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CONCENTRATION FUNCTION FOR PYRAMID AND
QUANTUM METRIC MEASURE SPACE

RYUNOSUKE OZAWA

ABSTRACT. In this paper, we generalize the concentration function for
metric measure space to one for pyramid and quantum metric measure
space. We also study the limit of the concentration function for conver-
gent sequences of pyramids and quantum metric measure spaces.

1. INTRODUCTION

Gromov [8, Chapter 3.% +] introduced the box distance function [J and
the observable distance function d¢one on the set X of isomorphism classes of
mm-spaces (metric measure spaces). The box distance function is a simple
and natural distance function on X. Vershik suggested to construct a com-
pactification of (X7,) and to define basic metric measure invariants for an
element of compactification, where we denote by X7 the set of isomorphism
classes of mm-spaces with diameter at most one (see [17] and [8, Section
3.3.7]). An answer is given by Elek [2]. He introduced a gmm-space (quan-
tum metric measure space) and proved that the set of isomorphism classes
of gmm-spaces Q; is a compactification of (X7,0). The idea of qmm-space
comes from the graph limit theory due to Lovész-Szegedy [12]. He also ex-
tended two metric measure invariants called the observable diameter and
the separation distance to gqmm-spaces and proved some limit formulas for
a convergent sequence in Q.

The observable distance function comes from the idea of concentration
of measure phenomenon due to Lévy and Milman. Gromov [8, Chapter
3.% Jr] introduced a pyramid and proved that the set of pyramids II is a
compactication of (X, deonc). Moreover, Shioya [15,16] constructed a metric
on II which is compatible with the topology of the compctification. This
compactification is useful to describe the asymptotic behavior of a sequence
of Riemannian manifolds with unbounded dimension (see [13-16]). Ozawa-
Shioya [13] extended the observable diameter and the separation distance
to II and proved some limit formulas for a convergent sequence in II, which
are applied to study a significant property of the asymptotic behavior of a
sequence of pyramids, so-called the phase transition property.

The concentration function is one of the most important invariants of an
mm-space as well as the observable diameter and the separation distance are.
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2 RYUNOSUKE OZAWA

This is introduced by Amir-Milman [1] and is related to the concentration
of measure phenomenon. It is a natural problem to investigate the limit
of concentration functions for a convergent sequence of mm-spaces. In this
paper, we generalize the concentration function for an element of II and Qj,
and proved limit formulas for a convergent sequence in II and Q;. Denote
by ap(r,x) and ag(r, ) the concentration function of a pyramid P and a
qmm-space @ (see Definition 3.3 and 4.1). Convergences in II and Q; are
called weak convergence and convergence in sampling respectively.
Our main theorems stated as follows.

Theorem 1.1 (Limit formula). Let P and P,, n = 1,2,..., be pyramids.
If P, converges weakly to P as n — oo, then

ap(r,k) = 61—i>I(I)1+ linn_ligf ap, (r—0,k—9)

= lim limsupap (r—46,5— 0
S04 n—>oop Pn( ; )

foranyr>0and 0 <k < 1.

Theorem 1.2 (Limit inequality). Let Q and Q,, n = 1,2,..., be gqmm-
spaces. If Q,, converges to Q in sampling as n — oo, then

lim limsupag, (r — 4§,k —98) < ag(r, k)

=0+ n—oo

forany 0 <7,k < 1.

Note that if Q and Q,,, n = 1,2, ..., are mm-spaces, we have the equation
in Theorem 1.2 (see Remark 4.11). We do not have the reverse inequality in
general. One of counterexamples for the reverse inequality is the sequence
{S™ (77 1)}°°; of n-dimensional spheres equipped with the geodesic distance
and radius 7! (see Proposition 4.12 and Remark 4.13).

2. PRELIMINARIES

In this section, we give the definitions and compactification theorems
stated in [8, Chapter 3%+], [10], [5], [15], [16], and [2].

2.1. mm-Isomorphism, Lipschitz order, and distance matrix distri-
bution.

Definition 2.1 (mm-Space). A triple X = (X,dx,ux) is called an mm-
space (metric measure space) if (X, dx) is a complete separable metric space
and if px is a Borel probability measure on X.

Definition 2.2 (mm-Isomorphism). Two mm-spaces X and X’ are said to
be mm-isomorphic to each other if there exists an isometry f : supp(ux) —
supp(ux-) such that f.ux = pxs, where f.ux is the push-foward measure
of ux by f. Such an f is called an mm-isomorphism.

