because K has ¢* boundary and =z is close to K. Define r := |x — x| which is a small
number.

Claim. We have |zo — yo| < r and hence yo € B(a,2) and ¢(z) > é(z,) + A'r®, where
A’ > 0 is a big constant (if we take A — oo then A’ — o0).

Indeed, if the first inequality were wrong, we would have |z —z,| < |z —yo| & |29 —yo|
and by definition of ¢(z) and yj

o(z) = d(yo) + Adist(z, yo)® < d(zo) + Adist(z, 20).

Note that the distance on U C X is comparable with the Euclidean distance with respect
to the coordinates z. This comparison is independent of A. So the inequality implies

¢(z0) — d(yo) > |0 — yo|*
which is a contradiction because ¢ is €.

We also obtain the second inequality in the claim using the definition of ¢, yo, 7o, r and
the first inequality

6(x) — d(wo) = B(yo) — Blo) + Adist(, yo)* > 1,
since A is large, ¢ is ¥, and |z — yo| > | — x| = 7.

By the claim, it is enough to show that Px¢(z) < ¢(xg) + A'r®. Using a unitary change
of coordinates, we can assume that x, and = are the points of coordinates (0,0, ...,0)
and (—r,0,...,0), respectively. This change of coordinates does not change the metric
on C", so it does not change the norms of functions. We use the coordinate z; in the
complex line A := {2z, = --- = 2z, = 0} and denote by D(w, r) the disc of center w and
radius r in A.

We will apply Lemma [2.9] to a suitable function u. Recall that ||¢||z. < 1/100, K
has ¢ boundary, z is the projection of x to K and r is small enough. By the choice
of the coordinates (zy, ..., 2,), the intersection K N A contains D(1, 1), see property (5)
above. Denote by u the restriction to A of the function Px¢ — ¢(x¢). We deduce from
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the definition of Px¢ and the above properties of the coordinates z that u satisfies the
hypotheses of Lemma [2.9] Therefore, u(z) < r® and hence Pxo(z) — ¢(xo) < r*. This
completes the proof of the theorem. O

Note that the idea of the proof still works if instead of the ball B in the above point (5)
we only have a solid right circular cone of vertex y and of a given size such that its axis is
orthogonal at y to the boundary of K. This allows us to consider the situation where K is
the closure of an open set whose boundary is not 4’?. We then need a version of Lemma
[2.9] for an angle at 0 instead of ID(1, 1). This angle is equal to the aperture of the above
circular cone. If f7 denotes this angle, then K is (¢, ¢%*)-regular for 0 < o < 1. In the
case of ¢’'-boundary for example, we can choose 6 as any constant strictly smaller than
1. As mentioned in the Introduction, we don’t try to develop the paper in this direction.
We thank Ahmed Zeriahi for notifying us the reference [27]] where Pawlucki and Plesniak
considered a class of compact sets which may be (4, 4*')-regular.

2.3. Asymptotic behavior of Bergman functions. Recall that (L, h) is a holomorphic
Hermitian line bundle on a projective manifold X whose first Chern form is wy. The
probability measure p° is associated with the volume form w; as in the beginning of the
paper. We will work later with Hermitian metrics which are not necessarily smooth nor
positively curved. It is crucial to understand the asymptotic behavior of the Bergman
kernel associated with L? and the new metrics when p tends to infinity.

As mentioned above, our strategy is to approximate the considered metrics by smooth
positively curved ones. So we need to control the dependence of the Bergman kernels in
terms of the positivity of the curvature. The solution to this problem will be presented
below. We refer to [25] for basic properties of Bergman kernel.

Consider a metric h = e 2?hy on L, where ¢ is a continuous weight on a compact
subset K of X. Recall that H°(X, L?) denotes the space of holomorphic sections of L?.
Since L is ample, by Kodaira-Serre vanishing and Riemann-Roch-Hirzebruch theorems
(see [125, Thm 1.5.6 and 1.4.6]) we have

2.19) Ny 1= dim HO(X, 17) = |+ O ).

Let u be a probability measure with support in K. Consider the natural L> and L? semi-
norms on H°(X, L?) induced by the metric 4 on L and the measure u, which are defined
for s € H(X, L?) by

@20 [sllime = lshe  and sl = [ e

We will only use measures . such that the above semi-norms are norms, i.e., there is
no section s € H°(X, L?) \ {0} which vanishes on K or on the support of p. The first
semi-norm is a norm when K is not contained in a hypersurface of X. The second one
is a norm when p is the normalized Monge-Ampeére measure with continuous potential
because such a measure has no mass on hypersurfaces of X. This is also the case for any
Fekete measure of order p as can be easily deduced from Definition [1.4]

From now on, assume that the above semi-norms are norms and for the rest of this
section, consider K = X. Let {sy,...,sy,} be an orthonormal basis of H°(X, L?) with
respect to the above L?-norm.
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Definition 2.10. We call Bergman function of LP, associated with (u, ¢), the function
pp(1t; @) on X given by
Np

ool 8)(@) = sup {|s(0) By = 5 € HUX,I7), sl ioguper = 1} = 3 Is(a) 2,

Jj=1

and we define the Bergman measure associated with (u, ¢) by

By, 9) == N, " pp (1, &) .

