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CONCENTRATION FUNCTION FOR PYRAMID AND

QUANTUM METRIC MEASURE SPACE

RYUNOSUKE OZAWA

Abstract. In this paper, we generalize the concentration function for
metric measure space to one for pyramid and quantum metric measure
space. We also study the limit of the concentration function for conver-
gent sequences of pyramids and quantum metric measure spaces.

1. Introduction

Gromov [8, Chapter 3.12+] introduced the box distance function □ and

the observable distance function dconc on the set X of isomorphism classes of
mm-spaces (metric measure spaces). The box distance function is a simple
and natural distance function on X . Vershik suggested to construct a com-
pactification of (X1,□) and to define basic metric measure invariants for an
element of compactification, where we denote by X1 the set of isomorphism
classes of mm-spaces with diameter at most one (see [17] and [8, Section
3.12 .7]). An answer is given by Elek [2]. He introduced a qmm-space (quan-
tum metric measure space) and proved that the set of isomorphism classes
of qmm-spaces Q1 is a compactification of (X1,□). The idea of qmm-space
comes from the graph limit theory due to Lovász-Szegedy [12]. He also ex-
tended two metric measure invariants called the observable diameter and
the separation distance to qmm-spaces and proved some limit formulas for
a convergent sequence in Q1.

The observable distance function comes from the idea of concentration
of measure phenomenon due to Lévy and Milman. Gromov [8, Chapter
3.12+] introduced a pyramid and proved that the set of pyramids Π is a

compactication of (X , dconc). Moreover, Shioya [15,16] constructed a metric
on Π which is compatible with the topology of the compctification. This
compactification is useful to describe the asymptotic behavior of a sequence
of Riemannian manifolds with unbounded dimension (see [13–16]). Ozawa-
Shioya [13] extended the observable diameter and the separation distance
to Π and proved some limit formulas for a convergent sequence in Π, which
are applied to study a significant property of the asymptotic behavior of a
sequence of pyramids, so-called the phase transition property.

The concentration function is one of the most important invariants of an
mm-space as well as the observable diameter and the separation distance are.
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2 RYUNOSUKE OZAWA

This is introduced by Amir-Milman [1] and is related to the concentration
of measure phenomenon. It is a natural problem to investigate the limit
of concentration functions for a convergent sequence of mm-spaces. In this
paper, we generalize the concentration function for an element of Π and Q1,
and proved limit formulas for a convergent sequence in Π and Q1. Denote
by αP(r, κ) and αQ(r, κ) the concentration function of a pyramid P and a
qmm-space Q (see Definition 3.3 and 4.1). Convergences in Π and Q1 are
called weak convergence and convergence in sampling respectively.

Our main theorems stated as follows.

Theorem 1.1 (Limit formula). Let P and Pn, n = 1, 2, . . . , be pyramids.
If Pn converges weakly to P as n→ ∞, then

αP(r, κ) = lim
δ→0+

lim inf
n→∞

αPn(r − δ, κ− δ)

= lim
δ→0+

lim sup
n→∞

αPn(r − δ, κ− δ)

for any r > 0 and 0 < κ ≤ 1.

Theorem 1.2 (Limit inequality). Let Q and Qn, n = 1, 2, . . . , be qmm-
spaces. If Qn converges to Q in sampling as n→ ∞, then

lim
δ→0+

lim sup
n→∞

αQn(r − δ, κ− δ) ≤ αQ(r, κ)

for any 0 < r, κ ≤ 1.

Note that if Q and Qn, n = 1, 2, . . . , are mm-spaces, we have the equation
in Theorem 1.2 (see Remark 4.11). We do not have the reverse inequality in
general. One of counterexamples for the reverse inequality is the sequence
{Sn(π−1)}∞n=1 of n-dimensional spheres equipped with the geodesic distance
and radius π−1 (see Proposition 4.12 and Remark 4.13).

2. Preliminaries

In this section, we give the definitions and compactification theorems
stated in [8, Chapter 31

2+
], [10], [5], [15], [16], and [2].

2.1. mm-Isomorphism, Lipschitz order, and distance matrix distri-
bution.

Definition 2.1 (mm-Space). A triple X = (X, dX , µX) is called an mm-
space (metric measure space) if (X, dX) is a complete separable metric space
and if µX is a Borel probability measure on X.

Definition 2.2 (mm-Isomorphism). Two mm-spaces X and X ′ are said to
be mm-isomorphic to each other if there exists an isometry f : supp(µX) →
supp(µX′) such that f∗µX = µX′ , where f∗µX is the push-foward measure
of µX by f . Such an f is called an mm-isomorphism.

Note that X is mm-isomorphic to (supp(µX), dX , µX). Denote by X
(resp. X1) the set of mm-isomorphism classes of mm-spaces (resp. the set
of mm-isomorphism classes of mm-spaces with diameter at most one).
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CONCENTRATION FUNCTION FOR PYRAMID AND QMM-SPACE 3

Definition 2.3 (Lipschitz order). Let X and X ′ be two mm-spaces. We
say that X (Lipschitz ) dominates X ′ and write X ′ ≺ X if there exists a
1-Lipschitz map f : X → X ′ with f∗µX = µX′ . We call the relation ≺ on
X the Lipschitz order.

