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LARGEST VALUES OF THE STERN SEQUENCE,

ALTERNATING BINARY EXPANSIONS AND CONTINUANTS

ROLAND PAULIN

Abstract. We study the largest values of the rth row of Stern’s diatomic
array. In particular, we prove some conjectures of Lansing. Our main tool is
the connection between the Stern sequence, alternating binary expansions and
continuants. This allows us to reduce the problem of ordering the elements
of the Stern sequence to the problem of ordering continuants. We describe an
operation that increases the value of a continuant, allowing us to reduce the
problem of largest continuants to ordering continuants of very special shape.
Finally, we order these special continuants using some identities and inequali-
ties involving Fibonacci numbers.

1. Introduction

The Stern sequence (s(n))n≥0 is defined as follows: s(0) = 0, s(1) = 1, s(2n) =
s(n) and s(2n+1) = s(n)+s(n+1) for every n ≥ 0. Stern’s diatomic array consists
of rows indexed by 0, 1, 2, . . . , where if r ≥ 0, then the rth row is s(2r), s(2r +
1), . . . , s(2r+1). Stern’s diatomic array can also be constructed in the following
way. Start with the 0th row 1, 1. If r ≥ 1, then to construct the rth row, copy
the previous row, and between every two consecutive numbers x, y, write their sum
x + y. This array was first studied by Stern in [4]. Lehmer summarized several
properties of this array in [2].

For r ≥ 0 and m ≥ 1, let Lm(r) denote the mth largest distinct value of the rth
row of Stern’s diatomic array. If there are less than m distinct values in the rth
row, then we just take Lm(r) = −∞. Lucas in [3] has observed that the largest
value in the rth row is L1(r) = Fr+2, where Fn denotes the nth Fibonacci number.
Lansing in [1] determined the second and third largest values L2(r) and L3(r), and
formulated the following conjectures about the Lm(r)’s. Conjecture 7 of [1] says
that if m ≥ 1 and r ≥ 4m− 2, then

Lm(r) = Lm(r − 1) + Lm(r − 2).

Conjecture 9 of [1] says that if m ≥ 2 and r ≥ 4m− 4, then

Lm(r) = Lm−1(r) − Fr−(4m−5) = Fr+2 −

m∑

j=2

Fr−(4j−5).

The following theorem is our main result. It gives a formula for Lm(r) for certain
values of r and m, and it implies the two conjectures of Lansing stated above.
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Theorem 1.1. If r ∈ Z≥0, then

{L1(r), . . . , L⌈ r
2
⌉(r)} = {Fr+2 − FiFj ; i, j ∈ Z≥0, i+ j = r − 1}.

More explicitly, if 1 ≤ m ≤ ⌈ r
2⌉, then

Lm(r) = Fr+2 − F2m−2−bFr−2m+1+b,

where

b = b(m, r) =

{

0 if m ≤ ⌊ r+3
4 ⌋ or 2 | r,

1 if m > ⌊ r+3
4 ⌋ and 2 ∤ r.

We show now that this theorem implies the two conjectures stated above.

Proof of [1, Conjecture 7]. Let m ≥ 1 and r ≥ 4m − 2. Then m ≤ ⌊ (r−1)+3
4 ⌋, so

Lm(r) = Fr+2−F2m−2Fr−2m+1 and Lm(r− 1) = Fr+1−F2m−2Fr−2m by Theorem

1.1. If r ≥ 4m − 1, then m ≤ ⌊ (r−2)+3
4 ⌋, while if r = 4m − 2, then 2 | r − 2, so

either way Lm(r − 2) = Fr − F2m−2Fr−2m−1. The conjecture now follows from

Fr+2 − F2m−2Fr−2m+1 = (Fr+1 − F2m−2Fr−2m) + (Fr − F2m−2Fr−2m−1).

�

Proof of [1, Conjecture 9]. It is enough to prove Lm−1(r) − Lm(r) = Fr−(4m−5),

because L1(r) = Fr+2. Nowm−1 ≤ ⌊ r+3
4 ⌋, and either 2 | r = 4m−4, orm ≤ ⌊ r+3

4 ⌋.
So Lm−1(r) = Fr+2 − F2m−4Fr−2m+3 and Lm(r) = Fr+2 − F2m−2Fr−2m+1 by
Theorem 1.1. Hence

Lm−1(r)− Lm(r) = F2m−2Fr−2m+1 − F2m−4Fr−2m+3 = (−1)2m−4F2Fr−(4m−5)

= Fr−(4m−5)

by Lemma 2.2. �

Here is a brief description of the contents of the paper. In section 2 we state
some basic results about Fibonacci numbers, alternating binary expansions and
continuants. In section 3 we describe the connection between the Stern sequence,
alternating binary expansions and continuants. Using this description we reduce
the problem of comparing the elements of the Stern sequence to the problem of
comparing continuants, which is the subject of section 4. Using some identities in-
volving Fibonacci numbers, we finish the proof of Theorem 1.1 in section 5. Finally,
in section 6 we discuss possible extensions of our results.

