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Abstract

We give an answer to the abstract Capelli problem: Let (G,V ) be a multiplicity-free finite-
dimensional representation of a connected reductive complex Lie Group G and G′ be its derived
subgroup. Assume that the categorical quotient V//G is one-dimensional , i.e., there exists a

polynomial f generating the algebra of G′-invariant polynomials on V (C[V ]G
′

= C[f ]) and
such that f 6∈ C[V ]G. We prove that the category of regular holonomic DV -modules invariant
under the action of G is equivalent to the category of graded modules of finite type over a
suitable algebra A. This has been conjectured by T. Levasseur [27, Conjecture 5.17, p. 508]
(after we had already proved it in some cases: [34], [35], [36], [37]).
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representations, prehomogenous vector spaces, multiplicity-free spaces, Capelli identity, rep-
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1 Introduction

One of the hightlights of the theory of D-modules is the Riemann-Hilbert correspondence. It estab-
lishes a bridge between analytic objects (regular holonomic D-modules) and geometric ones (con-
structible sheaves). This has been proved independently by M. Kashiwara [19] and Z. Mebkhout
[29]. One interprets the Riemann-Hilbert correspondence as a generalization of Deligne’s solution
of the 21-st problem of Hilbert (see N. M. Katz [17] and also Z. Mebkhout [30], [31]). In a sense
the Riemann-Hilbert correspondence generalizes the well known one-to-one correspondence be-
tween vector bundles with integrable connections and local systems. Actually, this correspondence
induces an equivalence of categories between the category of regular holonomic D-modules with a
characteristic variety Λ and that of perverse sheaves on V (where V is a complex manifold) with
microsupport Λ. In fact, a perverse sheaf is not really a sheaf but rather a complex of sheaves. More
precisely, it is an object of the derived category. Also, the notion of a morphism between perverse
sheaves is difficult to handle. But, on the other side, it is clear what is meant by a DV -module
and a DV -linear morphism. So, if one wants to understand the structure of perverse sheaves on V ,
it is certainly worthwhile to take advantage of the Riemann-Hilbert correspondence and to study
the category of regular holonomic DV -modules. These objects are perhaps more accessible.

Let G be a complex connected reductive algebraic group, and let G′ = [G,G] be its derived
subgroup. Denote by (G, ρ, V ) or (G, V ) a rational finite-dimensional linear representation of G
(ρ : G −→ GL(V,C)) and C[V ] the algebra of polynomials on V . The action of G on V extends
to C[V ]. We will denote by C[V ]G ⊂ C[V ] the subalgebra of G-invariant polynomials on V . We
assume that (G, V ) is a multiplicity-free space, that is, the associated representation of G on C[V ]
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decomposes without multiplicities. In other words, each irreducible representation of G occurs
at most once in C[V ] (see definition 1). For the classification and properties of multiplicity-free
spaces, we refer to the work by C. Benson and G. Ratcliff [1], F. Knops [25], A. Leahy[26]. We
assume furthermore that the multiplicity-free space (G, V ) has a one-dimensional quotient (i.e., the
categorical quotient is one-dimensional: dim (V//G) = 1), that is, there exists a polynomial f on
V such that the subalgebra C[V ]G

′

of G′-invariant polynomials on V is the algebra of polynomials
in f (i.e., C[V ]G

′

= C[f ]), and such that f 6∈ C[V ]G (see definition 2). Then, it is known that: G
acts on V with an open orbit, and in this case the representation (G, V ) is called a prehomogeneous
vector space (see M. Sato [46], [47] or T. Kimura [24, chap. 2]). Moreover, it is shown in [24, p. 39,
proposition 2.22 ] that: for such a reductive prehomogeneous vector space, there exists a constant
coefficient differential operator ∆ and a polynomial

b(s) = c(s+ 1)(s+ λ1 + 1) · · · (s+ λn−1 + 1) ∈ Rn[s], c > 0,

called the Bernstein-Sato polynomial of f such that

∆f s+1 = b(s)f s.

M. Kashiwara [18] has shown that the roots of this polynomial are rational, i.e., λj ∈ Q for
1 ≤ j ≤ n− 1.

As usual DV is the sheaf of rings of differential operators on V with holomorphic coefficients.
Let us now point out that the action of G on C[V ] extends to Γ(V,DV )

pol the C-algebra of differ-
ential operators on V with polynomial coefficients in C[V ]. This gives rise to a natural algebra:

the Weyl algebra Γ (V,DV )
G
of polynomial coefficients G-invariant differential operators on V .

If G is a Lie group, let g be the Lie algebra of G and U(g) be the universal enveloping algebra
of g. A representation as above (G, V ) is said to be of ”Capelli type” if (G, V ) is an irreducible
multiplicity-free representation (MF for short) such that: the subalgebra of G-invariant global

algebraic sections Γ (V,DV )
G

is the image of Z (U (g)), the center of U(g), under the differential
τ : g −→ Γ(V,DV )

pol of the G-action, i.e.,

τ (Z (U (g))) = Γ (V,DV )
G

(see definition 3). Note that these representations have been studied by R. Howe and T. Umeda
in [14],[48]: they fall into eight cases (see Appendix).

If (G, V ) is of Capelli type; in particular if (G, V ) is MF, then V. G. Kac [16] asserts that G has
finitely many orbits (Vk)k∈K . Let us denote by Λ :=

⋃
k∈K

T ∗
Vk
V ⊂ T ∗V the Lagrangian subvariety

which is the union of the closure of conormal bundles to the G-orbits (see [41]).
Recall that a coherent DV -module M is said to be holonomic if its characteristic variety char (M)
is Lagrangian. Equivalently, the characteristic variety is of dimension equal to dimV . The holo-
nomic DV -module M is called regular if there exists a global good filtration FM on M such
that the annihilator of grFM (i.e., the ideal annC[T∗V ]gr

FM) is a radical ideal in grFM (see [19,
definition 5.2] or [23, Corollary 5.1.11]).
Denote by Modrh

Λ (DV ) the full category whose objects are holomorphic regular holonomic DV -
modules M, whose characteristic variety char (M) is contained in Λ, equivalently those which
admit global good filtrations stable under the induced action of the Lie algebra g of G on M (see
Remark 12) . The general problem consists in the description of the category ModrhΛ (DV ).
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The expected shape to the general solution of the family of problems is as follows. Let us first
recall that G′ is the derived subgroup of G. We denote by

Ā := Γ (V,DV )
G′

⊂ Γ(V,DV )
pol

the C-algebra formed by G′-invariant global algebraic sections of DV , i.e. the algebra of polynomial
coefficients G′-invariant differential operators. This algebra is well understood (see [14], [27]), in
particular it contains θ the Euler vector field on V . Note that R. Howe and T. Umeda [14] have
proved that when (G, V ) is of Capelli type, the algebra Ā is a polynomial algebra on a canonically
defined set of generators. These generators are precisely the Capelli operators. T. Levasseur [27,
Theorem 4.11, p. 491], H. Rubenthaler [43, p. 1346, proposition 3.1, 1)] or [44, p. 24, theorem
5.3.3] and Z. Yan [49, theorem 1.9] gave a general description of this algebra. We should also
mention the contribution by M. Muro, in the real case (G, V ) = (GL(n,R), S2(Rn)) in [32, Propo-
sition 2.1, p. 356]. Finally, when (G, V ) = (GL(n,C) × SL(n,C),Mn(C)), (GL(2m,C), Λ2C2m),
(GL(n,C), S2Cn), the author obtained a concrete description with explicit relations in [33, Propo-
sition 6, p. 120 ], [34, Proposition 5, p. 637-638 ], [38, Proposition 8, p. 4].

