
Construction of the unitary free fermion Segal CFT

James E. Tener

August 9, 2016

Abstract

In this article, we provide a detailed construction and analysis of the mathematical conformal field
theory of the free fermion, defined in the sense of Graeme Segal. We verify directly that the operators
assigned to disks with two disks removed correspond to vertex operators, and use this to deduce analytic
properties of the vertex operators. One of the main tools used in the construction is the Cauchy transform
for Riemann surfaces, for which we establish several properties analogous to those of the classical Cauchy
transform in the complex plane.
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1 Introduction

In [Seg04], Graeme Segal proposed a new mathematical definition of conformal field theory. Under
Segal’s definition, a conformal field theory is a projective, monoidal functor from the cobordism category
of closed 1-manifolds and Riemann surfaces to the category of Hilbert spaces and trace class maps,
subject to certain additional axioms. We call conformal field theories in this spirit “Segal CFTs.”

In [Seg04, §8], Segal describes the first examples of Segal CFTs, the charged chiral fermion theories
(often called b-c systems in physics). In particular, there is one unitary charged chiral fermion theory,
which we will simply call the free fermion Segal CFT.

Many authors have explored mathematical aspects of the free fermion Segal CFT. The most detailed
study is [Kri03], in which Kriz studies the projective anomaly and partition functions of a class of
conformal field theories which includes the free fermion. While results concerning the analytic aspects of
the construction have appeared (e.g. [PS86, Pos03]), to our knowledge there has never been a complete,
rigorous analysis of the trace class operators assigned to surfaces with boundary. The first purpose of
this paper is to provide such a treatment (Sections 3 and 4).

The second purpose of this paper is to establish concretely the connection between the free fermion
vertex operator algebra and the free fermion Segal CFT. It has been understood for some time that the
operators assigned by Segal CFTs to spheres with three holes should correspond to vertex operators,
after slight modification. This connection was used by Huang [Hua03] to construct Segal CFTs in genus
zero from a general class of vertex operator algebras, but in the context of topological vector spaces as
opposed to Hilbert spaces. In Section 5, we provide an explicit formula in terms of vertex operators for
the operators assigned to a disk with two disks removed by the free fermion Segal CFT. As a consequence
of this formula, we are able to deduce analytic properties of the vertex operators (see Theorem B).

We now summarize the main results.
Let Σ be a compact Riemann surface with boundary, with no closed components. One slight compli-

cation of the free fermion Segal CFT is that it is a spin conformal field theory, so we must assume that Σ
is equipped with a spin structure. That is, we assume we have a holomorphic line bundle L→ Σ, and an
isomorphism Φ : L⊗L→ KΣ, where KΣ is the holomorphic cotangent bundle. We also assume that the
boundary of Σ comes with a family of parametrizations β from the two standard spin structures on the
unit circle S1. The collection of data X = (Σ, L,Φ, β) is called a spin Riemann surface with parametrized
boundary, and we use R to denote the collection of all such X.

We assign to each boundary component of Σ the fermionic Fock space F assigned to the unit circle
S1 ⊂ C and the disk D that it bounds. That is, if H = L2(S1) and H2(D) is the classical Hardy subspace,
we define F to be the exterior Hilbert space

F = Λ(H2(D)⊕H2(D)⊥),

which is a super Hilbert space. Fermionic Fock space comes equipped with a representation of CAR(H),
the C∗ algebra generated by annihilation and creation operators a(f) and a(f)∗, for f ∈ H.

Now let X ∈ R. The boundary Γ of Σ is partitioned into incoming boundary components, Γ0, on
which the parametrizing map β is orientation reversing, and outgoing boundary components, Γ1, on
which β is orientation preserving. We define the Hardy space

H2(X) ⊆

 ⊕
j∈π0(Γ1)

L2(S1)

⊕
 ⊕
j∈π0(Γ0)

L2(S1)


to be the closure of holomorphic sections of X, pulled back to L2(S1) by the boundary parametrizations
β.

The free fermion Segal CFT assigns to X the second quantization of the Hardy space H2(X). That
is, it assigns the space E(X) of trace class maps TX :

⊗
j∈π0(Γ0) F →

⊗
j∈π0(Γ1) F which satisfy the

H2(X) commutation relations with the annihilation and creation operators:

a(f1)TX = TXa(f0), for all (f1, f0) ∈ H2(X) (1.1)

and
a(g1)∗TX = −TXa(g0)∗, for all (g1, g0) ∈ H2(X)⊥. (1.2)
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If Σ has both incoming and outgoing boundary, the H2(X) commutation relations are equivalent to
TX implementing the unbounded operator whose graph is H2(X) as a Bogoliubov-like endomorphism of
CAR(H).

The basic properties of the assignment X 7→ E(X) are summarized in Theorem A below, which is
stated more precisely as Theorem 4.5 in the body of the paper.

Theorem A. Let X ∈ R. The maps E(X) assigned by the free fermion Segal CFT satisfy the following
properties:

1. (Existence) E(X) is one-dimensional, and its elements are homogeneous and trace class.

2. (Non-degeneracy) If every connected component of Σ has an outgoing boundary component, then
non-zero elements of E(X) are injective. If every connected component of Σ has an incoming
boundary component, then non-zero elements of E(X) have dense image.

3. (Monoidal) If Y ∈ R, then E(X t Y ) = E(X)⊗̂E(Y ), where X t Y is the disjoint union and ⊗̂ is
the graded tensor product.

4. (Sewing) If X̂ ∈ R is obtained by sewing two boundary components of X along the parametrizations,
then the partial supertrace induces an isomorphism trs : E(X)→ E(X̂). In particular, composition
of cobordisms corresponds to composition of maps.

5. (Reparametrization) The Fock space F comes equipped with unitary representations of the auto-
morphism groups of the standard spin structures on the circle, and the assignment X 7→ E(X) is
covariant with respect to reparametrization of boundary components of X.

6. (Unitarity) E(X) = E(X)∗, where X is the complex conjugate spin Riemann surface, and E(X)∗

denotes taking the adjoint elementwise.

The proof of Theorem A requires a careful study of the Hardy spaces H2(X). Our main tool for this
is the Cauchy transform for Riemann surfaces, which we study in Section 6. In particular, we obtain
analogs of the Plemelj formula and Kerzman-Stein formula.

The explicit description of E(X) in terms of commutation relations (1.1) and (1.2) is useful for
computing operators assigned to particular surfaces. As a demonstration, we compute the operator
assign to a disk with two disks removed, and identify the result with free fermion vertex operators, which
we now describe in more detail.

The action of rotation on S1 induces a one-parameter group of unitary operators acting on F , which
can be written as e2πiL0θ for a diagonalizable, positive operator L0 with eigenvalues in 1

2
Z≥0 and finite-

dimensional eigenspaces. We let F0 denote the algebraic span of eigenvectors of L0, which are called
finite energy vectors. The free fermion vertex operator algebra (often called the charged chiral fermion
vertex operator algebra) provides a ‘state-field correspondence.’ That is, for every ξ ∈ F0, we have a
formal power series

Y (ξ, z) =
∑
n∈Z

ξnz
−n−1,

where ξn ∈ End(F0).
In general, the ξn are closable operators on F , but do not extend to bounded operators. If one tries

evaluating Y (ξ, z)η with η ∈ F0 and z a complex number instead of a formal variable, the resulting series
will converge in F in general only when |z| < 1. Even then, Y (ξ, z) is not generally a closeable operator
on F ; in fact, its adjoint may be defined only on the vector 0. However, we show in Theorem 5.4 that
the trace class operators assigned by the free fermion Segal CFT to disks with two disks removed are
closely related to vertex operators.