2. Preliminaries

In this section we introduce some notations, and state some basic results about
Fibonacci numbers, alternating binary expansions and continuants. Let Fn denote
the nth Fibonacci number for every n ∈ Z. So F0 = 0, F1 = 1, and Fn =

Fn−1 + Fn−2 for every n ∈ Z. Note that ( 1 1
1 0 )

n
=

(
Fn+1 Fn

Fn Fn−1

)

for every n ∈ Z.

The following basic lemma describes the sign of the Fibonacci numbers.

Lemma 2.1. If n ∈ Z, then F−n = (−1)n+1Fn. Hence

Fn







= 0 if n = 0,

> 0 if n > 0 or 2 ∤ n,

< 0 if n < 0 and 2 | n.



LARGEST VALUES OF THE STERN SEQUENCE, ALTERNATING BINARY . . . 3

Proof. The first part is easy to check by induction on n, and the second part follows
from the first part. �

The following lemma describes a useful identity, which allows us to compare
FiFj ’s with fixed i+ j.

Lemma 2.2. If i, j, k, l ∈ Z and i+ j = k + l, then

FiFj − FkFl = (−1)kFi−kFj−k.

Hence if i+ j = k + l, then FiFj = FkFl if and only if {i, j} = {k, l}.

Proof. Vajda’s identity (see [5]) says that

Fn+iFn+j − FnFn+i+j = (−1)nFiFj

for every n, i, j ∈ Z. Substituting k, i− k and j − k into n, i and j, we obtain the
stated identity. To prove the second part, note that by Lemma 2.1, if n ∈ Z, then
Fn = 0 if and only if n = 0. �

The following lemma describes the ordering of FiFj ’s with i, j ≥ 0 and i + j
fixed. We need this result to prove that the second half of Theorem 1.1.

Lemma 2.3. Let n ∈ Z≥0, then the set

{FiFj ; i, j ∈ Z≥0, i+ j = n}

has cardinality ⌈n+1
2 ⌉, and if m ∈ {1, . . . , ⌈n+1

2 ⌉}, then the mth smallest element of

this set is F2m−2−cFn−(2m−2−c), where

c =

{

0 if m ≤ ⌊n+4
4 ⌋ or 2 ∤ n,

1 if m > ⌊n+4
4 ⌋ and 2 | n.

Proof. The last part of Lemma 2.2 implies that the cardinality is ⌈n+1
2 ⌉. For

m ∈ {1, . . . , ⌈n+1
2 ⌉} let c(m) be defined as c in the statement above, and let u(m) =

2m − 2 − c(m) and v(m) = n − (2m − 2 − c(m)). Then u(m), v(m) ≥ 0 and
u(m)+v(m) = n, so Fu(m)Fv(m) is an element of the set. Let 1 ≤ m < m′ ≤ ⌈n+1

2 ⌉.
All we need to prove is that Fu(m)Fv(m) < Fu(m′)Fv(m′). The difference is

Fu(m′)Fv(m′) − Fu(m)Fv(m) = (−1)u(m)Fu(m′)−u(m)Fv(m′)−u(m)

by Lemma 2.2. Here

u(m′)− u(m) = 2(m′ −m)− c(m′) + c(m) ≥ 2− 1 > 0,

so Fu(m′)−u(m) > 0. Therefore we need to prove that (−1)c(m)Fv(m′)−u(m) > 0.
First suppose that 2 ∤ n. Then c(m) = c(m′) = 0, so v(m′)−u(m) = n−2(m′+m−2)
is odd, hence (−1)c(m)Fv(m′)−u(m) > 0 by Lemma 2.1. So let 2 | n.