If J := annC[V ]G
′

= annC[f ] ⊂ Ā denotes the two sided ideal annihilator of G′-invariant poly-
nomials on V , we consider A the quotient algebra Ā/J̄ , going modulo a suitable ideal J̄ of Ā
described in section 4: J̄ is the preimage in A of the ideal in A/J defined by specific relations
(28), (29), (30), (31) of Proposition 10. Following the work by Benson - Ratcliff [1], Howe - Umeda
[14], Knopp [25] and Levasseur [27], we will deduce that the quotient algebra A is generated by
the following three operators and relations (see Corollary 11): θ the Euler vector field on V , f the

multiplication by the polymonial f(x) of degree n, and the differential operator ∆ := f

(
∂

∂x

)
as

above satisfying the Bernstein-Sato equations:

∆f = c(
θ

n
+ 1)(

θ

n
+ λ1 + 1) · · · (

θ

n
+ λn−1 + 1), f∆ = c

θ

n
(
θ

n
+ λ1) · · · (

θ

n
+ λn−1), c > 0

and the relations
[θ, f ] = nf , [θ,∆] = −n∆.

Let Modgr(A) be the category whose objects are finitely generated left A-modules T such that for
each s ∈ T , the C-vector space spanned by the set {θns / n ≥ 1} is finite dimensional. In other
words, this category consists of all graded left A-modules T of finite type for θ the Euler vector
field on V .

The functor Ψ : ModrhΛ (DV ) −→ Modgr(A), defined by taking Ψ(M) to be the set of all g-invariant
θ-homogeneous global sections of M, with quasi-inverse Φ : Modgr(A) −→ ModrhΛ (DV ) defined by
Φ(T ) := DV ⊗A T , give the equivalence of categories:

Theorem 20: Let (G, V ) be a representation of Capelli type with a one-dimensional quotient.
Then the categories Modrh

Λ (DV ) and Modgr(A) are equivalent.

This has been conjectured by Levasseur [27, Conjecture 5. 17, p. 508], after we had already proved
it in the following cases (see [33], [34], [35], [36], [37], [38], [39]):

• (G = GL(n)× SL(n), V = Mn(C))
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• (G = SO(n)× C∗, V = Cn)

• (G = GL(n), V = Λ2Cn), n even

• (G = GL(n), V = S2Cn)

• (G = Sp(n)×GL(2),
(
C2n

)2
).

Actually, we are interesting to obtain a uniform proof which treated all the cases at once, that is,
the eight cases where (G, V ) is of Capelli type with a one-dimensional quotient (see Appendix A).
The proof of this result is equivalent to the fact that any object in ModrhΛ (DV ) is generated by its
G′-invariant global sections (see Theorem 15).

It turns out that the equivalence between the categories Modrh
Λ (DV ) and Modgr(A) leads to a

description of the ”analytic” regular holonomic DV -modules in ModrhΛ (DV ) in terms of ”algebraic
homogeneous” DV -modules.

By the way, we should note that the problem of classifying holomorphic regular holonomic D-
modules or equivalently perverse sheaves on a complex manifold (thanks to the Riemann-Hilbert
correspondence) has been treated by several authors. The first such result (around 1980) was
Deligne’s quiver description of perverse sheaves on an affine line with only possible singularity at
the origin [6], which under the Riemann-Hilbert correspondence is the case where G = C× acts
on V = C by scalar multiplication. Deligne’s description uses a characterization of constructible
sheaves given in [7], [8]. We should also mention the contribution of L. Boutet de Monvel [2],
who gave a description of holomorphic regular holonomic D-modules in one variable by using
pairs of finite dimensional C-vector spaces and certain linear maps. A. Galligo, M. Granger and
P. Maisonobe [9] obtained using the Riemann-Hilbert correspondence, a classification of regular
holonomic DCn -modules with singularities along the hypersurface x1 · · ·xn = 0 by 2n-tuples of
C-vector spaces with a set of linear maps. L. Narváez-Macarro [40] treated the case y2 = xp using
the method of Beilinson and Verdier and generalized this study to the case of reducible plane
curves. R. MacPherson and K. Vilonen [28] treated the case with singularities along the curve
yn = xm. T. Braden and M. Grinberg [4] studied perverse sheaves on complex n × n-matrices,
symmetric matrices and 2n× 2n-skew-symmetric matrices, each stratified by the rank. They gave
an explicit description of the category of such perverse sheaves as the category of the representa-
tions of a quiver. In [33], [34], [38], the author classified regular holonomic D-modules associated to
the same stratification using D-modules theoretical methods etc. This paper is organized as follows:

In Section 2, we recall notions on the so called representations of Capelli type. In section 3, we
review some useful results: in particular the one’s saying that: any coherent DV -module equipped
with a good filtration, invariant under the action of the Euler vector field θ, is generated by finitely
many global sections of finite type for θ. Section 4 deals with the concrete description of A the
algebra of G′-invariant differential operators following Benson - Ratcliff [1], Howe - Umeda [14],
Knopp [25], and Levasseur results [27, Theorem 4.11, p. 491]. In section 5, we establish the main
result, namely Theorem 20. This is done by means of the central Theorem 15 saying that: any
object M in the category ModrhΛ (DV ) is generated by finitely many goblal G′-invariant sections.
This result leads to the equivalence of categories between the category ModrhΛ (DV ) and the category
Modgr(A): the image by this equivalence of a regular holonomic DV -module being its set of θ-
homogeneous global sections, which are invariant under the action of G′.
We refer the reader to [3], [12], [19], [20], [21], [22] for notions on D-modules theory.
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2 Review on representations of Capelli type with one di-

mensional quotient

Let G be a connected reductive complex algebraic group. We denote by G′ its derived subgroup.
Let ρ : G −→ GL (V ) be a finite dimensional representation of G, again denoted by (G, V ).
Recall that a polynomial f ∈ C [V ] is called a relative invariant of (G, V ) if there exists a rational
character χ ∈ X (G) such that g · f = χ(g)f for all g ∈ G. One says (see [24, Chap. 2]) that the
representation (G, V ) is a (reductive) prehomogeneous vector space if G has an open dense orbit Ω
in V . In that case, we denote the complement of the open dense orbit by S := V \Ω, it is called the
singular set of (G, V ). Then, it is known (see [24, p. 26, theorem 2.9]) that, the one-codimensional
irreducible components of S are of the form {fi = 0} , 1 ≤ i ≤ r, for some relative invariants fi.
The fi are algebraically independent, and are called the basic or fundamental relative invariants
of (G, V ). Note that, any relative invariant can be (up to non zero constant) written as

∏r
i=1 fi.

