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A COMBINATORIAL REFINEMENT OF THE
KRONECKER-HURWITZ CLASS NUMBER RELATION

ALEXANDRU A. POPA AND DON ZAGIER

ABSTRACT. We give a refinement of the Kronecker-Hurwitz class number rela-
tion, based on a tesselation of the Euclidean plane into semi-infinite triangles
labeled by PSL2(Z) that may be of independent interest.

1. A REFINEMENT OF A CLASSICAL CLASS NUMBER RELATION
We give a refinement, and a new proof, of the following classical result [1L 2, [3].

Theorem 1 (Kronecker, Gierster, Hurwitz). For any n > 1 we have

Z H(4n —t?) = Z max(a,d) .

t2<4n n=ad
= a,d>0

Here H(D) (D > 0,D = 0,3 mod 4) is the Kronecker-Hurwitz class number, which
has initial values

3 4 7 8 11 12 15 16 19 20 23 24
1 1 4 3
H(D -—— - - 1 1 1 - 2 - 1 2 3 2
(D) ‘ 123 2 3 2

and for D > 0 equals the number of PSLa(Z)-equivalence classes of positive definite
integral binary quadratic forms of discriminant —D, with those classes that contain
a multiple of x2 + y? or of 2 — zy + y? counted with multiplicity 1/2 or 1/3,
respectively.

Let I' = PSLy(Z). By the I'-equivariant bijection (2 %) <+ ca? 4 (d — a)zy — by?
between integral matrices of determinant n and trace ¢t and quadratic forms of
discriminant ¢ — 4n, the class number relation can be written as

1/6 if n is a square,
(1) S ) = Y max(ad) + 4 4
— 0 otherwise,
MeM,, n=ad
M elliptic a,d>0

where M,, is the set of integral matrices of determinant n modulo +1, zs is the
fixed point of an elliptic M in the upper half-plane $), and x : $ — Q is the modified
characteristic function of the standard fundamental domain

F ={z€eH:-1/2<Re(z) <1/2, |2| 2 1}
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of T acting on $) such that x(z) is 1/27 times the angle subtended by F at z (so x
is 1 in the interior of F, 0 outside of F, 1/2 on the boundary points different from
the corners p = €™/3 and p?, and 1/6 at the corners).

We will prove a refinement of (Il saying that the subsum of the expression on
the left over all M in a given orbit of the right action of I' on M,, always takes on
one of the values 0, 1, 2 (or 7/6 for the orbit /nT if n is a square). Specifically,
let us define for any right coset K in M, /T (more precisely, K is a right coset
in PGL2(Q)/I', since M,, is not a group) two positive integers dx and d% by
dx = ged(c, d), 6% =n/dk, where (‘; Z) is any representative of K. Then we have:

Theorem 2. For each right coset K € M,,/T" we have

1/6 if K = T,
S ) = 1+sg(dl — o)+ 10 TE=Vn
0 otherwise.
MeK
M elliptic

Equation () follows immediately by summing the relations in Theorem 2] over all
cosets in the disjoint decomposition M,, = | | (%/ 'g) Twithn=¢dand 0 < 5 < ¥

Theorem [2] provides a correspondence between right cosets and I'-conjugacy
classes in M,,, which generically assigns two conjugacy classes to each coset with
0" > 6. We will deduce it from a similar statement, Theorem [, which is sharper
in two respects (it counts the number of matrices with a fixed point in a smaller
domain, and it allows real coefficients), and which gives a generically one-to-one
correspondence between cosets and conjugacy classes. To state it, we consider a
half-fundamental domain

F~ ={z€9H:-1/2<Re(2) <0, |z| =1},
and define a function o : GL3 (R) — Q by

X (zp)  if M is elliptic with fixed point zps € $,
1

12
0 if M is parabolic or hyperbolic,

a(M) = if M is scalar,

where y is defined in the same way as y (and hence equals 1 in the interior of F
0 outside F~, 1/2 on the internal boundary points of 7, and 1/4 and 1/6 at the
corners i and p?, respectively). Note that a(—M) = a(M), so « is well-defined
on MT.

Theorem 3. For M = ({7) € GLa2(R) with y > 0, we have
1+sgn(y—1)
(2) Za(M’y) = —= 7

2
yell

Since each coset K € M,, /T contains a representative M with Moo = oo, Theo-
remPlimmediately follows from (2]), and the fact that the map + (‘; Z) — + ( - f’d)
is a bijection between the sets of elements in M, having fixed point in the left half
and in the right half of the standard fundamental domain for I'.

Theorem [3] is proved in Section Bl as an easy consequence of a triangulation
of a Euclidean half-plane by triangles associated to elements of I' (Theorem [)).
This triangulation may be of independent interest, and we give a self-contained

treatment in the next section.
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2. A TRIANGULATION OF A EUCLIDEAN HALF-PLANE

Let Too = {7y € T' | goo = oo}. We identify I' \ I'sx with a subset of SLa(Z)

by choosing representatives v = (‘; g) with ¢ > 0, and for such v we define a
semi-infinite triangle
(3) A(y) = {(z,y) eR* |0<d—cx —ay < ¢ < —dz — by} .

(The motivation for this definition is that (z,y) € A(y) if and only if (§ 7 )~ has a
fixed point in F~.) Note that A(y) is contained in the half-plane

H = {(z,y) eR*|y>1},
since y = ¢(—dx — by) +d*> —d(d — cx — ay) = ¢+ d*> — ¢|d| > 1.
Theorem 4. We have a tesselation
"= |J AW
vyel'\T'

of the half-plane H into semi-infinite triangles with disjoint interiors.