Note that it is not difficult to obtain the identity in the definition of p,(u, ¢) and check
that %,(u, ¢) is a probability measure. For the above definition, we only need that ¢ is
defined on the support of i or a compact set containing this support.

In the rest of this subsection, we assume that the weight ¢ is a function of class € on
X and the first Chern form w := dd“¢ + wy satisfies
(2.21D) w > (wy for some constant ( > 0.

Note that this inequality implies that { < 1 because w and w, are cohomologous. Here
is the main result in this section which gives us an estimate of the Bergman function in
terms of ¢, w, p and (. We refer to the beginning of the paper for the notation.

Theorem 2.11. There exists a constant ¢ > 0, depending only on X, L and the €3-norm of
the Hermitian metric hqg of L, with the following property. For every p > 1 and every weight
¢ of class €3 such that @.21) holds for some ¢ with ¢ > ||¢||7/*(log p)p~"/3, we have

) P’ ) (x)  w(z)”
N wo ()™
[

wy the normalized Lebesgue measure on X, and

—3/2 3/2, —1/2
gy S Cl10ls¢(logp)™p

with p° = ||wy
/X 1B,(1°, 6)(2) — pealX, B)(@)] < | ]la¢ 2 (log )2 72

Proof. By hypotheses, ¢ is wy-p.s.h. Hence, we have ¢ = Px¢ and fi.q(X, ¢) = NMA(¢) =
lwit]|'w(z)™. Therefore, the second assertion is a direct consequence of the first one and
Definition [2.101

Consider now the first assertion. We use some ideas from Berndtsson [5, Sect. 2] and
the recent joint work of Coman, Marinescu and the second author [9], see also [12].
Consider a point € X. Choose a local system of coordinates z = (z, ..., z,) centered
at z and a constant ¢ > 0 such that

(1) Some neighborhood of x can be identified to the unit polydisc D" in C";

(2) [jwo(z) — Q Soiydz Adzj|| < efz] for z € D7

(3) |o(2)—q(2) =1 (A —1)|z[?| < cll¢lls|z|? for = € D", where ); are real numbers
and ¢(z) is a harmonic polynomial in z,Z of degree < 2.

Observe that after choosing =z satisfying (1)-(2), we can take ¢(z) as the harmonic
part in the Taylor expansion of order 2 of ¢ at x = 0; then, using a unitary change of
coordinates allows us to assume that the non-harmonic part in this Taylor expansion
is given by a diagonal matrix. So we have (1)-(3) and furthermore, the constant c is
controlled by the ¢*-norm of the metric h, on L. The numbers \; and the coefficients of
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q(z) can be controlled by the ¥>-norm of ¢. Note that if the metric hy of L is ¢, thanks
to a standard property in Kdhler geometry, we can replace c|z| in (2) by ¢|z|2.

Claim. There is a holomorphic frame e of L over D" such that if ¢, := —log|e| (see the
beginning of the paper for the notation), then

n

60(2) = 3 15| < elzP,

j=1
where ¢ > 0 is a constant depending only on X, L and the ¢*-norm of h.

We first prove the claim. Consider a frame e of L over D". It can be chosen in a fixed
finite family of local frames of L over a finite covering of X. Define ¢, := — log [¢|. We
have by definition of curvature that w, = ddcgo. As above, thanks to (3), we can write
do(2) = Go(2) + > i1 |2i1* + O(|2]*), where go(2) is a harmonic polynomial of degree < 2.
So we can write §o(z) = ReQq(z), where Qy(z) is a holomorphic polynomial of degree
< 2 whose coefficients are controlled by the ¢?-norm of h,. Define e = ¢Q0¢. We have

le(2)]2 = [e(z)[2e20) = o 200(2) =200 (2)
The claim follows.

Now, by (2) and (3), we have
w(z) = dd°d(x) + wo(z) = it g Ajdzj N\ dz;.
T
=1

Hence, we get

(2.22) wh'(z) = A1+ Apwp ().

Moreover, the inequality (2.21]) at the point 2 becomes
Aj>(¢ for 1<j<n.

Define
(2.23) p(z) = Z Alz? and  1(2) = ¢(2) — q(z) — @(2) + do(2).