When the singular set S is an hypersurface, the prehomogeneous vector space (G, V ) is said to be
regular (see [24, p. 43, theorem 2.28]).

2.1 Multiplicity-free representations

Let us denote by g the Lie algebra of the connected reductive Lie group G, and by t the Lie algebra
of a maximal torus of G. Denote by B the set of dominant weights lattices of (g, t). For a fix
finite-dimensional representation (G, V ) of the reductive group G, we recall that the action of G
on V extends to the algebra of polynomials on V . Then, the rational G-module C[V ] decomposes
as

C[V ] ≃
⊕

β∈B

E(β)m(β), (1)

where E(β) is an irreducible g-module with highest weight β ∈ B and m(β) ∈ N ∪ {∞}. We
recall that the finite-dimensional linear representation (G, V ) is said to be multiplicity-free (MF
for short) if its associated representation of G on C[V ] decomposes without multiplicities. This
means that each irreducible representation E(β) of G occurs at most once in C[V ]. More precisely,
we recall the following definition [27, definition 4.1., p. 484]:

Definition 1 The representation (G, V ) is called multiplicity-free if in (1): m(β) ≤ 1 for all β.
In this case

C[V ] =
⊕

β∈B

V (β)m(β), m(β) = 0, 1,

where V (β) is isomorphic to E(β).

Note that, a classification of MF representations can be found in [1],[16], [26], and a complete list
of irreducible MF representations is given in [14, table p. 612] or [27, appendix, p. 508].

2.1.1 Multiplicity-free spaces with one-dimensional quotient

As above, G′ is the derived subgroup of the complex Lie groupG. We recall the following definition:

Definition 2 (see Levasseur [27] ) A mutiplicity-free-space (G, V ) is said to have a one-dimensional
quotient if there exists a non constant polynomial f0 ∈ C[V ] such that f0 6∈ C[V ]G, and such that
C[V ]G

′

= C[f0].
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2.2 Representations of ”Capelli type”

We continue with (G, V ) the finite dimensional representation of the connected reductive Lie group
G . We have denoted by g = Lie (G) the Lie algebra of G. We consider τ the differential of the
G-action defined as follows:

τ : g −→ Γ(V,D)pol, (2)

where Γ(V,D)pol is the algebra of global algebraic sections of DV , i.e. the algebra of polynomial
coefficients differential operators. For any element ξ in g, the image τ(ξ) is a linear derivation on
C [V ] given by

τ(ξ)(φ)(v) =
d

dt |t=0

(
etξ · φ

)
(v) =

d

dt |t=0
φ
(
e−tξ · v

)
, (3)

for all φ ∈ C[V ], v ∈ V . This image is homogeneous of degree zero in the sense that [θ, τ(ξ)] =
0. Denote by U (g) the universal enveloping algebra of the Lie algebra g. The map τ yields a
homomorphism denoted again by τ , and defined by

τ : U (g) −→ Γ(V,DV )
pol. (4)

Recall that the group G acts naturally on Γ(V,DV )
pol: ∀ g ∈ G, ∀ φ ∈ C[V ], ∀ P ∈ Γ (V,DV )

pol
,

(g · P ) (φ) = g · P
(
g−1 · φ

)
. (5)

The differential of this action is given by P 7→ [τ(ξ), P ] for ξ ∈ g, P ∈ Γ(V,DV )
pol. Therefore, a

subspace I ⊂ Γ(V,DV )
pol is stable under G (resp. G′) if and only if [τ(g), I] ⊂ I (resp. [τ(g′), I] ⊂

I). Then, we know from [27] that the subalgebra of polynomial coefficients G-invariant differential
operators

Γ(V,DV )
G =

{
P ∈ Γ(V,DV )

pol : [τ(g), P ] = 0
}

(6)

is contained in the one’s of G′-invariant differential operators

Ā := Γ(V,DV )
G′

=
{
P ∈ Γ(V,DV )

pol : [τ(g), P ] = 0
}
. (7)

In particular, if Z (U(g)) = U (g)
G

is the center of U (g) then

τ (Z (U(g))) ⊂ Γ (V,DV )
G
. (8)

Now, we give the following definition (see [27, Definition 5.1.]):

Definition 3 We say that the representation (G, V ) is of Capelli type if:

• (G, V ) is irreducible and MF;

• τ (Z (U(g))) = Γ (V,DV )
G
.

Remark 4 In the list of irreducible MF representations (G, V ) given by Howe and Umeda (see
[14, table p. 612] or [27, appendix p. 508]), there are exactly eight of them which are of Capelli
type with one-dimensional quotient (see Appendix A).

6



3 Coherent D-modules generated by their θ-homogeneous

global sections

We shall denote byDV the sheaf of rings of differential operators on V with holomorphic coefficients.

If x denotes a typical element of V , and ∂ :=
∂

∂x
its dual in DV , let θ := Trace(x∂) be the Euler

vector field on V .

Definition 5 Let M be a DV -module. A section u in M is said to be homogeneous if dimC C [θ] u <
∞, i.e. the C-vector space spanned by the set {θnu / n ≥ 1} is finite dimensional. The section u
is said to be homogeneous of degree λ ∈ C, if there exists j ∈ N such that (θ − λ)ju = 0.

Let us recall the following result which will be used later (see [35, Theorem 1.3.] ):

Theorem 6 Let M be a coherent DV -module, equipped with a good filtration (Mk)k∈Z
stable under

the action of θ. Then,

i) M is generated over DV by finitely many homogeneous global sections, i.e.,

M = DV {s1, · · · , sk ∈ Γ (V,M) , dimC C [θ] sj < ∞, 0 ≤ j ≤ k} ,

ii) For any k ∈ N, λ ∈ C, the vector space Γ (V,Mk)
⋂
[
⋃
p∈N

ker (θ − λ)p
]
of homogeneous global

sections in Mk, of degree λ, is finite dimensional.

Remark 7 We will describe a holomorphic classification of regular holonomic DV -modules in
ModrhΛ (DV ), but Theorem 6 permits to reduce these objects to ”algebraic homogeneous” DV -modules.

4 Algebras of invariant differential operators on a class of

mutiplicity-free spaces

As in the introduction, (G, V ) is a finite-dimensional representation of a connected reductive Lie
group G and G′ := [G,G] is the derived subgroup of G. Recall that the action of the group
G extends to various algebras, namely C[V ] = S(V ∗) the algebra of polynomial functions on

V , Γ(V,DV )
pol the algebra of differential operators with polynomial coefficients in C[V ], and

C[V ∗] = S(V ) identified with differential operators with constant coefficients. We thus obtain

algebras of invariants: C[V ]G, S(V )G, and Γ (V,DV )
G
.