Theorem B. Let Pw,r1,r2 be the Riemann surface obtained by removing from the closed unit disk the
open disk of radius r1 centered at w and the open disk of radius r2 centered at 0. Give Pw,r1,r2 the spin
structure obtained by its embedding into C, and parametrize the boundary components via dilation and
translation of the unit circle. Then E(Pw,r1,r2) is spanned by the map given on ξ ⊗ η ∈ F0 ⊗F0 by

ξ ⊗ η 7→ Y (rL0
1 ξ, w)rL0

2 η =
∑
n∈Z

(rL0
1 ξ)nw

−n−1rL0
2 η. (1.3)

The operators (rL0
1 ξ)n extend to trace class operators on F , and the sum∑

n∈Z

(rL0
1 ξ)nr

L0
2 w−n−1
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converges absolutely in operator norm, uniformly in r1, r2, and w on compact subsets of the configuration
space of pairs of pants Pw,r1,r2 .

Most of the content of this paper is adapted from the author’s Ph.D. thesis [Ten14].
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2 Background

2.1 Representations of CAR(H) and Diff(S1)

2.1.1 (Super) Hilbert spaces

Let H and K be complex Hilbert spaces. We write B(H,K) for the Banach space of bounded linear maps
x : H → K, equipped with the operator norm. We write Bp(H,K) for the ideal of B(H,K) consisting of
x ∈ B(H,K) which satisfy

‖x‖p := tr((x∗x)p/2)1/p <∞.
Elements of B1(H,K) are called trace class maps, and elements of B2(H,K) are called Hilbert-Schmidt
maps. The inner product 〈x, y〉 = tr(y∗x) makes B2(H,K) into a Hilbert space.

When H = K we simply write B(H) and Bp(H). In this case we define P(H) and U(H) to be the
set of projections (p∗ = p2 = p) and the group of unitary operators (u∗ = u−1) on H.

Trace class maps have a partial trace operation trL : B1(H ⊗ L,K ⊗ L) → B1(H,K). The partial
trace is continuous for the trace norms on B1(H ⊗ L,K ⊗ L) and B1(H,K), and it is characterized by
the property that if x1 ∈ B1(H,K) and x2 ∈ B1(L) then

trL(x1 ⊗ x2) = x1 tr(x2).

From this characterization one can deduce the tracial property

trL((1K ⊗ x2)y) = trL(y(1H ⊗ x2))

for all y ∈ B1(H ⊗ L,K ⊗ L).
A super Hilbert space is a Hilbert space H with a Z/2-grading, i.e. a decomposition H = H0 ⊕H1.

Elements of H0 (resp. H1) are called even (resp. odd) homogeneous elements. A super Hilbert space
comes with a grading involution dH which acts by 1 on H0 and by −1 on H1.

The tensor product of super Hilbert spaces H ⊗K is again a super Hilbert space, with

(H ⊗K)0 := (H0 ⊗K0)⊕ (H1 ⊗K1), (H ⊗K)1 := (H0 ⊗K1)⊕ (H1 ⊗K0).

Super Hilbert spaces have a symmetric braiding H ⊗K
βH,K→ K⊗H, given on homogeneous elements

by
βH,K(ξ ⊗ η) = (−1)p(ξ)p(η)η ⊗ ξ, (2.1)

where p(ξ), p(η) ∈ {0, 1} are the parities. Since β is symmetric, for every permutation σ ∈ Sn we have
unitary isomorphisms

H1 ⊗ · · · ⊗Hn
β(σ)→ Hσ(1) ⊗ · · · ⊗Hσ(n)

compatible with composition in Sn.
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The symmetric braiding allows us to talk about the unordered tensor product of super Hilbert spaces⊗
i∈I Hi, over a finite index set I. A map of unordered tensor products

x :
⊗
i∈I

Hi →
⊗
j∈J

H ′j

is defined to be a family of maps between every ordered tensor product of the {Hi} and {H ′j}, compatible
with the braiding. That is, for every pair of bijections α : {1, . . . , |I|} → I and α′ : {1, . . . , |J |} → J , we
have a linear map

xα,α′ : Hα(1) ⊗ · · ·Hα(|I|) → H ′α′(1) ⊗ · · · ⊗H ′α′(1) ⊗ · · · ⊗H ′α′(|J|),

and these maps should satisfy

xα2,α
′
2

= β((α′1)−1 ◦ α′2)xα1,α
′
1
β((α2)−1 ◦ α1).

for all bijections αi : {1, . . . , |I|} → I and all α′i : {1, . . . , |J |} → J . There are obvious notions of sum,
composition and tensor product of maps of unordred tensor products obtained by applying the operations
to compatible representatives.

Note that every x : H1 ⊗ · · · ⊗ Hn → K1 ⊗ · · · ⊗Km is a representative of some map of unordered
tensor products, corresponding to the family β(σ′)xβ(σ), where σ ∈ Sn and σ′ ∈ Sm. We refer to this
as the map of unoriented tensor products associated to x, and will denote it again by x when there is no
risk of confusion.

If H and K are super Hilbert spaces, then B(H,K) has a Z/2-grading corresponding to the invo-
lution x 7→ dKxdH . We identify B(H1 ⊗ H2,K1 ⊗ K2) with the graded tensor product of algebras
B(H1,K1)⊗̂B(H2,K2) as follows.

If xi ∈ B(Hi,Ki), define

x1⊗̂x2 := x1d
p(x2)
H1

⊗ x2 ∈ B(H1 ⊗H2,K1 ⊗K2)

if the xi are homogeneous, and by extending linearly otherwise. If yi ∈ B(Ki, Li) we have

(y1⊗̂y2)(x1⊗̂x2) = (−1)p(y2)p(x1)(y1x1⊗̂y2x2).

We denote by H∗ the continuous dual of H, and write ξ 7→ ξ∗ for the canonical conjugate linear
isomorphism.

There is a natural isomorphism µH,K : K ⊗H∗ → B2(H,K) given by

ψ ⊗ η∗ 7→ 〈 · , η〉ψ. (2.2)

Observe that we have adopted the convention that inner products are linear in the first variable.
There is a natural B(K) − B(H∗)op bimodule structure on K ⊗ H∗, and a natural B(K) − B(H)

bimodule structure on B2(H,K). We pause to observe an intertwining relation between these structures.
For x ∈ B(H,K), let x ∈ B(H∗,K∗) be given by xξ∗ = (xξ)∗.

Proposition 2.1. If ξ ∈ K ⊗H∗, x ∈ B(H) and y ∈ B(K), then

µH,K((1⊗̂x)ξ) = d
p(x)
K µH,K(ξ)x∗, µH,K((y⊗̂1)ξ) = y µH,K(ξ).

Proof. It suffices to check the relations when ξ = ψ ⊗ η∗, when ψ ∈ K and η∗ ∈ H∗ are homogeneous
vectors. We then have

µH,K((1⊗̂x)(ψ ⊗ η∗)) = (−1)p(ψ)p(x)µH,K(ψ ⊗ (xη)∗)

= (−1)p(ψ)p(x) 〈 · , xη〉ψ

= d
p(x)
K 〈x∗ · , η〉ψ

= d
p(x)
K µH,K(ψ ⊗ η∗)x∗

which establishes the first relation. The second is calculated similarly:

µH,K((y⊗̂1)(ψ ⊗ η∗)) = µH,K(yψ ⊗ η∗)
= 〈 · , η〉 yψ
= y µH,K(ψ ⊗ η∗).
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Define the supertrace trs : B1(H)→ C by trs(x) = tr(xdH). Similarly, the partial supertrace

trsL : B1(H ⊗ L,K ⊗ L)→ B1(H,K)

is defined by trsL(x) = trL(x(1⊗̂dL)).
More generally, if

x ∈ B1(H1 ⊗ · · · ⊗Hm,K1 ⊗ · · ·Kn)

is a map of (ordered) tensor products and Hi0 = Kj1 =: L, then we define trsj1i0(x) by using the braiding
to move Hi0 and Kj1 all the way to the right, and then applying the definition of trsL above. Specifically,
let

β : H1 ⊗ · · · ⊗Hm → H1 ⊗ · · · ⊗Hi0−1 ⊗Hi0+1 ⊗ · · · ⊗Hm ⊗Hi0
be the braiding, and similarly let β′ be the braiding

β′ : K1 ⊗ · · · ⊗Kn → K1 ⊗ · · · ⊗Kj1−1 ⊗Kj1+1 ⊗ · · · ⊗Kn ⊗Kj1 .