Consider a normalized section s € H°(X, L?) with ||s|[2(.0 ,4) = 1. We are going to
bound |s(x)|,s from above. Writing s = fe®?, where f is a holomorphic function on D"
and e is the frame given by the above claim. We apply the submean inequality for the
p.s.h. function |f(z)|?e~2"%*) on the polydisc D7 := D, x --- x D, (n times) with radius
r:= (logp)/2p~1/2¢~1/2, Thanks to the special form of ¢, we obtain

Jo | fPe 2002 d Leb
Jop e72dLeb

(2.24) [s(x)[55 = | £(0)7e10 <

Note that the hypothesis on ¢ and the fact that ( < 1 insure that r < p[|¢|[zr® < 1. We
will use this property in the computation below.
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For the first integral in (2.24)), observe that by (2), the Lebesgue measure in D" is equal

to £(Z)"w§ + O(|2|). This, together with (3), (2.23) and the above claim, gives
| n _
|f|26—2p¢I—2p90d Leb S _ (I) + O(T) / |f|26—2pq—2pgpw61
Dr _n! 2 4 Jpn
Tl ym\m 1 B .
< ﬁ(§> + O(r) | exp (Qp%%xw)/ | f|2e2p(atete)
Ln) ] z -
1l /m\n 1 3 .
< E(§> +0(r)] 0019l )/X 5Pt
1o\ 3 B
= (5) It + Olols¢ 2 togp)2p112),
because ||| 2.0 ps) = 1 and eCPI917*) = 1 4+ O(p]|¢||3r%).
Define

B(t) := / e 2 g Leb(¢) = Z(1 — e 2"y < I,
£ehy 2 2
A direct computation shows that the second integral in (2.24) is equal to

- " E(ry/p\; n(l—1/p*)"
/ e ?P?d Leb = H/ e_ZpAJ"ZJ'FdLeb(Zj) = H 7(T PA;) > (Z) A=) - [v)
D7 i z; €Dy i p)\j 2 Y% )\1 e >\n
since r?p\; > r*p( = logp.

Combining the above estimates with (2.24), we obtain

_ - Lo, n
s(@)Z < |1+ O(llls¢ /2 10g p)2p™2) | —p" M1 . Al

By Definition 2.10, we get

O @) (z _ _ 1 n
BN (14 0ol 208925 ) Tae. .l
Then, using (2.19) and (2.22]), we obtain
0 n
(2.25) ol o)) (1 + cl|¢lls¢ 2 (log p)*/?p~/?) S ith > 0.

Ny wo(z)™
Now, define for simplicity

_ (1, 9)(2) _ wiz)"

Y (x) = N, , Ug(x) = (@)

So ¢, and 1), are two positive functions of integral 1 with respect to the probability
measure ;. Inequality (2.25) says that ¥; < (1 + €)J,. We need to check that ||, —
V2|1 0y S €. By triangle inequality, it is enough to check that ||J; — (1 4 €)Us||£1(u0) S €.
But since the function ¢, — (1 + €)¥, is negative, it suffices to check that the integral of
this function with respect to ;° is larger than or equal to —e. A direct computation shows

that this integral is in fact equal to —e. The proof of the theorem is now complete. O

and € := c||¢||s¢C*2(log p)*/2p /2.

3. EQUIDISTRIBUTION OF FEKETE POINTS

In this section, we will give the proofs of the main results stated in the Introduction.
The estimates obtained in the previous section allow us to use the strategy by Berman,
Boucksom and Witt Nystrom. We refer to the beginning of the article for the notation.
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3.1. Energy, volumes and Bernstein-Markov property. Recall from [2] that the Monge-
Ampére energy functional £, defined on bounded weights in PSH(X, wy), is characterized
by
% E((L—1t)p1 +1tga) = / (2 — p1)NMA(¢1).
t=0 X

So £ is only defined up to an additive constant, but the differences such as £(¢1) — E(¢2)
are well-defined, see also (3.9).

Consider a non-pluripolar compact set X C X and a continuous weight ¢ on K. Define
the energy at the equilibrium weight of (K, ¢) as

Eeq(K; 0) := E(Pk ).

This functional is also well-defined up to an additive constant. We will need the following
property which was established in [2, Th. B].

Theorem 3.1. The map ¢ — E (K, ¢), defined on the affine space of continuous weights on
K, is concave and Gdteaux differentiable, with directional derivatives given by integration
against the equilibrium measure:

d
dt|,_,
In particular, for all continuous weights ¢, and ¢, on K, we have

|geq(K> ¢1) - 5eq(K> ¢2)| < ||¢1 - ¢2||oo-

Note that the second assertion is obtained by taking the integral on s € [0, 1] of the
first identity applied to ¢ := ¢; + sv and v := ¢ — ¢;. We use here the fact that yi. (K, ¢)
is a probability measure.

Let 1 be a probability measure on X and ¢ a continuous function on the support of ..
The semi-norm || - || 12(.p6) o0 H(X, L?) is defined as in and recall that we only
consider measures . for which this semi-norm is a norm. Let B.(u,$) denote the unit
ball in H°(X, L?) with respect to this norm and N, := dim H°(X, L?). Recall from [2] the
following £,-functional

1
(3.1 Lo(11,0) = 5

p

Eeq(K, ¢+ tv) = (v, peq(K, ¢))  for every continuous function v on K.

log vol Bf,(,u, 0).

Here, vol denotes the Lebesgue measure on the vector space H°(X, L*) which is only
defined up to a multiplicative constant. Note that the differences such as £, (1, ¢1) —
L,(p2, ¢2) is well-defined and do not depend on the choice of vol for any probability
measures y; and po, see also (3.9). The functional £, satisfies the following concavity
property, see [3, Proposition 2.4].

