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GENERALIZED WEYL MODULES, ALCOVE PATHS AND

MACDONALD POLYNOMIALS

EVGENY FEIGIN AND IEVGEN MAKEDONSKYI

Abstract. Classical local Weyl modules for a simple Lie algebra are
labeled by dominant weights. We generalize the definition to the case of
arbitrary weights and study the properties of the generalized modules.
We prove that the representation theory of the generalized Weyl modules
can be described in terms of the alcove paths and the quantum Bruhat
graph. We make use of the Orr-Shimozono formula in order to prove that
the t = ∞ specializations of the nonsymmetric Macdonald polynomials
are equal to the characters of certain generalized Weyl modules.

Introduction

Let g be a simple Lie algebra and let Eλ(x, q, t) be the nonsymmetric
Macdonald polynomials attached to g [Ch1, O, M2]. These are polynomials
in the (multi)variable x with coefficients being rational functions in q and
t; the parameter λ is a weight from the weight lattice of the simple Lie al-
gebra. The symmetric Macdonald polynomials Pλ(x, q, t) can be obtained
from Eλ(x, q, t) via certain symmetrization procedure [HHL]. The polyno-
mials Eλ can be defined in two different ways: either as the eigenfunctions
of certain commuting operators or via the Cherednik inner product. They
form a basis of the polynomial module of the double affine Hecke algebra.

The nonsymmetric Macdonald polynomials proved to play an important
role in representation theory: the specializations Eλ(x, q, 0) were identified
with the characters of the level one Demazure modules of the corresponding
affine Kac-Moody Lie algebras (see [S, I]). It has been demonstrated recently
([CO2, CF, OS]) that for anti-dominant weights λ the specialization t = ∞
is also very meaningful. In particular, the functions Eλ(x, q

−1,∞) turned
out to be polynomials in x, q with nonnegative integer coefficients [OS]; these
polynomials were conjectured in [CO2] to coincide with the PBW twisted
characters of the level one Demazure modules (see also [CF, FM1, FM2]).
One of the motivations of our paper is to categorify the Orr-Shimozono
combinatorial construction. In particular, we are aimed at giving a repre-
sentation theoretic realization of the polynomials Eλ(x, q

−1,∞). It turns out
that much richer structure is available. Namely, let us fix an anti-dominant
weight λ and let W be the Weyl group of g. We construct a family of mod-
ules Wσ(λ), σ ∈ W , such that the characters of Wσ(λ) interpolate between

Eλ(x, q, 0) and Eλ(x, q
−1,∞). The two main ingredients we need are the

alcove path model and the local Weyl modules. We note that there also
1
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exist global Weyl modules, but in this paper we only deal with the local
variant. So in what follows when we write the Weyl module(s) we mean the
local version.

The classical Weyl modules W (λ) are the g ⊗ K[t] modules labeled by
dominant weights λ (see [CP, CL, FL1, FL2]). These are cyclic modules
defined by generators and relations. In our paper we introduce the gener-
alized Weyl modules Wµ, depending on an arbitrary weight µ. Let λ be an
anti-dominant weight and let σ ∈ W .

Definition. The generalized Weyl module Wσ(λ) is a cyclic representation

of the algebra naf = g⊗ tK[t]⊕ n+ ⊗ 1 defined by the set of relations (v is
the cyclic vector):

h⊗ tkv = 0 for all h ∈ h, k > 0;

(fα ⊗ t)v = 0, α ∈ σ(∆−) ∩∆−;

(eα ⊗ 1)v = 0, α ∈ σ(∆−) ∩∆+;

(fσ(α) ⊗ t)−〈α∨,λ〉+1v = 0, α ∈ ∆+, σ(α) ∈ ∆−;

(eσ(α) ⊗ 1)−〈α∨,λ〉+1v = 0, α ∈ ∆+, σ(α) ∈ ∆+.

We use the standard notation from the Lie theory, see Section 2 for de-
tails. One sees from the definition that for an anti-dominant λ we have
the isomorphism of naf modules W (w0λ) ≃ Wλ. We prove the following
theorem.

Theorem A. Let λ be an anti-dominant weight, σ ∈ W . Then

(i) dimWσ(λ) = dimWλ, Wσ(λ) ≃ Wλ as h-modules..

(ii) chWw0λ = w0Eλ(x, q
−1,∞).

(iii) chWλ = Eλ(x, q, 0).
(iv) For any i = 1, . . . , rk(g) such that 〈λ, α∨

i 〉 < 0 the moduleWσ(λ) can
be decomposed into subquotients of the formWκ(λ+ωi), κ ∈ W . The
subquotients are labeled by certain alcove paths and the number of
subquotients is equal to the dimension of the fundamental classical
Weyl module W (ωi).

We note that the representation theoretic and geometric realizations of the
polynomials Eλ(x, q

−1,∞) for non anti-dominant weights can be found in
[FM3, FMO, Kat, FMK]. In particular, in [Kat] the author realizes the
generalized Weyl modules as dual spaces of sections of line bundles on certain
quotients of semi-infinite Schubert varieties. Also in the paper [NNS] the
authors study a quantum analogue of the generalized Weyl modules – the
Demazure submodules of extremal weight modules.

The last part of Theorem A explains the importance of the third ingre-
dient of the picture: the alcove paths model (see [GL, LP]). Namely, the
t = 0 and t = ∞ specializations of the nonsymmetric Macdonald polyno-
mials enjoy the combinatorial realization in terms of quantum alcove paths
in the affine Weyl group W a [Len, OS]. More precisely, let QBG be the
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quantum Bruhat graph of g [BFP, LSh, LNSSS2]. The set of vertices of
QBG is in bijection with W and the edges are of two sorts: classical edges,
coming from the classical Bruhat graph, and quantum edges, pointing in the
opposite direction. A quantum alcove path is an alcove path p projecting
to a path in QBG. A path depends on the starting point u ∈ W a and the
directions, given by the reduced decomposition of an element w from the ex-
tended affine Weyl group. We denote the set of quantum alcove paths with
the data u, w by QB(u,w). The main combinatorial object of the paper is
the generating function

Cw
u =

∑

p∈QB(u,w)

xwt(end(p))qdeg(qwt(p))

(see for details Section 1). Let tλ be the element of the extended affine Weyl
group, corresponding to the weight λ. Orr and Shimozono proved that if λ
is anti-dominant, then Ctλ

id is equal to Eλ(x, q, 0); similar formula exists for
the t = ∞ specialization as well. We prove the following theorem:

Theorem B. Let λ be an anti-dominant weight, σ ∈ W . Then chWσ(λ) =

Ctλ
σ .

The main tool we use is the recursion relation for the functions Cw
u , which

we identify with the decomposition procedure for the generalized Weyl mod-
ules.

As a consequence, we develop a new approach to the Chari-Ion theorem
[CI], generalizing the Ion result [I]. The Ion theorem says that for dual
untwisted Kac-Moody Lie algebras the specialized Macdonald polynomials
Eλ(x, q, 0) are equal to the character of the level one Demazure modules.
The Chari-Ion theorem claims that one can include the non simply-laced
algebras by replacing the Demazure modules with the Weyl modules: for
any dominant weight λ and any simple g one has Ew0λ(x, q, 0) = chW (λ).
We note that the proof in [CI] uses the results from [LNSSS3] (see also
[LNSSS4]). In our approach the combinatorics of [LNSSS3] is replaced with
the structure theory of the generalized Weyl modules. More precisely, we
show that if one knows the Chari-Ion theorem for fundamental weights (even
a weaker statement, see Remark 2.20), then the theory of the generalized
Weyl modules allows to derive inductively the general λ case.

Finally, we use our technique to prove a special case of the Cherednik-
Orr conjecture [CO1], relating the PBW twisted characters of the Weyl
modules to the nonsymmetric Macdonald polynomials at t = ∞. We show
that the conjecture holds for the modules W (mω), where ω is a cominuscule
fundamental weight. The t = 0 and t = ∞ specializations for general weights
in the quantum settings are studied in [NNS, NS].

The paper is organized as follows. In Section 1 we recall the formalism
of the alcove paths and state the Orr-Shimozono formula for the nonsym-
metric Macdonald polynomials. We then introduce our main combinatorial
object – the function Cw

u – and derive recursion relation for it. In Section
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2 we introduce the main player from the representation theory side – the
generalized Weyl modules. We derive the properties of the generalized Weyl
modules and describe the connection between the structure of submodules
of the generalized Weyl modules and the alcove paths picture, thus proving
Theorem B. Part (i) of Theorem A is a combination of Lemma 2.11 and
Theorem 2.21. Parts (ii) and (iii) of Theorem A are Corollaries 2.23 and
2.24 and part (iv) is proved in Theorem 2.21 (based on the Orr-Shimozono
formula [OS]). In Section 2 we assume that all the claims are true for the
rank one and two Lie algebras. These cases are worked out in Section 3.
In Appendix we prove the Cherednik-Orr conjecture for the multiples of
cominuscule fundamental weights.

1. Orr-Shimozono formula

In this section we describe the Orr-Shimozono formula for specializations
of nonsymmetric Macdonald polynomials [OS].

1.1. Quantum Bruhat Graph. Let g be a simple Lie algebra of rank n
with the root system ∆ = ∆+⊔∆−. Let X be the weight lattice of g and W
be the Weyl group with the set of simple reflections s1, . . . , sn. We denote
by αi, α

∨
i and ωi, i = 1, . . . , n simple roots, simple coroots and fundamental

weights. The positive cone
⊕n

i=1 Z≥0ωi ⊂ X will be denoted by X+. For a
root α we denote by sα the reflection at this root. For w ∈ W let l(w) be
the length of the element w in the Bruhat order.

Let ∆∨ be the dual root system. The Weyl group of the corresponding
Lie algebra g∨ is isomorphic to W . We will use the quantum Bruhat graph
(QBG for short) attached to ∆∨. The set of vertices of QBG is in one-to-one
correspondence with the Weyl group W . The (labeled) edges are of the form

w
α

−→ wsα, α ∈ ∆∨; such an edge shows up in QBG in two possible cases:

• l(wsα) = l(w) + 1 – Bruhat edge;
• l(wsα) = l(w)− 〈2ρ, α〉 + 1 – quantum edge.

Here 2ρ =
∑

γ∈∆+
γ.

Remark 1.1. In [Lus] Lusztig defined a partial order on the affine Weyl
group. This partial order after projection to the finite Weyl group defines
the arrows of the quantum Bruhat graph.

The following lemma is well known (see e.g. [LNSSS2]).

Lemma 1.2. The longest element w0 ∈ W inverses arrows in the quantum

Bruhat graph, i. e. the quantum Bruhat graph contains an edge w
α

−→ wsα
if and only if there exists and edge w0wsα

α
−→ w0w.

For example, in types A and C the quantum Bruhat graph can be explic-
itly described as follows (see [Len]). For type A we need the order ≺i on
1, . . . , n starting at i, namely i ≺i i + 1 ≺i · · · ≺i n ≺i 1 ≺i · · · ≺i i − 1.
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It is convenient to think of this order in terms of the numbers 1, . . . , n ar-
ranged on a circle clockwise. We make the convention that whenever we
write a ≺ b ≺ c ≺ . . . , we refer to the circular order ≺a.

We denote roots in type An by αij = αi + · · ·+ αj−1, 1 ≤ i < j ≤ n+ 1.
Recall that the Weyl group of the Lie algebra of type An is isomorphic to
the symmetric group Sn+1.

Proposition 1.3. ([Len], Proposition 3.6) Let w ∈ Sn+1 be an element in

the Weyl group. Then there exists an edge w
αij
−→ wsαij

in the quantum
Bruhat graph if and only if there is no k such that i < k < j and w(i) ≺
w(k) ≺ w(j). The edge is quantum if and only if w(i) > w(j).