Then we define
trsj1i0(x) := trsL(β′xβ−1). (2.3)

Now let x :
⊗

i∈I Hi →
⊗

j∈J Kj be a trace class map of unordered tensor products, and fix i0 ∈ I
and j1 ∈ J with Hi0 = Kj1 =: L. Then we can define a partial supertrace trsj1i0(x) as a map of unordered
tensor products

trsj1i0(x) :
⊗

i∈I\{i0}

Hi →
⊗

j∈J\{j1}

Kj

as follows. Given bijections α : {1, . . . , |I| − 1} → I \ {i0} and α′ : {1, . . . , |J | − 1} → I \ {j1}, extend
them to orderings α̃ and α̃′ of I and J , respectively, by putting i0 and j1 last. Now set

trsj1i0(x)α,α′ := trsL(xα̃,α̃′).

It is straightforward to check that trsj1i0(x) is a map of unordered tensor products, i.e., the maps
trj1i0(x)α,α′ satisfy the appropriate compatibility with the braiding.

Straightforward computation yields the following basic properties of the partial supertrace.

Proposition 2.2. Let x ∈ B1(H ⊗ L,K ⊗ L).

1. If y1 ∈ B(M,H) and y2 ∈ B(K,M), then

trsL(x)y1 = trsL(x(y1⊗̂1)), and y2 trsL(x) = trsL((y2⊗̂1)x).

2. If z ∈ B(L), then

trsL((1⊗̂z)x) = (−1)p(x) trsL(x(1⊗̂z)) = (−1)p(x)p(z) trsL(x(1⊗̂z)).

The partial supertrace also enjoys the expected associativity property.

Proposition 2.3. Let x ∈ B1(H ⊗ L1 ⊗ L2,K ⊗ L1 ⊗ L2). Then trsL1⊗L2
(x) = trsL1

trsL2
(x).

Finally, we observe that the partial supertrace implements composition of maps of unordered tensor
products.

Proposition 2.4. Let x1 ∈ B1(H,K ⊗ L) and x2 ∈ B1(L⊗M,N). We then have the identity of maps
of unordered tensor products trsL(x2⊗̂x1) = (x2⊗̂1K) ◦ (1M ⊗̂x1).

Proof. Note that x2⊗̂x1 ∈ B1(L ⊗M ⊗ H,N ⊗ K ⊗ L), and so the partial super trace trsL(x2⊗̂x1) is
defined by precomposing with a braiding as in (2.3). That is,

trsL(x2⊗̂x1) = trsL((x2⊗̂x1)β) = trL((x2⊗̂x1)β(1M⊗H ⊗ dL)),

where β : M ⊗H ⊗ L→ L⊗M ⊗H is the braiding.
Also observe that x2⊗̂1K ∈ B(L ⊗M ⊗K,N ⊗K) and 1M ⊗̂x1 ∈ B(M ⊗H,M ⊗K ⊗ L). Thus a

representative of the composition of maps of unordered tensor products (x2⊗̂1K) ◦ (1M ⊗̂x1) is given by
(x2⊗̂1K)β′(1M ⊗̂x1), where

β′ : M ⊗K ⊗ L→ L⊗M ⊗K
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is the braiding.
In light of the preceding discussion, we must prove that

trL((x2⊗̂x1)β(1M⊗H ⊗ dL)) = (x2⊗̂1K)β′(1M ⊗̂x1) (2.4)

for all x1 ∈ B1(H,K ⊗ L) and x2 ∈ B1(L⊗M,N).
By the continuity of the partial trace, it suffices to check (2.4) when x1 is given by

x1(η) = y1(η)⊗ λ1

for some homogeneous y1 ∈ B1(H,K) and a homogeneous λ1 ∈ L. Similarly, we assume

x2(λ⊗ µ) = 〈λ, λ0〉 y2(µ)

for a homogeneous y2 ∈ B1(M,N) and a homogeneous λ0 ∈ L.
For µ ∈M , η ∈ H and λ ∈ L, we have

(x2⊗̂x1)β(1M⊗H ⊗ dL)(µ⊗ η ⊗ λ) = (x2d
p(x1)
L⊗M ⊗ x1)β(1M⊗H ⊗ dL)(µ⊗ η ⊗ λ)

= (−1)p(λ)(1+p(η)+p(µ))+p(x1)(p(λ)+p(µ))(x2 ⊗ x1)(λ⊗ µ⊗ η)

= (−1)p(λ)(1+p(η)+p(µ))+p(x1)(p(λ)+p(µ)) 〈λ, λ0〉 y2(µ)⊗ y1(η)⊗ λ1.

Hence

trL((x2⊗̂x1)β(1M⊗H⊗dL))(µ⊗η) = (−1)p(λ1)(1+p(η)+p(µ))+p(x1)(p(λ1)+p(µ)) 〈λ1, λ0〉 y2(µ)⊗y1(η). (2.5)

On the other hand,

(x2⊗̂1K)β′(1M ⊗̂x1)(µ⊗ η) = (x2 ⊗ 1K)β′(d
p(x1)
M ⊗ x1)(µ⊗ η)

= (−1)p(x1)p(µ)(x2 ⊗ 1K)β′(µ⊗ y1(η)⊗ λ1)

= (−1)p(x1)p(µ)+p(λ1)(p(y1η)+p(µ)) 〈λ1, λ0〉 y2(µ)⊗ y1(η). (2.6)

It is clear that (2.5) and (2.6) agree up to sign.
We can simplify the sign in (2.5) by working mod 2, and we get

p(x1)p(µ) + p(λ1)(p(y1η) + p(µ)) = (p(y1) + p(λ1))p(µ) + p(λ1)(p(y1) + p(η) + p(µ))

= p(λ1)(p(y1) + p(η)) + p(y1)p(µ). (2.7)

On the other hand, simplifying the sign in (2.6) yields

p(λ1)(1 + p(η) + p(µ)) + p(x1)(p(λ1) + p(µ)) = p(λ1)(1 + p(η) + p(µ)) + (p(λ1) + p(y1))(p(λ1) + p(µ))

= p(λ1)(p(y1) + p(η)) + p(y1)p(µ). (2.8)

Since (2.7) and (2.8) agree, the signs in (2.5) and (2.6) agree, and thus we have established (2.4), as
desired.

2.1.2 Fermionic Fock space

Given a complex Hilbert space H, the ∗-algebra CAR(H) is the universal unital C∗-algebra with gener-
ators a(f) for f ∈ H which are linear in f and satisfy the canonical anticommutation relations

a(f)a(g) + a(g)a(f) = 0,

a(f)a(g)∗ + a(g)∗a(f) = 〈f, g〉1.

Remark 2.5. The reader is welcome to replace C∗-algebra with ∗-algebra in the above definition with
no loss of information, since the algebraic version has a unique C∗-norm.
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There is an irreducible, faithful representation of CAR(H) on the Hilbert space

ΛH =

∞⊕
k=0

ΛkH

densely defined by a(f)ζ = f ∧ ζ. These operators are bounded, and ‖a(f)‖ = ‖f‖. The exterior Hilbert
space ΛH is naturally a super Hilbert space, with Z/2-grading inherited from the number grading. That
is,

(ΛH)i =

∞⊕
k=0

Λ2k+iH. (2.9)

The subspace Λ0H is spanned by a distinguished unit vector Ω which satisfies a(f)∗Ω = 0 for all f ∈ H.
There is a family of irreducible, faithful representations of CAR(H) indexed by p ∈ P(H) given as

follows. Let Hp = (pH)∗ ⊕ (1− p)H, and define the representation πp : CAR(H)→ B(ΛHp) by

πp(a(f)) = a((pf)∗)∗ + a((1− p)f).