If (G, V ) is a prehomogeneous vector space, let f0, · · · , fm be its fundamental relative invariants
and let χj ∈ X (G), 0 ≤ j ≤ m, be their weight. There exist relative invariants f∗

j (∂) ∈ S(V ) with

weight χ−1
j , 0 ≤ j ≤ m (see [27, Section 3.1]). We set ∆j := f∗

j (∂) for j = 0, · · · ,m.

It is known that the algebra C[V ]G
′

of G′-invariant polynomials is a polynomial ring

C[V ]G
′

= C[f0, · · · , fm], (9)

and that
S(V )G

′

= C[∆0, · · · ,∆m] (10)

7



(see [27, Lemma 4.2, (d) and formula (4.3) p. 487]).
Consider the following multiplication map

m : C[V ]⊗ S(V ) −→ Γ(V,DV )
pol

φ⊗ f 7−→ φf(∂).

(11)

One knows from Howe - Umeda [14] that through this map the (C[V ], G)-module Γ (V,DV )
pol

identifies with C[V ]⊗ S(V ):

Γ (V,DV )
pol ≃ C[V ]⊗ S(V ) (12)

where the group G acts on Γ (V,DV )
pol

as follows: ∀ φ ∈ C[V ], ∀ P ∈ Γ (V,DV )
pol

(g · P ) (φ) = g · P
(
g−1 · φ

)
. (13)

First, we are interesting in the description of the algebras of G-invariant differential operators on a
multiplicity-free space following the work by Benson - Ratcliff [1], Howe - Umeda [14], Knopp [25]
and Levasseur [27]. Actually, the isomorphism m is G-invariant, hence the algebra of G-invariant
differential operators decomposes as a direct sum of one-dimensional irreducible G-modules CEγ :

Γ(V,DV )
G =

⊕

γ∈Γ

CEγ (14)

where Γ is the set of dominant weights lattices of the pair (g, t) of the Lie algebras of G and of a
maximal torus of G respectively.

Let

Eγ (x, ∂x) :=
1

dimC Eγ
m (Eγ) ∈ Γ(V,DV )

G (15)

be the operator corresponding to Eγ . The operators Eγ (x, ∂x) are called the normalized Capelli
operators. Put

Ej := Eλj
(x, ∂x) 0 ≤ j ≤ r. (16)

We know from [14, Proposition 7.1] that the given of a multiplicity-free representation is equiv-
alent to the given of a commutative algebra of G-invariant differential operators:

(G : V ) multplicity-free ⇐⇒ Γ(V,DV )
G commutative. (17)

In that case the algebra Γ(V,DV )
G

is generated by the normalized Capelli operators Ej for 0 ≤
j ≤ r (see [14, Theorem 9.1] or [1, Corollary 7.4.4]):

Theorem 8 (Howe - Umeda). For a fix multiplicity-free representation (G, V ), the algebra

Γ(V,DV )
G
= C [E0, · · · , Er]

is a commutative polynomial ring.

From now on, we focus our attention in the subalgebras of G (resp. G′)-invariant global
algebraic sections of DV on multiplicity-free representations with a one-dimensional quotient.
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4.1 Invariant differential operators on multiplicity-free spaces with one

dimensional quotient

Recall that G′ denotes the derived subgroup of G. Recall also that a multplicity-free representation
(G, V ) is said to be with one-dimensional quotient if there exists a polynomial function f ∈ C[V ]
such that

C[V ]G
′

= C[f ] and f 6∈ C[V ]G. (18)

In fact, the polynomial function f is a relative invariant of degree n of weight χ ∈ X (G), and there
exists an associated relative invariant differential operator f∗ := f(∂) ∈ C[V ∗] of degree n with
weight χ−1. More precisely, set ∆ := f∗(∂). We know from Sato - Bernstein - Kashiwara (see
[24, Proposition 2.22] and [18]) that there exists a polynomial b(s) ∈ R[s] of degree n called the
Bernstein - Sato polynomial such that:

i) b(s) = c
∏n−1

j=0 (s+ λj + 1), c > 0;

ii) ∆(f s+1) = b(s)f s;

iii) λj+1 ∈ Q∗+, 0 ≤ j ≤ n− 1, λ0 = 0.

(19)

Set
f := f0 and ∆ := ∆0 = f∗(∂). (20)

Following T. Levasseur [27, Section 4.2], recall that if (G, V ) is a multiplicity-free representation
of one-dimensional quotient then we have

C[V ]G
′

= C[f ], S(V )G
′

= C[V ∗]G
′

= C[∆] and E0 = f∆. (21)

Now, consider A := Γ (V,DV )
G′

the algebra of G′-invariant (polynomial coefficients) differential
operators on V :

A ⊃ Γ (V,DV )
G

and J :=
{
P ∈ Γ (V,DV )

G
/ Pfm = 0 for all m ∈ N

}
⊂ A (22)

is the annihilator of the G′-invariant polynomial functions on V .
Recall that θ denotes the Euler vector field on V , θ ∈ Γ (V,DV )

G
. T. Levasseur [27, Lemma 4.10]

proved that: for any G-invariant differential operator P ∈ Γ (V,DV )
G

, there exists an associated
Bernstein-Sato polynomial bP (s) ∈ C[s] such that the operator P − bP (θ) belongs to J . In
particular, one can find a polynomial bEj

(s) associated with each Capelli operator Ej , 0 ≤ j ≤ r,
such that if we consider Ωj to be

Ωj := Ej − bEj
(θ) ∈ J for j = 0, · · · , r, (23)

then we obtain the following results [27, Theorem 4.11, (i), (v)]:

Theorem 9 If (G, V ) is a fix multplicity-free representation with one-dimensional quotient, then

A = C 〈f,∆, θ,Ω1, · · · ,Ωr〉 , (24)

9



J = Σr
j=1AΩj . (25)

Note that, the operators f and ∆ do not commute nor do not commute with the operators
Ω1, · · · ,Ωr.
By the way, using these results, T. Levasseur [27, Theorem 4.15] gives a duality (of Howe type)
correspondence between (multplicity-free) representations (with a one-dimensional quotient) of G
and lowest weight modules over the Lie algebra generated by f and ∆ (which is infinite dimen-
sional when the degree of f is ≥ 3). Actually, this duality recovers and extends results obtained
by H. Rubenthaler when the representation (G, V ) is of ”commutative parabolic type” (see [42,
Proposition 4.2] and also [10, Corollary 4.5.17]).
We should note that when (G, V ) is irreducible, then

Ωr = 0, the two sided ideal J = Σr−1
j=0AΩj = Σr−1

j=0ΩjA, and (26)

A = C 〈f,∆, θ,Ω1, · · · ,Ωr−1〉 . (27)

In the case (GL(n,R), S2(Rn)) of the real general linear group action on real symmetric matrices,
M. Muro proved this formula in [32, Proposition 2.1, p. 356]. When (G, V ) = (GL(n,C) ×
SL(n,C),Mn(C)), (GL(2m,C), Λ2C2m), (GL(n,C), S2Cn), this non commutative algebra is
obtained with explicit relations in [34, Proposition 5, p. 637-638 ], [33, Proposition 6, p. 120
], [38, Proposition 8, p. 4]. Actually, the result (27) generalizes the one’s of H. Rubenthanler
(see [43, Proposition 3.1] or [44, Theorem 5.3.3.]) obtained when (G, V ) is an irreducible regular
prehomogeneous representation of commutative parabolic type. We have the following proposition.