In type C we use the standard ordered alphabet 1,2, . . . ,n,n̄, . . . , 2̄, 1̄.
We write the signed permutation from the symplectic Weyl group as the
permutations σ of the set 1,2, . . . ,n,n̄, . . . , 2̄, 1̄ such that σ(̄i) = σ(i). We use
the standard parametrization of the positive roots in type C: αij = ǫi − ǫj,
αij̄ = ǫi + ǫj.

Proposition 1.4. ([Len], Proposition 5.7) Let w be an element in the Weyl
group of type Cn. Then there are edges of three following types:

1) w
α∨

ǫi−ǫj
−→ wsα∨

ij
if and only if there is no k such that i < k < j and

w(i) ≺ w(k) ≺ w(j);

2) w
α∨

ǫi+ǫj
−→ wsα∨

ij̄
if w(i) > w(j̄) and there is no k such that i < k < j and

w(i) < w(k) < w(j);

3) w
α∨

2ǫi−→ wsα∨

īi
if and only if there is no k such that i < k < ī and

w(i) ≺ w(k) ≺ w(̄i).
The edge is quantum if and only if w(i) > w(j). In particular there are

no quantum edges of type 2).

1.2. Alcove paths aka LS-galleries. Let ĝ be the non-twisted affine Kac-
Moody Lie algebra corresponding to the simple Lie algebra g. Let W a =
〈s0, s1, . . . , sn〉 be the affine Weyl group of g∨ (g∨ is the dual Lie algebra with
the transposed Cartan matrix). The finite Weyl group W is generated by
the simple reflections s1, . . . , sn; we denote by w0 ∈ W the longest element.
Let Q ⊂ X be the root lattice of g; in particular, W a is isomorphic to
the semi-direct product W ⋉ Q. We consider the quotient Π = X/Q. For
example, for g = An the group Π is isomorphic to Z/(n+1)Z. The extended
affine Weyl group W e is defined as the semi-direct product W ⋉X. For an
element λ ∈ X we denote by tλ the corresponding element in W e. One has
W e ≃ Π⋉W a.

We consider the n-dimensional real vector space R ⊗Z Q and the set of
hyperplanes (walls) Hα∨+Nδ = {x ∈ R ⊗Z X|〈α∨, x〉 = N}. Then alcoves
are the connected components of R ⊗Z X\ ∪α∈∆+,N∈Z Hα∨+Nδ. There is a
natural action of the affine Weyl group W a on the set of alcoves (see e.g.
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[Car, Kac]). Identifying the alcove {a|〈a, α∨
i 〉 > 0, i = 0, . . . , n} with the

identity element of W a, one obtains a bijection between W a and the set of
alcoves.

Any element of W e can be written in the form πsi1 . . . sil , π ∈ Π, 0 ≤
il ≤ rk(g). In particular, we have such a decomposition for the elements tλ,
λ ∈ X. We note also that any element of W e has the unique decomposition
w = twt(w)dir(w), where wt(w) ∈ X, dir(w) ∈ W .

Let us consider |Π| copies of R⊗ZQ (sheets) indexed by Π with the same
action of W a on all the sheet. The extended affine Weyl group W e acts
on the set of alcoves of all sheets as follows. For any π ∈ Π we identify
the alcove {a|〈a, α∨

i 〉 > 0, i = 0, . . . , n} on the π-th sheet with the image
(under the action of π) of the alcove on the initial sheet, corresponding to
the identity element of W a. This rule defines the action of W e on the set of
alcoves of all sheets (see examples in section 2.3 of [RY]).

For a reduced decomposition w = πsi1 . . . sil of an element w ∈ W e one
defines the sequence of affine real roots:

(1.1) βk(w) = sil . . . sik+1
α∨
ik
, k = 1, . . . , l.

Remark 1.5. The coroots βk(w) comprise the set of all positive affine coroots
which are mapped to the negative roots by w. We note also that {βk(w)}
is the sequence of labels of walls crossed by a shortest walk from the alcove
w−1 to the initial alcove of the current sheet (see example on page 6 in [RY]).

Let b̄ = (b1, . . . , bl) ∈ 〈0, 1〉l be a binary word and let J = {i|bi = 0},
J = {j1 < · · · < jr}. We call J the set of foldings. For an element u ∈ W a

we set

z0 = uw, zk+1 = zksβjk+1
, k = 0, . . . , r − 1.

We denote this data by an alcove path pJ , so pJ can be written as

z0
βj1−→ z1

βj2−→ · · ·
βjr−→ zr =: end(pJ).

Any alcove path can be projected to the path in a finite group W by the
function dir:

(1.2) dir(z0)
Reβj1−→ dir(z1)

Reβj2−→ · · ·
Reβjr−→ dir(zr),

where for an affine root β we denote by Reβ the projection to the classical
root lattice.

Remark 1.6. All the coroots Reβj1 , . . . ,Reβjr are negative, see [OS], Remark

3.17. In what follows we use both notation w1
α

−→ w2 and w1
−α
−→ w2 to

denote the same edge in the quantum Bruhat graph.

Remark 1.7. In what follows we say that any alcove path pJ as above has
type β1, . . . , βl. We note that in general the roots β1, . . . , βl may not come
from a decomposition of w.
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Remark 1.8. A path pJ can be also regarded as an LS-gallery [GL] or an
alcove walk [RY, OS]. Namely, instead of working with the Weyl group
elements z0, z1, . . . , zr one can think of the chain of alcoves, such that the
neighboring alcoves have a common wall. In this picture the alcoves are
assumed to be parametrized by the elements of the extended affine Weyl
group. In more details, for J = ∅ one considers a path starting at u (on the
π-th sheet) and moving across the walls according to the reduced decompo-
sition of w. Now each element of J produces a fold, meaning that instead
of crossing the corresponding wall, the walk folds (i.e. bounces back). It is
important to keep in mind that a path pJ is not an alcove walk in this sense:
in general, the alcoves corresponding to zi and zi+1 do not have a common
wall.

We say that a path pJ ∈ QB(u,w) (pJ is a quantum alcove path) if the
projection (1.2) is a path in the quantum Bruhat graph of W . We say that a

path pJ ∈ Q̃B(u,w) if the projection (1.2) is a path in the reversed quantum
Bruhat graph of W . Let J− ⊂ J be the set of jm ∈ J such that the coroot
Re(zmβjm) is negative. We note that j ∈ J− if and only if the corresponding
edge in the quantum Bruhat graph is quantum.

Let δ be the basic imaginary coroot. For any element of the affine coroot
lattice µ+Nδ, where µ ∈ Q∨ is an element of the root lattice of g∨, we denote
deg(µ +Nδ) = N . For an alcove path pJ we define qwt(pJ) =

∑
j∈J− βj .

1.3. Generating function. We are now ready to define the main combi-
natorial object of the paper.

Definition 1.9. For any u,w ∈ W e we define:

Cw
u (x, q) =

∑

pJ∈QB(u,w)

xwt(end(pJ ))qdeg(qwt(pJ )).

Remark 1.10. It is easy to see that for any π ∈ Π one has Cπw
u = Cw

u .

Remark 1.11. For λ ∈ −X+, u ∈ W the following equality holds:

C
tw0(λ)
u (x, q) =

(
t−l(u)/2TuE(x, q, t)

)
|t=0,

where Tu is the Demazure-Lusztig operator corresponding to u (see [OS],
Corollary 4.4).

In the rest of this section we describe the properties of the function Cw
u .

For a weight µ ∈ X recall the corresponding element tµ ∈ W a. The following
Lemma is obvious.

Lemma 1.12. For any µ ∈ X:

Cw
tµu = xµCw

u .

Proof. There is a bijection between QB(u,w) and QB(tµu,w), sending zi
to tµzi. Therefore, for each pJ ∈ QB(u,w) passing to tµpJ ∈ QB(tµu,w)
means just scaling the corresponding summand in Definition 1.9 by xµ. �
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Theorem 1.13. [OS] Let λ ∈ X be an anti-dominant weight. Then

(i) Eλ(x; q, 0) = Ctλ
id .

(ii) Eλ(x; q
−1,∞) =

∑
pJ∈Q̃B(λ)

xwt(end(pJ ))qdeg(qwt(pJ )),

(iii) Eλ(x; q
−1,∞) = w0C

si1 ...sil
w0 .

Lemma 1.14.

tωk
sαl+Nδt−ωk

=

{
sαl+Nδ, if l 6= k

sαl+(N+1)δ , if l = k
,

tλ(γ) = γ − 〈γ∨, λ〉δ.

Proof. The first equality is clear and the proof of the second is given in [OS],
formula (2.9). �

Let λ be an anti-dominant weight. Let t−ωi
= πst1 . . . str be a reduced

decomposition and let βi
j = βi

j(t−ωi
). Then tλ−ωi

= πst1 . . . str tλ. Let

β1(tλ), . . . , βa(tλ) be the affine coroots, constructed via the procedure (1.1)
for the element tλ ∈ W e.

Lemma 1.15. The sequence of coroots βj(tλ−ωi
) is equal to

βi
1 + 〈βi

1, λ〉δ, . . . , β
i
ri + 〈βi

ri , λ〉δ, β1, . . . , βa.

Example 1.16. Let us consider a fundamental weight ωi for the Lie algebra
of type An. Let π ∈ Π be an element such that πsiπ

−1 = si+1 (all indices
are modulo n+ 1). Then we have:

t−ωn+1−i
= πi(s2(n+1−i) . . . sn+2−i) . . . (sn−1−i . . . s1s0sn)(sn−i . . . s1s0).

Let w = t−ωi
and let r be the length of t−ωi

. We denote by QB(u, λ, β̄)
all alcove paths of type β̄i,λ = (βi

1 + 〈βi
1, λ〉δ, . . . β

i
r + 〈βi

r, λ〉δ) starting at
utλ−ωi

(see Remark 1.7). In the next theorem for an anti-dominant weight

λ we express the generating function C
tλ−ωi
u in terms of the functions Ctλ

κ

for certain Weyl group elements κ, thus getting a kind of induction (on λ)..

Theorem 1.17. Let λ ∈ −X+. Then for u ∈ W a the following holds:

C
tλ−ωi
u =

∑

p∈QB(u,λ,β̄i,λ)

qdeg(qwt(p))Ctλ
end(p)t−λ

.

Further, if u ∈ W , then

C
tλ−ωi
u =

∑

p∈QB(u,λ,β̄i,λ)

qdeg(qwt(p))Ctλ
dir(end(p))x

wt(end(p))−dir(end(p))λ.

Proof. Recall the definition of Cw
u :

Cw
u =

∑

pJ∈QB(u,w)

xwt(end(pJ ))qdeg(qwt(pJ )).

An alcove path pJ ∈ QB(u,w) is determined by the sequence of affine coroots
β1, . . . , βr, βr+1, . . . , βa+r (for some nonnegative integer a) and a binary word



GENERALIZED WEYL MODULES AND MACDONALD POLYNOMIALS 9

{b1, . . . , ba+r}. Now given an alcove path pJ ∈ QB(u,w) we divide it into
two parts: the first part p is determined by the data

β1, . . . , βr and {b1, . . . , br}

and the second part p′ is defined by the remaining part of the data for
pJ . Then p belongs to QB(u, λ, β̄i,λ) (see Lemma 1.15) and p′ belongs to

QB(end(p)t−λ, tλ). Moreover, the contribution of p is exactly qdeg(qwt(p))

and the terms corresponding to p′ sum up to Ctλ
end(p)t−λ

. Finally, the second

part of the Theorem follows from Lemma 1.12. �

1.4. Combinatorics of coroots. Recall that for an affine coroot β we
write β = Re(β) + deg(β)δ.

Proposition 1.18. a). For any reduced decomposition of t−ωi
the coroots

βj(t−ωi
) satisfy the following properties:

• {Reβi
j} = {γ ∈ ∆∨

−|〈γ, ωi〉 < 0},

• |{j|Reβi
j = γ}| = −〈γ, ωi〉,

• For any γ the set {βj |Reβ
i
j = γ} is equal to {γ+δ, . . . , γ−〈γ, ωi〉δ}.

b). There exists a reduced decomposition of t−ωi
giving the following order

on β’s. We set i1 = i, and let ik, k = 2, . . . , n, be some ordering of the set
{1, . . . , n}\{i}. Let us write βi

j = −ai1α
∨
i1
−· · ·−ainα

∨
in+Dδ. Then the order

on β’s is given by the lexicographic order on the vectors (
ai1
D ,

ai2
ai1

, . . . ,
ain
ai1

).

