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A COMBINATORIAL REFINEMENT OF THE

KRONECKER-HURWITZ CLASS NUMBER RELATION

ALEXANDRU A. POPA AND DON ZAGIER

Abstract. We give a refinement of the Kronecker-Hurwitz class number rela-
tion, based on a tesselation of the Euclidean plane into semi-infinite triangles
labeled by PSL2(Z) that may be of independent interest.

1. A refinement of a classical class number relation

We give a refinement, and a new proof, of the following classical result [1, 2, 3].

Theorem 1 (Kronecker, Gierster, Hurwitz). For any n > 1 we have
∑

t264n

H(4n− t2) =
∑

n=ad

a, d>0

max(a, d) .

Here H(D) (D > 0, D ≡ 0, 3 mod 4) is the Kronecker-Hurwitz class number, which
has initial values
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and for D > 0 equals the number of PSL2(Z)-equivalence classes of positive definite
integral binary quadratic forms of discriminant −D, with those classes that contain
a multiple of x2 + y2 or of x2 − xy + y2 counted with multiplicity 1/2 or 1/3,
respectively.

Let Γ = PSL2(Z). By the Γ-equivariant bijection
(

a b
c d

)

↔ cx2 + (d− a)xy− by2

between integral matrices of determinant n and trace t and quadratic forms of
discriminant t2 − 4n, the class number relation can be written as

(1)
∑

M∈Mn

M elliptic

χ(zM ) =
∑

n=ad

a, d>0

max(a, d) +

{

1/6 if n is a square,

0 otherwise,

where Mn is the set of integral matrices of determinant n modulo ±1, zM is the
fixed point of an elliptic M in the upper half-plane H, and χ : H → Q is the modified
characteristic function of the standard fundamental domain

F = {z ∈ H : −1/2 6 Re(z) 6 1/2, |z| > 1}
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of Γ acting on H such that χ(z) is 1/2π times the angle subtended by F at z (so χ
is 1 in the interior of F , 0 outside of F , 1/2 on the boundary points different from
the corners ρ = eπi/3 and ρ2, and 1/6 at the corners).

We will prove a refinement of (1) saying that the subsum of the expression on
the left over all M in a given orbit of the right action of Γ on Mn always takes on
one of the values 0, 1, 2 (or 7/6 for the orbit

√
nΓ if n is a square). Specifically,

let us define for any right coset K in Mn/Γ (more precisely, K is a right coset
in PGL2(Q)/Γ, since Mn is not a group) two positive integers δK and δ′K by
δK = gcd(c, d), δ′K = n/δK , where

(

a b
c d

)

is any representative of K. Then we have:

Theorem 2. For each right coset K ∈ Mn/Γ we have

∑

M∈K
M elliptic

χ(zM ) = 1 + sgn(δ′K − δK) +

{

1/6 if K =
√
n Γ,

0 otherwise.

Equation (1) follows immediately by summing the relations in Theorem 2 over all

cosets in the disjoint decomposition Mn =
⊔

(

δ′ β
0 δ

)

Γ with n = δ′δ and 0 6 β < δ′.

Theorem 2 provides a correspondence between right cosets and Γ-conjugacy
classes in Mn, which generically assigns two conjugacy classes to each coset with
δ′ > δ. We will deduce it from a similar statement, Theorem 3, which is sharper
in two respects (it counts the number of matrices with a fixed point in a smaller
domain, and it allows real coefficients), and which gives a generically one-to-one
correspondence between cosets and conjugacy classes. To state it, we consider a
half-fundamental domain

F− = {z ∈ H : −1/2 6 Re(z) 6 0, |z| > 1} ,

and define a function α : GL+
2 (R) → Q by

α(M) =















χ−(zM ) if M is elliptic with fixed point zM ∈ H,

− 1

12
if M is scalar,

0 if M is parabolic or hyperbolic,

where χ− is defined in the same way as χ (and hence equals 1 in the interior of F−,
0 outside F−, 1/2 on the internal boundary points of F−, and 1/4 and 1/6 at the
corners i and ρ2, respectively). Note that α(−M) = α(M), so α is well-defined
on MΓ.

Theorem 3. For M = ( y x
0 1 ) ∈ GL2(R) with y > 0, we have

(2)
∑

γ∈Γ

α
(

Mγ
)

=
1 + sgn(y − 1)

2
.