Suppose that m > ⌊n+4
4 ⌋. Then c(m) = c(m′) = 1, and m > ⌊n+4

4 ⌋ = ⌈n+2
4 ⌉, so

m− 1 ≥ ⌈n+2
4 ⌉ ≥ n+2

4 > n
4 , hence

2 | v(m′)− u(m) = n− 2(m′ +m− 3) ≤ n− 2(2m+ 1− 3) = n− 4(m− 1) < 0.

Thus (−1)c(m)Fv(m′)−u(m) > 0 by Lemma 2.1.

Finally, let m ≤ ⌊n+4
4 ⌋. Then c(m) = 0. If m′ > ⌊n+4

4 ⌋, then c(m′) = 1

and 2 ∤ v(m′) − u(m), so Fv(m′)−u(m) > 0. If m′ ≤ ⌊n+4
4 ⌋, then c(m′) = 0 and

4m′ − 4 ≤ n, so

v(m′)− u(m) = n− 2(m′ +m− 2) ≥ n− 2(2m′ − 3) > n− (4m′ − 4) ≥ 0,
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hence Fv(m′)−u(m) > 0. �

Now we turn to the discussion of alternating binary expansions. For d, l0 ∈ Z≥0,
l1, . . . , ld ∈ Z≥1 we define

A(l0, . . . , ld) =

d∑

i=0

(−1)d−i2l0+···+li .

We call this an alternating binary expansion. The following lemma gives a bound
for A(l0, . . . , ld).

Lemma 2.4. If d, l0 ∈ Z≥0 and l1, . . . , ld ∈ Z≥1, then

2l0+···+ld−1 ≤ A(l0, . . . , ld) ≤ 2l0+···+ld .

If d > 0, then A(l0, . . . , ld) < 2l0+···+ld .

Proof. We prove by induction on d. For d = 0 this is trivial, so suppose that d ≥ 1
and that the statement is true for smaller values of d. Let ki = l0+ · · ·+ li for every
i ∈ {0, 1, . . . , d}. Then 0 ≤ k0 < k1 < · · · < kd, and A(l0, . . . , ld) = 2kd − 2kd−1 +
2kd−2−· · ·+(−1)d2k0 = 2kd−A(l0, . . . , ld−1). Here 0 < 2kd−1−1 ≤ A(l0, . . . , ld−1) ≤
2kd−1 ≤ 2kd−1 by the induction hypothesis, so 2kd−1 ≤ A(l0, . . . , ld) < 2kd . �

The following lemma describes the number of alternating binary expansions of
a positive integer.

Lemma 2.5. Every n ∈ Z≥1 has exactly two alternating binary expansions, and

exactly one of these has the form n = A(l0, 1, l2, . . . , ld), where l0 ∈ Z≥0 and

d, l2, . . . , ld ∈ Z≥1. If n is a power of 2, then d = 1 and the other expansion is

n = A(l0), while otherwise d ≥ 2 and the other expansion is A(l0, l2 + 1, l3, . . . , ld).

Proof. It is easy to check that A(l0, 1) = A(l0) = 2l0 and A(l0, 1, l2, . . . , ld) =
A(l0, l2 + 1, l3, . . . , ld) for d ≥ 2. Hence it is enough to prove that every n ∈ Z≥1

has exactly one alternating binary expansion of the form n = A(l0, . . . , ld) such
that d ≥ 1 and l1 = 1. We prove by induction on n. Let k be the unique positive
integer such that 2k−1 ≤ n < 2k. Let ki = l0 + · · · + li for i ∈ {0, . . . , d}. Then
2kd ≤ n < 2kd by Lemma 2.4, so kd = k. Moreover n = 2k − A(l0, . . . , ld−1), so
n′ = A(l0, . . . , ld−1) = 2k−n. If d = 1, then l0 = k−1 and n = A(l0, 1) = 2k−1. Now
let d ≥ 2. Then A(l0, . . . , ld−1) < 2kd−1 ≤ 2k−1 by Lemma 2.4, so 2k−1 < n < 2k

and n′ < 2k−1 < n. By the induction hypothesis, there is a unique expansion
n′ = A(l0, . . . , ld−1) with l1 = 1, where furthermore l0 + · · ·+ ld−1 ≤ k− 1, because
n′ < 2k−1. Then ld = k − (l0 + · · ·+ ld−1) ∈ Z≥1 is also determined. �

Now we will recall some basic facts about continuants. Continuants are poly-
nomials in several variables, which come up often when working with continued
fractions. We define the dth continuant Kd(X1, . . . , Xd) ∈ Z[X1, . . . , Xd] for every
d ∈ Z≥0, by the following recursion: K0 = 1, K1(X1) = X1, and