Lemma 3.2. The functional ¢ — L,(j, ¢) is concave on the space of all continuous weights
on the support of .

Recall from Definition that the Bergman measure %,(u, ¢) is a probability mea-
sure. Note that when p is the average of N, generic Dirac masses (more precisely, for
points z1,...,xy, such that the vector det(s;(x;)) in the Introduction does not vanish),
one can easily deduce from Definition that %,(1, ») = p, by considering sections
vanishing on supp(x) except at a point. Such sections exist because N, = dim H°(X, L?).
This property holds in particular for Fekete measures of order p.
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The following relation between the functional £,(u,-) and %,(u,-) has been estab-
lished in [2, Lemma 5.1], see also [[6, Lemma 5.1] and [[15, Lemma 2].

Lemma 3.3. The directional derivatives of L,(i, -) at a continuous weight ¢ on the support
of p are given by the integration against the Bergman measure %,(u, ¢), that is,

d
%Ep(ﬂ, ¢+ tv) = (v, B,(u, ¢)), with v, ¢ continuous on the support of .
=0

In particular, for all continuous functions ¢, and ¢, on the support of i, we have

|Lp(1t, d1) — Ly, @2)| < |1 — 2| oo

Note that as in Theorem [3.1] the second assertion of the last lemma is a direct conse-
quence of the first one.

Consider the norm || - || ok pg) 0N H°(X, L) defined in (2.20). Let B;°(K, ¢) denote
the unit ball in H°(X, L?) with respect to this norm. Define

(3.2) L,(K,¢):= 2p1N log vol B (K, ¢).

p
We have the following elementary lemma.

Lemma 3.4. If p is a probability measure with supp(u) C K, then
Ly(K,¢) < Ly(p, ¢)-

Proof. Since y is a probability measure, we see that
(33) ||S||L2(u,p¢) S ||S||L°°(K,p¢)7 S € HO(X, Lp)
The lemma follows. O

We have the following property that we will only use in the case of wy-p.s.h. weights.

Lemma 3.5. Let p be a probability measure and K C X a compact set with supp(u) C K.
Assume the following strong Bernstein-Markov inequality: there exists a constant B > 0
such that

Sup py (1, ¢) < Bp? for p>1.
Then there exists ¢ > 0 depending only on B such that for p > 1, we have
0< Ly(p, ¢) — Ly(K,¢) < cp™'logp.
Proof. For all p > 1 and section s € H°(X, L?), by (3.3) and Definition [2.10, we have

(3.4) I8l z2(ups) < ISl rps) < €77 [I5l| 22up0)
where

1
(3.5) = o log sup p, (1, ¢).

P K

Since the volume form vol is homogeneous of degree 2N, = dimg H°(X, L?), it follows
from (3.4) that

vol By (k. ¢)

< log SO\ 9).
V=08 B (K, )

< 2pNpc,.
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Hence, by definition of the £-functionals in (3.1) and (3.2]), we have

1 1B (1,
Osgm@—@mwﬁvm,%ggéé%_%-

This, (3.5) and the assumed strong Bernstein-Markov inequality imply the lemma. [

The following result gives us a class of compact sets K satisfying the strong Bernstein-
Markov inequality stated in Lemma [3.5]for (X, Px¢) instead of (K, ¢), see also [3} section
1.2]. We refer to the beginning of the article for the definition of ;°.

Theorem 3.6. Let A > 0 and «, o’ > 0 be constants. Let K C X be a (€%, ¢~ )-regular
compact set. Let ¢ be a function on K such that ||¢||¢« < A. Then there is a constant B > 0
depending only on X, L, hy, K, A, « and ' such that

sippp(uo,PK@SBpB for p>1.

In particular, the statement holds when K is the closure of an open set in X with ¢* bound-
ary, 0 <o’ <1, a>ca' and A > 0.

Proof. The second assertion is a consequence of the first one and Theorem [2.7] We prove
now the first assertion.

It is enough to consider the case where 0 < o/ < 1. Since K is (¢, ¢ )-regular, the
function 1 := Px¢ has bounded ¥ -norm on X. Consequently, we only need to prove
that

(3.6) sup pp (1’ 1) <pe for p>1.
X

For this purpose, fix a point 2 € X and a section s € H°(X, L?) such that ||s]| 2,0 ) = 1.
By Definition [2.10] it is enough to prove the estimate

(3.7) |s(z)]2, < p*e

uniformly in = and s.

