A COMBINATORIAL REFINEMENT OF THE KRONECKER-HURWITZ CLASS NUMBER RELATION

ALEXANDRU A. POPA AND DON ZAGIER

ABSTRACT. We give a refinement of the Kronecker-Hurwitz class number relation, based on a tesselation of the Euclidean plane into semi-infinite triangles labeled by $PSL_2(\mathbb{Z})$ that may be of independent interest.

1. A refinement of a classical class number relation

We give a refinement, and a new proof, of the following classical result [\[1,](#page-5-0) [2,](#page-5-1) [3\]](#page-5-2).

Theorem 1 (Kronecker, Gierster, Hurwitz). For any $n \geq 1$ we have

$$
\sum_{t^2 \leq 4n} H(4n - t^2) = \sum_{\substack{n = ad \\ a, d > 0}} \max(a, d) .
$$

Here $H(D)$ $(D \ge 0, D \equiv 0, 3 \mod 4)$ is the Kronecker-Hurwitz class number, which has initial values

and for $D > 0$ equals the number of $PSL_2(\mathbb{Z})$ -equivalence classes of positive definite integral binary quadratic forms of discriminant $-D$, with those classes that contain a multiple of $x^2 + y^2$ or of $x^2 - xy + y^2$ counted with multiplicity 1/2 or 1/3, respectively.

Let $\Gamma = \text{PSL}_2(\mathbb{Z})$. By the Γ -equivariant bijection $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \leftrightarrow cx^2 + (d - a)xy - by^2$ between integral matrices of determinant n and trace t and quadratic forms of discriminant $t^2 - 4n$, the class number relation can be written as

(1)
$$
\sum_{\substack{M \in \mathcal{M}_n \\ M \text{ elliptic}}} \chi(z_M) = \sum_{\substack{n = ad \\ a, d > 0}} \max(a, d) + \begin{cases} 1/6 & \text{if } n \text{ is a square,} \\ 0 & \text{otherwise,} \end{cases}
$$

where \mathcal{M}_n is the set of integral matrices of determinant n modulo ± 1 , z_M is the fixed point of an elliptic M in the upper half-plane \mathfrak{H} , and $\chi : \mathfrak{H} \to \mathbb{Q}$ is the modified characteristic function of the standard fundamental domain

$$
\mathcal{F} = \{ z \in \mathfrak{H} : -1/2 \le \text{Re}(z) \le 1/2, \ |z| \ge 1 \}
$$

The first author was partly supported by CNCSIS grant TE-2014-4-2077. He would like to thank the MPIM in Bonn and the IHES in Bures-sur-Yvette for providing support and a stimulating research environment while working on this paper.

of Γ acting on $\mathfrak H$ such that $\chi(z)$ is $1/2\pi$ times the angle subtended by F at z (so χ is 1 in the interior of \mathcal{F} , 0 outside of \mathcal{F} , 1/2 on the boundary points different from the corners $\rho = e^{\pi i/3}$ and ρ^2 , and 1/6 at the corners).

We will prove a refinement of [\(1\)](#page-0-0) saying that the subsum of the expression on the left over all M in a given orbit of the right action of Γ on \mathcal{M}_n always takes on one of the values 0, 1, 2 (or 7/6 for the orbit $\sqrt{n}\Gamma$ if n is a square). Specifically, let us define for any right coset K in \mathcal{M}_n/Γ (more precisely, K is a right coset in PGL₂(Q)/Γ, since \mathcal{M}_n is not a group) two positive integers δ_K and δ'_K by $\delta_K = \gcd(c, d), \, \delta'_K = n/\delta_K$, where $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is any representative of K. Then we have:

Theorem 2. For each right coset $K \in \mathcal{M}_n/\Gamma$ we have

$$
\sum_{\substack{M \in K \\ M \ \text{elliptic}}} \chi(z_M) = 1 + \text{sgn}(\delta_K' - \delta_K) + \begin{cases} 1/6 & \text{if } K = \sqrt{n} \ \Gamma, \\ 0 & \text{otherwise.} \end{cases}
$$

Equation [\(1\)](#page-0-0) follows immediately by summing the relations in Theorem [2](#page-1-0) over all cosets in the disjoint decomposition $\mathcal{M}_n = \bigsqcup \begin{pmatrix} \delta' & \beta \\ 0 & \delta \end{pmatrix} \Gamma$ with $n = \delta' \delta$ and $0 \le \beta < \delta'$.