We call ΛHp fermionic Fock space, and denote it by FH,p, or simply Fp or F when the decorations are
clear from context. Note that πp(a(f)) is an odd operator on FH,p.

The distinguished unit vector Ωp ∈ Λ0Hp is characterized, up to scalar multiples, by the equations

πp(a(f))Ωp = 0 for f ∈ pH, (2.10)

πp(a(g))∗Ωp = 0 for g ∈ (1− p)H. (2.11)

In fact, the representation (Fp, πp) is characterized up to unitary equivalence by the existence of a cyclic
vector satisfying these equations (via the GNS construction). The relations (2.10) and (2.11) are called
“vacuum equations.’

Definition 2.6. Let (K, π) be a representation of CAR(H), and let q be a projection on H. A vector
Ω̃q ∈ K is said to satisfy the q-vacuum equations if

π(a(f))Ω̃q = 0 for f ∈ qH,

π(a(g))∗Ω̃q = 0 for g ∈ (1− q)H.

A crucial property of the Fock space construction is that it takes (unordered) direct sums to (un-
ordered) tensor products.

Proposition 2.7. As super Hilbert spaces, we have natural isomorphisms

FH⊕K,p⊕q ∼= FH,p ⊗FK,q.

The isomorphism FH,p⊗FK,q → FK,q⊗FH,p induced by H⊕K ∼= K⊕H is the braiding of super Hilbert
spaces. The induced action of CAR(H ⊕K) on FH,p ⊗FK,q is

a(h+ k) 7→ πp(a(h))⊗̂1 + 1⊗̂πq(a(k)). (2.12)

Remark 2.8. The naturality of the isomorphisms from Proposition 2.7 make FH⊕K,p⊕q a model for the
unordered tensor product. That is, maps to and from FH⊕K,p⊕q are equivalent to maps to and from the
unordered tensor product

⊗
{FH,p,FK,q}. As a result, we will not distinguish between FH⊕K,p⊕q and⊗

{FH,p,FK,q}. We will freely identify πp⊕q and the representation given in equation (2.12).

Since H1−p = H∗p , we have a natural unitary Φ : F1−p → F∗p given by

Φ(ξ∗1 ∧ · · · ∧ ξ∗n) = (ξn ∧ · · · ∧ ξ1)∗

for ξi ∈ Hp.
Proposition 2.9. For all f ∈ H we have

Φπ1−p(a(f))Φ∗ = πp(a((2p− 1)f))∗dF∗p

and
Φπ1−p(a(f))∗Φ∗ = −πp(a((2p− 1)f))dF∗p .
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Proof. The two identities are clearly equivalent for every fixed f ∈ H. We prove the first for f ∈ pH and
the second for f ∈ (1− p)H.

If f ∈ pH, then the first identity reads

Φπ1−p(a(f))Φ∗ = πp(a(f))∗dF∗p .

Applying the left-hand side to ω∗ ∈ (ΛnHp)
∗ yields (ω ∧ f∗)∗, and applying the right-hand side yields

(−1)n(f∗ ∧ ω)∗. The proof of the second identity when f ∈ (1− p)H is similar.

The natural question of when πp and πq are unitarily equivalent is answered by the following theorem.

Theorem 2.10. The following are equivalent:

(i) (FH,p, πp) and (FH,q, πq) are unitarily equivalent representations of CAR(H).

(ii) There exists a unit vector Ω̃q ∈ FH,p, which will be unique up to phase, satisfying the q-vacuum
equations.

(iii) p− q is a Hilbert-Schmidt operator on H.

This result is often called the Shale-Stinespring equivalence condition, and there are many proofs in
the literature. A simple version of the argument may be found in the textbook [Tha92, Thm. 10.7].
A more concise version of the constructive proof that (iii) implies (ii) and (i) is in [Was98, §3], and an
abstract proof using von Neumann algebra techniques is given in [dlHJ95, Thm. 8.23].

If u ∈ U(H), the Bogoliubov automorphism αu of CAR(H) is characterized by αu(a(f)) = a(uf).
We say that an automorphism α of a C∗-algebra A is implemented in a representation π : A → B(Hπ)
if there is a unitary U ∈ U(Hπ) such that AdU ◦ π = π ◦ α. If π is irreducible then an implementing
unitary U will be unique up to phase.

Corollary 2.11. The Bogoliubov automorphism αu is implemented in πp if and only if [u, p] is Hilbert-
Schmidt. If αu is implemented by U , then UΩp = Ω̃q for q = upu∗. In particular, Ωp is an eigenvector
for U if and only if [u, p] = 0.

Definition 2.12. Define the restricted general linear group

GLres(H, p) = {x ∈ GL(H) : [x, p] ∈ B2(H)}.

and the restricted unitary group

Ures(H, p) = GLres(H, p) ∩ U(H).

We give Ures the topology generated by the strong operator topology, along with the pseudometric
‖[u− v, p]‖2 . With this topology, Ures is a topological group, but we will not need this fact.

In light of Corollary 2.11, there is a natural projective representation of Ures(H, p) on FH,p called the
basic representation, which we will write u 7→ U . The basic representation is characterized by

Uπp(a(f))U∗ = πp(a(uf)) (2.13)

for all f ∈ H. The basic representation restricts to an honest representation on the subgroup of unitary
operators u commuting with p. On this subgroup, a lift to U(FH,p) is given by choosing U so that
UΩ = Ω.

Theorem 2.13. The basic representation is strongly continuous (i.e. continuous as a map into the
projective unitary group PU(FH,p) given the quotient topology of the strong operator topology).

A proof of this theorem is given in [Was98, §3].
Note that the grading operator dFH,p for the Z/2 grading on FH,p given by (2.9) implements the

Bogoliubov automorphism α−1. We will simply write d for this grading operator when the Fock space
that it acts on is clear.

Proposition 2.14. The vectors Ω̃q from Theorem 2.10 are homogeneous. The parity of Ω̃q is the parity
of dim (pH ∩ (1− q)H) + dim ((1− p)H ∩ qH).

Proof. The homogeneity of Ω̃q follows immediately from the fact that dΩ̃q again satisfies the q-vacuum
equations, and thus Ω̃q is an eigenvector for the grading operator. The parity can be read off from an
explicit formula for Ω̃q (see e.g. [Was98, §3] or [Tha92, Thm 10.6]).

The following proposition is an immediate corollary.

Proposition 2.15. If U implements the Bogoliubov automorphism αu in FH,p, then U is homogeneous.
The parity of U is the same as the parity of Ω̃q, where q = upu∗.
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2.1.3 Representations of Diff(S1)

We will use fermionic Fock space FH,p primarily in the case where H = L2(S1) and pH is the Hardy
space H2(D). Here S1 is the unit circle in C and

H2(D) = cl(span{zn : n ≥ 0}).

Let Diff(S1) be the group of diffeomorphisms of the circle, and let Diff+(S1) and Diff−(S1) be the
orientation preserving and orientation reversing diffeomorphisms, respectively. If γ ∈ Diff(S1), define
ε(γ) = ±1 if γ ∈ Diff±(S1).

If f : S1 → C is a smooth function, then we define the complex derivative f ′ : S1 → C by

f ′(z) :=
1

iz

(
d

dθ
f(eiθ)

∣∣∣∣
eiθ=z

)
.

Of course, if f extends to a holomorphic function in a neighborhood of S1 then this definition agrees
with the usual complex derivative.