Note that X is mm-isomorphic to (supp(ux),dx,px). Denote by X
(resp. AXj) the set of mm-isomorphism classes of mm-spaces (resp. the set
of mm-isomorphism classes of mm-spaces with diameter at most one).

This is a pre-publication version of this article, which may differ from the final published version. Ccr)pyrigiht réétr'icitioris’m;yiapply.



CONCENTRATION FUNCTION FOR PYRAMID AND QMM-SPACE 3

Definition 2.3 (Lipschitz order). Let X and X’ be two mm-spaces. We
say that X (Lipschitz) dominates X' and write X' < X if there exists a
1-Lipschitz map f : X — X' with fiux = px. We call the relation < on
X the Lipschitz order.

The Lipschitz order < is a partial order relation on X.

Let X be a metric space. Denote by My (X) the set of all X-valued
symmetric matrices of order N equipped with [,-product metric, and by
My (X) the set of all X-valued symmetric matrices of infinite-order. We
equipped M, (X) with the coarsest topology such that the natural projec-
tion mx : M(X) — Mpy(X) defined by ﬂﬁ((x”)f?:l) = (mi,j)%‘ﬂ is
continuous for any natural number N. We write 7y omitting X whenever
no confusion. Let T be a topological space. Denote by B(T') the set of Borel
sets on T', and by M(T') the set of Borel probability measures on T equipped
with the weak topology.

Definition 2.4 (Distance matrix distribution). Let X be an mm-space and
N € NU{oo}. Define a map Kx : X — My(R) by

K])\g(xla CEN) = (dX(xivxj))%:lv

and the N-dimensional distance matriz distribution Hﬁ of X by
X X N

The N-dimensional distance matrix distribution is a Borel probability
measure on My (R). Define the map 7: X - M(Mx(R)) by 7(X) := Hfo'

Theorem 2.5 (mm-Reconstruction theorem, [17, Section 2, Theorem], [8,
Section 33.5, 33.7], [9, Theorem 2.1], [15, Theorem 4.7]). Let X and X' be
two mm-spaces. The following (1), (2), and (3) are equivalent to each other.

(1) X and X' are isomorphic to each other.
(2) Hﬁ = Hﬁl for all N € N.
(8) p =
This theorem means that the infinite-dimensional distance matrix distri-
bution is a complete invariant of mm-spaces.

Lemma 2.6 ([9, Lemma 2.2]). Let X be an mm-space and N € N. Then
we have (WN)*Hi(O = Hﬁ'

2.2. Concentration function. The concentration function is one of the
most fundamental invariants of an mm-space.

For a subset A of a metric space (X, dx) and for a real number r > 0, we
set

U (A):={z e X|dx(z,A) <r},
where dx (z, A) := inf,ca dx(z, a).

Definition 2.7 (Concentration function of mm-space). Let > 0 and 0 <
k < 1. The concentration function of mm-space X is defined to be

ax(r,x) = sup{ 1 - ux (Un(A)) | 4 € B(X), ux(A) > r}.
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Lemma 2.8 ([10, Lemma 1.1]). Let X be an mm-space and 0 < r < 1.
Then we have

ax(r+ro, k) < ax(r,1/2)
for any r >0 and ro > 0 satisfying ax(ro,1/2) < k.
Definition 2.9 (Lévy family). A sequence of mm-spaces X,, n =1,2,...,

is called a Lévy family if for any » > 0 and 0 < k < 1, ax,, (r, k) converges
to zero as n — oo.

2.3. Box distance and observable distance.

Definition 2.10 (Prokhorov metric). Let X be a metric space. For two
Borel probability measures 4 and v on X, we define the Prokhorov distance
dpr(p,v) between p and v by

dpr(p,v) :==1inf{e > 0| u(A) < v(U:(A)) + € for any Borel set A C X }.

The distance function dp, is called the Prokhorov metric on the set of prob-
ability measures on X.

The Prokhorov metric is a metrization of weak convergence of Borel prob-
ability measures on X provided that X is a separable metric space.

Definition 2.11 (Ky Fan metric). Let (T, 1) be a measure space and X be
a metric space. For two p-measurable maps f,g: T — X, we define the Ky
Fan distance between f and g by

dip(f,9) = inf{e > 0] p({t € T]dx(f(t),9(t)) >e}) <e}.

The distance function d’% is called the Ky Fan metric on the set of pu-
measurable maps from 71" to X.

The Ky Fan metric is a metrization of convergence in measure.