Theorem [2](#page-1-0) provides a correspondence between right cosets and Γ-conjugacy classes in \mathcal{M}_n , which generically assigns two conjugacy classes to each coset with $δ' > δ$. We will deduce it from a similar statement, Theorem [3,](#page-1-1) which is sharper in two respects (it counts the number of matrices with a fixed point in a smaller domain, and it allows real coefficients), and which gives a generically one-to-one correspondence between cosets and conjugacy classes. To state it, we consider a half-fundamental domain

$$
\mathcal{F}^- \ = \ \{ z \in \mathfrak{H} : -1/2 \leqslant \textrm{Re}(z) \leqslant 0, \ |z| \geqslant 1 \} \ ,
$$

and define a function $\alpha: GL_2^+(\mathbb{R}) \to \mathbb{Q}$ by

$$
\alpha(M) = \begin{cases} \chi^{-}(z_M) & \text{if } M \text{ is elliptic with fixed point } z_M \in \mathfrak{H}, \\ -\frac{1}{12} & \text{if } M \text{ is scalar,} \\ 0 & \text{if } M \text{ is parabolic or hyperbolic,} \end{cases}
$$

where χ^- is defined in the same way as χ (and hence equals 1 in the interior of \mathcal{F}^- , 0 outside \mathcal{F}^- , 1/2 on the internal boundary points of \mathcal{F}^- , and 1/4 and 1/6 at the corners *i* and ρ^2 , respectively). Note that $\alpha(-M) = \alpha(M)$, so α is well-defined on MΓ.

Theorem 3. For $M = \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \in GL_2(\mathbb{R})$ with $y > 0$, we have

(2)
$$
\sum_{\gamma \in \Gamma} \alpha(M\gamma) = \frac{1 + \text{sgn}(y-1)}{2}.
$$

Since each coset $K \in \mathcal{M}_n/\Gamma$ contains a representative M with $M\infty = \infty$, Theo-rem [2](#page-1-0) immediately follows from [\(2\)](#page-1-2), and the fact that the map $\pm \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \pm \begin{pmatrix} -a & b \\ c & -d \end{pmatrix}$ is a bijection between the sets of elements in \mathcal{M}_n having fixed point in the left half and in the right half of the standard fundamental domain for Γ.

Theorem [3](#page-1-1) is proved in Section [3,](#page-4-0) as an easy consequence of a triangulation of a Euclidean half-plane by triangles associated to elements of Γ (Theorem [4\)](#page-2-0). This triangulation may be of independent interest, and we give a self-contained treatment in the next section.

2. A triangulation of a Euclidean half-plane

Let $\Gamma_{\infty} = {\gamma \in \Gamma \mid g\infty = \infty}$. We identify $\Gamma \setminus \Gamma_{\infty}$ with a subset of $SL_2(\mathbb{Z})$ by choosing representatives $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $c > 0$, and for such γ we define a semi-infinite triangle

(3)
$$
\Delta(\gamma) = \{(x, y) \in \mathbb{R}^2 \mid 0 \leq d - cx - ay \leq c \leq -dx - by\}.
$$

(The motivation for this definition is that $(x, y) \in \Delta(\gamma)$ if and only if $\left(\begin{smallmatrix} y & x \\ 0 & 1 \end{smallmatrix}\right)$ γ has a fixed point in \mathcal{F}^- .) Note that $\Delta(\gamma)$ is contained in the half-plane

$$
\mathcal{H} = \{(x, y) \in \mathbb{R}^2 \mid y \geqslant 1\},\
$$

since $y = c(-dx - by) + d^2 - d(d - cx - ay) \geq c^2 + d^2 - c|d| \geq 1$.

Theorem 4. We have a tesselation

$$
\mathcal{H}~=~\bigcup_{\gamma\in\Gamma\smallsetminus\Gamma_\infty}\Delta(\gamma)
$$

of the half-plane H into semi-infinite triangles with disjoint interiors.

Remark. We can extend the triangulation of Theorem [4](#page-2-0) to a triangulation of all of \mathbb{R}^2 by triangles labeled by all of Γ if we define $\Delta(\gamma)$ also for $\gamma \in \Gamma_{\infty}$ by

$$
\Delta\big(\left(\begin{smallmatrix} 1 & n \\ 0 & 1 \end{smallmatrix}\right)\big) = [-n-1, -n] \times (-\infty, 1],
$$

and can then interpret the extended triangulation as giving a piecewise-linear action of Γ on \mathbb{R}^2 , with each triangle being a fundamental domain. However we will not use this in the sequel.