We now define a pair of central extensions of Diff(S1) by Z/2, which are the groups of Ramond and
Neveu-Schwarz spin diffeomorphisms. They are given as subgroups of C∞(S1)× o Diff(S1) by

DiffNS(S1) := {(ψ, γ) ∈ C∞(S1)× o Diff(S1) : ψ2 = (γ−1)′},

DiffR(S1) := {(ψ, γ) ∈ C∞(S1)× o Diff(S1) : ψ2 = ε(γ)
∣∣(γ−1)′

∣∣}.
In the following, let σ ∈ {NS,R}. One can see that the Diffσ(S1) are non-isomorphic central exten-

sions, since DiffR+(S1) is a split extension of Diff+(S1) and DiffNS+ (S1) is not.
Define the spinor representations uσ : Diffσ(S1)→ U(H) by

uσ(ψ, γ)f = ψ · (f ◦ γ−1).

Proposition 2.16. For σ ∈ {NS,R}, uσ(Diffσ+(S1)) ⊂ Ures(H, p). If Diffσ+(S1) is given the C3 topology
then the embedding of Diffσ+(S1) into Ures(H, p) is continuous.

Proof. It is clear that if σn → σ in the C3 topology then uσn → uσ in the strong operator topology. It
remains to show that uσ(Diffσ+(S1)) ⊂ Ures(H, p), and that ‖[uσn − uσ, p]‖2 → 0.

The first assertion is proven in [Seg81, Prop. 5.3]. To see the second, observe that

‖[uσn − uσ, p]‖2 ≤
∥∥[uσn◦σ−1 , p]

∥∥
2

+ ‖(uσ − uσn)[uσ, p]‖2 .

Since σn ◦σ−1 → id in the C3 topology, one may apply the estimate from the proof of [Seg81, Prop. 5.3]
to see that

∥∥[uσn◦σ−1 , p]
∥∥

2
→ 0. On the other hand, from [Seg81, Prop. 5.3] one can also see that [uσ, p]

is trace class, and thus can be factored as a product of Hilbert-Schmidt operators, say [uσ, p] = xy. Then
(uσ − uσn)x→ 0 in operator norm, and so

(uσ − uσn)[uσ, p] = (uσ − uσn)xy → 0

in Hilbert-Schmidt norm.

In light of Proposition 2.16, one has a pair of projective representations Uσ : Diffσ+(S1) → U(FH,p)
by composing uσ with the basic representation of Ures(H, p).
Corollary 2.17. The representations Uσ are strongly continuous, and Uσ(ψ, γ) is even for all (ψ, γ) ∈
Diffσ+(S1).

Proof. Combining Proposition 2.16 with the continuity of the basic representation (Theorem 2.13) shows
that Uσ is strongly continuous. By Proposition 2.15 each Uσ(ψ, γ) is homogeneous. Any (ψ, γ) ∈
Diffσ+(S1) can be connected via a path to (1, id) or (−1, id), and since Uσ(1, id) and Uσ(−1, id) are even,
so is Uσ(ψ, γ) for every (ψ, γ) ∈ Diff+(S1).

Remark 2.18. If (ψ, γ) ∈ Diffσ−(S1), then uσ(ψ, γ)puσ(ψ, γ)∗ − (1− p) is Hilbert-Schmidt, and conse-
quently one can define projective unitaries Uσ(ψ, γ) : FH,p → F∗H,p which are compatible with the action
of orientation preserving spin diffeomorphisms on FH,p and F∗H,p.
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Let rθ ∈ Diff+(S1) be counterclockwise rotation by θ. Since uR(1, rθ) and uNS(e−iθ/2, rθ) commute
with p, we obtain a pair of one parameter (honest) unitary groups acting on FH,p, namely

RotR(θ) := UR(1, rθ), RotNS(θ) := UNS(e−iθ/2, rθ).

By Stone’s theorem we can find self-adjoint operators LR0 and LNS0 such that

RotR(θ) = e2πiθLR0 , RotNS(θ) = e2πiθLNS0 .

The generators of these one parameter groups are positive operators, which can be verified by diagonal-
ization.

Proposition 2.19. Let S be a finite subset of Z, and suppose that S = {n1, . . . , np,m1, . . . ,mq}, where

n1 < · · · < np < 0 ≤ m1 < · · · < mq.

Then the vectors
ξS = πp(a(znp) · · · a(zn1)a(zm1)∗ · · · a(zmq )∗)Ωp,

form an orthonormal basis for FH,p consisting of eigenvectors for LR0 and LNS0 . Their eigenvalues are
given by

LR0 ξS =

(
p∑
i=1

−ni +

q∑
i=1

mi

)
ξS

and

LNS0 ξS =

(
p∑
i=1

−(ni + 1
2
) +

q∑
i=1

(mi + 1
2
)

)
ξS .

In particular, for all n ∈ Z we have

[LNS0 , πp(a(zn))] = −(n+ 1
2
)πp(a(zn)), [LR0 , πp(a(zn))] = −nπp(a(zn)) (2.14)

and
[LNS0 , πp(a(zn))∗] = (n+ 1

2
)πp(a(zn))∗, [LR0 , πp(a(zn))∗] = nπp(a(zn))∗. (2.15)

2.2 Spin structures

2.2.1 Spin structures on Riemann surfaces

Let Σ be a compact Riemann surface with boundary. The complex structure on Σ induces an almost
complex structure J . That is, J is a smooth family of endomorphisms Jp of the tangent spaces TpΣ such
that J2

p = −1 for all p ∈ Σ. In any local holomorphic coordinate z = x+ iy, one has

J
∂

∂x
=

∂

∂y
, J

∂

∂x
= − ∂

∂y
.

Set TΣC = TΣ ⊗R C, and let T (1,0)Σ and T (0,1)Σ be the bundles of eigenspaces of J for i and −i,
respectively.

With respect to a local holomorphic coordinate z : U → C, we have sections

∂

∂z
:=

1

2

(
∂

∂x
− i ∂

∂y

)
, and

∂

∂z
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
of T (1,0)U and T (0,1)U , respectively.

We give T (1,0)Σ and T (0,1)Σ the complex structure J . For T (1,0)Σ this coincides with the complex
structure inherited from TΣC, but on T (0,1)Σ the complex structure is conjugate to the inherited one. The
bundles T (1,0)Σ and T (0,1)Σ are called the holomorphic and antiholomorphic tangent bundles, respectively.

Define the holomorphic cotangent bundle (or canonical bundle) KΣ by

KΣ = (T (1,0)Σ)∗.
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If (z, U) is a local holomorphic coordinate, a trivialization of KU is given by the section dz = dx+ idy.
We also have a trivialization of (T (0,1)U)∗ given by dz = dx− idy. If u ∈ C∞(Σ), define a section ∂u of
KΣ in local holomorphic coordinates by

∂u =
∂u

∂z
dz.

Similarly define a section ∂u of (T (0,1)Σ)∗ by

∂u =
∂u

∂z
dz.

The Dolbeault operators ∂ and ∂ are related to the de Rahm differential by d = ∂ + ∂.

Definition 2.20. A spin structure on Σ is a holomorphic line bundle L over Σ along with a holomorphic
isomorphism Φ : L⊗ L→ KΣ (that acts identically on the base space).

We will refer to a Riemann surface along with a choice of spin structure as a spin Riemann surface.

Remark 2.21. This definition of a spin structure is particular to Riemann surfaces. The equivalence of
this definition with the standard one is established in [Ati71, Sec. 3].

If L1 and L2 are spin structures on Σ1 and Σ2, then an isomorphism of spin structures L1 → L2 is a
holomorphic isomorphism of bundles B : L→ L′ such that the diagram

L1 ⊗ L1
B⊗B−−−−−→ L2 ⊗ L2

Φ1

y yΦ2

KΣ1

B|Σ1
∗

←−−−−− KΣ2

commutes, where B|∗Σ is the pullback.