Definition 2.12 (Parameter). Let I :=[0,1] and T' = (T, ur) be a Polish
topological space equipped with a Borel probability measure. A Borel mea-
surable map ¢ : I — T is called a parameter of T if  satisfies the following
(1) and (2).

(1) @«L = pur, where L is the Lebesgue measure on I.

(2) The image of any Borel set is a Borel set of ¢(I).

The definition of a parameter is not usual. The usual definition of a
parameter is only by (1). We put (2) as an additional condition for measure
theoretic approach. Any Polish topological space equipped with a Borel
probability measure has a parameter.

Definition 2.13 (Box distance between two mm-spaces). We define the box
distance O(X, X') between two mm-spaces X and X' to be the infimum of
e > 0 such that there exist parameters ¢ : I — X, ¢ : I — X', and Borel
subset Iy C I such that

| dx(s,t) — ¢ dx:(s,t)| < e for any s,t € Ip;
ﬁ([o) Z 1-— g,
where p*dx(s,t) := dx(¢(s),p(t)) for s,t € I.
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The box distance function [J is a metric on X

Combining [6, Theorem 5] and [11, Theorem 3.1}, we have the next the-
orem. Note that the proof of the next theorem is omitted in the original
article (see [8, Section 3.3.14]).

Theorem 2.14. Let {X,,}2° be a sequence of mm-spaces and let X be an

mme-space. The following (1), (2), and (3) are equivalent to each other.

(1) X, O-converges to X.
(2) ﬁ;\(}n converges weakly to H]Xv for all N € N.

X X
(3) pr converges weakly to pi” .
Definition 2.15 (Observable distance). Denote by Lip;(X) the set of 1-

Lipschitz continuous functions on an mm-space X. For any parameter ¢ of
X, we set

@ Lip1(X) = { fop|f € Lipi(X)}.
We define the observable distance deonc(X,X') between two mm-spaces X
and X' by

dconc(X7 X/) = }Pni dH(SO*‘CZpl (X)') Wﬁipl (XI))’

where ¢ : I — X and ¢ : I — X' run over all parameters of X and X',
respectively, and where dy is the Hausdorff distance function with respect
to the Ky Fan metric df(F.

The observable distance deopc is a metric on X. Note that deone(X, X')
< 0O(X, X') for any two mm-spaces X and X'.

Proposition 2.16 ([8, Section 33.36]). Let {X,,}52, be a sequence of mm-

spaces. Then {X,}22 is a Lévy family if and only if X, dconc-converges to
a one-point mm-space as n — oo.

2.4. Pyramid.
Definition 2.17 (Pyramid). A subset P C X is called a pyramid if it
satisfies the following conditions (1), (2), and (3).

(1) If X € P and if X' < X, then X' € P.
(2) For any X, X' € P, there exists Z € P such that X < Z and X' < Z.
(3) P is a non-empty U-closed set.

We denote the set of pyramids by II.
For an mm-space X, we define
Px ={X' eX|X <X}

Then Px is a pyramid.

In Gromov’s book [8, Section 3.%.51], the definition of a pyramid is only
by (1) and (2) of Definition 2.17. Shioya put (3) as an additional condition
for the Hausdorff property of IT (see Theorem 2.20).

Definition 2.18 ((N, R)-Measurement). Let P be a pyramid, N a natu-
ral number, and R a nonnegative real number. Denote by Bg ={z €
RN | ||2]|oo < R}. We define

M(P;N,R) = { € M(BR)|(BR, || e, 1) € P}
We call M(P; N, R) the (N, R)-measurement of P.
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The (N, R)-measurement M(P; N, R) is a compact subset of M(RY).

Definition 2.19. For two pyramids P, P’, and for a positive real number
R, we define

— 1
pr(P.P') =) | i dn(M(P: N, NR), M(P'; N, NR)),
N=1

where dg is the Hausdorff distance function with respect to the Prokhorov
metric dp;.

Theorem 2.20 ([8, Section 3.1.55], [15, Theorem 7.27], [16, Theorem 1.2,
Proposition 3.5, [13, Theorem 3.7]). We have the following (1)—(4).

(1) pr for each R > 0 is a metric on II. Moreover, (II, pr) for all R > 0
are homeomorphic to each other.

(2) The metric space (11, pr) is compact.

(3) The map X > X — Px € Il is a topological embedding with respect
to deone and pr, and its image is dense on II. In particular, (I, pr)
is a compactfication of (X, dconc)-

(4) For any two pyramids P, P', for any natural number N, and for any
positive real number R, we have

dg(M(P; N,NR), M(P'; N,NR)) < N2V pp(P,P’).
We say that a sequence of pyramids P,, n = 1,2,..., converges weakly to
a pyramid P if P, pr-converges to P as n — oo.
2.5. Quantum metric measure space.