Proof. The group Γ is a free product of its two subgroups generated by the elements $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $U = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ of orders 2 and 3, respectively, which fix the two corners of \mathcal{F}^- . Therefore we can view elements of Γ as words in S, U, U^2 or as vertices of the tree shown in Figure 1. The proof of both Theorems [3](#page-1-1) and [4](#page-2-0) will

FIGURE 1. A tree associated to $\Gamma = \text{PSL}_2(\mathbb{Z})$: the vertices are labeled by the elements of Γ and the edges by the generators S, U and U^2 as shown.

follow from the following decomposition into triangles with disjoint interiors:

(4)
$$
\mathcal{R} := \{(x, y) \in \mathbb{R}^2 \mid 0 \leqslant x \leqslant y - 1\} = \bigcup_{\gamma \in \mathcal{T}} \Delta(\gamma) ,
$$

where $\mathcal{T} \subset \Gamma$ is the set of words starting in U. The regions H and R and a few triangles corresponding to words of small length are pictured in Figure [2.](#page-3-0)

FIGURE 2. The region $\mathcal R$ (shaded) and a few triangles $\Delta(\gamma)$. The finite side of a triangle $\Delta(\gamma)$ has been labeled by the final letter of γ as a word in S, U, U^2 , with the same convention as in Figure [1.](#page-2-1)

To prove [\(4\)](#page-2-2), let $\mathcal{T} = \mathcal{T}^+ \cup \mathcal{T}^-$, where \mathcal{T}^+ consists of the elements of \mathcal{T} ending in U or U^2 , while $\mathcal{T}^- := \mathcal{T}^+ S$ consists of those elements ending in S. The set \mathcal{T}^+ can be enumerated recursively by starting at U and replacing $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ at each step by

$$
\gamma SU = \begin{pmatrix} a & a+b \\ c & c+d \end{pmatrix} , \quad \gamma SU^2 = \begin{pmatrix} a+b & b \\ c+d & d \end{pmatrix} .
$$

From this description we easily obtain the following equivalent characterizations^{[1](#page-3-1)}

$$
\gamma \in \mathcal{T}^+ \iff 0 \leqslant \frac{-a}{c} < \frac{-b}{d} \leqslant 1, \quad \gamma \in \mathcal{T}^- \iff 0 \leqslant \frac{-b}{d} < \frac{-a}{c} \leqslant 1 \; .
$$

Alternatively, \mathcal{T}^+ consists of those $\gamma \in \mathcal{T}$ having $d > 0$.

For $\gamma \in \Gamma \setminus \Gamma_\infty$, the triangle $\Delta(\gamma)$ has two vertices given by

 $P_3(-ac-bd+bc, c^2+d^2-cd), P_2(-ac-bd, c^2+d^2)$,

connected by a line segment of slope $\frac{-d}{b}$, and it has two infinite parallel sides of slope $\frac{-c}{a}$. For $\gamma \in \mathcal{T}$ we denote by $\mathcal{C}(\gamma) \subset \mathcal{H}$ the half-cone containing $\Delta(\gamma)$, bounded by half-lines of slopes $-c/a$ and $-b/d$, and having as vertex P_3 or P_2 , depending on whether $\gamma \in \mathcal{T}^+$ or $\gamma \in \mathcal{T}^-$ respectively (see Figure [3\)](#page-4-1).

Using this information, it is easy to check that for $\gamma \in \mathcal{T}^+$ and $\gamma' = \gamma S \in \mathcal{T}^$ we have the following decompositions into sets with disjoint interiors (see the right picture in Figure [3\)](#page-4-1):

$$
\mathcal{C}(\gamma) = \Delta(\gamma) \cup \mathcal{C}(\gamma'), \quad \mathcal{C}(\gamma') = \Delta(\gamma') \cup \mathcal{C}(\gamma'U) \cup \mathcal{C}(\gamma'U^2).
$$

By induction we obtain that $\mathcal{R} = \mathcal{C}(U)$ is the union of the triangles indexed by \mathcal{T} , proving [\(4\)](#page-2-2).

¹Recall our convention that $c > 0$.

FIGURE 3. Left: The cone $\mathcal{C}(\gamma)$ and the triangle $\Delta(\gamma) \subset \mathcal{C}(\gamma)$ in the case $\gamma \in \mathcal{T}^+$. Right: The cone $\mathcal{C}(\gamma)$ decomposes into two triangles and two smaller, higher-up cones. On top of each line we have marked its slope.

