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Pariah moonshine
John F.R. Duncan 1, Michael H. Mertens2 & Ken Ono 1

Finite simple groups are the building blocks of finite symmetry. The effort to classify them

precipitated the discovery of new examples, including the monster, and six pariah groups

which do not belong to any of the natural families, and are not involved in the monster. It also

precipitated monstrous moonshine, which is an appearance of monster symmetry in number

theory that catalysed developments in mathematics and physics. Forty years ago the pioneers

of moonshine asked if there is anything similar for pariahs. Here we report on a solution to

this problem that reveals the O’Nan pariah group as a source of hidden symmetry in

quadratic forms and elliptic curves. Using this we prove congruences for class numbers, and

Selmer groups and Tate–Shafarevich groups of elliptic curves. This demonstrates that pariah

groups play a role in some of the deepest problems in mathematics, and represents an

appearance of pariah groups in nature.
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As atoms are the constituents of molecules, the finite simple
groups are the building blocks of finite symmetry. The
question of what finite simple groups are possible was

posed1 in 1892. By the 1950s it was expected that most should
belong to certain infinite families which are naturally defined in
geometric terms. For example, the rotational symmetry of a
regular polygon with a prime number of edges—a cyclic group of
prime order—is a finite simple group. The next example is the
rotational symmetry of a regular dodecahedron, but to see it as
part of a family it should be regarded differently, via its action on
five embedded tetrahedrons, for instance.

In 1963 the monumental Feit–Thompson odd order paper2

established that any non-cyclic finite simple group must have a
two-fold symmetry inside. This led to a surge of activity in group
theory which, despite uncovering unexpected examples, paved the
way for Gorenstein’s 1972 proposal3 to classify finite simple
groups completely. Building upon thousands of pages of pub-
lished papers, this program was completed4, 5 in 2002. The
resulting classification is a crowning achievement of twentieth
century mathematics. Thompson was awarded a Fields medal for
his contributions. Curiously, the classification features twenty-six
exceptional examples—the sporadic simple groups—that do not
belong to any of the natural families. It is natural to ask if they
play a role in nature.

A sensational, yet partial answer to this question appeared just
a few years later when McKay and Thompson noted
coincidences6 connecting the largest sporadic group—the
Fischer–Griess monster7, having about 8 × 1053 elements—to the
elliptic modular invariant J(z), which first appeared a century
earlier8 in connection with the computation of lengths of arcs of
ellipses. That sporadic groups and elliptic functions could be
related seemed like lunacy. But Conway–Norton elaborated9 on
the observations of McKay and Thompson, and formulated the
moonshine conjectures, which predict the existence of an infinite
sequence of spaces V \

n for integers n> 0 that admit the monster
group as symmetry in a systematic way. Nineteen other sporadic
groups occur as building blocks of subgroups of the monster.
Norton’s generalised moonshine conjectures10 formalised the
notion that analogues of the V \

n should realise these.
Frenkel–Lepowsky–Meurman constructed11 candidate spaces

V \
n, and the predictions of Conway–Norton were confirmed for

them by Fields medal-winning work12 of Borcherds in 1992. The
notions of vertex algebra and Borcherds–Kac–Moody algebra
arose from this, and now play fundamental roles in diverse fields
of mathematics and physics. Consequently, the spaces V \

n may be
recognised13 as defining a bosonic string theory in 26 dimensions.
The generalised moonshine conjectures were recently proven14, 15

by Carnahan, so moonshine illuminates a physical origin for the
monster, and for the 19 other sporadic groups that are involved in
the monster. Therefore, 20 of the sporadic groups do indeed
occur in nature.

But a unifying theory of the sporadic groups must also
incorporate those six pariah sporadic groups that are not involved
in the monster. The problem of uncovering moonshine for par-
iahs was posed in the seminal work9 of Conway–Norton.
Regarding moonshine from a different viewpoint, we have
extended the theory16 so as to incorporate two of these: the
O’Nan group17 and Janko’s first group18, the latter being a sub-
group of the former. The elliptic modular invariant J has the
property that J(zQ) is a solution to a polynomial with integer

coefficients whenever zQ ¼ �Bþi
ffiffiffiffiffi
Dj j

p
2A for integers A, B and D, with

D< 0 and D congruent to B2 modulo 4A. By suitably assembling
these special values of J we are led to a sequence of spaces WD for
D< 0 that admit the O’Nan group as symmetry in a systematic
way (see Theorem 1).