Proposition 10 Let (G, V ) be an irreducible multiplicity-free representation with a one-dimensional
quotient. The following relations hold in the quotient algebra A/J :

[θ, f ] = nf , (28)

[θ,∆] = −n∆, (29)

f∆ = c
θ

n
(
θ

n
+ λ1) · · · (

θ

n
+ λn−1), c > 0 (30)

∆f = c(
θ

n
+ 1)(

θ

n
+ λ1 + 1) · · · (

θ

n
+ λn−1 + 1), (31)

fj∆j = cj
θ

n
(
θ

n
+ λ1) · · · (

θ

n
+ λn−j−1), cj > 0, 0 ≤ j ≤ r (32)

where λk ∈ Q for k = 0, · · · , n− 1

Proof. We should note that by [27, Remark 4.12, (2)], we have the homogeneity of degree n
(resp. −n) of the polynomial f (resp. ∆), that is, the formula (28), (29).
Recall that Ωj := Ej − bEj

(θ) ∈ J , for j = 0, · · · , r, so we clearly have

Ej = bEj
(θ) in A/J . (33)

Recall also that from [27, p. 490], we have E0 = f∆ and bE0
(s) = b(s − 1) where b(s) =

c(s + 1)(s + λ1 + 1) · · · (s + λn−1 + 1) is the b-function of f . Then, using this last in (33), we get
(30)

f∆ = c
θ

n
(
θ

n
+ λ1) · · · (

θ

n
+ λn−1) in A/J .
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Next, since ∆f s+1 = b(s)f s, that is, (∆f)f s = b(s)f s we get the formula (31):

∆f = b(θ) mod J .

More generally, we may take Ej = fj∆j and using (33) we get

fj∆j = bEj
(θ) in A/J

with bEj
(s) = bj(s−1) = cjs(s+λ1) · · · (s+λn−j−1), cj > 0, 0 ≤ j ≤ r, that is, the formula (32).

Let K be the ideal of A/J defined by the relations (28), (29), (30), (31) of Proposition 10.
Then the preimage of K under the quotient map A −→ A/J is an ideal of A containing properly
J . Let us denote by J the preimage in A of the ideal K. Denote by A the quotient algebra of A
by J :

A := A/J . (34)

We have the following corollary which is a particular case of T. Levasseur’s result in [27, Theorem
3.9, p. 483] or H. Rubenthaler [43, Theorem 2.8, p. 1345], [44, Theorem 7.3.2, p. 37]:

Corollary 11 The quotient algebra A is generated by f, θ,∆ satisfying the relations (28), (29),
(30), (31):

[θ, f ] = nf ,

[θ,∆] = −n,∆

f∆ = c
θ

n
(
θ

n
+ λ1) · · · (

θ

n
+ λn−1),

∆f = c(
θ

n
+ 1)(

θ

n
+ λ1 + 1) · · · (

θ

n
+ λn−1 + 1).

5 DV -modules on representations of ”Capelli type” with

one-dimensional quotient generated by their invariant global

sections

In this section, we continue with the representation (G, V ) of the connected (reductive) Lie groupG
as in Section 4, and G′ its derived subgroup. It is well known, in this case, that G (resp. G′) acts on
V with finitely many orbits (Vk)k∈K (see [16]). Let Λ ⊂ T ∗V be the Lagrangian subvariety which
is the union of the closure of conormal bundles T ∗

Vk
V , where Vk are the orbits of G (see Panyushev

[41]). We recall that the action of G on V defines a morphism (see (2), (3)) τ : g −→ ΘV , ξ 7→ τ(ξ)
from the Lie algebra g of G to the subalgebra ΘV of DV consisting of vector fields on V , i.e. the
tangent sheaf on V . So the Lagrangian variety Λ is defined by the common zeros of the principal
symbols of vector fields corresponding to infinitesimal generators of G.
Recall that a DV -module is said to be holonomic if it is coherent and its characteristic variety is
Lagrangian. Equivalently the characteristic variety is of dimension equal to dimV . A holonomic
DV -module M is regular if there exists a global good filtration FM on M such that the annihilator
of grFM (i.e., the ideal annC[T∗V ]gr

FM) is a radical ideal in grFM (see [19, definition 5.2] or [23,

Corollary 5.1.11]). As in the introduction, we denote by ModrhΛ (DV ) the full category consisting
of all holomorphic regular holonomic DV -modules whose characteristic variety Λ is contained in
the union of the closure of conormal bundles to the G-orbits (see Panyushev [41]). Let M be a
holomorphic regular holonomicDV -module in ModrhΛ (DV ). We know from Brylinski and Kashiwara
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[5, p. 389, (1.2.4)] that M has a good filtration (Mj)j∈Z satisfying the following condition:
For a differential operator P of degree m (P ∈ Γ(U,DV (m)), where U is an open subset of V ), if
its principal symbol σm(P ) vanishes on the characteristic variety char(M), then we have

PMj ⊂ Mj+m−1 for any j ∈ Z. (35)

In particular, if ξ is a vector field (corresponding to an infinitesimal generator of G) which de-
scribes the characteristic variety Λ, its principal symbol vanishes on Λ ⊃ char(M) (so vanishes on
char(M)). Then the relation (35) implies that

ξMj ⊂ Mj+1−1, that is (36)

ξMj ⊂ Mj for any j ∈ Z. (37)

Then we have the following

Remark 12 The objects of the category ModrhΛ (DV ) are holomorphic regular holonomic DV -
modules equipped with global good filtrations which are preserved by the action of the Lie algebra g

of G.

We recall the folloing definition:

Definition 13 Let G be an algebraic group acting on a smooth variety V , and α : G×V −→ V the
group action morphism (α (g, v) = g · v (g ∈ G, v ∈ V )). One says that the group G acts on a well
filtered DV -module M if it preserves the good filtration on M, and there exists an isomorphism
of DG×V -modules u : α+(M)

∼
−→ pr+V (M) satisfying the associativity condition coming from the

group multiplication of G (prV : G× V −→ V, (g, v) 7−→ v is the projection onto V ).