Proof. For the Lie algebras of type A our proposition can be derived from
Example 1.16 by the direct computation. In general, for γ ∈ ∆∨

− the number
−〈γ, ωi〉 is equal to the number of walls with labels −γ + Zδ between the
alcove id and the alcove π−1tωi

, where π ∈ Π is fixed by the condition that
π−1tωi

belongs to the zeroth sheet. In other words, walking from the initial
alcove to the alcove corresponding to the element π−1tωi

we need to cross
−〈γ, ωi〉 walls with labels −γ + Zδ. It is easy to see that these walls are
γ + δ, . . . , γ + 〈γ, ωi〉δ. This proves the statement about the set {Reβi

j}.
Now our goal is to prove the existence of a reduced decomposition of

t−ωi
such that the properties from part b) of our Proposition hold. This is

equivalent to finding an alcove walk from the identity alcove to the alcove,
corresponding to π−1tωi

, of the minimal possible length.
We order the elements of the set {1, . . . , n} in the following way. Put

i1 = i, and let ik, k = 2, . . . , n be any ordering of the set {1, . . . , n}\{i}.
We take some set of positive real numbers ǫk, k = 2, . . . , n such that ǫ2 <<
1, ǫk+1 << ǫk. Let us consider the segment from the point

∑n
k=2 ǫkωik

to the point ωi +
∑n

k=2 ǫkωik . We write the set of walls crossed by this
segment (see picture (1) for the example in type C2). We consider a point
p = sωi +

∑n
k=2 ǫiωik , 0 ≤ s ≤ 1 of this segment and an arbitrary coroot

γ = −(a1α
∨
i + a2α

∨
i2
+ · · · + anα

∨
in
). The condition p ∈ Hγ+Dδ, D ∈ Z (i.e.
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❅
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❅

Figure 1. Alcove walk in type C2

p belongs to some wall) reads as

〈p, a1α
∨
i + a2α

∨
i2 + · · ·+ anα

∨
in〉 = sa1 +

n∑

k=2

ǫkak = D.

Therefore for ǫk small enough the coroot βi
j with smaller a1/D comes earlier

andD/a1 ≤ 1. Now assume that the ratio a1/D is fixed. Then s = D/a1−ξ,
where

ξ =
n∑

k=2

ǫk
ak
a1

.

Hence, the smaller is ξ the larger is s and thus the root with smaller a2/a1
comes earlier (recall ǫ2 >> ǫ3 >> . . . ). We proceed with a3/a1, etc. �

Corollary 1.19. i) βi
1 = −α∨

i + δ,
ii) if γ = τ + η, τ, η ∈ ∆∨

+, Reβ
i
j = −γ, then

|{k|Reβi
k = −γ, k ≤ j}| =

|{k|Reβi
k = −τ, k ≤ j}|+ |{k|Reβi

k = −η, k ≤ j}|.

iii) Let τ, η ∈ ∆∨
+ be roots such that τ + 2η ∈ ∆∨

+. Consider a subsequence

βi
jk
, k = 1, . . . , p consisting of all roots with the property −Reβi

jk
∈ {τ, η, τ +

η, τ + 2η} (jk < jk+1). Then the subsequence −Reβi
jk
, k = 1, . . . , p is a

concatenation of copies of two following sequences:

(1.3) η, τ + 2η, τ + η, τ + 2η and τ, τ + η, τ + 2η.

Proof. The first statement is obvious. To prove the second, let τ = a1α
∨
i +

a2α
∨
i2
+ · · · + anα

∨
in , η = b1α

∨
i + b2α

∨
i2
+ · · · + bnα

∨
in . Assume that βi

j =

−η − τ + (a1 + b1 − r)δ. Then we have

|{βi
j : j ≤ m,−Reβi

j = τ + η}| = r + 1
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(see Proposition 1.18). We count a number of βi
m, m < j, such that Reβi

m =
−η or Reβi

m = −τ . Note that if for a number o1 we have the inequality

(1.4)
a1

a1 − o1
<

a1 + b1
a1 + b1 − r

,

then τ + (a1 − o1)δ = βi
m for some m < j; if

(1.5)
b1

b1 − o2
<

a1 + b1
a1 + b1 − r

,

then η + (b1 − o2)δ = βi
m for some m < j. We also note that each of the

converse inequalities implies the absence of the βi
m with the real part equal

to τ or η. We rewrite inequalities (1.4) and (1.5) in the form o1 < a1r
a1+b1

,

o2 < b1r
a1+b1

. Note that if a1r
a1+b1

does not belong to Z, then the number of

solutions of these inequalities is equal to r + 1 and the claim ii) is proved.
If the number a1r

a1+b1
is integer then the number of solutions is equal to r. In

this case consider o1 = a1r
a1+b1

, o2 = r − o1. Then we have a1
a1−o1

= b1
b1−o2

=
a1+b1

a1+b1−r and using lexicographic order we have that −τ + (a1 − o1)δ = βi
m1

,

−η + (b1 − o2)δ = βi
m2

and exactly one of the numbers m1,m2 is less then
j. This completes the proof of ii).

Now let us prove iii). We still use the notation of the previous proof. The
claim is the easy consequence of ii) and the lexicographic order if a1 = 0 or
b1 = 0 (in this case there is only one type of sequences (1.3)).

Note that the situation of iii) is impossible for a simply-laced g. For
g ≃ Bn, Cn we have a1+2b1 ≤ 2, so this case is already proven. Case g ≃ G2

will be considered in (3.6),(3.7). If g ≃ F4 then the direct observation of the
root system says that the only possibility of such η, τ with a1 6= 0, b1 6= 0
is i = 2, τ = 2α∨

1 + 2α∨
2 + 2α∨

3 + α∨
4 , η = α∨

2 . In this case the claim can be
proven by an easy direct computation.

�

Example 1.20. Let g be of type An. Then the set βj(t−ωi
) is equal to

{βi
k} = {−αu − · · · − αv + δ}, u ≤ i ≤ v in some lexicographic order. Note

that in this case if for some positive root γ: Reβi
k = Reβi

s − γ, then r > s.

2. Generalized Weyl Modules

2.1. Definition and basic properties. Let g = n−⊕h⊕n+ be the Cartan
decomposition of g. For a positive root α let eα ∈ n+ and f−α ∈ n− be
the Chevalley generators. The weight lattice X contains the positive part
X+, containing all fundamental weights. For λ ∈ X+ we denote by Vλ the
irreducible highest weight g-module with highest weight λ.

Let ĝ = g ⊗ K[t, t−1] ⊕ Kc⊕ Kd be the corresponding affine Kac-Moody
Lie algebra, where c is central and d is the scaling element. Recall the
basic imaginary root δ ∈ (haf )∗, where haf = h ⊗ 1 ⊕ Kc ⊕ Kd. The Lie

algebra ĝ has the Cartan decomposition ĝ = naf ⊕ haf ⊕ n
af
− ; in particular,
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naf = n+ ⊗ 1 ⊕ g ⊗ tK[t]. For x ∈ n+ we sometimes denote the element
x⊗ 1 ∈ naf simply by x.

Definition 2.1. Let µ = σ(λ), σ ∈ W , λ ∈ X−. Then the generalized Weyl
module Wµ is the cyclic naf module with a generator v and the following
relations:

h⊗ tkv = 0 for all h ∈ h, k > 0;(2.1)

(fα ⊗ t)v = 0, α ∈ σ(∆−) ∩∆−;(2.2)

(eα ⊗ 1)v = 0, α ∈ σ(∆−) ∩∆+;(2.3)

(fσ(α) ⊗ t)−〈α∨,λ〉+1v = 0, α ∈ ∆+, σ(α) ∈ ∆−;(2.4)

(eσ(α) ⊗ 1)−〈α∨,λ〉+1v = 0, α ∈ ∆+, σ(α) ∈ ∆+.(2.5)

In what follows we use the following notation. For an element σ ∈ W and
α ∈ ∆+ we set

σ̂(f−α ⊗ t) =

{
f−σ(α) ⊗ t, if σ(α) ∈ ∆+

e−σ(α) ⊗ 1, if σ(α) ∈ ∆−
,

σ̂(eα ⊗ 1) =

{
eσ(α) ⊗ 1, if σ(α) ∈ ∆+

fσ(α) ⊗ t, if σ(α) ∈ ∆−
.

We also define the action of σ̂ on roots as follows:

σ̂(−α+ δ) =

{
−σ(α) + δ, if σ(α) ∈ ∆+

−σ(α), if σ(α) ∈ ∆−
,

σ̂(α) =

{
σ(α), if σ(α) ∈ ∆+

σ(α) + δ, if σ(α) ∈ ∆−
.

In the following lemma we prove that the generalized Weyl modules are
well defined, i.e. Wµ does not depend on the choice of σ and λ (such that
σ(λ) = µ).

Lemma 2.2. The modules Wµ are well defined.

Proof. We first note that for λ1, λ2 ∈ X−, the equality σ1(λ1) = σ2(λ2)
implies λ1 = λ2. So let us fix λ ∈ X−, σ ∈ W and κ ∈ stab(λ) ⊂ W . Our
goal is to show that the sets of relations (2.2), (2.3), (2.4), (2.5) coincide for
the pairs σ,λ and σκ,λ. Note that for any η ∈ ∆: 〈(κ−1η)∨, λ〉 = 〈η∨, κλ〉 =
〈η∨, α〉. Assume that for some γ ∈ ∆+ κ(γ) ∈ ∆−. Then we have:

0 ≤ 〈γ∨, λ〉 = 〈(κγ)∨, λ〉 ≤ 0.

Therefore 〈γ∨, λ〉 = 0 and σ̂(eγ)v = σ̂κ(eγ)v = 0 in both modules.
Now assume that γ ∈ ∆−, κ(γ) ∈ ∆−. Then we have the relation in Wσκ:

σ̂κe
−〈(κ−1η)∨,λ〉+1
κ−1γ

v = 0.

Thus using the relation σ̂κeκ−1γ = σ̂eγ we obtain all needed relations. �
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Remark 2.3. The algebra naf does not contain the finite Cartan subalgebra
h. However, sometimes it is convenient to have extra operators from h acting
on Wµ (see the definition below). The reason we do not want to extend naf

to the affine Borel subalgebra is that the structure and properties of the
module Wµ do not depend on the weight defining the h-action on the cyclic
vector.

Definition 2.4. For ν ∈ X we define W ν
µ to be the naf ⊕ h-module defined

by the relations (2.1)– (2.5) plus additional relations hv = ν(h)v for all
h ∈ h. If ν = µ, we omit the upper index and write Wµ for W µ

µ .