The Lipschitz order ≺ is a partial order relation on X .
Let X be a metric space. Denote by MN (X) the set of all X-valued

symmetric matrices of order N equipped with l∞-product metric, and by
M∞(X) the set of all X-valued symmetric matrices of infinite-order. We
equipped M∞(X) with the coarsest topology such that the natural projec-
tion πXN : M∞(X) → MN (X) defined by πXN ((xi,j)

∞
i,j=1) := (xi,j)

N
i,j=1 is

continuous for any natural number N . We write πN omitting X whenever
no confusion. Let T be a topological space. Denote by B(T ) the set of Borel
sets on T , and by M(T ) the set of Borel probability measures on T equipped
with the weak topology.

Definition 2.4 (Distance matrix distribution). Let X be an mm-space and
N ∈ N ∪ {∞}. Define a map KX

N : XN →MN (R) by

KX
N (x1, . . . , xN ) := (dX(xi, xj))

N
i,j=1,

and the N -dimensional distance matrix distribution µX
N

of X by

µX
N

:= (KX
N )∗µ

⊗N
X .

The N -dimensional distance matrix distribution is a Borel probability
measure on MN (R). Define the map τ : X → M(M∞(R)) by τ(X) := µX∞.

Theorem 2.5 (mm-Reconstruction theorem, [17, Section 2, Theorem], [8,
Section 31

2 .5, 3
1
2 .7], [9, Theorem 2.1], [15, Theorem 4.7]). Let X and X ′ be

two mm-spaces. The following (1), (2), and (3) are equivalent to each other.

(1) X and X ′ are isomorphic to each other.

(2) µX
N

= µX
′

N
for all N ∈ N.

(3) µX∞ = µX
′

∞

This theorem means that the infinite-dimensional distance matrix distri-
bution is a complete invariant of mm-spaces.

Lemma 2.6 ([9, Lemma 2.2]). Let X be an mm-space and N ∈ N. Then
we have (πN )∗µ

X
∞ = µX

N
.

2.2. Concentration function. The concentration function is one of the
most fundamental invariants of an mm-space.

For a subset A of a metric space (X, dX) and for a real number r > 0, we
set

Ur(A) := {x ∈ X | dX(x,A) < r },
where dX(x,A) := infa∈A dX(x, a).

Definition 2.7 (Concentration function of mm-space). Let r > 0 and 0 <
κ ≤ 1. The concentration function of mm-space X is defined to be

αX(r, κ) := sup{ 1− µX(Ur(A)) |A ∈ B(X), µX(A) ≥ κ }.
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4 RYUNOSUKE OZAWA

Lemma 2.8 ([10, Lemma 1.1]). Let X be an mm-space and 0 < κ ≤ 1.
Then we have

αX(r + r0, κ) ≤ αX(r, 1/2)

for any r > 0 and r0 > 0 satisfying αX(r0, 1/2) < κ.

Definition 2.9 (Lévy family). A sequence of mm-spaces Xn, n = 1, 2, . . . ,
is called a Lévy family if for any r > 0 and 0 < κ ≤ 1, αXn(r, κ) converges
to zero as n→ ∞.

2.3. Box distance and observable distance.

Definition 2.10 (Prokhorov metric). Let X be a metric space. For two
Borel probability measures µ and ν on X, we define the Prokhorov distance
dPr(µ, ν) between µ and ν by

dPr(µ, ν) := inf{ ε > 0 |µ(A) ≤ ν(Uε(A)) + ε for any Borel setA ⊂ X }.

The distance function dPr is called the Prokhorov metric on the set of prob-
ability measures on X.

The Prokhorov metric is a metrization of weak convergence of Borel prob-
ability measures on X provided that X is a separable metric space.

Definition 2.11 (Ky Fan metric). Let (T, µ) be a measure space and X be
a metric space. For two µ-measurable maps f, g : T → X, we define the Ky
Fan distance between f and g by

dµKF(f, g) := inf{ ε > 0 | µ({ t ∈ T | dX(f(t), g(t)) > ε }) ≤ ε }.

The distance function dµKF is called the Ky Fan metric on the set of µ-
measurable maps from T to X.

The Ky Fan metric is a metrization of convergence in measure.

Definition 2.12 (Parameter). Let I := [ 0, 1 ] and T = (T, µT ) be a Polish
topological space equipped with a Borel probability measure. A Borel mea-
surable map φ : I → T is called a parameter of T if φ satisfies the following
(1) and (2).

(1) φ∗L = µT , where L is the Lebesgue measure on I.
(2) The image of any Borel set is a Borel set of φ(I).

The definition of a parameter is not usual. The usual definition of a
parameter is only by (1). We put (2) as an additional condition for measure
theoretic approach. Any Polish topological space equipped with a Borel
probability measure has a parameter.

Definition 2.13 (Box distance between two mm-spaces). We define the box
distance □(X,X ′) between two mm-spaces X and X ′ to be the infimum of
ε ≥ 0 such that there exist parameters φ : I → X, ψ : I → X ′, and Borel
subset I0 ⊂ I such that

|φ∗dX(s, t)− ψ∗dX′(s, t) | ≤ ε for any s, t ∈ I0;

L(I0) ≥ 1− ε,

where φ∗dX(s, t) := dX(φ(s), φ(t)) for s, t ∈ I.
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CONCENTRATION FUNCTION FOR PYRAMID AND QMM-SPACE 5

The box distance function □ is a metric on X .
Combining [6, Theorem 5] and [11, Theorem 3.1], we have the next the-

orem. Note that the proof of the next theorem is omitted in the original
article (see [8, Section 3.12 .14]).