We specialize further to the case where (G, V ) is of Capelli type, i.e., (G, V ) is an irreducible

multiplicity-free-space such that Γ (V,DV )
G

is equal to the image of the center of U(g) under the

differential τ : g −→ Γ (V,DV )
pol

of the G-action (see definition 3). More precisely, assume that
(G, V ) is a representation of Capelli type with a one-dimensional quotient, i.e., there exists a non
constant polynomial f such that f 6∈ C[V ]G, and such that C[V ]G

′

= C[f ] (see definition 2). Let G1

be the simply connected cover of the derived subgroup G′. T. Levasseur [27, Lemma 5.15] proved
that the category of (G1×C)-equivariant DV -modules, where C is the centre of G, is equivalent to
the category ModrhΛ (DV ) of holomorphic regular holonomic DV -modules studied here. Therefore,
we deduced the following remark:

Remark 14 The action of G on V extends to an action of the universal covering G1 on DV -
modules M in ModrhΛ (DV ). Specially the derived subgroup G′ acts on M.

This section consists in the proof of the main general argument of the paper. We show that
any DV -module M in the category ModrhΛ (DV ) is generated by its invariant global sections under
the action of G′.

Theorem 15 A DV -module M in ModrhΛ (DV ) is generated by its G′-invariant global sections.

Firstly, we give some basic results which will be used in the proof of this central theorem.

12



5.1 Extension of sections and G-invariance

For the proof of Theorem 15, we shall use an algebraic point of view. Since the concerning DV -
modules are regular holonomic, it is equivalent to consider the algebraic case or the analytic one.
We need the following two lemmas in the proof:

Lemma 16 ([46, Lemma 1, p. 247, n◦55])
Let V be an affine variety, f a regular function on V , and Ω the set of points x ∈ V such that
f(x) 6= 0. Let F be a coherent algebraic sheaf on V , and s ∈ Γ (Ω,F) a section of F on Ω. Then,
for any large enough N ∈ N, there exists a section s′ of F on the whole V (s′ ∈ Γ (V,F)), such
that s′ = sfN on Ω, i.e.,

s′|Ω = sfN . (38)

Lemma 17 Consider G′ the complex algebraic group acting on the affine algebraic variety V , f a

G′-invariant regular function on V
(
f ∈ C[V ]G

′

)
, Ω the complement in V of the hypersurface de-

fined by f = 0, and F a G′-equivariant coherent algebraic sheaf on V . Then, any G′-invariant sec-

tion s of F on Ω
(
s ∈ Γ (Ω,F)

G′
)
extends to a G′-invariant global section m

(
m ∈ Γ (V,F)

G′
)
.

Proof. Recall that V is an affine algebraic variety, i.e. V = SpecA, where A := C[V ] is an affine
algebra over C and Ω = SpecA[ 1f ] with A[ 1f ] = C[V ][ 1f ] = C[Ω].
Since F is a coherent algebraic sheaf on V , then F is a finitely generated A-module. We consider
the restriction of F on Ω:

F [Ω] := F
⊗

A

A[
1

f
]. (39)

The previous lemma says that any section s of F on Ω (s ∈ Γ (Ω,F)) extends to a global section
m (m ∈ Γ (V,F)) such that

m|Ω = sfp for p ≫ 0. (40)

So, from (39) and (40), the section s can be written as

s =
m

f r
for r ≫ 0. (41)

Recall that the group G′ acts on A and on F . Then, for any g ∈ G′ acting on s, we have

g.s = g.

(
m

f r

)
=

g.m

g.f r
. (42)

Since s is a G′-invariant section (g.s = s) and f is a G′-invariant regular function (f = g.f), then
the previous equality becomes:

s =
g.m

f r
. (43)

Using (41) we get
m

f r
=

g.m

f r
⇐⇒

m− g.m

f r
= 0. (44)

This means that there exists a large integer N ≫ 0 such that

(m− g.m)fN = 0 ⇐⇒ mfN = (g.m)fN . (45)
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Since f is G′-invariant (fN = g.fN), this last becomes

mfN = (g.m)(g.fN ), (46)

that is,
mfN = g.(mfN). (47)

Thus mfN is a G′-invariant global section extending s
(
mfN ∈ Γ (V,F)G

)

5.2 Proof of theorem 15

Recall that the irreducible multiplicity free representation (G, V ) has a Zariski open dense orbit
Ω, and a relative invariant f (i.e., there exists a character χ ∈ X (G) such that g · f = χ(g)f for
g ∈ G) which is a G′-invariant homogeneous polynomial of degree n such that C[V ]G

′

= C[f ]. In
this case, we know from V. G. Kac [16] that G has finitely many orbits, namely n+ 1 orbits. We
denote by Vk the closure of the G-orbits Vk for 0 ≤ k ≤ n with V0 = {0}. Let us consider again
f as the mapping f : V −→ C, x 7→ f(x), and V n−1 the hypersurface defined by f = 0, then we
have Ω := V \V n−1 the complement in V of the V n−1.

Let M be a holomorphic regular holonomic DV -module in the category ModrhΛ (DV ). One sets

MG′

:= DV {m1, · · · ,mp ∈ Γ(V,M)G
′

such that dimCC[θ]mj < ∞ for 1 ≤ j ≤ p}

the submodule of M generated, over DV , by finitely many homogeneous global sections, which are
invariant under the action of G′.

First, we claim that on the open dense orbit Ω, we have the equality M = MG′

.
Indeed, let j : Ω −→ V be the open embedding. The restriction MΩ := j+ (M) is a G′-equivariant

DΩ-module. Notice that, if we denote again by f the mapping f : V −→ A1 , this identifies Ω/G
with Gm = A1\{0}. The generic stabilizers H in G′ of points in Ω are connected (see Appendix
C, Remark), so the G′-equivariant DΩ-module MΩ is the pullback by f of a DΩ/G-module N on
Ω/G:

MΩ = f+ (N ) with N a DΩ/G-module. (48)

Thus on Ω, the G′-invariant sections ofMΩ, i.e., Γ (Ω,MΩ)
G′

(which are exactly the inverse images
by f of Γ (Gm,N ) the sections on Gm of N ) generate Γ (Ω,MΩ) as a Γ (Ω,OΩ)-module:

Γ (Ω,MΩ)
G′

= f−1 (Γ (Gm,N )) , (49)

and
Γ (Ω,MΩ) = Γ (Ω,OΩ)

{
Γ (Ω,MΩ)

G′
}
= Γ (Ω,OΩ)

{
f−1 (Γ (Gm,N ))

}
. (50)

Now, for every section m ∈ Γ (Ω,MΩ), one can find a sufficiently large integer N ≫ 0 such that
the section obtained by multiplication by fN , that is,

mfN ∈ Γ (Ω,MΩ) (51)

extends to a global section of M (see Lemma 16), i.e., the section mfN lifts to a global section

m̃fN ∈ Γ (V,M) . (52)
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If m is a G′-invariant section on Ω (m ∈ Γ (Ω,MΩ)
G′