Definition 2.21 (qmm-Space). A triple Q = (Q, pg, da) is called a gmm-
space (quantum metric measure space) if it satisfies the following (1), (2),
and (3).
(1) (@, pq) is a Polish topological space with a Borel probability mea-
sure.
(2) A measurable map dy Q@ xQ — M(I) satisfies da(q, q) = dp a.s.

q € Q and djy(q.q") = di(d' q) as. (¢.4) € Q%
(3) For any t; ; € supp(d*Q(qi,qj)), 1,7 =1,2,3, we have
t13 <t12+t23
a.s. (q1,q2.q3) € Q°.

For any mm-space X with diameter at most one, we define d¥ (x1, z2) :=
Ody (21,20)- Lhen

Qx = (X, px,dx)
is a gqmm-space. Note that any qmm-space has a parameter.

Definition 2.22 (Box distance between two qmm-spaces). We define the
boz distance o (Q, Q') between two gmm-spaces Q and Q' to be the infimum
of € > 0 such that there exist parameters ¢ : [ — Q, v : I — @', and Borel
subset Iy C I such that

dpr(*d (s, t), 9 d (s,t)) < e for any s,t € Ip;
,C(IQ) > 1-— g,
where p*dp (s, t) := di)((s), (1)) for s, t € 1.
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For any X, X’ € Xy, we have Ug(Qx,Qx/) = (X, X’). For any Borel
probability measure p on I, denote by | p := min{¢|¢ € supp(p)} and
T p = max{t|t € supp(u) }.

Remark 2.23. By the definition of gqmm-space, we have 7 d’é(q,q’ ) =1
dg(a.q') as. (¢,4) € Q%

Definition 2.24 (qmm-Isomorphism). Two gqmm-spaces @ and Q' are said
to be gmm-isomorphic to each other if Ogo(Q, Q") = 0.

Denote by Qi the set of isomorphism classes of gqmm-space.

Remark 2.25. (1) The box distance function Og is a metric on Qj.
(2) For any parameter p of @, (Q,,uQ,d*Q) and ([, El,p*dz‘g) are qmm-
isomorphic to each other.

Definition 2.26 (Quantum distance matrix distribution). Let @ be a qmm-
space. Define a map K3 : Q® — Moy (M(I)) by

K2 ({an}21) = (d§y(9i,4))) 351,
and the infinite-dimensional quantum distance matriz distribution v of Q

by
v = (KQ)un™.

The infinite-dimensional quantum distance matrix distribution is a Borel
probability measure on My, (M(I)). Consider it as a Borel probability mea-
sure on M (M (1)).

Definition 2.27 (Barycenter). Let E be a Banach space and E* be dual
space with the weak topology. For a compact convex subset C C E*
equipped with a Borel probability measure p. Then b € C is called the
barycenter of p if

o) = [ (fobaut
for any v € E, where (f,v) is a dual coupling of f € C' and v € F.

There is unique barycenter for any Borel probability measure p on a
compact convex subset C. We set F = Cp(My(I)) the set of bounded
continuous functions on M (I), E* the set of Radon measures on Moo (),

C=M(Mx(I)), and p = V9 as in Definition 2.27 and for a gqmm-space Q.
Denote by bgo the barycenter of goQo. We have ngx = Hfo for any X € Aj.

Theorem 2.28 ([2, Theorem 2|). Let Q and Q' be two gmm-spaces. Then
00(Q, Q") = 0 if and only if b2, = bL . Moreover if Jo(Q, Q') = 0, there ex-
ist parameters ¢ : I — Q and ¢ : I — Q' such that go*dzg(s,t) = zp*d*Q,(s,t)
for a.s. (s,t) € I%.

Since M (Moo (1)) is a compact metric space, so is the closure 7(X7).

Theorem 2.29 ([2, Theorem 1, Section 5]). We have the following (1) and
(2).
(1) For any gmm-space Q, its barycenter QOQO 1s an element of the closure

T(Xl).
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(2) For any u € 7(X1), there exists a gqmm-space Q such that p = QOQO.
In particular, Q1 is a compactification of (X1,0).

We say that a sequence of gqmm-spaces Q,, n = 1,2,..., converges to a
gmme-space @ in sampling if QOQO" converges weakly to QOQO.