Theorem 2.14. Let {Xn}∞n=1 be a sequence of mm-spaces and let X be an
mm-space. The following (1), (2), and (3) are equivalent to each other.

(1) Xn □-converges to X.
(2) µXn

N
converges weakly to µX

N
for all N ∈ N.

(3) µXn

∞ converges weakly to µX∞.

Definition 2.15 (Observable distance). Denote by Lip1(X) the set of 1-
Lipschitz continuous functions on an mm-space X. For any parameter φ of
X, we set

φ∗Lip1(X) := { f ◦ φ | f ∈ Lip1(X) }.
We define the observable distance dconc(X,X

′) between two mm-spaces X
and X ′ by

dconc(X,X
′) := inf

φ,ψ
dH(φ

∗Lip1(X), ψ∗Lip1(X ′)),

where φ : I → X and ψ : I → X ′ run over all parameters of X and X ′,
respectively, and where dH is the Hausdorff distance function with respect
to the Ky Fan metric dLKF.

The observable distance dconc is a metric on X . Note that dconc(X,X
′)

≤ □(X,X ′) for any two mm-spaces X and X ′.

Proposition 2.16 ([8, Section 31
2 .36]). Let {Xn}∞n=1 be a sequence of mm-

spaces. Then {Xn}∞n=1 is a Lévy family if and only if Xn dconc-converges to
a one-point mm-space as n→ ∞.

2.4. Pyramid.

Definition 2.17 (Pyramid). A subset P ⊂ X is called a pyramid if it
satisfies the following conditions (1), (2), and (3).

(1) If X ∈ P and if X ′ ≺ X, then X ′ ∈ P.
(2) For anyX,X ′ ∈ P, there exists Z ∈ P such thatX ≺ Z andX ′ ≺ Z.
(3) P is a non-empty □-closed set.

We denote the set of pyramids by Π.

For an mm-space X, we define

PX := {X ′ ∈ X |X ′ ≺ X }.
Then PX is a pyramid.

In Gromov’s book [8, Section 3.12 .51], the definition of a pyramid is only
by (1) and (2) of Definition 2.17. Shioya put (3) as an additional condition
for the Hausdorff property of Π (see Theorem 2.20).

Definition 2.18 ((N,R)-Measurement). Let P be a pyramid, N a natu-
ral number, and R a nonnegative real number. Denote by BN

R := {x ∈
RN | ∥x∥∞ ≤ R }. We define

M(P;N,R) := {µ ∈ M(BN
R ) | (BN

R , ∥ · ∥∞, µ) ∈ P }
We call M(P;N,R) the (N,R)-measurement of P.
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6 RYUNOSUKE OZAWA

The (N,R)-measurement M(P;N,R) is a compact subset of M(RN ).
Definition 2.19. For two pyramids P, P ′, and for a positive real number
R, we define

ρR(P,P ′) :=

∞∑
N=1

1

N2N+1
dH(M(P;N,NR),M(P ′;N,NR)),

where dH is the Hausdorff distance function with respect to the Prokhorov
metric dPr.

Theorem 2.20 ([8, Section 3.12 .55], [15, Theorem 7.27], [16, Theorem 1.2,
Proposition 3.5], [13, Theorem 3.7]). We have the following (1)–(4).

(1) ρR for each R > 0 is a metric on Π. Moreover, (Π, ρR) for all R > 0
are homeomorphic to each other.

(2) The metric space (Π, ρR) is compact.
(3) The map X ∋ X 7→ PX ∈ Π is a topological embedding with respect

to dconc and ρR, and its image is dense on Π. In particular, (Π, ρR)
is a compactfication of (X , dconc).

(4) For any two pyramids P, P ′, for any natural number N , and for any
positive real number R, we have

dH(M(P;N,NR),M(P ′;N,NR)) ≤ N2N+1ρR(P,P ′).

We say that a sequence of pyramids Pn, n = 1, 2, . . ., converges weakly to
a pyramid P if Pn ρR-converges to P as n→ ∞.

2.5. Quantum metric measure space.

Definition 2.21 (qmm-Space). A triple Q = (Q,µQ, d
∗
Q) is called a qmm-

space (quantum metric measure space) if it satisfies the following (1), (2),
and (3).

(1) (Q,µQ) is a Polish topological space with a Borel probability mea-
sure.

(2) A measurable map d∗Q : Q × Q → M(I) satisfies d∗Q(q, q) = δ0 a.s.

q ∈ Q and d∗Q(q, q
′) = d∗Q(q

′, q) a.s. (q, q′) ∈ Q2.

(3) For any ti,j ∈ supp(d∗Q(qi, qj)), i, j = 1, 2, 3, we have

t1,3 ≤ t1,2 + t2,3

a.s. (q1, q2, q3) ∈ Q3.