Since each coset K ∈ Mn/Γ contains a representative M with M∞ = ∞, Theo-

rem 2 immediately follows from (2), and the fact that the map±
(

a b
c d

)

7→ ±
(

−a b
c −d

)

is a bijection between the sets of elements in Mn having fixed point in the left half
and in the right half of the standard fundamental domain for Γ.

Theorem 3 is proved in Section 3, as an easy consequence of a triangulation
of a Euclidean half-plane by triangles associated to elements of Γ (Theorem 4).
This triangulation may be of independent interest, and we give a self-contained
treatment in the next section.
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2. A triangulation of a Euclidean half-plane

Let Γ∞ = {γ ∈ Γ | g∞ = ∞}. We identify Γ r Γ∞ with a subset of SL2(Z)
by choosing representatives γ =

(

a b
c d

)

with c > 0, and for such γ we define a
semi-infinite triangle

(3) ∆(γ) = {(x, y) ∈ R2 | 0 6 d− cx− ay 6 c 6 −dx− by} .

(The motivation for this definition is that (x, y) ∈ ∆(γ) if and only if ( y x
0 1 ) γ has a

fixed point in F−.) Note that ∆(γ) is contained in the half-plane

H = {(x, y) ∈ R2 | y > 1} ,

since y = c(−dx− by) + d2 − d(d− cx− ay) > c2 + d2 − c|d| > 1.

Theorem 4. We have a tesselation

H =
⋃

γ∈ΓrΓ∞

∆(γ)

of the half-plane H into semi-infinite triangles with disjoint interiors.

Remark. We can extend the triangulation of Theorem 4 to a triangulation of all of
R2 by triangles labeled by all of Γ if we define ∆(γ) also for γ ∈ Γ∞ by

∆
(

( 1 n
0 1 )

)

= [−n− 1,−n]× (−∞, 1] ,

and can then interpret the extended triangulation as giving a piecewise-linear action
of Γ on R2, with each triangle being a fundamental domain. However we will not
use this in the sequel.

Proof. The group Γ is a free product of its two subgroups generated by the elements
S =

(

0 −1
1 0

)

and U =
(

0 −1
1 1

)

of orders 2 and 3, respectively, which fix the two

corners of F−. Therefore we can view elements of Γ as words in S,U, U2 or as
vertices of the tree shown in Figure 1. The proof of both Theorems 3 and 4 will

= S
= U

= U21

U2

U2S

U2SU2U2SU

U

US

USU2USU

S

SU2

SU2S

SU

SUS

Figure 1. A tree associated to Γ = PSL2(Z): the vertices are
labeled by the elements of Γ and the edges by the generators S, U
and U2 as shown.

follow from the following decomposition into triangles with disjoint interiors:

(4) R := {(x, y) ∈ R2 | 0 6 x 6 y − 1} =
⋃

γ∈T

∆(γ) ,
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where T ⊂ Γ is the set of words starting in U . The regions H and R and a few
triangles corresponding to words of small length are pictured in Figure 2.

y

y = 1

U2

U2SU2

U2SU

U2SUS

U
US

USU

USU2

S
SU2

SUS

SU2S

(SU2)2

SU2SU

SUSUS

SUSU2

Figure 2. The region R (shaded) and a few triangles △(γ). The
finite side of a triangle ∆(γ) has been labeled by the final letter
of γ as a word in S,U, U2, with the same convention as in Figure 1.

To prove (4), let T = T + ∪ T −, where T + consists of the elements of T ending
in U or U2, while T − := T +S consists of those elements ending in S. The set T +

can be enumerated recursively by starting at U and replacing γ =
(

a b
c d

)

at each
step by

γSU =
(

a a+b
c c+d

)

, γSU2 =
(

a+b b
c+d d

)

.

From this description we easily obtain the following equivalent characterizations1

γ ∈ T + ⇐⇒ 0 6
−a

c
<

−b

d
6 1, γ ∈ T − ⇐⇒ 0 6

−b

d
<

−a

c
6 1 .