Remark 2.30. Since the sequence {S™(7~1)}2°, of n-dimensional sphere
equipped with geodesic distance and radius 7—! does not have a Cauchy
sub-sequence with respect to the box distance function (see [4, Proposition
3.1]), we obtain that (Q1,0g) is not a compact metric space. The topology
generated by the box distance function on Q; is not compatible with the
topology of the convergence in sampling.

3. CONCENTRATION FUNCTION FOR PYRAMID
Lemma 3.1. Let X be an mm-space. Then we have

ax(r,k) = Ml/ig%”ax(r — 6,k —0¢")

foranyr>0and 0 <k < 1.

Proof. Let {6,,}5°; and {/,}5°; be monotone decreasing sequences of posi-
tive real numbers converging to zero. Then, ax(r — d,, s — d},) is monotone
nonincreasing in n. We set

B:= lim ax(r —dp, K —4,,).
n—oo

Since ax(r — dp,k — 0),) > ax(r,k), we have f > ax(r,k). It suffices to
prove ax(r, k) > (. It follows from the definition of 5 that there exist Borel
subsets A,, C X such that ux(A4,) >k — 9], for any n € N and

1- nh_{glo px (Ur—s, (An)) = B.

We may assume that A, is a closed set. Take a monotone decreasing se-
quence {np};il of positive real numbers converging to zero. The inner reg-
ularity of px proves that there are compact subsets {K,}>2; such that
px(Kp) > 1—mn, and K, C K, for any p € N. We have pux (A4, N Kp) >
k—(07,+1p). Since K, is the compact set, { A,NK,}5°_; has a Hausdorff con-
vergent subsequence for any p € N. By a diagonal argument, we find a com-
mon subsequence {m(n)};2; C N such that {A,,,,) N Kp};2; is a Hausdorff
convergent sequence for any p € N. Denote its limit by B,. For any € > 0,
there exist ng € N such that B, C Uz(A,(,) N Kp) for any n > ng. Since
we can assume that 6,,,) < €, we have Uy_o:(Bp) C Ur—s,,(,,, (Am(n) N Kp).
{Bp}f,i1 is a monotone nondecreasing sequence of compact subsets of X
satisfying px(Bp) > k — 0, for any p € N. Setting

B:= | B,
peN
we have pux (B) > r and Uy (B) = U,y Ur(Bp). Since

B <1-— lim lim NX(UT—§m(n)(Am(n) N Kp)) =1- IU'X(UT(B))a

P—00 N—00

we obtain ax(r, k) > . This completes the proof. O

This is a pre-publication version of this article, which may differ from the final published version. Ccr)pyrigiht réétr'icitioris’me;yiapply.
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Proposition 3.2 ([10, Proposition 1.2]). Let X and X' be two mm-spaces.
If X' is dominated by X, then we have

O[X/(T, 'V”') S O{X('l", K/))
foranyr>0and 0 <k < 1.

Definition 3.3 (Concentration function for pyramid). Let » > 0 and 0 <
Kk < 1. The k-concentration function for a pyramid P is defined to be

ap(r,k) ;== lim sup ax(r —4J,k —0).
0—=0+ xecp

Proposition 3.4. For any mm-space X, we have

ap, (1, k) = ax(r, k)

foranyr >0 and 0 <k < 1.
Proof. The proposition follows from Proposition 3.2 and Lemma 3.1. U

Lemma 3.5. Let P and P’ be two pyramids. If we have
for two positive real numbers £ and R with 2e < R, then
ap(r,k) < ap/(r—2e,k—¢)+e
forany 2e <r <R and 0 <k <1.
Proof. We take any 6 > 0 and any mm-space X € P. Let a < ax(r —
d,k — 60). There is a Borel subset A such that ux(A4) > K — 9 and a <
1 — ux(Ur—s(A)). Define a 1-Lipschitz function f : X — [0, R] by f(x) :=
min{ dx(z,A), R} for z € X. Then we have fiux € M(P;1,R). By
M(P;1,R) C U(M(P’;1,R)), there are an mm-space X’ € P’ and the
1-Lipschitz function g : X’ — [—R, R] such that dp,(fipix, g«ptx’) < €. Let
B:={2' € X'|g(2') <e }. We see that
px (B) = gux({t € [-R,R]| t < })
= gepx'(U({t € [-R, R][t < 0}))
> f*.UX({t € [_RaR] ‘t < 0}) —€
=pux(A) -«
>k —(0+e).
For any ' € U,_(549:)(B), there exists ¢’ € B such that dx(z',y") < r—(5+
2¢). The 1-Lipschitz continuity of g implies that g(z’) < g(y/)+r—(6+2¢) <
r—(6-+¢). Then we have U, _(5100(B) C B := {2’ € X' |g(2') < r—(0+¢) }.
On the other hand, we see that
a<l-— :U’X(UT—J(A))
=1—-fipx({te[-R,R][t<r—0})
=1—fipx(Ue({t € [-R,R][t <r—(6+¢)}))
<l-gpux({te[-RR][t<r—(0+¢e)})+e
<1-— ,UXI(B/) + €
<1 —pux/(Up—(542¢)(B)) + &
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This implies that ax(r — 6,k — ) < ax/(r — (0 +2¢),k — (6 +¢)) + <.
Taking supremums over X’ € P/, X € P and limit 6 — 0+, we obtain
ap(r,k) < ap/(r —2e,k —€) + e. This completes the proof. O