For any mm-space X with diameter at most one, we define d∗X(x1, x2) :=
δdX(x1,x2). Then

QX := (X,µX , d
∗
X)

is a qmm-space. Note that any qmm-space has a parameter.

Definition 2.22 (Box distance between two qmm-spaces). We define the
box distance □Q(Q,Q

′) between two qmm-spaces Q and Q′ to be the infimum
of ε ≥ 0 such that there exist parameters φ : I → Q, ψ : I → Q′, and Borel
subset I0 ⊂ I such that

dPr(φ
∗d∗Q(s, t), ψ

∗d∗Q′(s, t)) ≤ ε for any s, t ∈ I0;

L(I0) ≥ 1− ε,

where φ∗d∗Q(s, t) := d∗Q(φ(s), φ(t)) for s, t ∈ I.
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CONCENTRATION FUNCTION FOR PYRAMID AND QMM-SPACE 7

For any X,X ′ ∈ X1, we have □Q(QX , QX′) = □(X,X ′). For any Borel
probability measure µ on I, denote by ↓ µ := min{ t | t ∈ supp(µ) } and
↑ µ := max{ t | t ∈ supp(µ) }.

Remark 2.23. By the definition of qmm-space, we have ↑ d∗Q(q, q
′) = ↓

d∗Q(q, q
′) a.s. (q, q′) ∈ Q2.

Definition 2.24 (qmm-Isomorphism). Two qmm-spaces Q and Q′ are said
to be qmm-isomorphic to each other if □Q(Q,Q

′) = 0.

Denote by Q1 the set of isomorphism classes of qmm-space.

Remark 2.25. (1) The box distance function □Q is a metric on Q1.
(2) For any parameter p of Q, (Q,µQ, d

∗
Q) and (I,L1, p∗d∗Q) are qmm-

isomorphic to each other.

Definition 2.26 (Quantum distance matrix distribution). Let Q be a qmm-

space. Define a map KQ
∞ : Q∞ →M∞(M(I)) by

KQ
∞({qn}∞n=1) := (d∗Q(qi, qj))

∞
i,j=1,

and the infinite-dimensional quantum distance matrix distribution νQ∞ of Q
by

νQ∞ := (KQ
∞)∗µ

⊗∞
Q .

The infinite-dimensional quantum distance matrix distribution is a Borel
probability measure onM∞(M(I)). Consider it as a Borel probability mea-
sure on M(M∞(I)).

Definition 2.27 (Barycenter). Let E be a Banach space and E∗ be dual
space with the weak topology. For a compact convex subset C ⊂ E∗

equipped with a Borel probability measure µ. Then b ∈ C is called the
barycenter of µ if

⟨b, v⟩ =
∫
C
⟨f, v⟩ dµ(f)

for any v ∈ E, where ⟨f, v⟩ is a dual coupling of f ∈ C and v ∈ E.

There is unique barycenter for any Borel probability measure µ on a
compact convex subset C. We set E = Cb(M∞(I)) the set of bounded
continuous functions on M∞(I), E∗ the set of Radon measures on M∞(I),

C = M(M∞(I)), and µ = νQ∞ as in Definition 2.27 and for a qmm-space Q.

Denote by bQ∞ the barycenter of νQ∞. We have bQX
∞ = µX∞ for any X ∈ X1.

Theorem 2.28 ([2, Theorem 2]). Let Q and Q′ be two qmm-spaces. Then

□Q(Q,Q
′) = 0 if and only if bQ∞ = bQ

′
∞ . Moreover if □Q(Q,Q

′) = 0, there ex-
ist parameters φ : I → Q and ψ : I → Q′ such that φ∗d∗Q(s, t) = ψ∗d∗Q′(s, t)

for a.s. (s, t) ∈ I2.

Since M(M∞(I)) is a compact metric space, so is the closure τ(X1).

Theorem 2.29 ([2, Theorem 1, Section 5]). We have the following (1) and
(2).

(1) For any qmm-space Q, its barycenter bQ∞ is an element of the closure

τ(X1).
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8 RYUNOSUKE OZAWA

(2) For any µ ∈ τ(X1), there exists a qmm-space Q such that µ = bQ∞.

In particular, Q1 is a compactification of (X1,□).

We say that a sequence of qmm-spaces Qn, n = 1, 2, . . ., converges to a
qmm-space Q in sampling if bQn

∞ converges weakly to bQ∞.

Remark 2.30. Since the sequence {Sn(π−1)}∞n=1 of n-dimensional sphere
equipped with geodesic distance and radius π−1 does not have a Cauchy
sub-sequence with respect to the box distance function (see [4, Proposition
3.1]), we obtain that (Q1,□Q) is not a compact metric space. The topology
generated by the box distance function on Q1 is not compatible with the
topology of the convergence in sampling.

3. Concentration function for pyramid

Lemma 3.1. Let X be an mm-space. Then we have

αX(r, κ) = lim
δ,δ′→0+

αX(r − δ, κ− δ′)

for any r > 0 and 0 < κ ≤ 1.

Proof. Let {δn}∞n=1 and {δ′n}∞n=1 be monotone decreasing sequences of posi-
tive real numbers converging to zero. Then, αX(r− δn, κ− δ′n) is monotone
nonincreasing in n. We set

β := lim
n→∞

αX(r − δn, κ− δ′n).