Using this we prove results on class numbers of quadratic
forms (see Theorem 2), and Selmer groups and Tate–Shafarevich
groups of elliptic curves (see Theorems 3 and 4). Thus we find
that O’Nan moonshine sheds light on quantities that are central
to current research in number theory. In particular, pariah groups
of O’Nan and Janko do play a role in nature.

Results
Our main results (Theorems 2, 3 and 4) reveal a role for the
O’Nan pariah group as a provider of hidden symmetry to
quadratic forms and elliptic curves. They also represent the
intersection of moonshine theory with the Langlands program,
which, since its inception in the 1960s, has become a driving force
for research in number theory, geometry and mathematical
physics.

Hidden symmetry. The Langlands program predicts an expan-
sive system of hidden symmetry in algebraic statistics19, 20. For an
example of this consider the Riemann zeta function

ζðsÞ:¼
Y

p prime

1
1� p�s

: ð1Þ

This product converges for s= σ + it a complex number with
σ> 1, but at s= 1 equates to the harmonic series, and therefore
diverges there. This is one proof that there are infinitely many
primes. Setting ΓðsÞ :¼ R1

0 vs�1e�vdv and θðzÞ :¼ P1
n¼�1 eπizn

2

we may write

ζðsÞ ¼ π
s
2

Γ s
2

� �
Z 1

0
v
s
2

θðivÞ � 1
2

� �
dv
v
: ð2Þ

Riemann used (2) and the identity v�
1
2θ iv�1ð Þ ¼ θðivÞ to show21

that ζ(s) can be defined for all complex numbers except s= 1, in
such a way that the completed zeta function ξðsÞ :¼ π�

s
2Γ s

2

� �
ζðsÞ

is invariant under the two-fold symmetry that swaps s with 1 − s.
For the Langlands program ζ(s) is the first in a family arising

from Diophantine analysis, which is the classical art22 of finding
rational solutions to polynomials with integer coefficients. Linear
equations are controlled by ζ(s), and the next examples relate
quadratic forms Q(x, y):= Ax2 + Bxy + Cy2 to the Dirichlet L-
series

LDðsÞ:¼
Y

p prime

1
1� χDðpÞp�s

: ð3Þ

Here A, B and C are integers, D:= B2 − 4AC is the discriminant of
Q, and χD(p) is a certain function depending on D. If D= 1 then
LD(s)= ζ(s). Dirichlet L-series admit completions which have the
same two-fold symmetry as ζ(s). The as yet unresolved general-
ised Riemann hypothesis23 predicts that if LD(s)= 0 for s= σ + it
with 0< σ< 1 then σ ¼ 1

2.
Just as for ζ(s), the behaviour of LD(s) near s= 1 is important.

Call a discriminant D fundamental if it cannot be written as d2D′
where d is an integer greater than 1 and D′ is the discriminant of
another quadratic form. If we focus on the values
Q(x, y) for x and y integers then it is the same to consider
Q′(x, y):=Q(ax + by,cx + dy), for any integers a, b, c and d, so
long as ad − bc= 1. Such a modular transformation preserves
discriminants, so we may consider the forms with given
discriminant D, and count them modulo modular transforma-
tions. For D fundamental this is the class number h(D). For
example,
h(−7)= 1 because Q(x, y):= x2 + xy + 2y2 has discriminant −7,
and if Q′(x, y) is another such form then Q′(x, y)=Q(ax + by,
cx + dy) for some integers a, b, c and d with ad − bc= 1. Gauss
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conjectured24 that h(D) takes any given value only finitely many
times for negative D. Dirichlet proved25ffiffiffiffiffiffi

Dj jp
2π

LDð1Þ ¼ hðDÞ
2

ð4Þ

for fundamental D< −4. Using this, Siegel solved the Gauss
conjecture in a weak sense in 1944 by showing26 that for any
ϵ> 0 there is a constant c such that hðDÞ>c Dj j12�ϵ for D< 0. But
the method is not effective because the constant c it produces
depends upon the validity of the generalised Riemann hypothesis.
The best known effective lower bound27, 28 takes the form
hðDÞ>c log Dj jð Þ1�ϵ for D< 0.