Corollary 3.6. Let P and P’ be two pyramids. If pr(P,P") < e/4 for two
positive real numbers € and R with 2e < R, then

ap(r,k) < ap/(r—2e,k—¢)+e
forany2e <r < R and 0 <k < 1.

Proof. Theorem 2.20 (4) implies that M(P;1,R) C U.(M(P’;1, R)). Using
Lemma 3.5, we have the corollary. U

Proof of Theorem 1.1. For any real number § > 0 with r > 4 and x > 24,
there is a number ng such that pr(Pp,P) < §/4 for any n > ng. Let n > ny.
Corollary 3.6 implies

ap(r,k) —d < ap, (r—20,k —0) < ap(r — 49,k — 2J) + 9.
Taking the limits of this inequality as n — oo and then § — 04, we obtain

ap(r,k) = 51&% hnn_1>10réf ap, (r—0,k—0)

= lim limsupap, (r—34§, —0).
0—0+ n~>oop Pn( )

The proof is completed. U

4. CONCENTRATION FUNCTION FOR QMM-SPACE

For a subset A of a qmm-space (Q, 1@, d*Q) and for a real number r > 0,
we set

Ur(A) :={qe Q| Tdy(q,A) <7},

where 1 dg)(q, A) == infaea T d(y(q,a). Note that A is not subset of U,.(A)
in general.

Definition 4.1 (Concentration function for gmm-space). Let 0 < r,x < 1.
The k-concentration function for a gmm-space @ is defined to be

ag(r,) = lim sup{1— g(Uy—s(4)| 4 € BQ), () 25—},
The next lemma is obvious from Theorem 2.28.

Lemma 4.2. Let Q and Q' be two gmm-spaces. If Q and Q' are isomorphic
then ag(r, k) = ag/(r, k) for any 0 <r,k < 1.

Proposition 4.3. Let X be an mm-space with diameter at most one. We
have

agy (r k) = ax(r, k)
for any 0 < r;k < 1.

Proof. The proposition follows from 1 df, (z1,22) = dx(z1,22) and Lemma
3.1. U
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To prove Theorem 1.2, we recall ultraproducts of mm-spaces constructed
in [3, Section 2.7] and [2, Section 3]. Let w be a non-principal ultrafilter
on N, and X,, n = 1,2,..., be mm-spaces with diameter at most one.
For {@;}32,, {2152, € Th2y Xn, {z:}32, and {z}}5°, are equivalent if {i €
N|z; = 2} } € w. Denote X by the set of equivalence classes. We can define a
pseudo-metric on X by dx (x,x’) := lim,, dx;, (z;, z}), where {z;}3°, {2}}2,
are representative elements of x,x’ € X, respectively. Let A, be Borel sets
on X,,,n =1,2,.... Define the ultraproduct set A in X by the following way.
[{a;}] € A if and only if {i € N|a; € A;} € w. The set U of ultraproduct
sets forms a Boolean algebra. Define the measure of ultraproduct set A by
pux(A) = lim, pux, (A;). Elek constructed a o-algebra S containing ¢ and
extended the measure pux on S. We call (X,dx, S, ux) the ultraproduct of

{Xntnzr-

Remark 4.4. (1) The function dx is not necessarily measurable on the
product o-algebra o(S x §). This is a measurable function on the
ultraproduct (X x X, dx,, S2, ux,) of lo-products { X, x X} .

(2) The product o-algebra o(S x §) is a sub-o-algebra of Ss.

Lemma 4.5. Let A, be Borel sets on X,,, n=1,2,..., and A its ultraprod-
uct. Then we have U,(A) C lim,, U, (A4y).