Choose local coordinates z near x such that z(z) = 0 and for simplicity we still write
1(z) for the restriction of 1 to a neighborhood of z. Fix also a local holomorphic frame e
of L over a neighborhood of x such that |e(0)|, = ™). We can write s(z) = f(2)e®?(z),
where f(z) is a holomorphic function such that |f(0)|e™?¥©® = |s(0)|,4. So we need to
check that | £(0)|?e=2%(©) < p?/o’, Write 1)e(2) := — log |e(2)|y. This function differs from
(z) by a pluriharmonic function. Therefore, it is also of class ¥ and by definition we
have ¢,(0) = ¥(0). It follows that |,(2) — (0)| < |2|*, and hence

3.8) P = P Is| ey 2 p2”/°‘// |f(2)[Pe ) d Leb(z)

|z|<p=1/’

~

> pe / [ (2)Pe 2O P  Leb(2)
|z|<p=1/’

for some constant ¢ > 0.
Using the submean property for | f(z)|?> and the new variable u := p'/® 2, we can bound
the last expression from below by

f)pe oy [

|z]<p—1/e

=Pl 4 Leb(2) = | £(0)[2e 24O / e=<lul” 4 Leb(u).

lu|<1
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Therefore, we deduce from (3.8) that | f(0)[?e=2P¥(© < p?>*/¢’| The estimates ([3.7), (3.6)
and then the theorem follow. O

In the case where K = X and p = ;°, we have the following lemma.

Lemma 3.7. Let A > 0 and a > 0 be constants. Let ¢ be an wy-p.s.h. function on X
whose ¢ *-norm is bounded by A. Then there exists a constant c4, > 0 depending only on
X, L, hg, A and « such that for every p > 1, we have

Caqlo
0. Ly(",6) = £,(X,9) < 5L
Proof. Tt is enough to apply Lemma [3.5]and Theorem 3.6l for K = X. Note that since ¢ is
wo-p.s.h., we have Px¢ = ¢. O

3.2. Main estimates for the volumes and energy. We gather in this subsection the
main estimates needed for the proofs of our main theorems.

Normalization. From now on, in order to simplify the notation, we use the following
normalization

(3.9) Eeq(X,0)=0 and L,(u°,0)=0 for peN.
Here, the function identically O is used as a smooth strictly wy-p.s.h. weight.

For continuous weights ¢, ¢ on X, the following quantities will play an important
role in the sequel:

(3.10) Vp(¢1, ¢2) = ‘(ﬁp(ﬂoa ¢1) - 'Cp(,uoa ¢2)) - (geq(Xa ¢1) - 5eq(Xa ¢2))}
and
(311) Wp((bl, ¢2) = ’ (EP(X7 d)l) - Ep(Xv d)?)) - (SGQ(Xv d)l) - EGQ(Xv d)?)) }

Here are three crucial propositions. The first two results deal with strictly wy-p.s.h.
weights, whereas the last one considers the case with weakly wy-p.s.h. weights.

Proposition 3.8. Let ¢, and ¢, be two weights of class ¢* on X such that
max(||¢1|3, [|@2ll3) < A for some given constant A > 0. Suppose dd°¢, + wy > (wy and
dd°¢y + woy > Cwy for some ¢ > 0. Then, there is a constant c4 > 0 depending only on
X, L,wq, A and ¢ such that for all p > 1

Vo(é1, d2) < cac(logp)®?p=1/2 and W, (1, ¢2) < cac(logp)®p /2.

Proof. By Lemma [3.7], the second estimate of the proposition follows from the first one.
So we only need to prove the first estimate. In what follows, all involved constants may
depend on X, L,wy, A and (. Recall that ¢ < 1 because dd°¢; + wy > (wo and dd°¢; + wy
is cohomologous to wy. It is enough to consider p large enough.

For ¢ € [0, 1], define ¢, := t¢; + (1 — t)po. By Lemma[3.3] we get

1
£y(u.00) = £y 00) = [ dt [ (0= 0n) 2,000 0)

Since dd“¢; + wg > (wo, by Theorem [2.11] applied to ¢,, the right hand side of the last
identity is equal to

[t [ (61 = 6,60+ O((togp ).
t=0 X
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By applying Theorem [3.1] the double integral in the last line is equal to

[
t=0 dt
Therefore, we get
L,(1°,01) = L1, 02) = Eeq(X, d1) — Ecq(X, 02) + O(<10gp)3/2p71/2)7

which proves the proposition. O

SGQ(Xv ¢t) = 5601<X7 (bl) - SGQ(Xv ¢2)

t=0

Proposition 3.9. Let 0 < o < 1 and A > 0 be constants. Let ¢, and ¢, be two weights
of class €% on X such that max(||¢1]|o., ||¢a]lgo) < A. Suppose dd°¢; + wy > (wy and
dd°¢y + wy > Cwy for some ¢ > 0. Then, there is a constant c4 ¢ > 0 depending only on
X, L,wy, A, and ¢ such that for all p > 1

Vo1, 92) < canc(logp)®?p™®  and  W,(¢1, d2) < canc(logp)®*p=/S.

Proof. As in the last proposition, we can assume that ( is fixed with ( < 1 and p is large
enough. Moreover, we only need to prove the first estimate. The constants involved in
the calculus below may depend on X, L, wy, A, @ and (. Fix a constant ¢ > 0 large enough
and define
€:= c((logp)3/2p*1/2)1/3 <1

for p large enough. By Theorem [2.T] applied to (1 — {)~'¢; and (1 — ) '¢s, there exist
two smooth weights ¢;. := (1 —¢)[(1 — ¢)'¢,]_for j = 1,2 such that

a) dd°¢j .+ wy > Cwo;

b) [[¢je — djlloc S €

) [|.e .