Elliptic curves. It is a familiar fact that 32 + 42= 52. Fermat’s last
theorem claims that if x, y and z are integers such that xn + yn =
zn with
n> 2 then at least one of them is zero. Wiles famously proved
this29 by establishing hidden symmetry in the Diophantine ana-
lysis of

y2 ¼ x3 þ Ax þ B: ð5Þ

If 4A3 + 27B2 ≠ 0 then this cubic equation defines an elliptic
curve E, an integer N called the conductor of E, and a Hasse–Weil
L-series

LEðsÞ:¼
Y

p prime

1
1� app�s þ εðpÞp1�2s

: ð6Þ

Here ap is an integer depending on E and p, and ε(p) is 0 or 1
according as p divides N or not. Modularity for E is the
existence30 of a modular form fE(z), (complex) differentiable for

z= u + iv with v> 0, such that ðNcz þ dÞ�2fE azþb
Nczþd

� �
¼ fEðzÞ for

any integers a, b, c and d with ad −Nbc= 1, and

LEðsÞ ¼ ð2πÞs
ΓðsÞ

Z 1

0
vsfEðivÞ dvv : ð7Þ

For LE(s) the behaviour near s= 1 is again important, but not yet
understood, and a focus of current research. The
Birch–Swinnerton–Dyer (BSD) conjecture predicts31, 32 that it
is a key that unlocks the rational solutions to the equation
defining E. Specifically, if rE is the rank of E, representing the
number of independent infinite families of rational solutions,
then lims!1ðs� 1Þ�rELEðsÞ should be finite and non-zero. In
particular, LE(1) should vanish if and only if there are infinitely
many rational solutions. The Tate–Shafarevich group Ш (E)
measures the extent to which computations with E can be carried
out modulo primes. A stronger form of the BSD conjecture asserts
that

lim
s!1

1
ΩE

LEðsÞ
ðs� 1ÞrE ¼ cE ШðEÞj j ð8Þ

for certain computable constants ΩE and cE, where |Ш(E)| is the
cardinality of Ш(E).

The BSD conjecture is known only in its weak form28, 33 for
rE= 0 and rE= 1. The strong form gives us complete control once
we know Ш(E) and rE. For each prime p there is a Selmer group
Selp(E), which ties together the p-fold symmetries in III(E) with
the infinite families of rational solutions to E, so Selmer groups
and Tate–Shafarevich groups are of primary importance.

The moonshine that we establish for the O’Nan group (see
Theorem 1) enables us to prove new constraints on class numbers
h(D) (see Theorem 2), and empowers us to relate certain Selmer

groups Selp(E) and Tate–Shafarevich groups Ш(E) to effectively
computable series ag(D) (see Theorems 3 and 4).

Moonshine. The elliptic modular invariant J is the unique
(complex) differentiable function of z= u + iv for v> 0 that

satisfies J azþb
czþd

� �
¼ JðzÞ when a, b, c and d are integers such that

ad − bc= 1, and limv!1 JðivÞ � e2πvð Þ ¼ 0. The connection
between the monster and J is that the dimension of V \

n is the
coefficient of e2nπiz in the Fourier expansion

JðzÞ ¼ e�2πiz þ 196884e2πiz þ 21493760e4πiz þ 864299970e6πiz þ ¼

ð9Þ
Recursion relations34 compute these Fourier coefficients effectively.