We note that all the modulesW ν
µ with fixed µ are isomorphic after restric-

tion to naf . The modules W ν
µ are naturally graded by the Cartan subalge-

bra h. They also carry additional degree grading defined by two conditions:
deg(v) = 0 and the operators xγ ⊗ tk increase the degree by k. We define
the character by the formula:

chW ν
µ =

∑
dimW ν

µ [γ, k]x
γqk,

where W ν
µ [γ, k] consists of degree k vectors of ĝ-weight γ. In particular, we

write chWµ for the character of W µ
µ .

Remark 2.5. The character chW ν
µ is a Laurent polynomial in xωi and q.

Substituting xωi
= 1, q = 1, one gets chW ν

µ (1, 1) = dimW ν
µ .

Remark 2.6. The generalized Weyl modules are not isomorphic in general to
the Demazure modules (note that both are representations of naf ). Namely,
the defining relations for the Demazure modules [J, FL2, N] are of the form
(eα ⊗ ts)mv = 0, s ≥ 0 and (fα ⊗ ts)mv = 0, s > 0 for m large enough. We
note that the conditions are given for all possible s. For the generalized Weyl
modules the set of relations is much smaller: one only requires eα ⊗ 1 and
fα⊗ t to vanish being applied large enough number of times. For example, if
g = sl3 and µ = ω1+ω2, then Wµ is not isomorphic to a Demazure module.

The classical definition of Weyl modules W (λ), λ ∈ X+ ([CP, CL, FL1,
FL2]) is slightly different from the definition of Wµ. Namely, W (λ) is a
cyclic g ⊗ K[t] module with generator w subject to the following defining
relations:

h⊗ tkw = 0, k ≥ 1; h⊗ 1w = λ(h)w for all h ∈ h;(2.6)

eα ⊗ tkw = 0, k ≥ 0; (f−α ⊗ 1)〈α
∨,λ〉+1w = 0, for all α ∈ ∆+.(2.7)

Lemma 2.7. For an anti-dominant weight λ one has the isomorphism of
naf modules W (w0λ) ≃ Wλ.

Proof. Let us consider the module W λ
λ (i.e. we define the h action on Wλ

by the relation h ⊗ 1v = λ(h)v). By the BGG resolution, the subspace
U(n+)v ⊂ Wλ is isomorphic to Vw0λ (v is identified with the lowest weight
vector of Vλ) and we can extend the structure of naf ⊕ h module on Wλ
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to the structure of g ⊗ K[t] module, saying that fα ⊗ tkv = 0. Now the
extended module is defined by the w0-twisted relations (2.6),(2.7) and hence
is isomorphic to W (w0λ). �

It is well known that the level zero subspace of the classical Weyl module
W (λ) is isomorphic to the irreducible g-module Vλ. Here is the analogue for
Wµ, µ = σλ, λ ∈ X− (the vector vµ below is the weight µ extremal vector
in Vλ).

Lemma 2.8. The subspace U(n+)v ⊂ Wµ is isomorphic to the Demazure
module U(n+)vµ ⊂ Vw0λ.

Proof. The subspace U(n+)v ⊂ Wµ is defined as the cyclic n+ module with

the defining relations eαv = 0, if α > 0, σ(α) < 0 and e
〈α∨,λ〉+1
σ(α) v = 0, if

α > 0, σ(α) > 0. These are exactly the defining relations for the Demazure
module. �

Now we need one more definition of the module depending on an arbitrary
element of the weight lattice. Let V be a g⊗K[t]-module. Then for any
constant z ∈ K it has the following natural structure of naf -module: for
x ∈ g, v ∈ V

(x⊗ ti)v = x⊗ (t− z)iv.

We denote such a module by V z.
Let µ = σ(λ), where σ ∈ W , λ ∈ X− and let w0λ =

∑M
j=1 ωkj , 1 ≤

kj ≤ n are arbitrary (possibly, coinciding) numbers. We consider a vector
z̄ = (z1, . . . , zM ) ∈ KM , where za 6= zb if a 6= b. Let W (ωkj), j = 1, . . . ,M
be the Weyl modules (g ⊗ K[t] modules), corresponding to fundamental
weights with cyclic lowest weight vectors wj ∈ W (ωkj). There is a struc-

ture of a cyclic naf -module on the tensor product
⊗M

i=1W
zj(ωkj ) with the

cyclic vector σ(w1 ⊗ · · · ⊗ wM ) given by construction of the fusion product
(see [FeLo],[FL2]). Namely, let U(naf )s be the grading on the universal en-
veloping algebra such that x⊗ ts ∈ U(naf )s, x ∈ g. Then one can induce a

filtration Fs on
⊗M

j=1W
zj(ωkj ) by the formula

Fs = U(naf )sσ(w1 ⊗ · · · ⊗ wM ).

Definition 2.9. The naf module W (ωk1)σ ∗ · · · ∗W (ωkM )σ is the associated
graded module

⊕
s≥0 Fs/Fs−1.

Example 2.10. The definition above works for arbitrary g ⊗ K[t] modules,
not necessarily for fundamental Weyl modules. For example, let us take
irreducible highest weight g module Vw0λ with lowest weight vector v and
let us make Vw0λ into g⊗K[t] module saying that x⊗ tk acts trivially unless
k = 0. Obviously, the operators eα and f−α generate the whole space Vλ

from the vector σ(v). Now we attach degree one to all the operators f−α and
degree zero to all the operators eα. Then one has an increasing filtration Fs

on Vλ, where s is the degree of a monomial applied to σ(v). The associated
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graded space is a module over naf , constructed by the procedure in Definition
2.9 for M = 1.

Lemma 2.11. Let w0λ =
∑M

j=1 ωkj . Then there is a surjective homomor-

phism of naf -modules

Wσ(λ) ։ W (ωk1)σ ∗ · · · ∗W (ωkM )σ.

In particular dimWσ(λ) ≥
∏M

j=1 dimW (ωkj).

Proof. It is easy to check that relations from Definition 2.1 hold in W (ωi1)σ∗
· · · ∗W (ωiM )σ. �

It has been proven in [FL2] that the map from Lemma 2.11 is an iso-
morphism for σ = id for Lie algebras of types A, D, E. In particular,
dimWσ(λ) =

∏M
j=1 dimW (ωkj).

2.2. QBG and Weyl modules. In the following lemma we give a criterion
of the existence of edges in the quantum Bruhat graph. In part ii) by a short
root we mean a root such that there exists another root of a larger length.
For example, for simply laced algebras we have no short roots.

Lemma 2.12. For σ ∈ W , γ ∈ ∆∨
+ the two following statements are equiv-

alent:
i) there is an edge in the quantum Bruhat graph σ

γ
−→ σsγ ;

ii) there are no elements α, β ∈ ∆∨
+ such that α, β 6= γ, α+ β = 2 〈α,γ〉

〈γ,γ〉γ,

σ̂(α) + σ̂(β) = 2 〈α,γ〉
〈γ,γ〉 σ̂(γ); if σγ ∈ ∆∨

−, then additionally γ is not a short

nonsimple root contained in a rank two subalgebra, generated by roots from
∆∨

+.

Proof. Assume that σ(γ) ∈ ∆∨
+, then σsγ(γ) ∈ ∆∨

−. We note that σsγ > σ
in the Bruhat order and l(σ) is equal to |{η ∈ ∆∨

+|σ(η) ∈ ∆∨
−}|. Consider the

set ∆∨
+∩sγ∆

∨
+. Obviously the numbers of elements of this set sent to ∆∨

− by σ
and σsγ are equal. Now consider the set ∆∨

+∩sγ∆
∨
−. If α ∈ ∆∨

+, sγ(α) ∈ ∆∨
−,

then 〈α, γ〉 > 0. If σ(α) ∈ ∆∨
− then σsγ(α) = σ(α)−2 〈α,γ〉

〈γ,γ〉σ(γ) ∈ ∆∨
−. Hence

l(σsγ) ≥ l(σ) + 1. Assume that l(σsγ) ≥ l(σ) + 1. Then there exists such
σ(α) ∈ ∆∨

+, sγ(α) ∈ ∆∨
−, σsγ(α) ∈ ∆∨

−. Thus there exist α, β ∈ ∆∨
+ such

that α+ β = 2 〈α,γ〉
〈γ,γ〉γ, σ̂(α) + σ̂(β) = 2 〈α,γ〉

〈γ,γ〉 σ̂(γ). Converse statement can be

proven in the same way.
Assume that σ(γ) ∈ ∆∨

−. Then σsγ < σ in Bruhat order. Consider the
set ∆∨

+ ∩ sγ∆
∨
+. Analogously to the previous case the numbers of elements

of this set sent to ∆∨
− by σ and σsγ are equal. |∆∨

− ∩ sγ∆
∨
+| ≤ 〈2ρ, γ〉 − 1.

If there is not equality then we have no quantum edges labeled by γ. The
strict inequality is if and only if γ is a short nonsimple root of subalgebra
of rank 2. I. e. the strict inequality holds for long coroots which are not
linear combination of simple long coroots. So there exist an edge of graph
iff σ

(
∆∨

+ ∩ sγ∆
∨
−

)
⊂ ∆∨

−, σsγ
(
∆∨

+ ∩ sγ∆
∨
−

)
⊂ ∆∨

+. It is easy to see that



16 EVGENY FEIGIN AND IEVGEN MAKEDONSKYI

this two conditions are equivalent. Assume that there exist an element
α ∈ ∆∨

+ ∩ sγ∆
∨
− such that σ(α) ∈ ∆∨

+. Then the condition ii) holds for α
and β = −sγ(α). �

Definition 2.13. Let β̄ = (β1, . . . , βr) be a sequence of affine coroots.
For σ ∈ W , λ ∈ X−, the generalized Weyl module with characteristics
Wσ(λ)(β̄,m), m = 0, . . . , r is the cyclic naf module with a generator v and

the following relations: h⊗ tkv = 0, k > 0 and

σ̂(f−α ⊗ t)v = 0,

σ̂(eα)
lα,m+1v = 0,

where lα,m = −〈α∨, λ〉 − |{βi|Reβi = −α∨, i ≤ m}|.

Remark 2.14. If m = 0, then Wσ(λ)(β̄, 0) ≃ Wσ(λ). Now assume that m = r

and the sequence of coroots β̄ comes from a reduced decomposition of t−ωi
.

Then according to Proposition 1.18, part a), we have an isomorphism

Wσ(λ)(β̄, r) ≃ Wσ(λ+ωi).

Example 2.15. Let g = sl3 and let β1 = −α1 + δ, β2 = −α1 − α2 + δ
(i.e. β̄ comes from the reduced decomposition of t−ω1 , β1 = β1(t−ω1), β2 =
β2(t−ω1)). Assume that −λ = m1ω1+m2ω2 and m1 > 0. Then we have the
modules Wσ(λ)(β̄, 0), Wσ(λ)(β̄, 1) and Wσ(λ)(β̄, 2). The module Wσ(λ)(β̄, 0)
is isomorphic to the generalized Weyl module Wσ(λ). The defining relations

for the module Wσ(λ)(β̄, 1) differ from the defining relations for Wσ(λ) only
by

σ̂(eα1)
m1v = 0

(no plus one in the exponent). Finally, the defining relations for the module
Wσ(λ)(β̄, 2) differ from the defining relations for Wσ(λ) by two relations:

σ̂(eα1)
m1v = 0,

σ̂(eα1+α2)
m1+m2v = 0.

Hence Wσ(λ)(β̄, 2) is isomorphic to Wσ(λ+ω1).

For a (semi)simple Lie algebra L we denote by naf (L) the Lie algebra naf

attached to L, naf (L) ⊂ L̂ (if no confusion is possible, we omit L an write
simply naf ).

Remark 2.16. All the definitions above were given for a simple g. However,
everything works fine in the semisimple case. We only need this generaliza-
tion in Lemma 2.17 below for L of type A1 ⊕A1.