Remark. We can extend the triangulation of Theorem Ml to a triangulation of all of
R? by triangles labeled by all of T" if we define A(7) also for v € 'y, by

A(((IJ?)) = [—TL— 1,—71] X (—00,1] )
and can then interpret the extended triangulation as giving a piecewise-linear action

of T on R?, with each triangle being a fundamental domain. However we will not
use this in the sequel.

Proof. The group I is a free product of its two subgroups generated by the elements
S =(%73) and U = (%7]) of orders 2 and 3, respectively, which fix the two
corners of F~. Therefore we can view elements of I' as words in S,U,U? or as
vertices of the tree shown in Figure 1. The proof of both Theorems [B] and [ will

\/\/

SUS SU2S USU USU? U2SU U?SU?

| | N .
I : y

| B g

| | , N

FIGURE 1. A tree associated to I' = PSLy(Z): the vertices are
labeled by the elements of I' and the edges by the generators S, U
and U? as shown.

follow from the following decomposition into triangles with disjoint interiors:

(4) R = {(xy) eR’[0<e<y—1} = (JA@),
YET
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where 7 C I is the set of words starting in U. The regions H and R and a few
triangles corresponding to words of small length are pictured in Figure

Y

FIGURE 2. The region R (shaded) and a few triangles A(v). The
finite side of a triangle A(7y) has been labeled by the final letter
of v as a word in S, U, U?, with the same convention as in Figure[dl

To prove @), let T =TT U T, where T consists of the elements of 7 ending
in U or U?, while T~ := TS consists of those elements ending in S. The set 7
can be enumerated recursively by starting at U and replacing v = (‘; Z) at each
step by

_ b 2 _ bb
vSU = (Seda) » vSU*=(iqa) -
From this description we easily obtain the following equivalent characterizationdl
—a —b -b —a

Alternatively, 7T consists of those v € T having d > 0.

For v € T' \ T', the triangle A(~) has two vertices given by

Py(—ac — bd 4 be,¢® +d?* —cd), Py(—ac —bd,c® +d?) ,

connected by a line segment of slope ’Td, and it has two infinite parallel sides of
slope —£. For v € T we denote by C(vy) C H the half-cone containing A(v), bounded
by half-lines of slopes —c/a and —b/d, and having as vertex Ps or P,, depending
on whether v € T+ or v € T~ respectively (see Figure [3).

Using this information, it is easy to check that for y € T+ and v/ = vS € T~
we have the following decompositions into sets with disjoint interiors (see the right

picture in Figure [3):

Cly=AMUCH), C()=A0)UCHT)UCHU?).
By induction we obtain that R = C(U) is the union of the triangles indexed by T,
proving ().

IRecall our convention that ¢ > 0.
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—c —c —-d —¢ —¢ zZ¢ zc¢=d —e=d -—d —d
a e 5 a a a a+b a+b b b
ySU ~SU?
y
~vS
P3
P
2 P2
Ps3 Py

FIGURE 3. Left: The cone C(v) and the triangle A(y) C C(v)
in the case v € 7. Right: The cone C(vy) decomposes into two
triangles and two smaller, higher-up cones. On top of each line we
have marked its slope.

Finally we show that the decomposition in (@) implies the decomposition of H
given in Theorem [l From the parenthetical remark following (B]) it is clear that

A(Ty) =TA()
where T'= SU = (} 1) and ' acts on H by T"(z,y) = (¥ — ny,y). The region
(5) R =RUAU?) = {(z,y) eH:0< z <y}

(see Figure[2]) is a fundamental domain for this action of I'ny on H, and we obtain
the following decompositions into triangles with disjoint interiors

{@y)eHly-1<a} = J AW, {@yeH|z<0} = [J AM)
YET' YET"
where 7 consists of words starting with U?, but different from (U29)" = T~ with
n > 0, while 7" consists of words starting with S, but different from (SU)™ = T"
with n > 0. Theorem M follows since ' \T'oo = T LU T LUT". [ |

3. PROOF OF THEOREM [

Since () is invariant under multiplying M = (§ 7) on the right by elements in
I'eo, we assume without loss of generality that 0 < < y . If M~ is scalar for
~v € T, the only possibility is easily seen to be M =1 In this case, a(y) # 0 for
v E {1 S,U,U?%}, and (@) holds since —15 + 3+ ¢ + & =

Assuming that M # 1, it follows that a(M v) 75 0 1f and only if M~ has a fixed
point in F—, that is (z,y ) € A(y). We conclude from Section [2 that y > 1, so the
point (z,y) belongs to the region R’ in (@), and v = U? or v € T by @). Therefore
the elements 7 such that a(M~) # 0 depend on the position of the point (z,y)
with respect to the triangulation of R’ as follows (see Figure [3)):

ey=land0<z<1:a(MU?)=1/2;
e (z,y) is in the interior of a triangle A(y): a(M~y) =1
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e (z,y) is on a common side between A(+) and A(v'), but it is not a vertex:
L;

a(My) +a(My') = % + % =
e (z,y) € R is the P, vertex of the triangle A(y) for v € T+:
a(M~y) + a(M~S) + a(M~U) = i + i + % =1,
e (z,y) € R is the P; vertex of A(y') with v € T :
a(M~y) + a(My'U) + a(My'U?) + a(M~'S) = % + % + é + % =1.
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