Let F(z) be the unique (complex) differentiable function of
z= u + iv for v> 0 such that

1. ð4cz þ dÞ�2~F azþb
4czþd

� �
¼ ~FðzÞ when ~FðzÞ:¼ FðzÞθð2zÞ and a,

b, c and d are integers satisfying ad − 4bc= 1,

2. Fþ z þ 1
4

� � ¼ FþðzÞ and F� z þ 1
4

� � ¼ �iF�ðzÞ for

F ± ðzÞ:¼ 1
2 FðzÞ± F z þ 1

2

� �� �
,

3. limv!1 FðivÞ þ e8πvð Þ is finite.
Under these conditions F is related to J by

F z þ 1
2

� �
θð8zÞ þ F�ðzÞθð2zÞ ¼ 1

8πi
d
dz Jð4zÞ, and recursion rela-

tions35 compute the Fourier coefficients of F effectively.

Theorem 1. There exists a sequence of spaces WD for dis-
criminants D < 0 that admit the O’Nan group as symmetry, the
dimension of WD being the coefficient of e2|D|πiz in the Fourier
expansion

FðzÞ ¼ �e�8πiz þ 2þ 26752e6πiz þ 143376e8πiz þ 8288256e14πiz þ ¼

ð10Þ

We sketch the proof of Theorem 1. Let a(D) denote the
coefficient of e2|D|πiz in the Fourier expansion of F, so that we
have FðzÞ:¼ �e�8πiz þ 2þP

D< 0aðDÞe2jDjπiz . Theorem 1
amounts to the association of a(D) × a(D) matrices to symmetries
in the O’Nan group, for each D< 0. Taking ag(D) to be the trace
(i.e., sum of diagonal entries) of the matrix corresponding to a
symmetry g we obtain a new function
FgðzÞ:¼ �e�8πiz þ 2þP

D< 0agðDÞe2jDjπiz . The O’Nan group
has a character table17, which encodes the possible traces ag(D)
that can arise, and thereby equips the Fg with special properties.
Conversely, to specify functions Fg that are compatible with the
character table is enough to prove that corresponding matrices
exist, and enough to confirm moonshine for the O’Nan group.
This is how we prove Theorem 1. We first realise the Fg as
modular forms satisfying conditions analogous to those defining
F. Then we use those conditions to prove growth estimates and
congruences for the ag(D). For example, if g is a seven-fold
symmetry then it develops that a(D) is congruent to ag(D)
modulo 343, for every D< 0. Finally, we use the growth estimates
and congruences to prove compatibility with the character table.

Define JO′N(z):= J(z)2 − J(z) − 393768. For Q(x, y)= Ax2 + Bxy

+ Cy2 a quadratic form with D= B2 − 4AC< 0 set zQ :¼ �Bþi
ffiffiffiffiffi
Dj j

p
2A .

Set wQ:= 6 if Q is equivalent (i.e. related by a modular
transformation) to A′x2 + A′xy +A′y2 for some A′, set wQ:= 4 if
Q is equivalent to A′x2 + A′y2, and set wQ:= 2 otherwise. Then for
D< 0 we have35

aðDÞ ¼
X

B2�4AC¼D½ �

JO0N zQð Þ
wQ

; ð11Þ
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where the sum is over equivalence classes of quadratic forms of
discriminant D. If D is fundamental then h(D) is the number of

summands in (11). For example, dimW�7 ¼ 1
2 JO0N

�1þi
ffiffi
7

p
2

� �
¼

8288256 because every quadratic form with discriminant −7 is
equivalent to x2 + xy + 2y2. So the identity (11) hints at a
connection to class numbers. Say that D is not a square modulo p
if there is no integer n such that D is congruent to n2 modulo p.
By establishing analogues of (11) for ag(D), for g a two-fold,
three-fold, five-fold or seven-fold symmetry in the O’Nan group,
we obtain the following results.

Theorem 2. Let D< 0 be a fundamental discriminant. If
D< −8 is even then −24h(D) is congruent to a(D) modulo 16. If
D is not a square modulo 3 then −24h(D) is congruent to a(D)
modulo 9. If p is 5 or 7, and if D is not a square modulo p then
−24h(D) is congruent to a(D) modulo p.

For D< 0 a fundamental discriminant define elliptic curves
E14(D) and E15(D) as follows.