Proof. For any x € U,(A), there exist x’ € A such that dx(x,x’) < r.
Denote {z;}5°, {«}}32, by representative elements of x, x'. dx(x,x’) <r
implies that {7 € N|dx,(z;,«}) < r} € w. This means x € lim,, U,(4). O

Proposition 4.6 (Radon-Nikodym-Dundord-Pettis Theorem, [2, Proposi-
tion 2.1)). Let L be a Banach space, L* be its dual space with the weak topol-
ogy, and (Q, F,P) a probability space. For any essentially bounded weak-*-
measurable map f : Q — L* and any sub-c-algebra F' C F, there exists an
essentially unique map E(f|F') : Q@ — L* which is weak-+x-measurable with
respect to F' such that for any v € L and A’ € F' we have

[ EGF)@)0) @) = [ (1)) dG).

/

We call E(f|F'") the Radon-Nikodym-Dundord-Pettis derivative of f.
For the pseudo-metric dx, we define the map dqx : X x X — M(I) by
ddx (X, X') 1= day (xx/)- Then dqy is weak-+-measurable with respect to So.
Denote dx by the Radon-Nikodym-Dundord-Pettis derivative of dq, with
respect to o(S x §). Note that dy is M([)-valued map.

Lemma 4.7. Let A be ultraproduct set on (X,dx,S,ux) and 0 <r <’ <
1. For a € X, define the set Uy C X by

U, :={xeX| tdk(a,x) <r dx(a,x) >r'}.
Then we have px({a € A|px(Ua) >0}) =0.

Proof. Tt is trivial that ux({a € A|ux(Ua) > 0}) =0 if ux(A) = 0. We
assume px(A) > 0. Define the set U € 0(S x S) by

U:={(a,x) e AxX|x€U,}.
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pux({a€ Alux(Ua) >0}) > 0if and only if ux,(U) > 0. Let g : I — T be
a continuous function satisfying ¢g(t) = 1ift < rand g(t) = 0if¢t > (r+r")/2.
Then if pux,(U) > 0,

0< [ (dicloxx). g x5 = [ (agior ) dix (%) =0
leading a contradiction. This completes the proof. U

Theorem 4.8 ([2, Section 5-7]). Let X,,, n = 1,2,..., be mm-spaces and
Q be a gmm-space. If X, converges to Q) in sampling, then there exists
S-measurable map ¥ : X — Q satisfying the following (1)—(4).

(1) (M) C B(Q)-

(2) px(A) = ux (TP (A))) for any ultraproduct set A.

(3) pg = Wupx.

(4) ¥*d)(x,x') = dx(x,X') as. (x,x) € X x X.

Lemma 4.9. Let QQ be a gmm-space. For any sequence of mm-spaces
{Xn}22, such that X,, converges to Q in sampling, then we have

lim limsupayx, (r—90,k—90) < ag(r,k
lin Jim sup X ( ) < ag(r, k)

for any 0 < r;k < 1.

Proof. Taking a subsequence of {ax, (r—0,k—0)}5°, we can suppose that
the limit exists. There exist A4,, be a Borel subset of X,, with pux, (An) > K—0
satisfying

1
ax,(r—90,k—140)— ” <1—px,(Ur—s(An)).

Denote A := lim, A,,. Then pug(¥(A)) = pux(A) > k — . Taking the
ultralimit, by Lemma 4.5, Theorem 4.8 (2), (3), and Lemma 4.7, we have

(
lim ax,(r—0,k—0) <1—pux (lim Ur_(;(An))

<1 - px(Ur—s(A))
=1 - px (T (T(U,—5(A))))
=1—pg(¥(U;-5(A)))
<1 - pQ(Ur—s/2(¥(A))).
By taking § — 0+, we obtain the lemma. O

Lemma 4.10. Let QQ be a gmm-space. There exists a sequence of mm-spaces
{Xn}22, such that X,, converges to Q in sampling such that

lim li f —0,k—0) >
Jlm 1nn_1>10ré ax,(r—=06k—109) > ag(r, k)

for any 0 < r,k < 1. In particular, we have

ag(r, k) = 51—1>%1+ hnnilogfa)( (r—290,k—9)

= lim i —0,k—90
Sim. lim sup ax,(r — 6,k —6)

forany 0 <7,k < 1.

This is a pre-publication version of this article, which may differ from the final published version. Copynght restrictions. may apply
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Proof. We recall random mm-spaces {X,}°°; constructed by Elek [2, Sec-
tion 6]. Let us pick a sequence {z;}7°; € Q> of independent ugoo—random
points in Q. For each pair (x;,x;), we pick ¢; ; € I independently according
to dgy(zi, z;). Denote the mm-space Xy, by Xy, = {zx}p_y, dx, (i, 7;) = tij,
and pix, = n 1Y} 6z, Then {X,}5°, converges to @ in sampling and
with probability one.