Example 2.22. Let D be the closed unit disk in C. Then the (Neveu-Schwarz) spin disk (D, NS) is
given by the following spin structure. We take L = D × C. The spin structure Φ : L ⊗ L → KD acts
on sections f ⊗ g ∈ C∞(D) ⊗ C∞(D) by Φ∗(f ⊗ g) = fgdz. Up to isomorphism, this is the only spin
structure on D.

Example 2.23. Let Ar denote the closed annulus

Ar = {z ∈ C : r ≤ |z| ≤ 1}.

We define two spin structures on Ar, called the Neveu-Schwarz and Ramond spin structures. Both
are given by the trivial bundle L = Ar × C. For σ ∈ {NS,R} the spin structure Φσ acts on sections
f ⊗ g ∈ C∞(Ar)⊗ C∞(Ar) by

(Φσ)∗(f ⊗ g) =

{
f(z)g(z) dz

i
, σ = NS

f(z)g(z) dz
iz
, σ = R

We refer to these spin surfaces as the spin annuli (Ar, σ).

Example 2.24. Let w ∈ D and r1, r2 ∈ (0, 1), and assume they satisfy r1 + r2 < |w| < 1 − r1. Define
the pair of pants

Pw,r1,r2 = D \
(

(r1D̊ + w) ∪ r2D̊
)
,

where D̊ is the open unit disk. We define a pair of spin surfaces (Pw,r1,r2 , σ) for σ ∈ {NS,R} as in
Example 2.23. That is, we let L = Pw,r1,r2 × C and define spin structures Φσ which act on sections by

(Φσ)∗(f ⊗ g) =

{
f(z)g(z) dz

i
, σ = NS

f(z)g(z) dz
iz
, σ = R
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2.2.2 Spin structures on circles

Let Y be a smooth, closed 1-manifold.

Definition 2.25. A spin structure on Y is a smooth, complex line bundle L and an isomorphism of
complex line bundles φ : L⊗ L→ T ∗YC, where T ∗YC = T ∗Y ⊗R C.

We will refer to the triple (Y,L, φ) as a (smooth, closed) spin 1-manifold.

Remark 2.26. One could alternatively define a spin structure on Y via real line bundles and an iso-
morphism to the real cotangent bundle T ∗Y , and these definitions are equivalent since the real structure
on T ∗YC induces a real structure on L. We have chosen the definition given above because it makes the
relationship with spin structures on surfaces more transparent.

Proposition 2.27. There is a natural identification KΣ|Γ ∼= T ∗ΓC. Thus if Σ is a compact Riemann
surface with boundary Γ and (L,Φ) is a spin structure on Σ, then (L|Γ,Φ|Γ) naturally becomes a spin
structure on Γ.

Proof. First, observe that there is a natural R-linear isomorphism TΣ → T (1,0)Σ. Indeed, TΣ sits
naturally as a real linear subspace of TΣC, and since TΣ ∩ T (0,1)Σ = {0}, the projection of TΣC onto
T (1,0)Σ, with respect to the decomposition T (1,0)Σ⊕T (0,1)Σ, is injective on TΣ. By dimension counting,
this projection induces the desired R-linear isomorphism TΣ ∼= T (1,0)Σ.

Now TΓ gives a 1-real-dimensional subbundle of TΣ|Γ, and transporting along the isomorphism
constructed above gives a 1-real-dimensional subbundle of T (1,0)Σ|Γ.

All that remains is to note that if W is a complexification of V , then W ∗ is naturally a complexification
of V ∗, by embedding V ∗ in W ∗ as linear functionals taking real values on V .

A morphism of spin structures (Y1, L1)→ (Y2, L2) is a smooth bundle map β : L1 → L2 such that

L1 ⊗ L1
β⊗β−−−−−→ L2 ⊗ L2

φ1

y yφ2

T ∗Y1C
β|Y1

∗

←−−−−− T ∗Y2C

(2.16)

commutes. Note that β|Y1

∗ is a real linear bundle map T ∗Y2 → T ∗Y1, and thus induces a unique complex
linear map bundle map between the complexifications.

Example 2.28. We define a pair of spin structures on S1, called the the Neveu-Schwarz and Ramond
spin structures. Both are given by the trivial bundle L = S1 × C. For σ ∈ {NS,R}, the spin structure
φσ is given on sections f ⊗ g ∈ C∞(S1)⊗ C∞(S1) by

(φσ)∗(f ⊗ g) =

{
f(z)g(z) dz

i
σ = NS

f(z)g(z) dz
iz

σ = R
(2.17)

We denote these spin circles by (S1, NS) and (S1, R).

Example 2.29. The restriction of the spin disk (D, NS) to the boundary circle is isomorphic to (S1, NS).
For σ ∈ {NS,R}, the restriction of the spin annulus (Ar, σ) to either boundary component is isomorphic
to (S1, σ). The restriction of (Pw,r1,r2 , σ) to the boundary circles S1 and r2S

1 is isomorphic to (S1, σ),
but the restriction to r1S

1 + w is isomorphic to (S1, NS) in either case.

For σ ∈ {NS,R}, let Aut(S1, σ) denote the group of spin structure automorphisms of the spin circle
(S1, σ). Note that these automorphisms are not required to act identically on the base space.

Proposition 2.30. Aut(S1, σ) is naturally isomorphic to Diffσ(S1). Under this isomorphism, diffeo-
morphisms (ψ, γ) ∈ Diffσ(S1) act on sections of the spin bundle via the spin representation uσ.

Proof. Let L = S1 × C and let β : L → L be an automorphism of Aut(S1, σ). It suffices to show that
there exists a (ψ, γ) ∈ Diffσ(S1) such that β∗f = uσ(ψ, γ)f for all sections f of L.

Let γ = β|S1 ∈ Diff(S1) and let K = (T ∗S1)C. By definition, the diagram

L⊗ L β⊗β−−−−−→ L⊗ L

φσ

y yφσ
K

γ∗←−−−−− K
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commutes.
Since β : L→ L is a bundle isomorphism, it acts on sections by

β∗f = ψ(z)f(γ−1(z))

for some ψ ∈ C∞(S1)×.
Assume first that σ = NS, and let f ⊗ g be a section of L⊗ L. By definition we have

(φNS)∗(f ⊗ g) = −if(z)g(z)dz. (2.18)

Following the commutative diagram the other way around, we get

γ∗(φNS)∗(β ⊗ β)∗(f ⊗ g) = −if(z)g(z)ψ(γ(z))2γ′(z)dz. (2.19)

Since the diagram commutes, (2.18) and (2.19) coincide for all f and g, and so we must have
ψ(γ(z))−2 = γ′(z) for all z ∈ S1. That is, ψ2 = (γ−1)′. We now identify β with (ψ, γ) ∈ DiffNS(S1),
and β acts on sections by uNS(ψ, γ) as was to be shown.

The case σ = R is similar, except in this case the commutativity of the diagram is equivalent to the
condition

ψ(γ(z))−2 =
zγ′(z)

γ(z)
.

The right-hand side is equal to ε(γ) |γ′(z)|, where ε(γ) = ±1 if γ ∈ Diff±(S1). Hence ψ2 = ε(γ)
∣∣(γ−1)′

∣∣
and we have (ψ, γ) ∈ DiffR(S1). We now identify β with (ψ, γ), and β acts on sections by uR(ψ, γ).

The automorphism corresponding to (−1, id) ∈ Diffσ(S1) is called the spin involution.

Proposition 2.31. The Neveu-Schwarz and Ramond spin structures on S1 are not isomorphic, and
every spin structure on S1 is isomorphic to (S1, NS) or (S1, R).