), so is mfN , i.e.,

mfN ∈ Γ (Ω,MΩ)
G′

. (53)

Then, according to the Lemma 17, we can choose this lifting section m̃fN to be G′-invariant:

m̃fN ∈ Γ (V,M)
G′

. (54)

Thus, by (50) (and since the mapping f is invertible on Ω), the image of Γ (V,M)
G′

in Γ (Ω,MΩ)
G′

generates Γ (Ω,MΩ)
G′

as a Γ (Ω,OΩ)-module.
Since Ω is an affine space, we see that the restriction of MG′

to Ω equals MΩ:

j+
(
MG′

)
= MΩ. (55)

Hence on Ω, the quotient module M/MG′

is zero, namely

M/MG′

= 0 on Ω, (56)

and its support lies in the hypersurface V n−1:

Supp
(
M/MG′

)
⊂ Vn−1. (57)

Now, since we already know that M is a G′-equivariant DV -module (see Remark 14), then
MG′

is also G′-equivariant, hence such is the quotient module M/MG′

. Moreover, since V n−1

has a finite number of G′- orbits, we have M/MG′

with support on the closure of the G′-orbits,
i.e.,

Supp
(
M/MG′

)
⊂ Vk for 0 ≤ k ≤ n− 2. (58)

In particular, the quotient module M/MG′

is supported by V0 (the Dirac module with support at
the origin), then M = MG′

.

6 Equivalence of categories

In this section, we establish the main result of this paper: Theorem 20.
Recall that A = C 〈f,∆, θ,Ω1, · · · ,Ωr−1〉 is the algebra of G′-invariant differential operators. Since
the Euler vector field θ belongs to A, we can decompose the algebra A under the adjoint action of
θ:

A =
⊕

k∈N

A [k] , A [k] = {P ∈ A : [θ, P ] = kP} (59)

and we can check that
∀ k, l ∈ N, A [k] · A [l] ⊂ A [k + l] . (60)

so A is a graded algebra.
Recall also that J ⊂ A is the annihilator of C[f ]. We have denoted J the preimage in A of the
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ideal in A/J defined by the relations (28), (29), (30), (31) of Proposition 10:

[θ, f ] = nf ,

[θ,∆] = −n,∆

f∆ = c
θ

n
(
θ

n
+ λ1) · · · (

θ

n
+ λn−1),

∆f = c(
θ

n
+ 1)(

θ

n
+ λ1 + 1) · · · (

θ

n
+ λn−1 + 1).

We put A the quotient of A by J : A := A/J (see Corollary 11).
Now, since J is an ideal of A it decomposes also under the adjoint action of θ:

J =
⊕

k∈N

J [k] , J [k] = J ∩ A [k] . (61)

Note that J is an homogeneous ideal of the graded algebra A, thus the quotient algebra A = A/J
is naturally graded by

A [k] :=
(
A/J

)
[k] = A [k] /J [k] . (62)

As in the introduction, we denote by Modgr(A) the category whose objects are finitely gener-
ated leftA-modules T such that for each s ∈ T , the C-vector space spanned by the set {θns / n ≥ 1}
is finite dimensional. Equivalently the category consisting of graded A-modules T of finite type
such that dimC C [θ] u < ∞ for any u in T . In other words, T is a direct sum of finite dimensional
C-vector spaces:

T =
⊕

α∈C

Tα, Tα :=
⋃

p∈N

ker (θ − α)
p
(with dimC Tα < ∞) (63)

equipped with the endomorphisms f , θ, ∆ of degree n, 0, −n, respectively and satisfying the
relations (28), (29), (30), (31) of Proposition 10 with (θ − α) being a nilpotent operator on each
Tα.

Recall that ModrhΛ (DV ) stands for the category consisting of holomorphic regular holonomic
DV -modules whose characteristic variety is contained in Λ the union of conormal bundles to the
orbits for the action of G on the complex vector space V .

Let M be an object in the category ModrhΛ (DV ), denote by Ψ (M) the submodule of Γ (V,M)
consisting of G′-invariant homogeneous global sections u in M such that dimC C [θ]u < ∞:

Ψ (M) :=
{
u ∈ Γ (V,M)

G′

, dimC C [θ]u < ∞
}
. (64)

We are going to show that Ψ (M) is an object in Modgr(A).

Let (σ1, · · · , σp) ∈ Γ (V,M)
G′

be a finite family of homogeneous invariant global sections generating
the DV -module Ψ (M) (see Theorem 15):

Ψ (M) := DV 〈σ1, · · · , σp〉 . (65)

We are going to see that the family (σ1, · · · , σp) generates also Ψ (M) as an A-module: indeed, an
invariant section σ ∈ Ψ(M) can be written as

σ =

p∑

j=1

qj (X,D)σj where qj ∈ DV . (66)
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Let Gc be the compact maximal subgroup of G′ and denote by q̃j :=
∫
Gc

g · qjdg the average of qj

over Gc. Then, the average q̃j belongs to the algebra A (i.e., q̃j ∈ A). Now, denote by fj the class
of q̃j modulo J :

fj := q̃j mod J that is fj ∈ A. (67)

Therefore, we also have

σ =

p∑

j=1

q̃jσj =

p∑

j=1

fjσj with fj ∈ A. (68)

This last means that
Ψ (M) := A〈σ1, · · · , σp〉 , (69)

and Ψ (M) is an A-module. Moreover, according to Theorem 6 ii), we have

Ψ (M) =
⊕

α∈C

Ψ(M)α (70)

where

Ψ (M)α := [Ψ (M)]
⋂


⋃

p∈N

ker(θ − α)p


 (with dimC Ψ(M)α < ∞) (71)

is the finite dimensional C-vector space of homogeneous global sections of degree α ∈ C in Ψ (M).
Finally, we can check that

A [k]Ψ (M)α ⊂ Ψ(M)α+k for all k ∈ N, α ∈ C. (72)

So, Ψ (M) is a graded A-module of finite type for the Euler vector field θ thanks to (69)-(72). This
means that Ψ (M) is an object in Modgr(A).

Conversely, let T be an object in the category Modgr(A), one associates to it the DV -module

Φ (T ) := M0

⊗

A

T (73)

where M0 := DV /J . Then Φ (T ) is an object in the category ModrhΣ (DV ).

Thus, we have defined two functors

Ψ : ModrhΛ (DV ) −→ Modgr(A), Φ : Modgr(A) −→ ModrhΛ (DV ). (74)

We need the two following lemmas:

Lemma 18 The canonical morphism

T −→ Ψ(Φ (T )), t 7−→ 1⊗ t (75)

is an isomorphism, and defines an isomorphism of functors IdModgr(A) −→ Ψ ◦ Φ.

Proof. We have set M0 := DV /J . Denote by ε (the class of 1D modulo J ) the canonical
generator of M0 . Recall that Gc is the compact maximal subgroup of G′. Let h ∈ DV , denote
by h̃ ∈ A its average on Gc and by ϕ the class of h̃ modulo J , that is, ϕ ∈ A.