Kd(X1, . . . , Xd) = XdKd−1(X1, . . . , Xd−1) +Kd−2(X1, . . . , Xd−2)

for every d ≥ 2. We can safely write K(X1, . . . , Xd) instead of Kd(X1, . . . , Xd),
because d is anyway determined by the number of variables. If X = (X1, . . . , Xd),
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then we will also use the notation K(X) = K(X1, . . . , Xd). The continuants are
related to continued fractions by the following identity:

[a0, a1, . . . , ad] = a0 +
1

a1 +
1

. . .+ 1
ad

=
K(a0, . . . , ad)

K(a1, . . . , ad)

for every d ≥ 0.
The following lemma gives maybe the most practical description of continuants,

using 2× 2 matrices.

Lemma 2.6. If d ≥ 2, then
(

Kd(X1, . . . , Xd) Kd−1(X1, . . . , Xd−1)
Kd−1(X2, . . . , Xd) Kd−2(X2, . . . , Xd−1)

)

=

(
X1 1
1 0

)

· · ·

(
Xd 1
1 0

)

.

So if d ≥ 0, then Kd(X1, . . . , Xd) = M1,1, where M =
(
X1 1
1 0

)
· · ·

(
Xd 1
1 0

)
.

Proof. This easily follows from the defining recursion by induction on d. �

The continuants have the following symmetry property.

Lemma 2.7. K(X1, . . . , Xd) = K(Xd, . . . , X1) for every d ≥ 0.

Proof. Let M =
(
X1 1
1 0

)
· · ·

(
Xd 1
1 0

)
, then

MT =
(
Xd 1
1 0

)T
· · ·

(
X1 1
1 0

)T
=

(
Xd 1
1 0

)
· · ·

(
X1 1
1 0

)
,

hence
K(Xd, . . . , X1) = (MT)1,1 = M1,1 = K(X1, . . . , Xd)

by Lemma 2.6. �

The following lemma states a few simple identities involving continuants.

Lemma 2.8. If d ≥ 1, then

K(X1, . . . , Xd) = K(X1 − 1, X2, . . . , Xd) +K(X2, . . . , Xd).

If d ≥ 2, then

K(1, X2, . . . , Xd) = K(X2, . . . , Xd) +K(X3, . . . , Xd).

If d ≥ 1, then

K(1, X1, X2, . . . , Xd) = K(X1 + 1, X2, . . . , Xd)

and

K(X1, . . . , Xd−1, Xd, 1) = K(X1, . . . , Xd−1, Xd + 1).

Proof. The identities are trivial for d = 1, so assume that d ≥ 2. Using Lemma 2.7
and the defining recursion of the continuants, we obtain

K(X1, . . . , Xd) = X1K(X2, . . . , Xd) +K(X3, . . . , Xd).

Substituting X1 − 1 into X1, we get

K(X1 − 1, X2, . . . , Xd) = (X1 − 1)K(X2, . . . , Xd) +K(X3, . . . , Xd).

These two equations immediately imply the first part of the lemma. Substituting
1 into X1 in the first equation, we obtain the second part of the lemma.

The fourth identity follows from the third one by Lemma 2.7. Finally,

K(X1 + 1, X2, . . . , Xd) = K(X1, . . . , Xd) +K(X2, . . . , Xd) = K(1, X1, . . . , Xd)
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by the first two parts of the lemma. �

3. Connecting the Stern sequence, alternating binary expansions and
continuants

The following proposition describes the connection between the Stern sequence,
alternating binary expansions and continuants. This result plays a central role in
this paper: it allows us to reduce the problem of ordering the elements of the Stern
sequence to the problem of ordering continuants.

Proposition 3.1. If d, l0 ∈ Z≥0 and l1, . . . , ld ∈ Z≥1, then

s(A(l0, l1, . . . , ld)) = K(l1, . . . , ld).

Proof. We prove by induction on l0 + · · · + ld. So let S ∈ Z≥0, and suppose the
statement is true if l0 + · · · + ld < S. Now let l0 + · · · + ld = S. If l0 > 0, then
A(l0, l1, . . . , ld) = 2l0A(0, l1, . . . , ld), so s(A(l0, l1, . . . , ld)) = s(A(0, l1, . . . , ld)) =
K(l1, . . . , ld) by the induction hypothesis. So assume that l0 = 0.