We deduce from (3.10), Theorem [3.1]land Lemma [3.3] that

Vo(h1, 2) = Vb1, d2.6)| S €.

We can apply Theorem [2.11] to ¢;. and their linear combinations as in the proof of
Proposition The choice of ¢ and the above properties a)-c) allow us to check the
hypotheses of that theorem for large p. Therefore, taking into account the estimate c),
we obtain

Lo(10, d1.6) = Lo(1°, b2.) = Eea( X, b1.6) — Eeq(X, ha.c) + O((logp)*p~ /%),

or equivalently

@ S €

Vp(¢1,€7 ¢2,e) 5 (logp)?’/Qp_l/Zea_g.
Thus,
Vo1, 62) S (logp)®/Pp 12627 4 €.
This estimate and the choice of e imply the first inequality in the proposition. O
Proposition 3.10. Let 0 < o < 1 and A > 0 be constants. Let ¢, and ¢, be two wy-p.s.h.

weights of class €% on X such that max(||¢1||go.a, ||¢2]|¢0.) < A. Then, there is a constant
ca.o > 0 depending only on X, L,wy, A and « such that for all p > 1

Vp(1, ¢2) < CA,a(IOgP)sﬁapfﬁa and Wy(1, ¢2) < CA,a(logp)gﬁapfﬁaa
where (3, := a/(6 + 3«).
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Proof. As above, we only need to prove the first inequality and to consider p large enough.

Choose

€ — (logp)l/(2+a)p71/(6+3a) and C —
Define ¢, := (1 —()¢;. We proceed as in Proposition[3.9/but should take into account the
fact that ¢ is no more fixed. The constants involved in the computation below should be
independent of (.

As in that proposition, we obtain

Va(@1, 02) = Vo(d1, 95)| S ¢

and since dd“¢; + wy > Cwo

Vo(, 05) S (P (log p)*Pp~ 126 4 e,
We then deduce that
Vo(d1,02) S C+ (2 (logp)?Pp~1/2e 7 e,
The above choice of ¢ and ¢ implies the result. O

In the rest of this subsection, we give some results which relate Fekete points with the
functionals considered above. Fix an orthonormal basis S, = (s1,...,sy,) of H*(X, L?)
with respect to the scalar product on H°(X, L?) induced by ho and p°. Consider a
weighted compact set (K, ¢) with ¢ continuous on K. Recall that

H det SPHLOO(K,])(#) = sup ‘ det(si(xj))‘efpd)(ml)*"'*p(b(pr)

and
” det Sp”%Z(u,pqﬁ) = / | det(Si(l’j))|2672p¢(m)7”'*2p¢(xm’)d/i(l’l) N _dlu(pr)’
(1505 J:NP)EKNP

if ¢ is a weight on K and yu is a probability measure supported by K.
We assume further that (K, ¢) is regulay, i.e., ¢ = Px¢, that Pk ¢ is continuous, and
also that the following strong Bernstein-Markov inequality holds

(3.12) sup p,(11°, Px#) < Bp®  for some constant B > 0.
X

Lemma 3.11. Let S,, K and ¢ be as above with condition (3.12). Then there is a constant
¢ > 0 depending only on B such that for p > 1

’ log || det S, || Lo (i pg) — log || det Sp||L2(MO7pPK¢)} < ¢N, logp.

Proof. Observe that the restriction of (L?)*™» to {z;} x --- X {zn,-1} x X can be iden-
tified to the line bundle L? over X. Therefore, we can apply Proposition 2.5 to = +
det Sy(x1,...,2n,—1,7). Then, using inductively the same argument for the other vari-
ables x;, we obtain

|| det Spl| Loe(r pg) = [l det Spll Loe(x pric)-
Hence,

| det Spll oo (x,pg) = [ det Spll L2 (w0 ppric)-
Now, to complete the proof we only need to show that

(3.13) log || det S| Lo (x price) < 1og || det Syl 2(u0 pprg) + O(N,logp).
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By (3.12), we get
[5(2) 5o < po(1”s Pd)(@)Isl 220 oy < BP sl 7200 pprcs)
for every section s € H(X, L), p > 1, and « € X. Now, if z;,...,zy, are points in X,

then for each j

= det Sp(@y, ..., 21,2, %541, ..., TN,)
is a holomorphic section in H°(X, L?). A successive application of the last inequality for
j=1,2,...,N, yields

H det SPH%OO(vaPK(b) S BNppBNP H det SPH%Q(MO,I)PK@’

and (3.13) follows. O
Taking the normalization (3.9) into account, we set, for each p > 1,