Since αX(r − δn, κ − δ′n) ≥ αX(r, κ), we have β ≥ αX(r, κ). It suffices to
prove αX(r, κ) ≥ β. It follows from the definition of β that there exist Borel
subsets An ⊂ X such that µX(An) ≥ κ− δ′n for any n ∈ N and

1− lim
n→∞

µX(Ur−δn(An)) = β.

We may assume that An is a closed set. Take a monotone decreasing se-
quence {ηp}∞p=1 of positive real numbers converging to zero. The inner reg-

ularity of µX proves that there are compact subsets {Kp}∞p=1 such that

µX(Kp) > 1 − ηp and Kp ⊂ Kp+1 for any p ∈ N. We have µX(An ∩Kp) >
κ−(δ′n+ηp). SinceKp is the compact set, {An∩Kp}∞m=1 has a Hausdorff con-
vergent subsequence for any p ∈ N. By a diagonal argument, we find a com-
mon subsequence {m(n)}∞n=1 ⊂ N such that {Am(n)∩Kp}∞n=1 is a Hausdorff
convergent sequence for any p ∈ N. Denote its limit by Bp. For any ε > 0,
there exist n0 ∈ N such that Bp ⊂ Uε(Am(n) ∩ Kp) for any n > n0. Since
we can assume that δm(n) < ε, we have Ur−2ε(Bp) ⊂ Ur−δm(n)

(Am(n) ∩Kp).

{Bp}∞p=1 is a monotone nondecreasing sequence of compact subsets of X

satisfying µX(Bp) ≥ κ− δp for any p ∈ N. Setting

B :=
∪
p∈N

Bp,

we have µX(B) ≥ κ and Ur(B) =
∪
p∈N Ur(Bp). Since

β ≤ 1− lim
p→∞

lim
n→∞

µX(Ur−δm(n)
(Am(n) ∩Kp)) = 1− µX(Ur(B)),

we obtain αX(r, κ) ≥ β. This completes the proof. □
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CONCENTRATION FUNCTION FOR PYRAMID AND QMM-SPACE 9

Proposition 3.2 ([10, Proposition 1.2]). Let X and X ′ be two mm-spaces.
If X ′ is dominated by X, then we have

αX′(r, κ) ≤ αX(r, κ),

for any r > 0 and 0 < κ ≤ 1.

Definition 3.3 (Concentration function for pyramid). Let r > 0 and 0 <
κ ≤ 1. The κ-concentration function for a pyramid P is defined to be

αP(r, κ) := lim
δ→0+

sup
X∈P

αX(r − δ, κ− δ).

Proposition 3.4. For any mm-space X, we have

αPX
(r, κ) = αX(r, κ)

for any r > 0 and 0 < κ ≤ 1.

Proof. The proposition follows from Proposition 3.2 and Lemma 3.1. □
Lemma 3.5. Let P and P ′ be two pyramids. If we have

M(P; 1, R) ⊂ Uε(M(P ′; 1, R))

for two positive real numbers ε and R with 2ε < R, then

αP(r, κ) ≤ αP ′(r − 2ε, κ− ε) + ε

for any 2ε < r < R and 0 < κ ≤ 1.

Proof. We take any δ > 0 and any mm-space X ∈ P. Let a < αX(r −
δ, κ − δ). There is a Borel subset A such that µX(A) ≥ κ − δ and a <
1− µX(Ur−δ(A)). Define a 1-Lipschitz function f : X → [ 0, R ] by f(x) :=
min{ dX(x,A), R } for x ∈ X. Then we have f∗µX ∈ M(P; 1, R). By
M(P; 1, R) ⊂ Uε(M(P ′; 1, R)), there are an mm-space X ′ ∈ P ′ and the
1-Lipschitz function g : X ′ → [−R,R ] such that dPr(f∗µX , g∗µX′) < ε. Let
B := {x′ ∈ X ′ | g(x′) < ε }. We see that

µX′(B) = g∗µX′({ t ∈ [−R,R ] | t < ε })
= g∗µX′(Uε({ t ∈ [−R,R ] | t ≤ 0 }))
≥ f∗µX({ t ∈ [−R,R ] | t ≤ 0 })− ε

= µX(A)− ε

≥ κ− (δ + ε).

For any x′ ∈ Ur−(δ+2ε)(B), there exists y′ ∈ B such that dX′(x′, y′) < r−(δ+
2ε). The 1-Lipschitz continuity of g implies that g(x′) ≤ g(y′)+r−(δ+2ε) <
r−(δ+ε). Then we have Ur−(δ+2ε)(B) ⊂ B′ := {x′ ∈ X ′ | g(x′) ≤ r−(δ+ε) }.
On the other hand, we see that

a < 1− µX(Ur−δ(A))

= 1− f∗µX({ t ∈ [−R,R ] | t < r − δ })
= 1− f∗µX(Uε({ t ∈ [−R,R ] | t ≤ r − (δ + ε) }))
≤ 1− g∗µX′({ t ∈ [−R,R ] | t ≤ r − (δ + ε) }) + ε

≤ 1− µX′(B′) + ε

≤ 1− µX′(Ur−(δ+2ε)(B)) + ε.
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10 RYUNOSUKE OZAWA

This implies that αX(r − δ, κ − δ) ≤ αX′(r − (δ + 2ε), κ − (δ + ε)) + ε.
Taking supremums over X ′ ∈ P ′, X ∈ P and limit δ → 0+, we obtain
αP(r, κ) ≤ αP ′(r − 2ε, κ− ε) + ε. This completes the proof. □

Corollary 3.6. Let P and P ′ be two pyramids. If ρR(P,P ′) < ε/4 for two
positive real numbers ε and R with 2ε < R, then

αP(r, κ) ≤ αP ′(r − 2ε, κ− ε) + ε

for any 2ε < r < R and 0 < κ ≤ 1.