Let ki = l0 + · · · + li for every i ∈ {0, . . . , d}, and let n = A(l0, l1, . . . , ld) =
∑d

i=0(−1)d−i2ki . Note that k0 = l0 = 0, so k1 = l1. Here n > 0 by Lemma 2.4,
and n is odd, so n = 2m + 1 for some m ∈ Z≥0. If d = 0, then n = 1, and
s(1) = 1 = K(). So let d ≥ 1.

First suppose that l1 ≥ 2. If d is even, then m = A(l1 − 1, l2, . . . , ld) and
m+ 1 = A(0, l1 − 1, l2, . . . , ld), while if d is odd, then m+ 1 = A(l1 − 1, l2, . . . , ld)
and m = A(0, l1 − 1, l2, . . . , ld). (Note that l1 − 1 ≥ 1.) So either way we get

s(n) = s(m) + s(m+ 1) = s(A(0, l1 − 1, l2, . . . , ld)) + s(A(l1 − 1, l2, . . . , ld))

= K(l1 − 1, l2, . . . , ld) +K(l2, . . . , ld) = K(l1, . . . , ld)

using the induction hypothesis and Lemma 2.8.
Now suppose that l1 = 1. If d = 1, then n = A(0, 1) = 1 and s(n) = 1 = K(1).

So let d ≥ 2. If d is odd, then m = A(l2, . . . , ld) and m+ 1 = A(0, l2, . . . , ld), while
if d is even, then m + 1 = A(l2, . . . , ld) and m = A(0, l2, . . . , ld). So either way we
get

s(n) = s(m) + s(m+ 1) = s(A(0, l2, . . . , ld)) + s(A(l2, . . . , ld))

= K(l2, . . . , ld) +K(l3, . . . , ld) = K(1, l2, . . . , ld) = K(l1, . . . , ld)

using the induction hypothesis and Lemma 2.8. �

For r ∈ Z let us define

Er = {(l1, . . . , ld); d ∈ Z≥1, l1, . . . , ld ∈ Z≥1, l1 = ld = 1, l1 + · · ·+ ld = r + 1}

and

E′
r = {(l1, . . . , ld); d ∈ Z≥1, l1, . . . , ld ∈ Z≥1, l1 = ld = 1, l1 + · · ·+ ld ≤ r + 1}.

Using Lemmas 2.4, 2.5 and Proposition 3.1, we obtain the following corollary.

Corollary 3.1. If r ∈ Z≥0, then the set of values of the rth row of Stern’s diatomic

array is

{s(n); 2r ≤ n ≤ 2r+1} = {K(l); l ∈ E′
r}.
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Proof. Suppose that l ∈ E′
r. Let l0 = r + 1 −

∑r

i=1 li and n = A(l0, . . . , ld), then
2r ≤ n ≤ 2r+1 and s(n) = K(l) by Lemma 2.4 and Proposition 3.1. So the left
hand side contains the right hand side. Conversely, let n ∈ {2r, . . . , 2r+1}. If
n = 2r or n = 2r+1, then s(n) = 1 = K(1). So suppose that 2r < n < 2r+1.
According to Lemma 2.5, n has an alternating binary expansion n = A(l0, . . . , ld)
with d ≥ 1 and l1 = 1. Here l1 + · · ·+ ld ≤ l0 + · · ·+ ld = r+1 by Lemma 2.4, and
s(n) = K(l1, . . . , ld) by Proposition 3.1. So if ld = 1, then l = (l1, . . . , ld) ∈ E′

r and
s(n) = K(l). If ld > 1, then l′ = (l1, . . . , ld − 1, 1) ∈ E′

r and s(n) = K(l) = K(l′)
by Lemma 2.8. So the right hand side contains the left hand side. �

This corollary implies that Lm(r) is the mth largest distinct value in {K(l); l ∈
E′

r}. So we need to compare the continuants K(l), where l ∈ E′
r.

4. Comparing continuants

The following proposition describes a simple operation on (l1, . . . , ld) that in-
creases K(l1, . . . , ld). This operation is our main tool in comparing continuants.

Proposition 4.1. Let d, l1, . . . , ld ∈ Z≥1, j ∈ {1, . . . , d}, and suppose that lj = u+v
for some u, v ∈ Z≥1. Then

K(l1, . . . , ld) ≤ K(l1, . . . , lj−1, u, v, lj+1, . . . , ld),

where equality holds if and only if j = 1 and u = 1, or j = d and v = 1.