Proof. Let (L, φ) be a spin structure on S1. For every γ ∈ Diff(S1), (L, φ) has an automorphism that
acts on S1 by γ. Hence it suffices to classify spin structures on S1 up to isomorphisms that act identically
on the base space.

Since every complex line bundle on S1 is trivializable, we may assume L = S1×C, in which case φ is
characterized by the non-vanishing section ω := φ∗(1⊗ 1) of KC|S1 , where 1 is the constant function. If
ω1 and ω2 correspond to a pair of spin structures, then base space preserving isomorphisms between these
spin structures correspond one-to-one with non-vanishing smooth functions h ∈ C∞(S1)× such that ω1 =
h2ω2. Thus the isomorphism classes of spin structures on S1 are a torsor for C∞(S1)×/(C∞(S1)×)2 ∼=
Z/2. Since z−1 is not a square of a smooth function, the spin structures defined by ω1 := dz

i
and ω2 := dz

iz

are not isomorphic, and form a complete set of representatives of isomorphism classes.

2.2.3 Conjugate spin structures

Let Σ be a Riemann surface, and let L be a complex line bundle over Σ. We denote by Σ the Riemann
surface obtained by taking the conjugate complex structure on Σ, and by L the line bundle obtained by
taking the conjugate complex structure on each fiber of L. If L has a holomorphic structure, then L has
a natural holomorphic structure over Σ. As real bundles, we have LR = LR, and a smooth section of LR
is a holomorphic section of L if and only if it is a holomorphic section of L.

Observe that T (0,1)Σ = T (1,0)Σ. Complex conjugation on TΣC exchanges T (1,0)Σ and T (0,1)Σ, and
thus induces a holomorphic isomorphism T (1,0)Σ → T (1,0)Σ. Dualizing, we get a holomorphic isomor-
phism KΣ

∼= KΣ.
Now given a spin structure Φ : L⊗L→ KΣ, there is a natural conjugate spin structure Φ : L⊗L→ KΣ

given by

Φ = L⊗ L Φ−→ KΣ
∼−→ KΣ.

Similarly, if (L, φ) is a spin structure on 1-manifold Y , we can define a conjugate spin structure by
allowing φ to act on the conjugate vector spaces. The conjugate spin structure (L, φ) is given by

φ = L⊗ L φ−→ T ∗YC
∼−→ T ∗YC,

where the second arrow is complex conjugation.

14



Proposition 2.32. Let (Σ, L,Φ) be a spin Riemann surface. Then Φ|Γ = Φ|Γ.

Proof. Recall from Proposition 2.27 that we chose an isomorphism T (1,0)Σ|Γ → TΓC so that the diagram

T (1,0)Σ|Γ −−−−−→ T (1,0)Σ|Γy y
TΓC −−−−−→ TΓC

commutes, where the top arrow is the isomorphism induced by complex conjugation on TΣC and the
bottom arrow is complex conjugation on TΓC.

The above diagram induces a diagram of isomorphisms of dual spaces

L|Γ ⊗ L|Γ
Φ|Γ−−−−−→ KΣ −−−−−→ KΣy y

T ∗ΓC −−−−−→ T ∗ΓC

The two paths around this diagram are Φ|Γ and Φ|Γ

2.2.4 Conformal welding

One of the fundamental operations in Segal CFT is that of gluing two Riemann surfaces along boundary
circles. More generally, we will consider the operation of sewing a Riemann surface along a pair of
boundary circles, which may lie on the same connected component. One wants the (topologically) sewn
surface to again be a Riemann surface, and so one must construct a complex structure. It turns out that
if the sewing map is a diffeomorphism, then the sewn surface has a natural complex structure.

If Σ is a Riemann surface with boundary, a holomorphic function on Σ is defined to be a smooth func-
tion on Σ that is holomorphic in the interior. That is, we require that the function extend continuously
to ∂Σ, and that the restriction to ∂Σ be a smooth function.

Theorem 2.33 (Conformal welding). Let Σ be a Riemann surface, and C1 and C2 be distinct connected
components of ∂Σ, and let γ : C1 → C2 be an orientation reversing diffeomorphism. Then the topological
manifold Σ̂ obtained by sewing C1 to C2 along γ has a unique complex structure such that the holomorphic
functions on Σ̂ are naturally in one-to-one correspondence with holomorphic functions F on Σ such that
F |C2 ◦ γ = F |C1 .

A survery of conformal welding is given in [SM06].
More generally, we are interested in the conformal welding of spin Riemann surfaces.

Theorem 2.34. Let (L,Φ) be a spin structure on a Riemann surface Σ, and let C1 and C2 be distinct
boundary components of Σ. Suppose that β : L|C1 → L|C2 is an isomorphism of spin structures, and that
γ := β|C1 is orientation reversing. Then the topological bundle L̂ over Σ̂ obtained by sewing along β is
naturally a spin structure, and the holomorphic sections of L̂ are naturally in one-to-one correspondence
with holomorphic sections F of L such that β∗F |C2 = F |C1 .

Proof. As remarked in [Ati71, Sec. 3], spin structures on Σ are in one-to-one correspondence with
topological line bundles L along with continuous isomorphisms Φ : L ⊗ L → KΣ, as such a Φ gives L a
natural complex structure making Φ holomorphic.

Now observe that the projection Σ→ Σ̂ induces a continuous isomorphism of the topologically sewn
bundle KΣ/γ with KΣ̂. We thus get a continuous isomorphism

Φ̂ = L̂⊗ L̂ −→ KΣ/γ −→ KΣ̂.

By the above discussion, the complex structure on KΣ̂ gives L̂ the structure of a holomorphic bundle,

for which Φ̂ is holomorphic. The holomorphic sections of L̂ are precisely those continuous sections which
are holomorphic away from the circle along which Σ was sewn.

One application of Theorem 2.34 is that one can easily embed a compact spin Riemann surface with
boundary in an open spin Riemann surface
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Corollary 2.35. Let (Σ, L,Φ) be a compact, connected Riemann surface with non-empty boundary Γ.
Then (Σ, L,Φ) can be embedded in an open spin Riemann surface (Σ̃, L̃, Φ̃).

Proof. The restriction of L to each connected component of Γ is isomorphic to some spin circle (S1, σ) for
σ ∈ {NS,R}. Thus one can embed Σ in a new spin Riemann surface Σ′ by welding a spin annulus (Ar, σ)
to each boundary component via Theorem 2.34. The desired Σ̃ is any sufficiently small neighborhood of
Σ in Σ′.

One of the advantages of embedding a spin Riemann surface with boundary in an open spin Riemann
surface is that we may apply the following result on triviality of holomorphic vector bundles.

Theorem 2.36. Every holomorphic vector bundle over an open Riemann surface is holomorphically
trivializable.

See [For81, §30] for an extended discussion of Theorem 2.36.

3 Spin Riemann surfaces and their Hardy spaces

3.1 Notation, definitions, and examples

The following notational conventions will be used throughout the remainder of the paper. Let (Σ, L,Φ) be
a spin Riemann surface. Let Γ be the boundary of Σ, and let π0(Γ) be the set of connected components
of Γ. Let β := (βj)j∈π0(Γ) be a trivialization of the spin structure L|Γ. That is, we have a function
σ : π0(Γ)→ {NS,R} and isomorphisms of spin structures

βj : (S1, σ(j))→ L|j .

Note that σ is uniquely determined by the spin structure on Σ.
For j ∈ π0(Γ), let γj be the isomorphism of 1-manifolds βj |S1 : S1 → j. Riemann surfaces have

natural orientations given by the complex structure, and we give Γ the orientation induced by restriction.
Now the family γj induces a partition of the boundary Γ = Γ0 t Γ1 into closed connected submanifolds
by declaring that j ⊂ Γ1 if and only if γj is orientation preserving, where S1 is given the standard
counterclockwise orientation. For a fixed partition Γ = Γ1 t Γ0 the collection of compatible boundary
trivializations β is a torsor for the group

∏
j∈π0(Γ) Diff

σ(j)
+ (S1) by Proposition 2.30.