Proof. Theorem 2.20 (4) implies that M(P; 1, R) ⊂ Uε(M(P ′; 1, R)). Using
Lemma 3.5, we have the corollary. □

Proof of Theorem 1.1. For any real number δ > 0 with r > 4δ and κ > 2δ,
there is a number n0 such that ρR(Pn,P) < δ/4 for any n ≥ n0. Let n ≥ n0.
Corollary 3.6 implies

αP(r, κ)− δ ≤ αPn(r − 2δ, κ− δ) ≤ αP(r − 4δ, κ− 2δ) + δ.

Taking the limits of this inequality as n→ ∞ and then δ → 0+, we obtain

αP(r, κ) = lim
δ→0+

lim inf
n→∞

αPn(r − δ, κ− δ)

= lim
δ→0+

lim sup
n→∞

αPn(r − δ, κ− δ).

The proof is completed. □

4. Concentration function for qmm-space

For a subset A of a qmm-space (Q,µQ, d
∗
Q) and for a real number r > 0,

we set

Ur(A) := { q ∈ Q | ↑ d∗Q(q,A) < r },
where ↑ d∗Q(q,A) := infa∈A ↑ d∗Q(q, a). Note that A is not subset of Ur(A)
in general.

Definition 4.1 (Concentration function for qmm-space). Let 0 < r, κ ≤ 1.
The κ-concentration function for a qmm-space Q is defined to be

αQ(r, κ) := lim
δ→0+

sup{ 1− µQ(Ur−δ(A)) |A ∈ B(Q), µQ(A) ≥ κ− δ }.

The next lemma is obvious from Theorem 2.28.

Lemma 4.2. Let Q and Q′ be two qmm-spaces. If Q and Q′ are isomorphic
then αQ(r, κ) = αQ′(r, κ) for any 0 < r, κ ≤ 1.

Proposition 4.3. Let X be an mm-space with diameter at most one. We
have

αQX
(r, κ) = αX(r, κ)

for any 0 < r, κ ≤ 1.

Proof. The proposition follows from ↑ d∗QX
(x1, x2) = dX(x1, x2) and Lemma

3.1. □
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To prove Theorem 1.2, we recall ultraproducts of mm-spaces constructed
in [3, Section 2.7] and [2, Section 3]. Let ω be a non-principal ultrafilter
on N, and Xn, n = 1, 2, . . ., be mm-spaces with diameter at most one.
For {xi}∞i=1, {x′i}∞i=1 ∈

∏∞
n=1Xn, {xi}∞i=1 and {x′i}∞i=1 are equivalent if { i ∈

N |xi = x′i } ∈ ω. DenoteX by the set of equivalence classes. We can define a
pseudo-metric on X by dX(x,x′) := limω dXi(xi, x

′
i), where {xi}∞i=1, {x′i}∞i=1

are representative elements of x,x′ ∈ X, respectively. Let An be Borel sets
onXn, n = 1, 2, . . .. Define the ultraproduct setA inX by the following way.
[{ai}] ∈ A if and only if { i ∈ N | ai ∈ Ai } ∈ ω. The set U of ultraproduct
sets forms a Boolean algebra. Define the measure of ultraproduct set A by
µX(A) := limω µXi(Ai). Elek constructed a σ-algebra S containing U and
extended the measure µX on S. We call (X,dX,S, µX) the ultraproduct of
{Xn}∞n=1.

Remark 4.4. (1) The function dX is not necessarily measurable on the
product σ-algebra σ(S × S). This is a measurable function on the
ultraproduct (X×X,dX2 ,S2, µX2) of l∞-products {Xn ×Xn}∞n=1.

(2) The product σ-algebra σ(S × S) is a sub-σ-algebra of S2.

Lemma 4.5. Let An be Borel sets on Xn, n = 1, 2, . . ., and A its ultraprod-
uct. Then we have Ur(A) ⊂ limω Ur(An).

Proof. For any x ∈ Ur(A), there exist x′ ∈ A such that dX(x,x′) < r.
Denote {xi}∞i=1, {x′i}∞i=1 by representative elements of x, x′. dX(x,x′) < r
implies that { i ∈ N | dXi(xi, x

′
i) < r } ∈ ω. This means x ∈ limω Ur(A). □

Proposition 4.6 (Radon-Nikodym-Dundord-Pettis Theorem, [2, Proposi-
tion 2.1]). Let L be a Banach space, L∗ be its dual space with the weak topol-
ogy, and (Ω,F ,P) a probability space. For any essentially bounded weak-∗-
measurable map f : Ω → L∗ and any sub-σ-algebra F ′ ⊂ F , there exists an
essentially unique map E(f |F ′) : Ω → L∗ which is weak-∗-measurable with
respect to F ′ such that for any v ∈ L and A′ ∈ F ′ we have∫

A′
⟨E(f |F ′)(x), v⟩ dP(x) =

∫
A′
⟨f(x), v⟩ dP(x).