Let § > 0. There exists A5 € B(Q) such that ug(As) > k — 9 and

ag(r,k) =1- Sim, 1Q(Ur—s(As))-

Denote the set B, 5 := X,,NA;. By the definition of ux, , we have px,, (By5) =
1x, (As) and px, (Ur—s(Bys)) < px, (Ur—s(As)). Since {Xn}p2; converges
to @ in sampling, we have lim, o px,(Bns) = po(4s) > £ — ¢ and
limsup,, o 1x,, (Ur—5(Bns)) < po(Ur—s(As)). This implies that

li lim inf _5 —35) > .
504 msoo ax,(r = 0,8 =0) 2 ag(r,x)

We obtain the lemma. O

Proof of Theorem 1.2. For any @Q,, there exist a sequence of mm-spaces
{Xnm}>>_; which in Lemma 4.10. Then X, ,, converges to ) in sampling.
Combining Lemma 4.9 and Lemma 4.10, we have

lim limsup aq, (r —d,x —6) < lim limsupax, ,(r — 6,k —9) < ag(r, k).

0—=04+ n—oo 0—=0+ n—oo
This completes the proof. O
Remark 4.11. If Q and Q,,, n = 1,2, ..., are mm-spaces, the [J-convergence

implies deonc-convergence. Then Theorem 2.20 (3) and Theorem 1.1 imply
the equation in Theorem 1.2.

Denote dj; : I* — M(I) by dj;(t,t) := 0o and dj; (¢, 1) := 619 if t # ¢/,

Proposition 4.12. {S™(77 1)}, converges to H = (I, L, d%;) in sampling
as n — oo.

Proof. For x;, € S"(x~ 1), denote its distance function by f,(zn) := dgn(r—1)(Zn, ).
Then Lévy’s lemma implies that
S ETh —1y —
Jlim dyep (fn,277)=0.
In particular we have

®2
e ~1y _
nh_)nolo dyrp (dsn(ﬂ.—l),2 )=0.

Denote Hy = (h@j)f?szl by the element of My (I) satisfying diagonal el-

ements are zero and off-diagonal elements are 1/2. Define the map Fy :
(S (r )N — My(I) be Fy(x1,...,25) := Hy. Let {,}52; be a mono-

toggz decreasing sequence of positive real numbers converging to zero with
Hsn(x-1)

dyp (dgn(z-1),27") < &n. Define the set Vy C XN by

Vn i ={(z1,...,2n) € XN | |dsn(7r71)(l‘i,l‘j) — hi’j| <ep
foralli, 7=1,...,N}.



14 RYUNOSUKE OZAWA

Then we have “Sn( _1)(VN) > 1-NZ%¢,. We prove Fy'(A)NVy C (Kf,n(ﬂil))_l(UNzgn(A))
for any A € B(MN( ). For any z € Fy'(A)NVy, then Fy(z) € Aand x €
Vi, which 1mplyK " 1)(9:) € Unz. (A) and so z € (Kﬁn(ﬂ_l))_l(UNzgn(A)).

Thus, we have Fy'(A)NVy C (KS (s ))_1(UN2€H(A)). Since
KSR A\ Vi) < Y (8" (r ) \ V) < N2z,

we have

Sy (A) = (FN)*M%( )(A)
_HSn (= 1)( N (A))
= Gm(py N( )OVN)+M ey (Fx () \ Vi)
< usn(ﬂ_l)(( D)7 U, (A))) + N2z,
= 13" D) (Upe,, (A)) + NPey.

mn —1
This implies that d pr(ﬁif (m=") JOHy) < N2¢,, then p Wy SH(m) converse weakly
to 0p, as n — oo for any N € N. By Lemma 2.6, 750 (== converges weakly
to dg., as n — oo. Since the representative qmm-space of dy_ is H, we

obtain the proposition. O
Remark 4.13. Lemma 2.8 and the well known estimation in [7, Section 1]

agn(r-1)(r, 1/2) < \@exp(fﬂ'(n —1)r%/2)
implies

lim li (o —-6,1/2—-4)=0

S, im sup age y(r—46,1/2-9)
for any r > 0 but ag(r,1/2) = 1/2 for any 0 < r < 1/2. By the above
computation, we can see that

ag(r,k) < lim liminf ag, (r — 6,k — 9)

0—04 n—oo

does not hold in general.
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