(3.14) €p = ‘ﬁp(,uo, Pr o) — Eeq(K, ‘b)‘ =V,(Px,0),

and

1
DP(K> QZ)) = W log || det Sp||L°°(K7p¢)'

p

Proposition 3.12. Let S,, K, ¢, ¢, and D,(K, ¢) be as above with condition (3.12). Then
there is a constant ¢ > 0 depending only on X, L and B such that for p > 1

IDp(K, ¢) + Eeq (K, 9)| < C(pil logp +¢,),

and for any Fekete measure 1, associated with (K, ¢)

|£P(lup> ¢) - geq(Ka ¢)| S C(p_l logp + 6p)-
Proof. We prove the first assertion. By Lemma [3.11] we only need to check that

1
(3.15) W log || det Sp||L2(MO7ppK¢) + Eeq(K,9)| S p_1 logp + ¢,.

p
Using that S, is an orthonormal basis, a direct computation (see [2, Lemma 5.3] and [2}
p.3771), gives
) B vol B2(11°,0)
|| det SPHLQ(,LLO,])PKd)) - p.VOl B}Q)(ﬂo’ PK(b)’

which implies
1 log N,,!
—1 det S| 12 = °0)— oPp — P
PN, og || det Sp |l L2(u0 prrs) = Lo, 0) — Lp(p”s Pcp) + 2N,
By the normalization (3.9) and (3.14),
L,(1°,0)=0 and L,(u°, Pxo) = Eeq(K, ¢) £ ¢,
On the other hand, since N, ~ p" by (2.19), we have
log N,,! < p"logp
2pN, =~ 2pN,
Combining the last four estimates together, we obtain (3.15).

Consider now the second assertion in the proposition. Using the definition of Fekete
points, we obtain (see [3, (2.4)])

1 vol B2(11°,0)

log
2pr VOl Bf,(up,gb)

< p 'logp.

1
= D)K. 0) = 3 log Ny,
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By the normalization (3.9), the left-hand side is —£,(1,, ¢). Using again that N, ~ p",
we deduce the result from the first assertion of the proposition. O

3.3. Proofs of the main results and further remarks. In this subsection, we will give
the proofs of the main theorems stated in the Introduction. We need the following aux-
iliary lemmas.

Lemma 3.13. There is a constant ¢ > 0 such that for every continuous weight ¢ on K and
every function v of class €' on X, we have

[ (Hea(E, & + tv) = p1eg (K, 0),v)| < clt[[0]l (|| dd vl for t€R.
Proof. Define

U= Z(dchK¢ + wo)” "t A (dd° P (¢ + tv) + wo)" .

j=1
Observe that dd°Px¢ + wy and dd°Pk(¢ + tv) + w, are positive closed (1, 1)-currents
cohomologous to wy. So V is a sum of n positive closed (n —1,n — 1)-currents of bounded
mass. Define also u := Pg(¢ + tv) — Px¢. For t € R, we have
(Hea(K & +1),v) — (pteq (K, 0),v) = (NMA(P(¢ + tv)) — NMA(Px¢), v)
= const(ddu A V,v) = const(ddv AV, u).
On the other hand, by Lemma [2.6]
[ull L (x) = |1 P (¢ + tv) — Pgol|(x) < [t Lo (x0)-

Since v € ¢"!(X), dd°v can be written as the difference of two positive closed bounded
(1,1)-forms. Consequently, dd“v A ® is a signed sum of 2n positive measures of bounded
mass. This and the above computation imply the lemma. O

Lemma 3.14. Let ¢ > 0 and M > 0 be constants. Let F' and G be functions defined on
[—€'/2 €1/2] such that

a) F(t) > G(t) —eand |F(0) — G(0)] < ¢

b) F is concave on [—¢'/2, ¢'/?] and differentiable at 0;

¢) G is differentiable in [—¢'/?,¢'/?], and its derivative G’ satisfies |G'(t) — G'(0)| <

Me'/? for t € [—€'/2 €'/?]. The last inequality holds when |G'(t) — G'(0)| < M|t|.
Then we have
|F'(0) — G'(0)] < (2+ M)e/?,
Proof. This is a quantitative version of [2, Lemma 7.6]. Since F' is concave, we have
F(0) + F/(0)t > F(t)

for |t| < ¢'/2. Hence, for t := +¢'/2, we get

(3.16) tF'(0) > G(t) — G(0) — 2¢ = G(t) — G(0) — 2t>.
Now, take t := ¢'/2. There exists s € (0,t) such that
G(t) = G(O)

; = G'(s) and by c) |G'(s) — G'(0)] < Mt.
This, combined with (3.16) yields
F'(0) > G'(s) — 2t > G'(0) — (2 + M)t.
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Hence, F'(0) — G'(0) > —(2 + M)e'/%. The inequality F'(0) — G'(0) < (2 + M)e/? is
obtained in the same way by using ¢ := —e'/2. O

End of the proof of Theorem [1.7. By (1.1, we only need to consider the case v = 3,
i.e., to prove

(3.17) | (tp = t1eq(X, @), 0)| S p~*(log p)*/*

for every test function v such that ||v]|4s < 1. We will apply Lemma [3.14]to the following
functions

F(t) .= L,(up, ¢ + tv) and G(t) := Eeq(X, ¢ + tv).
By Lemma [3.4],
(3.18) Ly(php, @ +t0) > L,(X, ¢ + tv).