We call E(f |F ′) the Radon-Nikodym-Dundord-Pettis derivative of f .
For the pseudo-metric dX, we define the map δdX

: X × X → M(I) by
δdX

(x,x′) := δdX(x,x′). Then δdX
is weak-∗-measurable with respect to S2.

Denote d∗
X by the Radon-Nikodym-Dundord-Pettis derivative of δdX

with
respect to σ(S × S). Note that d∗

X is M(I)-valued map.

Lemma 4.7. Let A be ultraproduct set on (X,dX,S, µX) and 0 < r < r′ ≤
1. For a ∈ X, define the set Ua ⊂ X by

Ua := {x ∈ X | ↑ d∗
X(a,x) < r, dX(a,x) ≥ r′ }.

Then we have µX({a ∈ A |µX(Ua) > 0 }) = 0.

Proof. It is trivial that µX({a ∈ A |µX(Ua) > 0 }) = 0 if µX(A) = 0. We
assume µX(A) > 0. Define the set U ∈ σ(S × S) by

U := { (a,x) ∈ A×X |x ∈ Ua }.
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12 RYUNOSUKE OZAWA

µX({a ∈ A |µX(Ua) > 0 }) > 0 if and only if µX2(U) > 0. Let g : I → T be
a continuous function satisfying g(t) = 1 if t ≤ r and g(t) = 0 if t ≥ (r+r′)/2.
Then if µX2(U) > 0,

0 <

∫
A
⟨d∗

X(x,x′), g⟩ dµX(x,x′) =

∫
A
⟨δdX(x,x′), g⟩ dµX(x,x′) = 0

leading a contradiction. This completes the proof. □

Theorem 4.8 ([2, Section 5–7]). Let Xn, n = 1, 2, . . ., be mm-spaces and
Q be a qmm-space. If Xn converges to Q in sampling, then there exists
S-measurable map Ψ : X → Q satisfying the following (1)–(4).

(1) Ψ(M) ⊂ B(Q).
(2) µX(A) = µX(Ψ−1(Ψ(A))) for any ultraproduct set A.
(3) µQ = Ψ∗µX.
(4) Ψ∗d∗Q(x,x

′) = d∗
X(x,x′) a.s. (x,x′) ∈ X×X.

Lemma 4.9. Let Q be a qmm-space. For any sequence of mm-spaces
{Xn}∞n=1 such that Xn converges to Q in sampling, then we have

lim
δ→0+

lim sup
n→∞

αXn(r − δ, κ− δ) ≤ αQ(r, κ)

for any 0 < r, κ ≤ 1.

Proof. Taking a subsequence of {αXn(r− δ, κ− δ)}∞n=1, we can suppose that
the limit exists. There exist An be a Borel subset ofXn with µXn(An) ≥ κ−δ
satisfying

αXn(r − δ, κ− δ)− 1

n
≤ 1− µXn(Ur−δ(An)).

Denote A := limω An. Then µQ(Ψ(A)) = µX(A) ≥ κ − δ. Taking the
ultralimit, by Lemma 4.5, Theorem 4.8 (2), (3), and Lemma 4.7, we have

lim
n→∞

αXn(r − δ, κ− δ) ≤ 1− µX

(
lim
ω
Ur−δ(An)

)
≤ 1− µX(Ur−δ(A))

= 1− µX(Ψ−1(Ψ(Ur−δ(A))))

= 1− µQ(Ψ(Ur−δ(A)))

≤ 1− µQ(Ur−δ/2(Ψ(A))).

By taking δ → 0+, we obtain the lemma. □

Lemma 4.10. Let Q be a qmm-space. There exists a sequence of mm-spaces
{Xn}∞n=1 such that Xn converges to Q in sampling such that

lim
δ→0+

lim inf
n→∞

αXn(r − δ, κ− δ) ≥ αQ(r, κ)

for any 0 < r, κ ≤ 1. In particular, we have

αQ(r, κ) = lim
δ→0+

lim inf
n→∞

αXn(r − δ, κ− δ)

= lim
δ→0+

lim sup
n→∞

αXn(r − δ, κ− δ)

for any 0 < r, κ ≤ 1.
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Proof. We recall random mm-spaces {Xn}∞n=1 constructed by Elek [2, Sec-
tion 6]. Let us pick a sequence {xk}∞k=1 ∈ Q∞ of independent µ⊗∞

Q -random

points in Q. For each pair (xi, xj), we pick ti,j ∈ I independently according
to d∗Q(xi, xj). Denote the mm-space Xn byXn = {xk}nk=1, dXn(xi, xj) = ti,j ,

and µXn = n−1
∑n

k=1 δxk . Then {Xn}∞n=1 converges to Q in sampling and
with probability one.

Let δ > 0. There exists Aδ ∈ B(Q) such that µQ(Aδ) ≥ κ− δ and

αQ(r, κ) = 1− lim
δ→0+

µQ(Ur−δ(Aδ)).