Lemma 2.17. Let τ1, τ2 ∈ ∆+ be two roots from the roots system of g.
Let L2 be a semisimple Lie algebra with the root system spanned by roots
τ1, τ2. For a naf (g)-module Wσ(λ)(β̄,m) we define naf (L2)-submodule M2 =

U(naf (L2))v ⊂ Wσ(λ)(β̄,m), where v is the cycic vector and m satisfies

σ(Reβm+1) ∈ Z〈τ∨1 , τ
∨
2 〉. Then M2 is a quotient of some naf (L2) module of
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the form W
σ̃(λ̃)

(β̃, m̃), where σ̃, λ̃, β̃, m̃ are parameters for L2. In addition,

σReβm+1 = σ̃Reβ̃m̃+1.

Proof. Without loss of generality we assume that τ1, τ2 is the basis of Z〈τ1, τ2〉∩
∆. If L2 ≃ A1⊕A1, then the claim is obvious. If L2 ≃ G2, then L2 = g and
hence there is nothing to prove.

We consider the root system σ−1Z〈τ1, τ2〉 ∩ ∆. Let η1, η2 be a basis of
this system such that η1, η2 ∈ ∆+ and η1, η2 are the simple roots in the root
system σ−1Z〈τ1, τ2〉 ∩ ∆. Let σ̃ be the only element of the Weyl group of

the root system Z〈τ1, τ2〉 ∩∆ such that σ̃−1σηi ∈ ∆+, i = 1, 2. Let λ̃ be an

anti-dominant weight for the Lie algebra L2 such that 〈η∨i , λ〉 = 〈τ∨i , λ̃〉. If
m = 0, then we have the following relations in Wσ(λ)(β̄,m):

(σ̂fa1η1+a2η2)
−〈(a1η1+a2η2)∨,λ〉+1v = 0.

We rewrite this relation in terms of M2:

(̂̃σfa1τ1+a2τ2)
−〈(a1τ1+a2τ2)∨,λ̃〉+1v = 0.

Thus, M2 is a quotient of W
σ̃(λ̃)

.

Now we consider the case of general m. There are three possible cases:
either −Reβm+1 is equal to one of the simple coroots of the Lie algebra of
rank 2 (i.e. to η∨i ), or to the sum η∨1 + η∨2 , or −Reβm+1 = η∨1 + 2η∨2 .

Let Reβm+1 = −η∨i . Then using Corollary 1.19, ii), iii) we get for a root
ι:

if ι∨ = η∨1 + η∨2 , then lι,m = lη1,m + lη2,m,

if ι∨ = η∨1 + 2η∨2 then lι,m = lη1,m + 2lη2,m.

Thus M2 is a quotient of Wσ̃(lη1,mω1+lη2,mω2).

Now assume that −Reβm+1 = η∨1 + η∨2 . Then using Corollary 1.19, ii),
we have that

l−Reβm+1 = lη1,m + lη2,m + 1.

Then we obtain for L2 ≃ A2 the surjection

Wσ̃((lη1,m+1)ω1+lη2,mω2)(β̄
1, 1) ։ M2.

This completes the proof for L2 ≃ A2.
We are left with the case L2 ≃ C2, which is a direct consequence of

Corollary 1.19, iii). �

2.3. The decomposition procedure. Let us fix i = 1, . . . , n such that
〈λ, α∨

i 〉 < 0 (i.e. ωi shows up as a summand of λ). In what follows we
assume that the sequence of coroots β̄i = (βi

1, . . . , β
i
r) come from a reduced

decomposition of t−ωi
, i.e. βi

j = βj(t−ωi
). Now our strategy is as follows. We

first consider the sequence of surjections involving generalized Weyl modules
with characteristics:

Wσ(λ) = Wσ(λ)(β̄
i, 0) → Wσ(λ)(β̄

i, 1) → · · · → Wσ(λ)(β̄
i, r) = Wσ(λ+ωi).
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In order to control the structure of Wσ(λ) we need to describe the kernels

(2.8) ker(Wσ(λ)(β̄
i,m) → Wσ(λ)(β̄

i,m+ 1)).

The kernel can be trivial or not. It is trivial if there is no edge σ → σsReβm+1

in the quantum Bruhat graph and non trivial otherwise. So our first step is
to pick a root βi

m1+1 such that there is an edge σ → σsReβi
m1+1

in the QBG

and to pass to the kernel (2.8). We note that we may also choose nothing at
the first step (this corresponds to the casem1 = 0). Now the second step is to
describe the kernel of the surjection Wσ(λ)(β̄

i,m1) → Wσ(λ)(β̄
i,m1+1). We

identify this kernel with the generalized Weyl module with characteristics of
the form Wσ1(λ)(β̄

i,m1+1) for σ1 = σsReβi
m1+1

∈ W . We have the sequence

of surjections

Wσ1(λ)(β̄
i,m1+1) → Wσ1(λ)(β̄

i,m1+2) → · · · → Wσ1(λ)(β̄
i, r) = Wσ1(λ+ωi).

Again, the kernel ker(Wσ1(λ)(β̄
i,m2) → Wσ1(λ)(β̄

i,m2 + 1)) is nontrivial if
there is an edge σ1 → σ1sReβi

m2+1
in the QBG. So our second step is to

choose a root βm2+1, m2 > m1 in such a way that there is a path

σ → σsReβi
m1+1

→ σsReβi
m1+1

sReβi
m2+1

in the QBG. Each such a path gives rise to a generalized Weyl module with
characteristics. We proceed further, making totally r steps (note that at
each step we may skip making a choice of a root βi

j). Then after the r-th
step we obtain the decomposition procedure, representing the initial module
Wσ(λ) via the set of subquotients. We have the following important features:

• All the subquotients are of the form Wκ(λ+ωi) for some κ ∈ W .
• The subquotients are labeled by the paths in the QBG of length at
most r of the form

σ → σsReβi
m1+1

→ σsReβi
m1+1

sReβi
m2+1

→ · · · → σsReβi
m1+1

. . . sReβi
mp+1

for some 0 ≤ m1 < · · · < mp < r, p < r.

We prove that the whole picture can be seen as a representation theoretic
interpretation of the combinatorial construction from Theorem 1.17.

In the next theorem we describe the properties of the modulesWκ(λ)(β̄
i,m)

in terms of the quantum Bruhat graph. Recall

lα,m = −〈α∨, λ〉 − |{βi
k| − Reβi

k = α∨, k ≤ m}|.

Theorem 2.18. Let β̄i = (βi
1, . . . , β

i
r) be a sequence of β’s for some reduced

decomposition of the element t−ωi
. Then we have:

i) Assume there is no edge σ
Reβi

m+1
−→ σsReβi

m+1
, then

Wσ(λ)(β̄
i,m) ≃ Wσ(λ)(β̄

i,m+ 1).
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ii) Assume there is an edge σ
Reβi

m+1
−→ σsReβi

m+1
. Then for α∨ = −Reβi

m+1

we have an exact sequence

0 → U(naf )(σ̂eα)
lα,mv → Wσ(λ)(β̄

i,m) → Wσ(λ)(β̄
i,m+ 1) → 0.

iii) Assume there is an edge σ
Reβi

m+1
−→ σsReβi

m+1
. Then for α∨ = −Reβi

m+1

there exists a surjection

Wσsα(λ)(β̄
i,m+ 1) ։ U(naf )(σ̂eα)

lα,mv.

iv) We have an exact sequence
(2.9)

0 →
∑

σ
Reβi

m+k
−→ σs

Reβi
m+k

U(naf )σ̂(e−Reβi∨

m+k
)
l
−Reβi∨

m+k+1
,m+kv → Wσ(λ)(β̄

i,m) → Wσ(λ+ωi) → 0

(the sum is taken over all k ≥ 1 such that the edge σ
Reβi

m+k
−→ σsReβi

m+k
does

exist in the quantum Bruhat graph).

Proof. Let us prove i). Assume that there is no edge σ
Reβi

m+1
−→ σsReβi

m+1
.

Then according to Lemma 2.12 we have a rank two algebra L2 such that
σ(Reβi

m+1) is a root for L2. So we either have such τ, η ∈ ∆∨
+, τ, η 6= γ

satisfying

τ + η =
〈τ,Reβi

m+1〉

〈Reβi
m+1,Reβ

i
m+1〉

Reβi
m+1,

σ̂(τ) + σ̂(η) =
〈τ,Reβi

m+1〉

〈Reβi
m+1,Reβ

i
m+1〉

σ̂(Reβi
m+1)

or Reβi
m+1 is a nonsimple short root of some subalgebra of rank 2 and

σ(−Reβi
m+1) ∈ ∆∨

−. Now the claim follows from Lemma 2.17 and the rank
two results from Section 3.

Now assume that there exists an edge σ
Reβi

m+1
−→ σsReβi

m+1
. Then part ii)

follows directly from Definition 2.13. Let us prove iii). We have to show
that for α∨ = −Reβi

m+1 the following relations hold:

(2.10) (σ̂sαeγ)
lγ,m+1+1(σ̂eα)

lα,mv = 0, γ ∈ ∆+.

Let us consider the Lie algebra with the root system spanned by the roots
α∨ and Reβi

m+1. Our claim now follows from Lemma 2.17 and direct com-
putations from Section 3.

Finally, part iv) is an immediate corollary from Definition 2.13 and Lemma
1.18, a). �
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Corollary 2.19. Let λ ∈ X− and σ ∈ W . Then

chWσ(λ−ωi) ≤
∑

p∈QB(σ,λ,β̄i,λ)

qdeg(qwt(p))chW
wt(end(p))
dir(end(p))(λ),

chWσ(λ) ≤ Ctλ
σ ,

where inequalities mean the coefficient-wise inequalities.

Proof. Using Theorem 2.18 we obtain that Wσ(λ−ωi) can be decomposed to

subquotients isomorphic to quotients of Wdir(end(p))(λ), p ∈ QB(σ, λ, β̄i,λ).
Therefore we only need to prove that the cyclic vectors of these modules have
the needed weights. Let v be a cyclic vector in Wσ(λ)(β̄

i,m), α∨ = −Reβi
m+1

and v1 = (σ̂eα)
lα,mv. Then we have:

xwt(v1)qdegv1 =

{
xwt(v)+lα,mσ(α)qdegv, if σ(α) ∈ ∆+;

xwt(v)+lα,mσ(α)qdegv+lα,m , if σ(α) ∈ ∆−.

Now let us show that l−Reβi∨

m+1,m
= deg βi

m+1. First, assume that m = 0.

Then l−Reβ∨

j ,0 = −〈Reβj , λ〉. Now if βj is the first root in β̄i with the fixed

real part, then Proposition 1.18, a) and Lemma 1.15 give us the needed
equality. Now assume m > 0. Let βja be the subsequence of β̄i such that
Reβja = Reβ. Then we have that deg βja+1 = deg βja −1, l−Reβ∨

ja+1
,ja+1−1 =

l−Reβ∨

ja
,ja−1−1. Thus the q-component of the weights of the cyclic elements

of subquotients are equal to deg(qwt(p)).
Now we need to compare the finite weights coming from combinatorial and

representation theoretic constructions. Let τ = dir(end(p)). Assume that

the real part of the weight of a vector u is equal to τ(λ). Then if τReβi∨
m+1 ∈

∆−, then the real part of the weight of u1 = (τ̂ e
−Reβi∨

m+1
)
l
−Reβi∨

m+1
,mu is equal

to τ(λ) + deg(βi
m+1)τ(Reβ

i∨
m+1). However:

τ(λ) + deg(βi
m+1)τ(Reβ

i∨
m+1) = wt(end(p)sβi

m+1
).