E14 ðDÞ: y2 ¼ x3 þ 5805D2x � 285714D3

E15ðDÞ:: y2 ¼ x3 � 12987D2x � 263466D3 ð12Þ

By proving analogues of (11) for higher order symmetries in the
O’Nan group we obtain new relationships between class numbers
and the rational solutions to these equations.

Theorem 3. Let D< 0 be a fundamental discriminant. Suppose
that D is congruent to 1 modulo 2 and is not a square modulo 7,
and let g be a two-fold symmetry in the O’Nan group. Then
Sel7(E14(D)) is non-trivial if and only if ag(D) is congruent to 3h
(D) − 9h(2)(D) modulo 7. Also, if LE14ðDÞð1Þ≠ 0 then the
Birch–Swinnerton-Dyer conjecture is true for E14(D), and |Ш
(E14(D))| is congruent to 0 modulo 7 if and only if ag(D) is
congruent to 3h(D) − 9h(2)(D) modulo 7.

Theorem 4. Let D< 0 be a fundamental discriminant. Suppose
that D is congruent to 1 modulo 3 and is not a square modulo 5,
and let g be a three-fold symmetry in the O’Nan group. Then
Sel5(E15(D)) is non-trivial if and only if ag(D) is congruent to
2h(D) − 4h(3)(D) modulo 5. Also, If LE15ðDÞð1Þ≠ 0 then the
Birch–Swinnerton-Dyer conjecture is true for E15(D), and Ш
(E15(D))| is congruent to 0 modulo 5 if and only if a g(D) is
congruent to 2h(D) − 4h(3)(D) modulo 5.

Note that ag(D) is the same for all two-fold symmetries g, and
this is also true for three-fold symmetries. Similar to the a(D), the
ag(D) are computed effectively by recursion relations when g is a
two-fold or three-fold symmetry. The h(p)(D) are analogues of the
class numbers h(D) that are defined by restricting to modular
transformations Q(ax + by, pcx + dy) where ad − pbc= 1.

Recent work of Skinner36, following earlier work37 of
Skinner–Urban, shows that (8) holds modulo certain primes p,
when certain conditions on the underlying elliptic curve E are
satisfied. We prove Theorems 3 and 4 by verifying these
conditions for p= 2 and E= E14(D), and for p= 3 and E=
E15(D), when D< 0 is fundamental.

Define a further two families of elliptic curves as follows.

E11 ðDÞ: y2 ¼ x3 � 13392D2x � 1080432D3

E19ðDÞ: y2 ¼ x3 � 12096D2x � 544752D3 ð13Þ

If we assume (8) then the analogues of (11) for eleven-fold and
nineteen-fold symmetries in the O’Nan group lead to the
statement that if p= 11 or p= 19, and D< 0 is a fundamental
discriminant that is not a square modulo p, then Selp(Ep(D)) is
non-trivial if and only if a(D) is congruent to −24h(D) modulo p.

Discussion
Moonshine has had a powerful impact on mathematics and
theoretical physics. For instance, the notions of vertex algebra and
Borcherds–Kac–Moody algebra—discovered en route to the
positive resolution of the moonshine conjectures by Borcherds—
are now fields in their own right, with applications in string
theory and the geometric counterpart to the Langlands program.
The extension of moonshine to pariah groups opens the door to
exciting directions for future research. For one, it is natural to ask
if there is analogous moonshine for the remaining four pariah
groups. Preliminary evidence suggests that the answer to this
question is positive. It is also natural to ask for a fuller under-
standing of the hidden symmetry that pariah groups, and perhaps
also other finite simple groups, provide to problems in Dio-
phantine analysis. Moving beyond elliptic curves, there are thirty-
one-fold symmetries in the O’Nan group that can be used to
prove congruences that control rational solutions to a certain
family of quintic equations16. A third natural question concerns a
physical origin for the pariahs. It is natural to ask if there is a
string theoretic construction of the spaces WD of O’Nan moon-
shine analogous to that found for the spaces V \

n by
Frenkel–Lepowsky–Meurman.

Data availability. Data sharing is not applicable to this article, as
no data sets were generated or analysed during the current study.
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