On the other hand, since dd“v is bounded, we can find a constant ¢y > 0 such that ¢ + tv
is (1 — {)wo-p.s.h. for |t| < ¢, and ¢ > 0 a fixed constant. Recall that the function 0
satisfies the normalization (3.9). Consequently, Proposition 3.8] applied to ¢ + tv and
the function 0, yields

£5(X, 6+ 10) = Eq(X, 6 + t0)| S p~ '/ (log p)*/*.
This, combined with (3.18)), shows that
(3.19) F(t)—-G(t) 2 —p*1/2(logp)3/2.

Next, since ¢ is wy-p.s.h., we have Px¢ = ¢. Moreover, we have the strong Bernstein-
Markov inequality thanks to Theorem applied to K := X. Let ¢, be defined as in
(3:14) with K = X and Px¢ = ¢. By Proposition[3.8again, we have ¢, = O(p~'/%(log p)*/?).
Consequently, applying Proposition [3.12] yields
(3.20) [F(0) = G(0)] S p~*(logp)*?.

Recall from Lemma that I is concave. Moreover, by Lemma [3.3] we have

(3.21) F(0) = (v, By {1y 6).
On the other hand, by Theorem 3.1l G is differentiable with
(322) Gl(t> = <U7MGQ<X7¢+tv>>'

Finally, by Lemma [3.13] condition ¢) in Lemma [3.14is satisfied for a suitable constant
M > 0. Combining this and the discussion between ([3.19)-(3.22]), we are in the position
to apply Lemma [3.14] to a constant ¢ of order p~/?(log p)*/2. Using the above expression
for F’(0) and G'(0), we get

(5 (119, 6), v) — (1eq(X, 0), )| = O (p/* (log p)*"*).
Recall from the discussion before Lemma[3.3|that %, (1, ¢) = p,. Hence, estimate (3.17)
follows immediately. O

Remark 3.15. If in Theorem [I.7, the function ¢ is only €* for some 0 < a < 1, we can
apply Proposition instead of [3.8]in order to get

dist. (p, treq (X, @) < (logp)®/Ep=1/24 for 0 <y < 2.
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End of the proof of Theorem [1.5l By (1.1), we only need to consider the case v = 2,
i.e., to prove

‘</~Lp — feq(K, 0), U)‘ S p_m(logp)ﬁﬁ
for every test ¢2 function v such that |[v||¢> < 1. Recall that 3 := o//(24 + 12a/). Define

F(t) :== Ly(ptp, ¢ + tv) and  G(t) := Ee(K, ¢ + tv) = Eeq(X, Px (¢ + tv))
for ¢ in a neighborhood of 0 € R. By Lemma [3.4] and Proposition [2.5]
Lol 6+ 10) > Ly(K, 6+ t0) = Ly(X, Pre(6+ 10).

As 0 < o < 2, we infer that ¢ + tv € €%(K). Since K is (¢*, ¢ )-regular, we deduce
that Py (¢ + tv) is an wy-p.s.h. weight on X with bounded ¥* -norm. This, coupled with
Proposition [3.10] applied to Pk (¢ + tv) and the function O, for o’ instead of «, and the
normalization (3.9), shows that

F(t) = G(t) Z —p ¥ (logp)**”.

By Theorem [3.6] condition is fulfilled. Let ¢, be defined as in (3.14). By Propo-
sition for o instead of o, we have ¢, = O(p~**(logp)'??). Consequently, applying
Proposition yields

[F(0) = G(0)] < p~*(logp)™*’.

Finally, since ||v|j42(x) < 1, we can check condition ¢) in Lemma [3.14] using Lemma
Applying Lemma [3.14] to a constant e of order p~*(log p)!'?®, we easily obtain the
result as in the proof of Theorem [1.71 O

Remark 3.16. Optimal estimates for the speed of convergence in our results are still
unknown. This is an interesting problem which may require a better understanding
of the Bergman kernels. Results in this direction may have consequences in theory of
sampling and interpolation for line bundles with singular metric and not necessarily of
positive curvature. Demailly suggested us to study first the case in C™ with data invariant
under the action of the real torus (S')".

Remark 3.17. Our proofs still hold for almost Fekete configurations P = (z1,...,zn,) €
K™r in the sense that the quantity op below is not too big. Assume that P is not neces-
sarily a Fekete configuration and define

70 1= i 108 4ot iy — - 108 et 5Pl
Then our main estimates are still valid for this configuration if we add to their right hand
sides the term O(UZ/ *) for the estimates in Theorems [I.T] [I.5] and Corollary [.6] and
O(UZ/ %) for the estimate in Theorem [I.7. The main change in the proofs is that we need
to add O(op) to the right hand side of the second inequality in Proposition [3.12] This
answers a question that Norm Levenberg asked us, see also [22].
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