Indeed, end(p) = tτ(λ)τ and

tτ(λ)τsβi
m+1

= tτ(λ)τtdeg(βi
m+1)Reβi∨

m+1
sReβi

m+1
=

tτ(λ)tdeg(βi
m+1)τ(Reβi∨

m+1)
τsReβi

m+1
.

Analogously we obtain the claim for τReβi∨
m+1 ∈ ∆+. �

We denote by Eλ(1, 1, 0) the specialization of the Macdonald polynomials
at t = 0, q = 1 and all xi = xωi = 1.

Remark 2.20. In the following theorem we use that dimW (ωi) = Ew0ωi
(1, 1, 0)

for all fundamental weights. This is a very special case of [CI], Theorem 4.2
(see also [LNSSS3, N]). Indeed, Theorem 4.2,[CI] claims that for any domi-
nant weight µ the character of the Weyl moduleW (µ) is equal to the value of
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symmetric Macdonald polynomial Pµ specialized at t = 0 (in [CI] the sym-
metric Macdonald polynomials are labeled by the anti-dominant weights,
so in the Chari-Ion notation the character is expressed in terms of Pw0µ).
Thanks to [I], Theorem 4.2, one has Pµ(x, q, 0) = Ew0µ(x, q, 0), which im-
plies chW (µ) = Ew0µ(x, q, 0). We note that the Chari-Ion theorem addresses
the case of general dominant weights. For our purposes we only need the
x = 1 specialization of their theorem and only for fundamental weights.

Theorem 2.21. The inequalities of Corollary 2.19 are in fact the equalities.

Proof. According to Remark 2.20 dimW (ωi) = Ew0ωi
(1, 1, 0) for all funda-

mental weights ωi. We note that for dominant weights ν, µ we have (see
[I],[N]):

(2.11) dimW (ν + µ) = dimW (ν) · dimW (µ).

Moreover, for the specialization at q = 1 of the symmetric Macdonald poly-
nomials Pλ(x, 1, t) we have Pν+µ(x, 1, t) = Pν(x, 1, t) ·Pµ(x, 1, t) and for any
dominant λ there is an equality Pλ(x, q, 0) = Ew0(λ)(x, q, 0) (see [I], Theorem
4.2). Hence we have for any dominant λ:

dimW (λ) = Ew0λ(1, 1, 0).

We know that for any σ ∈ W the following holds:

dimWσλ ≥ dimW (λ) = Ew0λ(1, 1, 0)

(Lemma 2.11 plus (2.11)). Note that Ew0λ(1, 1, 0) is the number of paths
of type tw0(λ) in the quantum Bruhat graph starting at the identity element
of W . We also know that dimWσ(w0ωi) is less or equal than the number of

paths in the quantum Bruhat graph of type β̄i starting at the point σ (for
any σ ∈ W ). Assume that for some σ ∈ W and a fundamental weight ωi the
strict inequality dimWσ(w0ωi) > Ew0ωi

(1, 1, 0) holds. For a decomposition
σ = sj1 . . . sju we define λ = ωj1 + · · ·+ ωju + ωi. Then using Theorem 1.17
(u+ 1) times we obtain:

(2.12) Ew0λ(1, 1, 0) =
∑

p1∈QB(id,λ−ωj1
,β̄j1,λ)

∑

p2∈QB(endp1,λ−ωj1
−ωj2

,β̄
j2,−ωj1 )

. . .

∑

pu∈QB(endpu−1,ωi,β̄
ju,ωju

+ωi)

∑

pu+1∈QB(endpu,0,β̄i,ωi)

1.

Every time at the k-th sum we sum up at least Ew0ωjk
(1, 1, 0) summands.

Indeed, the number of summands is not smaller than dimWκ(λ) for some
κ ∈ W . But we also know that

dimWκ(λ) ≥ dimW (λ) = Ew0ωjk
(1, 1, 0).

Therefore if even once we sum up strictly more than Ew0ωjk
(1, 1, 0) sum-

mands, then dimW (λ) >
∏m

k=1 dimW (ωjm) · dimW (ωi), which contradicts

(2.11). Using Corollary 1.19, i) we have that Reβj
1 = −α∨

j . For any κ ∈ W
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and any simple root αj there exist an edge κ
α∨

j
−→ κsj in the QBG. There-

fore in the last summation we at least once have
∑

pu+1∈QB(σ,0,β̄i,ωi ) 1, i.e.

dir(end(pu)) = σ. Therefore for any σ ∈ W we have exactly dimW (ωi)

paths of type β̄i. So we conclude that for any dominant µ =
∑N

k=1 ωjk one
has

dimWσ(w0µ) ≤ C
tw0µ
σ (1, 1) =

N∏

k=1

dimW (ωjk).

Now using Lemma 2.11 we obtain dimWσ(λ) =
∏N

k=1 dimW (ωjk). �

Corollary 2.22. Let λ be an anti-dominant weight, σ ∈ W . Then chWσ(λ) =

Ctλ
σ .

As a consequence, we obtain an alternative proof of the following claim
(see [I] for g of types A, D, E and [CI] for general simple Lie algebras).

Corollary 2.23. Let λ be a dominant weight. Then for arbitrary simple g

Ew0(λ)(x, q, 0) = chW (λ).

We also obtain a representation-theoretic interpretation of the specializa-
tion of nonsymmetric Macdonald polynomials at t = ∞.

Corollary 2.24. Let λ be an anti-dominant weight. Then:

w0Eλ(x, q
−1,∞) = chWw0λ.

Remark 2.25. In [No] the author proves the relationship between the graded
characters of generalized Weyl modules and those of certain quotients of
Demazure submodules of level 0 extremal weight modules over quantum
affine algebras.

3. Low rank cases

3.1. Type A1. Let g = sl2. The QBG has two vertices id and s and two
arrows: from id to s and backwards. We have two types of generalized
Weyl modules, corresponding to σ = id and to σ = s. There is only one
fundamental weight ω1 and the sequence β̄1 consists of one element β1

1 =
−α + δ. The modules of the form Wλ, λ = −nω, n ≥ 0 are isomorphic to
the level one Demazure modules. The module W−nω, n ≥ 0 is defined by
the relations

(e⊗ 1)n+1v−n = 0, (f ⊗ t)v−n = 0, h⊗ tkv−n = 0, k > 0.

Now the modules Wnω, n > 0 are defined by the relations

e⊗ 1vn = 0, (f ⊗ t)n+1vn = 0, h⊗ tkvn = 0, k > 0.

One has dimWnω = dimW−nω = 2n.
Since β̄1 consists of a single root, the Weyl modules with characteristics

are isomorphic to the classical Weyl modules. Namely,

Wσλ(β̄
1, 0) ≃ Wσλ, Wσλ(β̄

1, 1) ≃ Wσ(λ−ω).
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Figure 2. QBG of type A2

We have the following properties of the generalized Weyl modules:

W−nω ⊃ U(naf )(e ⊗ 1)nv−n ≃ W(n−1)ω,

W−nω/U(n
af )(e⊗ 1)nv−n ≃ W−(n−1)ω.

Similarly, one has

Wnω ⊃ U(naf )(f ⊗ t)nvn ≃ W−(n−1)ω,

Wnω/U(n
af )(f ⊗ t)nvn ≃ W(n−1)ω .

3.2. Type A2. The goal of this section is to describe explicitly the structure
of the generalized Weyl modules for g = sl3. More precisely, we prove
Theorem 2.18 in type A2. The quantum Bruhat graph of type A2 looks as
follows

We consider the module Wσ(λ), where λ = −n1ω1 − n2ω2 and σ is an
element in the permutation group S3. We assume that n1 is positive and
fix β1 = −α1 + δ, β2 = −α1 − α2 + δ, so β1 = β1(t−ω1), β2 = β2(t−ω1)
(the decomposition procedure with respect to ω2 is very similar). Since the
sequence β̄ is fixed, we omit β̄ when talking about the generalized Weyl mod-
ules with characteristics and write simply Wσ(λ)(m) instead of Wσ(λ)(β̄,m).

We have the following sequence of surjections of U(naf )-modules:

(3.1) Wσ(λ) ≃ Wσ(λ)(0) ։ Wσ(λ)(1) ։ Wσ(λ)(2) ։ Wσ(λ)(2) ≃ Wσ(λ+ω1).

We use the notation:

e1 = eα1 , e2 = eα2 , e12 = eα1+α2

and similarly for fα. We also denote the reflection in S3 by s1, s2 and s12.
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Case 1. Let σ = id. Then the relations in Wσ(λ) are of the form h⊗tkv =
0, k > 0 and

en1+1
1 v = en2+1

2 v = en1+n2+1
12 v = 0, fα ⊗ tv = 0.

Let us consider the sequence (3.1).

First of all, there is no edge id
α12−→ s12 in the quantum Bruhat graph.

Therefore, we have to show (Theorem 2.18, i)) that the mapWλ(1) ։ Wλ(2)
is an isomorphism. Indeed, the only difference between the defining relations
is en1+n2+1

12 v = 0 in Wλ(1) vs e
n1+n2
12 v = 0 in Wλ(2). However, we have the

relations en1
1 v = 0 and en2+1

2 v = 0 in Wλ(1), which imply that en1+n2
12 v = 0

already in Wλ(1).
Second let us consider the map Wλ(0) ։ Wλ(1). Obviously, the kernel

of this map is given by U(naf )en1
1 v (Theorem 2.18, ii)). We want to prove

(Theorem 2.18, iii)) that there is a surjective homomorphism

Ws1(λ)(1) → U(naf )en1
1 v.

In other words, we need to prove the following equalities in Wλ:

e1e
n1
1 v = 0, (f2 ⊗ t)en1

1 v = 0, (f12 ⊗ t)en1
1 v = 0, (h⊗ tK[t])en1

1 v = 0,

(f1 ⊗ t)n1en1
1 v = 0, en2+1

12 en1
1 v = 0, en1+n2+1

2 en1
1 v = 0.

The relations in the first line are obvious. Now let us consider the second
line relations. The first equality follows from the type A1 picture and the
second and third relations obviously hold in the irreducible sl3-module Vλ

and hence in Wλ as well.
So the kernel of the mapWλ(0) ։ Wλ(1) ≃ Wλ+ω1 is covered byWs1(λ)(1)

(in fact, the covering is an isomorphism as we prove below). To finalize the
proof, we consider the surjection

Ws1(λ)(1) → Ws1(λ)(2).

The kernel of this surjection is given by U(naf )en1+n2
2 v. We want to show

that there is a surjective map

Ws1s12(λ)(2) → U(naf )en1+n2
2 v.

So we have to show that the following equalities hold in Ws1(λ)(1):

e2e
n1+n2
2 v = 0, e12e

n1+n2
2 v = 0, (f1 ⊗ t)en1+n2

2 v = 0, h⊗ tK[t]v = 0,(3.2)

en2+1
1 en1+n2

2 v = 0, (f2 ⊗ t)n1+n2en1+n2
2 v = 0, (f12 ⊗ t)n1en1+n2

2 v = 0.

(3.3)

Recall the defining relations in Ws1(λ)(1):

e1v = 0, (f2 ⊗ t)v = 0, (f12 ⊗ t)v = 0, h⊗ tK[t] = 0,

(f1 ⊗ t)n1v = 0, en2+1
12 v = 0, en1+n2+1

2 v = 0.

The relations (3.2) can be derived easily (for example, (f1 ⊗ t)en1+n2
2 v is

proportional to (f12 ⊗ t)en1+n2+1
2 v). Now let us derive the relations (3.2).