Since ε is G′-invariant, we get h̃ε = h̃ε = εϕ . Moreover, we have h̃ϕ = 0 if and only if h̃ ∈ J
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, in other words ϕ = 0 . Therefore, the average operator (over Gc) DV −→ A, h 7−→ h̃ induces
a surjective morphism of A-modules v : M0 −→ A . More generally, for any A-module T in the
category Modgr(A) the morphism v ⊗ 1T is surjective

vT : M0

⊗

A

T −→ A
⊗

A

T = T (76)

which is the left inverse of the morphism

uT : T −→ M0

⊗

A

T , t 7−→ ε⊗ t, (77)

that is, (v ⊗ 1T )◦ (ε⊗ 1T ) = v (ε) = 1T . This means that the morphism uT is injective. Next, the
image of uT is exactly the set of invariant sections of M0

⊗
A

T = Φ(T ), that is, Ψ(Φ(T )) : indeed

if σ =
p∑

i=1

hi ⊗ ti is an invariant section in M0

⊗
A

T , we may replace each hi by its average h̃i ∈ A

, then we get

σ =

p∑

i=1

h̃i ⊗ ti = ε⊗

p∑

i=1

h̃iti ∈ ε⊗ T , (78)

that is,
p∑

i=1

h̃iti ∈ T . Therefore, the morphism uT is an isomorphism from T to Ψ (Φ (T )) and

defines an isomorphism of functors.

Next, we note the following:

Lemma 19 The canonical morphism

w : Φ (Ψ (M)) −→ M (79)

is an isomorphism and defines an isomorphism of functors Φ ◦Ψ −→ IdModrh
Σ
(DV ).

Proof. As in the theorem 15, the DV -module M is generated by a finite family of invariant
sections (σi)i=1,··· ,p ∈ Ψ(M) so that the morphism w is surjective. Now, consider Q the kernel of
the morphism w : Φ (Ψ (M)) −→ M . It is also generated over DV by its invariant sections , that
is, by Ψ (Q). Then we get

Ψ (Q) ⊂ Ψ [Φ (Ψ (M))] = Ψ (M) (80)

where we used Ψ ◦Φ = IdModgr(A) (see the preceding Lemma 18). Since the morphism Ψ (M) −→
M is injective (Ψ (M) ⊂ Γ (V, M)), we obtain Ψ (Q) = 0. Therefore Q = 0 (because Ψ (Q)
generates Q).

This section ends by Theorem 20 established by means of the preceding lemmas.

Theorem 20 Let (G, V ) be a representation of Capelli type with a one-dimensional quotient. Then
the functors Φ and Ψ induce equivalence of categories

ModrhΛ (DV )
∼
−→ Modgr(A). (81)
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Appendix

Appendix A: Representations of Capelli type with one-dimensional quotient

(G, V ) deg f b(s)

(1) (SO(n)× C∗, Cn) 2 (s+ 1)(s+ n
2 )

(2) (GL(n), S2Cn) n
∏n

i=1(s+
i+1
2 )

(3) (GL(n), Λ2Cn), n even n
2

∏n
i=1(s+ 2i− 1)

(4) (GL(n)× SL(n), Mn(C)) n
∏n

i=1(s+ i)

(5) (Sp(n)×GL(2),
(
C2n

)2
) 2 (s+ 1)(s+ 2n)

(6) (SO(7)× C∗, spin = C8) 2 (s+ 2)(s+ 4)

(7) (G2 × C∗, C7) 2 (s+ 1)(s+ 7
2 )

(8) (GL(4)× Sp(2),M4(C)) 4 (s+ 1)(s+ 2)(s+ 3)(s+ 4)

Appendix B: Generic isotropy subgroups GX0
for representations of Capelli type

(G, V ) GX0
:= isotropy subgroup at generic point X0 ∈ V \f−1(0)

(1) (SO(n) × C∗, Cn) SO(1)× SO(n− 1)

(2) (GL(n), S2Cn) O(n)

(3) (GL(n), Λ2Cn), n even Sp(n2 )

(4) (GL(n)× SL(n), Mn(C)) Sp(1)× Sp(n− 1)

(5) (Sp(n)×GL(2),
(
C2n

)2
) SL(n)

(6) (SO(7)× C∗, spin = C8) SO(1)× SO(6)

(7) (G2 × C∗, C7)

(8) (GL(4)× Sp(2),M4(C))

(see A. Sasada [45, (1), (2), (3), (13), (15) p. 79-83] or Sato-Kimura [47, (1), (2), (3), (13), (15),
p. 144-145])

Appendix C: Generic isotropy subgroups H for derived subgroups G′ of the group G
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(G′, V ) H = isotropy subgroup at a generic point X0 ∈ V \f−1(0)

(1) (SO(n), Cn) SO(1)× SO(n− 1)

(2) (SL(n), S2Cn) SO(n)

(3) (SL(n), Λ2Cn), n even Sp(n2 )

(4) (SL(n)× SL(n), Mn(C)) Sp(1)× Sp(n− 1)

(5) (Sp(n)× SL(2),
(
C2n

)2
) SL(n)

(6) (SO(7), spin = C8) SO(1)× SO(6)

(7) (G2, C
7)

(8) (SL(4)× Sp(2),M4(C))

Remark. The generic isotropy1 subgroups H of (G′, V ) are connected.
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[42] H. Rubenthaler, Une dualité du type de Howe en dimension infinie, C.R. Acad. Sci. Paris,
Ser. I 314,no. 6, (1992), 495-440.

[43] H. Rubenthaler, Algebras of invariant differential operators on a class of multiplicity-free
spaces, C.R. Acad. Sci. Paris, Ser. I 347, (2009), 1343–1346.

[44] H. Rubenthaler, Invariant differential operators and infinite dimensional Howe-Type corre-
spondence, Preprint arXiv:0802.0440v1[math.RT] 4 Feb (2008).

[45] A. Sasada, Generic isotropy subgroups of irreducible prehomogeneous vector spaces with rel-
ative invariants, Preprint of Kyoto University, Kyoto Math. 98-06 (1998)

[46] M. Sato, The theory of the prehomogeneous vector spaces, notes by T. Shintani (in Japanese),
Sugaku no Ayumi 15-1, (1970) 85-157.

[47] M. Sato, T. Kimura, A classification of prehomogeneous vector spaces and their relative
invariants. Nagoya Math. J. 65, (1977) 1–155.

[48] T. Umeda, The Capelli identities, a century after. Selected papers on harmonic analysis,
groups, and invariants, Amer. Math. Soc. Transl. Ser. 2, 183, (1998) 51–78.

[49] Z. Yan, Invariant differential operators and holomorphic functions spaces, J. Lie Theory 10,
(1) (2000) 1–31

Philibert Nang

École Normale Supérieure,
Laboratoire de Recherche en Mathématiques
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