Proof. Lemma 2.6 implies that

K(l1, . . . , ld) = (P
(
u+v 1
1 0

)
Q)1,1

and

K(l1, . . . , lj−1, u, v, lj+1, . . . , ld) = (P ( u 1
1 0 ) (

v 1
1 0 )Q)1,1,

where P =
(
l1 1
1 0

)
· · ·

(
lj−1 1
1 0

)
and Q =

(
lj+1 1
1 0

)
· · ·

(
ld 1
1 0

)
. Using

( u 1
1 0 ) (

v 1
1 0 )−

(
u+v 1
1 0

)
=

(
(u−1)(v−1) u−1

v−1 1

)

=
(
u−1
1

)
(v − 1, 1)

we obtain

∆ = K(l1, . . . , lj−1, u, v, lj+1, . . . , ld)−K(l1, . . . , ld) = (P
(
u−1
1

)
(v − 1, 1)Q)1,1

= (P1,1(u − 1) + P1,2)(Q1,1(v − 1) +Q2,1).

Here P1,1, P1,2, Q1,1, Q2,1, u − 1, v − 1 ≥ 0, so ∆ ≥ 0. Note that detP, detQ ∈
{−1, 1}, since det (X 1

1 0 ) = −1. So (P1,1, P1,2) 6= (0, 0) and (Q1,1, Q2,1) 6= (0, 0).
Hence ∆ = 0 if and only if u = 1 and P1,2 = 0, or v = 1 and Q2,1 = 0. It is easy
to see that P1,2 = 0 if and only if j = 1, and similarly, Q2,1 = 0 if and only if
j = d. �

We introduce a few notations. Let

h(l1, . . . , ld) =
d∑

i=1

(li − 1) = l1 + · · ·+ ld − d.

For r ∈ Z and a ∈ Z≥0 let

Er,a = {(l1, . . . , ld) ∈ Er; h(l1, . . . , ld) = a}

and

E′
r,a = {(l1, . . . , ld) ∈ E′

r; h(l1, . . . , ld) = a}.
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Then E′
r =

⋃

a≥0 E
′
r,a =

⋃

t≤r

⋃

a≥0 Et,a.
For s, p0, p1, . . . , ps ∈ Z≥0 let

wp0,...,ps
(X1, . . . , Xs) = (1, . . . , 1

︸ ︷︷ ︸

p0

, X1, 1, . . . , 1
︸ ︷︷ ︸

p1

, X2, . . . , 1, . . . , 1
︸ ︷︷ ︸

ps−1

, Xs, 1, . . . , 1
︸ ︷︷ ︸

ps

)

and
κp0,...,ps

(X1, . . . , Xs) = K(wp0,...,ps
(X1, . . . , Xs)).

For s = 0 we simply write

wp0
= (1, . . . , 1

︸ ︷︷ ︸

p0

) and κp0
= K(wp0

).

The idea is that starting from (l1, . . . , ld) ∈ E′
r, and using the operation of

Proposition 4.1 several times, and also possibly increasing elements or adding new
elements to (l1, . . . , ld), we can increase K(l1, . . . , ln) to K(wr+1). If we stop a bit
earlier, we get the largest continuants. The precise statement is described in the
following proposition.

Proposition 4.2. If r ∈ Z≥0 and l ∈ E′
r \ (Er,0 ∪ Er,1), then there is an m ∈

Er−1,0 ∪ Er,2 such that K(l) ≤ K(m).

Proof. We will use several times that if u1, . . . , ud ∈ Z≥1, then

K(u1, . . . , ud) ≤ K(u1, . . . , ud, 1),

and if u′
1, . . . , u

′
d ∈ Z≥1 and ui ≤ u′

i for every i, then

K(u1, . . . , ud) ≤ K(u′
1, . . . , u

′
d).

We prove by induction on h(l). If h(l) = 0, then l = wd for some d ≤ r, so we can
take m = wr ∈ Er−1,0. If h(l) = 1, then l = wp0,p1

(2) for some p0, p1 ∈ Z≥1 with
p0 + p1 ≤ r − 2, so we can take m = wp0,r−2−p0

(3) ∈ Er,2. Finally, let h(l) ≥ 2,
and suppose that the statement is true for smaller values of h. Then there is a
j ∈ {2, . . . , d− 1} such that lj ≥ 2. Let

l′ = (l1, . . . , lj−1, lj − 1, 1, lj+1, . . . , ld),

then l′ ∈ E′
r, and K(l) ≤ K(l′) by Proposition 4.1. Moreover h(l′) = h(l)−1 ≥ 1, so

l′ /∈ Er,0. If l
′ /∈ Er,1, then by the induction hypothesis there is an m ∈ Er−1,0∪Er,2

such that K(l) ≤ K(l′) ≤ K(m). So suppose that l′ ∈ Er,1. Then l ∈ Er,2, so we
can take m = l. �

5. Fibonacci identities

Based on Proposition 4.2, our next goal is to calculate K(l) for l ∈ Er,0 ∪Er,1 ∪
Er−1,0 ∪ Er,2. If r ≥ 1, then Er,0 = {wr+1}, Er−1,0 = {wr},

Er,1 = {wp0,p1
(2); p0, p1 ∈ Z≥1, p0 + p1 = r − 1},

and Er,2 = Ur ∪ Vr, where

Ur = {wp0,p1
(3); p0, p1 ∈ Z≥1, p0 + p1 = r − 2}

and
Vr = {wp0,p1,p2

(2); p0, p2 ∈ Z≥1, p1 ∈ Z≥0, p0 + p1 + p2 = r − 3}.

In general κp0,...,ps
(X1, . . . , Xs) = M1,1, where

M = ( 1 1
1 0 )

p0
(
X1 1
1 0

)
( 1 1
1 0 )

p1
(
X2 1
1 0

)
· · ·

(
Xs 1
1 0

)
( 1 1
1 0 )

ps .
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Note that ( 1 1
1 0 )

p
=

(
Fp+1 Fp

Fp Fp−1

)

for every p ∈ Z. Calculating the matrix products,

we get
κp0

= Fp0+1,

κp0,p1
(2) = 2Fp0+1Fp1+1 + Fp0+1Fp1

+ Fp0
Fp1+1,

κp0,p1
(3) = 3Fp0+1Fp1+1 + Fp0+1Fp1

+ Fp0
Fp1+1,

κp0,p1,p2
(2, 2) = Fp0+1Fp1

Fp2
+ Fp0

Fp1+1Fp2
+ 2Fp0+1Fp1+1Fp2

+ Fp0+1Fp1−1Fp2+1 + Fp0
Fp1

Fp2+1 + 4Fp0+1Fp1
Fp2+1

+ 2Fp0
Fp1+1Fp2+1 + 4Fp0+1Fp1+1Fp2+1.

In the following lemma we express these values in more useful forms.

Lemma 5.1. If p0, p1, p2 ∈ Z≥0, then

κp0,p1
(2) = Fp0+p1+3 − Fp0

Fp1
= Fp0+p1+2 + Fp0+p1

+ Fp0−1Fp1−1,

κp0,p1
(3) = Fp0+p1+3 + Fp0+p1+1 − 2Fp0+p1−2 − 2Fp0−2Fp1−2,

κp0,p1,p2
(2, 2) = (Fp0+p1+p2+4 + Fp0+p1+p2+2 − Fp0+p1+p2−4)− (Fp1

(Fp0−1Fp2−1

+ 3Fp0−2Fp2−1 + 3Fp0−1Fp2−2) + 2Fp0−2Fp1+1Fp2−2).

Proof. If i, j ∈ Z, then
(

Fi+j+1 Fi+j

Fi+j Fi+j−1

)

= ( 1 1
1 0 )

i+j
= ( 1 1

1 0 )
i
( 1 1
1 0 )

j
=

(
Fi+1 Fi

Fi Fi−1

)(
Fj+1 Fj

Fj Fj−1

)

,

hence Fi+j = Fi+1Fj +FiFj−1. Applying this identity twice, we get that Fi+j+k =
Fi+j+1Fk+Fi+jFk−1 = (Fi+1Fj+1+FiFj)Fk+(Fi+1Fj+FiFj−1)Fk−1 for i, j, k ∈ Z.
Using these identities, one can express every term in the statement of the Lemma as
a polynomial of Fp0

, Fp0+1, Fp1
, Fp1+1, Fp2

, Fp2+1. Comparing the obtained poly-
nomials, one can check the stated identities. The calculations could be done by
hand, but they are tedious. Instead we have used Mathematica [6] to carry out
these symbolic calculations, this is done in the attached file. �

Corollary 5.1. If r ≥ 6, then

max{K(l); l ∈ Er,1} < Fr+2 = κr+1,

min{K(l); l ∈ Er,1} = κ1,r−2(2) = Fr+1 + Fr−1,

max{K(l); l ∈ Ur} = κ2,r−4(3) = Fr+1 + Fr−1 − 2Fr−4,

max{K(l); l ∈ Vr} = κ2,0,r−5(2, 2) = Fr+1 + Fr−1 − Fr−7.