Denote the setBn,δ := Xn∩Aδ. By the definition of µXn , we have µXn(Bn,δ) =
µXn(Aδ) and µXn(Ur−δ(Bn,δ)) ≤ µXn(Ur−δ(Aδ)). Since {Xn}∞n=1 converges
to Q in sampling, we have limn→∞ µXn(Bn,δ) = µQ(Aδ) ≥ κ − δ and
lim supn→∞ µXn(Ur−δ(Bn,δ)) ≤ µQ(Ur−δ(Aδ)). This implies that

lim
δ→0+

lim inf
n→∞

αXn(r − δ, κ− δ) ≥ αQ(r, κ).

We obtain the lemma. □

Proof of Theorem 1.2. For any Qn, there exist a sequence of mm-spaces
{Xn,m}∞m=1 which in Lemma 4.10. Then Xn,n converges to Q in sampling.
Combining Lemma 4.9 and Lemma 4.10, we have

lim
δ→0+

lim sup
n→∞

αQn(r − δ, κ− δ) ≤ lim
δ→0+

lim sup
n→∞

αXn,n(r − δ, κ− δ) ≤ αQ(r, κ).

This completes the proof. □

Remark 4.11. If Q and Qn, n = 1, 2, . . . , are mm-spaces, the □-convergence
implies dconc-convergence. Then Theorem 2.20 (3) and Theorem 1.1 imply
the equation in Theorem 1.2.

Denote d∗H : I2 → M(I) by d∗H(t, t) := δ0 and d∗H(t, t
′) := δ1/2 if t ̸= t′.

Proposition 4.12. {Sn(π−1)}∞n=1 converges to H = (I,L, d∗H) in sampling
as n→ ∞.

Proof. For x′n ∈ Sn(π−1), denote its distance function by fn(xn) := dSn(π−1)(xn, x
′
n).

Then Lévy’s lemma implies that

lim
n→∞

d
µSn(π−1)

KF (fn, 2
−1) = 0.

In particular we have

lim
n→∞

d
µ⊗2

Sn(π−1)

KF (dSn(π−1), 2
−1) = 0.

Denote HN = (hi,j)
N
i,j=1 by the element of MN (I) satisfying diagonal el-

ements are zero and off-diagonal elements are 1/2. Define the map FN :
(Sn(π−1))N → MN (I) be FN (x1, . . . , xN ) := HN . Let {εn}∞n=1 be a mono-
tone decreasing sequence of positive real numbers converging to zero with

d
µ⊗2

Sn(π−1)

KF (dSn(π−1), 2
−1) < εn. Define the set VN ⊂ XN by

VN := { (x1, . . . , xN ) ∈ XN | |dSn(π−1)(xi, xj)− hi,j | ≤ εn

for all i, j = 1, . . . , N }.
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14 RYUNOSUKE OZAWA

Then we have µ⊗N
Sn(π−1)

(VN ) > 1−N2εn. We prove F−1
N (A)∩VN ⊂ (K

Sn(π−1)
N )−1(UN2εn(A))

for any A ∈ B(MN (I)). For any x ∈ F−1
N (A)∩VN , then FN (x) ∈ A and x ∈

VN , which implyK
Sn(π−1)
N (x) ∈ UN2εn(A) and so x ∈ (K

Sn(π−1)
N )−1(UN2εn(A)).

Thus, we have F−1
N (A) ∩ VN ⊂ (K

Sn(π−1)
N )−1(UN2εn(A)). Since

µ⊗N
Sn(π−1)

(F−1
N (A) \ VN ) ≤ µ⊗N

Sn(π−1)
((Sn(π−1))N \ VN ) ≤ N2εn,

we have

δHN
(A) = (FN )∗µ

⊗N
Sn(π−1)

(A)

= µ⊗N
Sn(π−1)

(F−1
N (A))

= µ⊗N
Sn(π−1)

(F−1
N (A) ∩ VN ) + µ⊗N

Sn(π−1)
(F−1

N (A) \ VN )

≤ µ⊗N
Sn(π−1)

((K
Sn(π−1)
N )−1(UN2εn(A))) +N2εn

= µS
n(π−1)

N
(UN2εn(A)) +N2εn.

This implies that dPr(µ
Sn(π−1)
N , δHN

) ≤ N2εn, then µ
Sn(π−1)
N converse weakly

to δHN
as n→ ∞ for any N ∈ N. By Lemma 2.6, µS

n(π−1)
∞ converges weakly

to δH∞ as n → ∞. Since the representative qmm-space of δH∞ is H, we
obtain the proposition. □

Remark 4.13. Lemma 2.8 and the well known estimation in [7, Section 1]

αSn(π−1)(r, 1/2) ≤
√
2 exp(−π(n− 1)r2/2)

implies

lim
δ→0+

lim sup
n→∞

αSn(π−1)(r − δ, 1/2− δ) = 0

for any r > 0 but αH(r, 1/2) = 1/2 for any 0 < r ≤ 1/2. By the above
computation, we can see that

αQ(r, κ) ≤ lim
δ→0+

lim inf
n→∞

αQn(r − δ, κ− δ)

does not hold in general.
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