Alternatively, T + consists of those γ ∈ T having d > 0.
For γ ∈ Γr Γ∞, the triangle △(γ) has two vertices given by

P3(−ac− bd+ bc, c2 + d2 − cd), P2(−ac− bd, c2 + d2) ,

connected by a line segment of slope −d
b , and it has two infinite parallel sides of

slope −c
a . For γ ∈ T we denote by C(γ) ⊂ H the half-cone containing ∆(γ), bounded

by half-lines of slopes −c/a and −b/d, and having as vertex P3 or P2, depending
on whether γ ∈ T + or γ ∈ T − respectively (see Figure 3).

Using this information, it is easy to check that for γ ∈ T + and γ′ = γS ∈ T −

we have the following decompositions into sets with disjoint interiors (see the right
picture in Figure 3):

C(γ) = ∆(γ) ∪ C(γ′) , C(γ′) = ∆(γ′) ∪ C(γ′U) ∪ C(γ′U2) .

By induction we obtain that R = C(U) is the union of the triangles indexed by T ,
proving (4).

1Recall our convention that c > 0.
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−c
a

−c
a

−d
b

P3

P2

γ
γS

γSU γSU2

−c
a

−c
a

−c
a

−c−d
a+b

−c−d
a+b

−d
b

−d
b

P2

P3

P3

Figure 3. Left: The cone C(γ) and the triangle ∆(γ) ⊂ C(γ)
in the case γ ∈ T +. Right: The cone C(γ) decomposes into two
triangles and two smaller, higher-up cones. On top of each line we
have marked its slope.

Finally we show that the decomposition in (4) implies the decomposition of H
given in Theorem 4. From the parenthetical remark following (3) it is clear that

∆(Tγ) = T∆(γ) ,

where T = SU = ( 1 1
0 1 ) and Γ∞ acts on H by T n(x, y) = (x− ny, y). The region

(5) R′ = R∪∆(U2) = {(x, y) ∈ H : 0 6 x < y}
(see Figure 2) is a fundamental domain for this action of Γ∞ on H, and we obtain
the following decompositions into triangles with disjoint interiors

{(x, y) ∈ H | y − 1 6 x} =
⋃

γ∈T ′

∆(γ), {(x, y) ∈ H | x 6 0} =
⋃

γ∈T ′′

∆(γ) ,

where T ′ consists of words starting with U2, but different from (U2S)n = T−n with
n > 0, while T ′′ consists of words starting with S, but different from (SU)n = T n

with n > 0. Theorem 4 follows since Γr Γ∞ = T ⊔ T ′ ⊔ T ′′ . �

3. Proof of Theorem 3

Since (2) is invariant under multiplying M = ( y x
0 1 ) on the right by elements in

Γ∞, we assume without loss of generality that 0 6 x < y . If Mγ is scalar for
γ ∈ Γ, the only possibility is easily seen to be M = 1. In this case, α(γ) 6= 0 for
γ ∈ {1, S, U, U2}, and (2) holds since − 1

12
+ 1

4
+ 1

6
+ 1

6
= 1

2
.

Assuming that M 6= 1, it follows that α(Mγ) 6= 0 if and only if Mγ has a fixed
point in F−, that is (x, y) ∈ ∆(γ). We conclude from Section 2 that y > 1, so the
point (x, y) belongs to the region R′ in (5), and γ = U2 or γ ∈ T by (4). Therefore
the elements γ such that α(Mγ) 6= 0 depend on the position of the point (x, y)
with respect to the triangulation of R′ as follows (see Figure 3):

• y = 1 and 0 < x < 1 : α(MU2) = 1/2 ;
• (x, y) is in the interior of a triangle △(γ) : α(Mγ) = 1 ;



6 ALEXANDRU A. POPA AND DON ZAGIER

• (x, y) is on a common side between △(γ) and △(γ′), but it is not a vertex:

α(Mγ) + α(Mγ′) =
1

2
+

1

2
= 1 ;

• (x, y) ∈ R is the P2 vertex of the triangle ∆(γ) for γ ∈ T + :

α(Mγ) + α(MγS) + α(MγU) =
1

4
+

1

4
+

1

2
= 1 ;

• (x, y) ∈ R is the P3 vertex of ∆(γ′) with γ′ ∈ T − :

α(Mγ′) + α(Mγ′U) + α(Mγ′U2) + α(Mγ′S) =
1

6
+

1

6
+

1

6
+

1

2
= 1 .
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