So if r ≥ 6, then

max{K(l); l ∈ Er−1,0 ∪Er,2} ≤ min{K(l); l ∈ Er,1},

with strict inequality for r 6= 7.

Proof. Let r ≥ 6. Recalling the description of Er,1, Ur and Vr , we see that

{K(l); l ∈ Er,1} = {κp0,p1
(2); p0, p1 ∈ Z≥1, p0 + p1 = r − 1},

{K(l); l ∈ Ur} = {κp0,p1
(3); p0, p1 ∈ Z≥1, p0 + p1 = r − 2},

{K(l); l ∈ Vr} = {κp0,p1,p2
(2); p0, p2 ∈ Z≥1, p1 ∈ Z≥0, p0 + p1 + p2 = r − 3}.

Using Lemma 5.1 one can easily reduce the first part of the proposition to the
following statements. If p0, p1 ∈ Z≥1 and p0 + p1 = r − 1, then Fp0

Fp1
> 0 and

Fp0−1Fp1−1 ≥ 0. If p0, p1 ∈ Z≥1 and p0 + p1 = r − 2, then 2Fp0−2Fp1−2 ≥ 0.
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If p0, p2 ∈ Z≥1, p1 ∈ Z≥0 and p0 + p1 + p2 = r − 3, then Fp1
(Fp0−1Fp2−1 +

3Fp0−2Fp2−1 + 3Fp0−1Fp2−2) + 2Fp0−2Fp1+1Fp2−2 ≥ 0. These statements follow
from the facts that Fn > 0 for n ≥ 1, and Fn ≥ 0 for n ≥ −1.

Now we prove the last part. If l ∈ Er−1,0, then K(l) = κr = Fr+1 < Fr+1+Fr−1.
Since Er,2 = Ur∪Vr, the statement follows from Fr+1+Fr−1−2Fr−4 < Fr+1+Fr−1

and Fr+1 + Fr−1 − Fr−7 ≤ Fr+1 + Fr−1. Note that here Fr−7 > 0 if r ≥ 6 and
r 6= 7. �

Now we are ready to prove our main result.

Proof of Theorem 1.1. The second part of the theorem follows from the first part
by Lemma 2.3. We prove now the first part. For r ∈ {0, 1, 2, 3, 4, 5} one could check
the statement by hand. The attached Mathematica file contains a program that
does this.

Suppose that r ≥ 6, and let m ≥ 1. By Corollary 3.1, Lm(r) is the mth largest
distinct value in {K(l); l ∈ E′

r}. If l ∈ E′
r \ (Er,0 ∪ Er,1), then

K(l) ≤ min(K(l′); l′ ∈ Er,1)

by Proposition 4.2 and Corollary 5.1. Moreover

{K(l); l ∈ Er,0} = {Fr+2}

and

{K(l); l ∈ Er,1} = {Fr+2 − FiFj ; i, j ∈ Z≥1, i+ j = r − 1}

by Lemma 5.1. So {L1(r), . . . , L|H|(r)} = H , where

H = {Fr+2 − FiFj ; i, j ∈ Z≥0, i+ j = r − 1}.

Here |H | = ⌈ r
2⌉ by Lemma 2.3. �

6. Further research

Using our results, it would not be hard to describe the exact positions where the
first ⌈ r

2⌉ largest values in the rth row of Stern’s diatomic sequence appear.
To determine Lm(r) for 1 ≤ m ≤ ⌈ r

2⌉, we needed to calculate and (sometimes)
compare the values of K(l) for l ∈ Er,0 ∪ Er,1 ∪ Er,2. To go a step further, i.e., to
determine Lm(r) for some m > ⌈ r

2⌉, we would probably need to calculate and

compare the values of K(l) for l ∈
⋃3

i=0 Er,i. For example, we have ordered
{K(l); l ∈ Er,0 ∪ Er,1}, but we have not yet ordered {K(l); l ∈ Er,2}.

Instead of studying Stern’s diatomic array, which starts with the 0th row 1, 1,
we could study the following generalization. Start with the 0th row a, b, where
a, b ∈ R, and in each step construct a new row by copying the last row, and writing
between each two consecutive elements their sum. One could try to understand the
largest values in the rth row of this array.
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