GENERALIZED WEYL MODULES AND MACDONALD POLYNOMIALS 25

The relation en2+1
1 en1+n2

2 v = 0 can be obtained by commuting en2+1
1 through

en1+n2
2 and using the relations e1v = 0 and en2+1

12 v = 0. The relation (f2 ⊗
t)n1+n2en1+n2

2 v = 0 follows from the A1 case. Finally, the relation (f12 ⊗
t)n1en1+n2

2 v = 0 can be obtained by commuting (f12 ⊗ t)n1 through en1+n2
2

and using the relations (f12 ⊗ t)v = 0, (f1 ⊗ t)n1v = 0.
So we conclude, that the module Wσ(λ) can be decomposed into three

subquotients. Each subquotients is a quotient of some Wκ(λ+ω1) for some
κ ∈ S3. By induction on n1 + n2, the dimension of each subquotient does
not exceed 3n1+n2−1. Hence dimWλ ≤ 3n1+n2 . Since the opposite inequality
always holds, we obtain that dimWλ = 3n1+n2 and all the subquotient are
of the form Wκ(λ+ω1).

Now one easily checks that the cases of σ = s1s2 and σ = s2s1 are equiv-
alent to the case σ = id, since the three-dimensional nilpotent subalgebra,
formed by the root operators eα and fα ⊗ t, acting nontrivially on v, is
isomorphic to the Heisenberg algebra.

Case 2. Let us work out the opposite case, i.e. when σ = sα1+α2 = s12 is
the longest element. Then the relations in Wσ(λ) are of the following form

(f1 ⊗ t)n2+1v = 0, (f2 ⊗ t)n2+1v = 0, (f12 ⊗ t)n1+n2+1v = 0, eαv = 0.

We have both edges s12
α12−→ id and s12

α1−→ s12s1 in the quantum Bruhat
graph. Therefore, we have to describe the kernels of the maps Ws12(λ)(0) ։
Ws12(λ)(1) and Ws12(λ)(1) ։ Ws12(λ)(2).

First, let us consider the map Ws12(λ)(0) ։ Ws12(λ)(1). Obviously, the

kernel of this map is given by U(naf )(f2 ⊗ t)n1v (Theorem 2.18, ii)). We
want to prove (Theorem 2.18, iii)) that there is a surjective homomorphism

Ws12s1(λ)(1) → U(naf )(f2 ⊗ t)n1v.

In other words, we need to prove the following equalities in Ws12(λ):

e1(f2 ⊗ t)n1v = 0, e12(f2 ⊗ t)n1v = 0,

(f2 ⊗ t)(f2 ⊗ t)n1v = 0, (h⊗ tK[t])(f2 ⊗ t)n1v = 0

(these are obvious) and

en1
2 (f2⊗t)n1v = 0, (f12⊗t)n2+1(f2⊗t)n1v = 0, (f1⊗t)n1+n2+1(f2⊗t)n1v = 0.

The first equality follows from the type A1 picture. The second relation
comes from the equality en1

1 (f12⊗t)n1+n2+1v = 0. To prove the third relation
we move (f2 ⊗ t)n1 to the left in the expression (f1 ⊗ t)n1+n2+1(f2 ⊗ t)n1 .
All the terms in the resulting sum contain the factor (f1⊗ t)i, i > n2 on the
very right and hence vanish being applied to v in Ws12(λ).

The second step is to consider the map Ws12(λ)(1) ։ Ws12(λ)(2). Obvi-

ously, the kernel of this map is given by U(naf )(f12 ⊗ t)n1+n2v (Theorem
2.18, ii)). We want to prove the existence of the surjective homomorphism

Wλ(2) → U(naf )(f12 ⊗ t)n1+n2v.
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In other words, we need to prove the following equalities in Ws12(λ)(1):

(f1 ⊗ t)(f12 ⊗ t)n1+n2v = 0, (f2 ⊗ t)(f12 ⊗ t)n1+n2v = 0,

(f12 ⊗ t)(f12 ⊗ t)n1+n2v = 0, (h⊗ tK[t])(f2 ⊗ t)n1v = 0

(these are obvious) and

en1
1 (f12⊗ t)n1+n2v = 0, en2+1

2 (f12⊗ t)n1+n2v = 0, en1+n2
12 (f12⊗ t)n1+n2v = 0.

The third equality follows from the type A1 picture. The first relation
can be proved by commuting en1

1 to the right through (f12 ⊗ t)n1+n2 , since
(f2 ⊗ t)n1v = 0 in Ws12(λ)(1). The second relation is obtained in the same
way.

Now our last step is to consider the moduleWs12s1(λ)(1). We are interested
in the surjection Ws1s2(λ)(1) → Ws1s2(λ)(2) (s12s1 = s1s2). Since there is

no edge of the form s1s2
α12−→ s2 in the QBG, we need to prove that the

surjection above is in fact an isomorphism. In other words, we have to
show that the relation (f1 ⊗ t)n1+n2v = 0 hold in Ws1s2(λ)(1). We have the

following relations in Ws1s2(λ)(1): en1
2 v = 0 and (f12 ⊗ t)n2+1v = 0. Since

[f12 ⊗ t, f2] = f1 ⊗ t, we obtain (f1 ⊗ t)(n1−1)+n2+1v = 0.
So again as in Case 1 we are able to decompose the module Ws12(λ) into

three subquotients of the formWκ(λ+ω1) (to be precise, the quotients of these
modules).

Now one easily checks that the cases of σ = s1 and σ = s2 are equivalent
to the case σ = s12.

3.3. Type C2. The goal of this section is to prove Theorem 2.18 for g of type
C2. The longest element w0 is equal to −1, so tw0ωi

= t−ωi
. We denote by α1

the short simple root, by α2 the long simple root, ∆+ = {α1, α2, α2+α1, α2+
2α1} and the set of corresponding coroots is {α∨

1 , α
∨
2 , 2α

∨
2 + α∨

1 , α
∨
2 + α∨

1 }.
We have the following sequences of β’s:

β1
1 = −α1 + δ, β1

2 = −2α1 − α2 + δ, β1
3 = −α1 − α2 + δ;

β2
1 = −α2 + δ, β2

2 = −α1 − α2 + 2δ, β2
3 = −2α1 − α2 + δ, β2

4 = −α1 − α2 + δ.

The quantum Bruhat graph is shown on Figure 3.3.

Proposition 3.1. Let β̄i be the sequence of β’s for some reduced decompo-

sition of the element t−ωi
, i = 1, 2. If there is no edge σ

Reβm+1
−→ σsReβm+1 ,

then

Wσ(λ)(β̄
i,m) ≃ Wσ(λ)(β̄

i,m+ 1).

Proof. Lemma 2.12 tells us that we need to consider two cases. Assume that
there are elements τ, η ∈ ∆+ such that:

τ, η 6= −Reβm+1,

τ + η = 2
〈τ,Reβm+1〉

〈Reβm+1,Reβm+1〉
Reβm+1,
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Figure 3. QBG of type C2

σ̂(τ) + σ̂(η) = 2
〈τ,Reβm+1〉

〈Reβm+1,Reβm+1〉
σ̂Reβm+1.

Then −Reβm+1 is equal to α2 + α1 or α2 + 2α1. Assume that −Reβm+1 =
α2 + α1. Then τ = α1, η = α2 or τ = 2α1 + α2, η = α2. We work out the
first case (the second case can be done by a direct computation). In the first
case eσ̂−Reβm+1

is an element of a Lie algebra with simple root vectors eσ̂(α1),
eσ̂(α2). Using Corollary 1.19, iii) we have that lReβm+1,m > lα2,m + 2lα1,m.

But using BGG resolution we obtain that σ̂(eReβm+1)
lα2,m+2lα1,m+1v = 0.

Now assume that −Reβm+1 = α2+2α1. Then τ = α1, η = α2+α1. If the
subspace spanned by σ̂eα1 , σ̂eα2+2α1 , σ̂eα2+α1 , σ̂eα2 is closed under the Lie
bracket then we can analogously to the previous case use BGG resolution.
Conversely, if the subspace spanned by

σ̂eα1 , σ̂eα2+2α1 , σ̂eα2+α1 , σ̂f−α2 ⊗ t

is closed under the Lie bracket, then the needed equation is equivalent to

(σ̂f−α2 ⊗ t)lα2,m+lα1,m+1(σ̂eα2+α1)
lα2+α1,m+1v = 0.

Now we assume that σ̂(Reβm+1) ∈ ∆−, −Reβm+1 = α1 + α2. Then
the only situation not covered by the previous case is σ = w0 (the longest
element of the Weyl group). Using Corollary 1.19, iii) we have lα1+α2 =
l2α1+α2 + lα2 +1. But using a direct computation in the algebra spanned by
f−2α1−α2 ⊗ t, f−α1−α2 ⊗ t, f−α1 ⊗ t, f−α2 ⊗ t we obtain:

(f−α1−α2 ⊗ t)l2α1+α2+lα2+1v = 0.

This completes the proof. �
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Proposition 3.2. Let β̄i be a sequence of β’s for some reduced decomposi-

tion of the element t−ωi
, i = 1, 2. If there exists an edge σ

Reβm+1
−→ σsReβm+1 ,

then there exists a surjection

WσsReβm+1
(λ)(β̄

i,m+ 1) ։ U(naf )σ̂(e−Reβm+1)
l−Reβm+1,mv.

Proof. We need to prove the following equalities:

(3.4) ̂σsReβm+1(eτ )
lτ,m+1σ̂(e−Reβm+1)

l−Reβm+1,mv = 0.

Note first that if both Reβm+1 and τ are long roots then Z〈Reβm+1, τ〉 ≃
A1 ⊕A1. Therefore we can use Proposition 2.17.

For natural numbers a, b, c such that a+ b+ c ≥ m1 + 2m2 + 1 we prove
the following equality:

(3.5) (σ̂(eα2))
a(σ̂(eα2+α1))

b(σ̂(eα2+2α1))
cv = 0.

If σ = id or sα1+α2 , then σ̂(n+) is isomorphic to n+ and therefore the
equality is a consequence of the BGG resolution. Assume that σ = sα1 or
w0. We proceed with the decreasing induction in c. It is obvious that the
equality holds for c ≥ m1 +m2+1 and for b = 0. Assume that this equality
holds for all c > c0. Then using that σ̂(f−α1 ⊗ t) = eα1 write:

0 = eα1 σ̂(eα2))
a(σ̂(eα2+α1))

b−1(σ̂(eα2+2α1))
c0+1v =

σ̂(eα2))
a+1(σ̂(eα2+α1))

b−2(σ̂(eα2+2α1))
c0+1v+

σ̂(eα2))
a(σ̂(eα2+α1))

b(σ̂(eα2+2α1))
c0v.

Thus the needed equality holds for a, b, c0.
Now assume that σ = sα2 or σ = s2s1. Then multiplying the equality

em1+2m2+1
α1

v = 0 to (eα1 σ̂(eα1+α2)
c we obtain the needed equation for a = 0.

Then the needed relation is the equivalent to the relation

(σ̂(f−α1 ⊗ t))a(σ̂(eα2+α1))
a+b(σ̂(eα2+2α1))

cv = 0.

Finally assume that σ = sα1+α2 or σ = s1s2. We will prove the needed
equality by induction in b. The equality is obvious for b = 0. Assume that
in holds for b = b0. Then the needed equality is equivalent to

σ̂(f−α1 ⊗ t)(σ̂(eα2))
a(σ̂(eα2+α1))

b0−1(σ̂(eα2+2α1))
c+1v = 0.