Finally we show that the decomposition in [\(4\)](#page-2-2) implies the decomposition of H given in Theorem [4.](#page-2-0) From the parenthetical remark following [\(3\)](#page-2-3) it is clear that

$$
\Delta(T\gamma) = T\Delta(\gamma) ,
$$

where $T = SU = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and Γ_{∞} acts on H by $T^n(x, y) = (x - ny, y)$. The region (5) $\mathcal{R}' = \mathcal{R} \cup \Delta(U^2) = \{(x, y) \in \mathcal{H} : 0 \leq x < y\}$

(see Figure [2\)](#page-3-0) is a fundamental domain for this action of Γ_{∞} on \mathcal{H} , and we obtain the following decompositions into triangles with disjoint interiors

$$
\{(x,y)\in \mathcal{H} \mid y-1\leq x\} = \bigcup_{\gamma\in \mathcal{T}'} \Delta(\gamma), \quad \{(x,y)\in \mathcal{H} \mid x\leq 0\} = \bigcup_{\gamma\in \mathcal{T}''} \Delta(\gamma),
$$

where T' consists of words starting with U^2 , but different from $(U^2S)^n = T^{-n}$ with $n > 0$, while \mathcal{T}'' consists of words starting with S, but different from $(SU)^n = T^n$ with $n > 0$. Theorem [4](#page-2-0) follows since $\Gamma \setminus \Gamma_{\infty} = \mathcal{T} \sqcup \mathcal{T}' \sqcup \mathcal{T}''$. .

3. Proof of Theorem [3](#page-1-1)

Since [\(2\)](#page-1-2) is invariant under multiplying $M = \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix}$ on the right by elements in Γ_{∞} , we assume without loss of generality that $0 \leq x \leq y$. If $M\gamma$ is scalar for $\gamma \in \Gamma$, the only possibility is easily seen to be $M = 1$. In this case, $\alpha(\gamma) \neq 0$ for $\gamma \in \{1, S, U, U^2\}$, and [\(2\)](#page-1-2) holds since $-\frac{1}{12} + \frac{1}{4} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}$.

Assuming that $M \neq 1$, it follows that $\alpha(M\gamma) \neq 0$ if and only if $M\gamma$ has a fixed point in \mathcal{F}^- , that is $(x, y) \in \Delta(\gamma)$. We conclude from Section [2](#page-2-4) that $y \geq 1$, so the point (x, y) belongs to the region \mathcal{R}' in [\(5\)](#page-4-2), and $\gamma = U^2$ or $\gamma \in \mathcal{T}$ by [\(4\)](#page-2-2). Therefore the elements γ such that $\alpha(M\gamma) \neq 0$ depend on the position of the point (x, y) with respect to the triangulation of \mathcal{R}' as follows (see Figure [3\)](#page-4-1):

- $y = 1$ and $0 < x < 1$: $\alpha(MU^2) = 1/2$;
- (x, y) is in the interior of a triangle $\Delta(\gamma)$: $\alpha(M\gamma) = 1$;

• (x, y) is on a common side between $\Delta(\gamma)$ and $\Delta(\gamma')$, but it is not a vertex:

$$
\alpha(M\gamma) + \alpha(M\gamma') = \frac{1}{2} + \frac{1}{2} = 1 ;
$$

• $(x, y) \in \mathcal{R}$ is the P_2 vertex of the triangle $\Delta(\gamma)$ for $\gamma \in \mathcal{T}^+$:

$$
\alpha(M\gamma) + \alpha(M\gamma S) + \alpha(M\gamma U) = \frac{1}{4} + \frac{1}{4} + \frac{1}{2} = 1 ;
$$

• $(x, y) \in \mathcal{R}$ is the P_3 vertex of $\Delta(\gamma')$ with $\gamma' \in \mathcal{T}^-$:

$$
\alpha(M\gamma') + \alpha(M\gamma'U) + \alpha(M\gamma'U^2) + \alpha(M\gamma'S) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{2} = 1.
$$

REFERENCES

- 1. J. Gierster, Über Relationen zwischen Klassenzahlen binärer quadratischer Formen von negativer Determinante. Math. Ann. 21 (1880), 1–50
- 2. A. Hurwitz, Über Relationen zwischen Klassenzahlen binärer quadratischer Formen von negativer Determinante. Math. Ann. 25 (1885), 157–196
- 3. L. Kronecker, Über die Anzahl der verschiedenen Klassen quadratischer Formen von negativer Determinante. J. Reine Angew. Math. 57 (1860), 248–255

Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1- 764, RO-014700 Bucharest, Romania

E-mail address: alexandru.popa@imar.ro

MAX-PLANCK-INSTITUT FÜR MATHEMATIK, VIVATSGASSE 7, 53111 BONN, GERMANY E-mail address: don.zagier@mpim-bonn.mpg.de