The equation (σ̂(eα1))
a(σ̂(eα2+2α1))

bv = 0 for a + b ≥ m1 +m2 + 1 can
be obtained in the similar way. Finally, all the equalities (3.4) are either
equivalent to partial cases of (3.5) and the last equality or can be easily
derived from them. �
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3.4. Type G2. Let g be the Lie algebra of type G2. The QBG of type G2

can be found in [LL], p.19, figure 2. Using Proposition 1.18 we obtain the
following sequences β̄1, β̄2:

(3.6) β1
1
∨
= −α∨

1 + δ, β1
2
∨
= −α∨

2 − 3α∨
1 + 3δ,

β1
3
∨
= −α∨

2 − 2α∨
1 + 2δ, β1

4
∨
= −2α∨

2 − 3α∨
1 + 3δ,

β1
5
∨
= −α∨

2 − 3α∨
1 + 2δ, β1

6
∨
= −α∨

2 − α∨
1 + δ, β1

7
∨
= −2α∨

2 − 3α∨
1 + 2δ,

β1
8
∨
= −α∨

2 − 2α∨
1 + δ, β1

9
∨
= −α∨

2 − 3α∨
1 + δ, β1

10
∨
= −2α∨

2 − 3α∨
1 + δ.

(3.7) β2
1
∨
= −α∨

2 + δ, β2
2
∨
= −α∨

2 − α∨
1 + δ, β2

3
∨
= −2α∨

2 − 3α∨
1 + 2δ,

β2
4
∨
= −α∨

2 − 2α∨
1 + δ, β2

5
∨
= −α∨

2 − 3α∨
1 + δ, β2

6
∨
= −2α∨

2 − 3α∨
1 + δ.

The quantum Bruhat graph is the following. There are Bruhat edges from
any element of the length p to any element of the length p + 1, 0 ≤ p ≤ 5.
There is the quantum edge from any element with the reduced decomposition
(
∏

sik)sj to the element (
∏

sik), j, ik ∈ {1, 2}, from any element with the
reduced decomposition (

∏
sik)s2s1s2 to the element (

∏
sik) and from any

element with the reduced decomposition (
∏

sik)s1s2s1s2s1 to the element
(
∏

sik).
Using this data we obtain that E−ω1(1, 1, 0) = 15, E−ω2(1, 1, 0) = 7.

On the other hand the dimensions of fundamental modules are known, see
Remark 2.20: dimW (ω1) = 15, dimW (ω2) = 7.

Proposition 3.3. Assume that there is no edge w
α

−→ wsReβi
m+1

. Then we

have:
Wσ(λ)(β̄

i,m) ≃ Wσ(λ)(β̄
i,m+ 1).

Proof. Lemma 2.12 tells us that we need to consider two cases. Assume that
there are elements τ, η ∈ ∆+ such that:

τ, η 6= (−Reβi
m+1),

τ + η = 2
〈τ,Reβi

m+1〉

〈Reβi
m+1,Reβ

i
m+1〉

Reβi
m+1,

σ̂(τ) + σ̂(η) = 2
〈τ,Reβi

m+1〉

〈Reβi
m+1,Reβ

i
m+1〉

σ̂Reβi
m+1.

Then

τ + η = −Reβi
m+1,

σ̂(τ) + σ̂(η) = σ̂(−Reβi
m+1)

or

τ + η = −3Reβi
m+1,

σ̂(τ) + σ̂(η) = 3σ̂(−Reβi
m+1).
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We consider the first case (the second case can be done similarly by a di-
rect computation). Assume that −Reβi

m+1 = α1 + α2. Then m > 0 and
l−Reβi

m+1,m
> 3lα1,m + lα2,m. But using BGG resolution we have:

(σ̂(e−Reβi
m+1

))3lα1,m+lα2,m+1v = 0.

Now assume that −Reβi
m+1 = α1 + 2α2. Then l−Reβi

m+1,m
> lα1+α2,m +

lα2,m. If the set [σ̂(eα2), σ̂(eα1)] = σ̂(eα1+α2), then using BGG resolution we
have:

(σ̂(e−Reβi
m+1

))lα1+α2,m+lα2,mv = 0.

Conversely we have that [σ̂(f−α1 ⊗ t), σ̂(eα1+α2)] = σ̂(eα2) and using this
fact we obtain:

σ̂(e−Reβi
m+1

))lα1+α2,m+lα2,m+1v = 0.

In the similar way we prove the claim for −Reβi
m+1 = α1 + 3α2 or

−Reβi
m+1 = 2α1 + 3α2.

Now assume that there do not exist such τ and η that −Reβi
m+1 is

nonsimple short and σ̂ − Reβi
m+1 ∈ ∆+. Then the only possible cases

are σ = w0 or σ = s2α1+3α2 . Then using the direct computation we ob-

tain that (σ̂e−Reβi
m+1

)
l
−Reβi

m+1
,m lie in the left ideal generated by (σ̂eα)

lα,m ,

α 6= −Reβi
m+1. �

Proposition 3.4. We consider a module Wσ(Λ)(β̄
i,m). If there exists an

edge

σ
Reβi

m+1
−→ σsReβi

m+1

in the quantum Bruhat graph, then U(naf )σ̂(e−Reβi
m+1

)
l
Reβi

m+1
,mv is the quo-

tient module of Wσs
Reβi

m+1
(λ).

Proof. Let v1 = σ̂(e−Reβi
m+1

)
l
−Reβi

m+1
,mv. If 〈Reβi

m+1, η〉 = 0, then it is easy

to see that [fReβi
m+1

, fη] = 0 and thus Z〈Reβi
m+1, η〉 ∩∆ is the root system

of type A1 ⊕A1. Therefore the claim is a consequence of the Lemma 2.17.
If Reβi

m+1 is long, then for any long root η 6= Reβi
m+1 we have that

Z〈Reβi
m+1, η〉 ∩ ∆ is a root system of type A2. Indeed, the Lie algebra

spanned by all long roots of G2 is isomorphic to A2. Hence the claim is a
consequence of the Lemma 2.17.

We note that if sReβi
m+1

η ∈ ∆− then the needed relations can be obtained

by the direct computation.
Now assume that Reβi

m+1 = α1. Then m = 0. Note that the cases of
long η or η orthogonal to α1 are already covered. Let us prove the claim for
η = α2 or η = α1+3α2. If σ̂(α1), σ̂(α2), σ̂(α1+α2) are linear dependent then
the claim is a consequence of the BGG resolution. Assume that σ̂(α2) ∈ ∆+.
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Then 0 = (σ̂f−α2 ⊗ t)3m1+2m2+2(σ̂eα1+3α2)
m1+m2+1v = σ̂em2+1

α1+α2
σ̂em1

α1
v. In

the remaining case we have:

0 = (σ̂f−2α1−3α2 ⊗ t)m1(σ̂eα1+α2)
3m1+m2+1v = σ̂em2+1

α1+α2
σ̂em1

α1
v.

In the analogous way we prove that (σ̂eα2)
3m1+m2+1(σ̂eα1)

m1v = 0.
Now let us consider the case Reβi

m+1 = −2α1 − 3α2. The only remaining

cases (i. e. cases of non-orthogonal to Reβi
m+1 and short η) are η = −α1−α2

and η = −α1 − 2α2. We have lα1+α2 + lα1+2α2 = l2α1+3α2 − 1. The proof in
this case is straightforward. For example for η = α1 + α2:

σ̂(f−α1−α2 ⊗ t)3m1+m2 σ̂(e2α1+3α2)
2m1+m2v = 0

using (σ̂(eα1+α2 ⊗ tk)lα1+α2+1 = 0 and (σ̂(eα1 ⊗ tk)lα1+1 = 0, k ≥ 0. Analo-
gous straightforward proof works for Reβi

m+1 = −α1 − 3α2.

Now we need to consider the case of short Reβi
m+1. If Reβi

m+1 = −α1 −
2α2, then the needed relations can be obtained straightforwardly by the
direct computation. Assume that Reβi

m+1 = −α2. In this case m = 0.

Then the relation (σ̂eα1+3α2)
m1+1(σ̂eα2)

m2v = 0 can be obtained using one
of the two following arguments. If the roots (σ̂eα1+3α2), (σ̂eα1), (σ̂eα2) are
linear dependent, then we can use the BGG resolution. If they are linear
independent, then this relation is a consequence of the relation

(σ̂eα1+2α2)
m1+1(σ̂eα1+3α2)

m1+m2+1v = 0.

Independently of σ using BGG resolution we can obtain:

(σ̂eα1)
m1+m2+1(σ̂eα2)

m2v = 0.

Two remaining relations can be obtained in the similar way.
For −Reβi

m+1 = α1+α2 all relations can be obtained in a similar way. �

Appendix A. Cherednik-Orr conjecture for cominuscule

weights

Let λ be a dominant weight and let W (λ) be the corresponding Weyl
module. In particular, W (λ) is a cyclic module over the algebra n− ⊗ K[t].
The PBW filtration Fl on W (λ) is defined as follows:

Fl = span{fβ1 ⊗ tj1 . . . fβa
⊗ tjavλ, a ≤ l}.

The PBW character chPBWWλ(x, q, s) is defined by the formula

chPBWWλ(x, q, s) =
∑

l≥0

slchFl/Fl−1

(for example, the term eλ corresponds to the cyclic vector vλ). The Cherednik-
Orr conjecture [CO1] says that

chPBWW (λ)(x, q, q) = w0Ew0λ(x, q
−1,∞).

Since Ew0λ(x, q
−1,∞) = w0chWλ, the conjecture can be stated in the form

chPBWW (λ)(x, q, q) = chWλ. The conjecture has been proved in several
special cases (see [CF, FM1, FM2]).
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A fundamental weight ωi is called cominuscule if the corresponding simple
root αi occurs with coefficient one in the highest root. In other words, ωi

is cominuscule if and only if the subalgebra of n− spanned by fβ, such that
〈β, ωi〉 < 0, is abelian. Here are the cominuscule weights: in type An all
the fundamentals, in type Bn only ω1, in type Cn only ωn, in type Dn three
fundamentals ω1, ωn−1 and ωn, in type E6 two fundamentals ω1 and ω6, in
type E7 only ω7 (we use the standard Bourbaki enumeration [B]).

Our goal is to prove the following:

Theorem A.1. The Cherednik-Orr conjecture holds for the weights λ =
mωi if ωi is cominuscule.

Proof. Note that there exists σ ∈ stab(λ) ⊂ W such that the following two
sets coincide:

{∆− ∩ σ∆+} = {α ∈ ∆−|〈α, ωi〉 = 0}.

Namely, let I be the Dynkin diagram of g. Then I \ i is the Dynkin diagram
of a semisimple Lie algebra. Then σ is equal to the longest element of the
Weyl group of this semisimple Lie algebra.

Thanks to Proposition 2.2 we have Wλ = Wσ(λ). Since ωi is cominuscule,
the subalgebra span{eα|〈α, ωi〉 6= 0} is abelian. Therefore σ̂(n+) is closed
under the Lie bracket. Hence σ̂ induces an automorphism ϕ of naf and the
ϕ-twist of W (λ) is isomorphic to Wσλ. This gives the following relation
between the characters of W (λ) and Wλ: if chW (λ) =

∑
β∈X+

eλ−βaβ(q)

(for some polynomials aβ(q) depending on β ∈ X+), then

chWσ(λ) =
∑

β

eλ−βqdi〈β,ωi〉aβ(q),

where di = 〈αi, ωi〉
−1 (so di〈β, ωi〉 is exactly the coefficient of αi in β). Now

it suffices to note that the right hand side is equal to the PBW twisted
character chPBWW (λ)|s=q. Indeed, the module W (λ) is generated from the

cyclic vector by the action of the algebra span{fα ⊗ tk|k ≥ 0, 〈α, ωi〉 6= 0}.
Since ωi is cominuscule, for any negative root α one has di〈α, ωi〉 is either
−1 or 0. Therefore, the PBW degree of a weight λ − β, β ∈ X+ vector in
Wλ is equal to di〈β, ωi〉. �
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