Definition 3.1. A spin Riemann surface with boundary parametrization is a quadruple (Σ, L,Φ, β) as
above. That is, (Σ, L,Φ) is a spin Riemann surface, and βj : (S1, σ(j)) → L|j is an isomorphism of
spin structures. We denote by R the collection of such (Σ, L,Φ, β) with the additional property that Σ
has no closed components. An isomorphism of spin Riemann surfaces with boundary parametrizations
(Σ1, L1,Φ1, β1)→ (Σ2, L2,Φ2, β2) is an isomorphism of spin structuresB : L1 → L2 such that B◦β1 = β2.

Example 3.2. The spin disk (D, NS) defined in Example 2.22 has a boundary trivialization given by
the identity map S1 × C→ S1 × C.

Example 3.3. The spin annuli (Ar, σ) defined in Example 2.23 have families of standard boundary
trivializations. When σ = R, this family is parametrized by q ∈ rS1 and the isomorphisms βj : S1×C→
j × C, for j ∈ π0(Γ), are given by

βj(z, α) =

{
(z, α) j = S1

(qz, α) j = rS1

We refer to this spin Riemann surface with boundary parametrization as (Aq, R).
When σ = NS, the standard boundary trivializations depend on q ∈ rS1 as well as a square root

q1/2 of q. We then define

βj(z, α) =

{
(z, α) j = S1

(qz, q−1/2α) j = rS1

We refer to this spin Riemann surface with boundary parametrization as (Aq,q1/2 , NS), or by abuse of

notation simply as (Aq, NS), leaving implicit the choice of q1/2.
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Example 3.4. Let w ∈ D and r1, r2 ∈ (0, 1), and suppose that r1 + r2 < |w| < 1− r1, so that we have
spin pairs of pants (Pw,r1,r2 , NS) as in Example 2.24. We define boundary trivializations

βj(z, α) =


(z, α) j = S1

(q1z + w, q
−1/2
1 α) j = r1S

1 + w

(q2z, q
−1/2
2 α) j = r2S

1

We refer to this spin Riemann surface with boundary parametrization as (P
w,q1,q

1/2
1 ,q2,q

1/2
2

, NS), or by

abuse of notation as (Pw,q1,q2 , NS), leaving the dependence on the choice of square roots implicit. The
moduli space of parametrized standard Neveu-Schwarz spin pairs of pants is

MNS = {(w, q1, q1/2
1 , q2, q

1/2
2 ) ∈ C5 : 0 < |q1|+ |q2| < |w| < 1− |q1|}.

Let X = (Σ, L,Φ, β) ∈ R, and let Γ be the boundary of Σ. Define the pre-quantized boundary Hilbert
space HΓ by

HΓ =
⊕

j∈π0(Γ)

L2(S1)

and similarly for i ∈ {0, 1} let

Hi
Γ =

⊕
j∈π0(Γi)

L2(S1).

Note that while HΓ only depends on the manifold Γ, the partition Γ = Γ0tΓ1, and thus the decomposition
HΓ = H0

Γ ⊕H1
Γ, depend on the spin structure L and the boundary trivialization β.

Let X ∈ R and denote by O(Σ;L) the collection of sections of L which are holomorphic on the
interior of Σ and restrict to smooth sections of L|Γ.

Definition 3.5. The Hardy space H2(X) ⊂ HΓ is defined by

H2(X) = cl{β∗F |Γ : F ∈ O(Σ;L)}.

Remark 3.6. Elements of the closed subspace H2(X) have an explicit description in terms of holomor-
phic sections on the interior of Σ with L2 boundary values. The equivalence of these two descriptions is
given in the planar case in [Bel92, §6], and the same proof goes through in the case of Riemann surfaces.
We will not use this description of the Hardy space.

Proposition 3.7. Let X1, X2 ∈ R and suppose that X1 and X2 are isomorphic as spin Riemann surfaces
with boundary parametrizations. Then H2(X1) = H2(X2).

Proof. Let B : X1 → X2 be an isomorphism. That is, B is an isomorphism of the spin structures of X1

and X2 such that B ◦ β1 = β2. Then O(Σ1;L1) = B∗O(Σ2;L2), and thus

{β∗1F |Γ1 : F ∈ O(Σ1;L1)} = {β∗1B∗F |Γ2 : F ∈ O(Σ2;L2)}
= {β∗2F |Γ2 : F ∈ O(Σ2;L2)}.

3.2 Operations on spin Riemann surfaces

We now introduce several operations on spin Riemann surfaces with boundary parametrizations, starting
with the most straightforward, disjoint union.

3.2.1 Disjoint union

Definition 3.8. Given X = (Σ, L,Φ, β) ∈ R and X ′ = (Σ′, L′,Φ′, β′), we define the disjoint union

X tX ′ := (Σ t Σ′, L t L′,Φ t Φ′, β t β′) ∈ R

in the obvious way.

Proposition 3.9. Let X1, X2 ∈ R. Then H2(X1 tX2) = H2(X1)⊕H2(X2).

Proof. This is immediate from the definitions.
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3.2.2 Reparametrization

In Proposition 2.30, we identified spin structure automorphisms φ : (S1, σ) → (S1, σ) with (ψ, γ) ∈
Diffσ(S1) in such a way that

φ∗f = uσ(ψ, γ)f, f ∈ C∞(S1). (3.1)

Now given X = (Σ, L,Φ, β) ∈ R and

(ψ, γ) :=
∏

j∈π0(Γ)

(ψj , γj) ∈
∏

j∈π0(Γ)

Diff
σ(j)
+ (S1)

we define the action (ψ, γ) · β by
((ψ, γ) · β)j = βj ◦ φ−1

j ,

where φj is the spin structure automorphism of (S1, σ(j)) associated to (ψj , γj) as in (3.1).

Definition 3.10. Let X ∈ R and let (ψ, γ) ∈
∏
j∈π0(Γ) Diff

σ(j)
+ (S1). Then the reparametrization of X

by (ψ, γ) is given by
(ψ, γ) ·X := (Σ, L,Φ, (ψ, γ) · β).

Proposition 3.11. For X ∈ R and (ψ, γ) ∈
∏
j∈π0(Γ) Diff

σ(j)
+ (S1), we have

H2((ψ, γ) ·X) =

 ⊕
j∈π0(Γ)

uσ(j)(ψj , γj)

H2(X).

Proof. Let φj be the automorphism of (S1, σ(j)) corresponding to (ψj , γj) as in (3.1) and Proposition
2.30, and let φ =

∏
j∈π0(Γ) φj . From the definition of the Hardy space we have

H2((ψ, γ) ·X) = (φ−1)∗H2(X) = φ∗H
2(X).

But φ∗H
2(X) coincides with the desired expression for H2((ψ, γ) ·X) by construction.

3.2.3 Conjugation

To formulate the unitarity condition for a Segal CFT, we need a notion of complex conjugation on R.
The involution sends a spin Riemann surface (Σ, L,Φ) to the conjugate spin Riemann surface (Σ, L,Φ),
as defined in Section 2.2.3. It remains to define the involution β 7→ β on boundary trivializations
β :
∏
j∈π0(Γ)(S

1, σ(j))→ L|Γ.

Let L = S1 × C, and for σ ∈ {NS,R} let ρσ : L→ L be the bundle isomorphism characterized by

ρNS∗f(z) = zf(z), ρR∗f(z) = f(z). (3.2)

Caution 3.12. Fiberwise, the bundle maps ρσ give complex linear maps C 7→ C. The reader is cautioned
that our notation does not distinguish between elements of C and C (or, more generally, between elements
of V and V when V is a complex vector space). For example, we write the natural conjugate linear map
V → V by v 7→ v. The notation α 7→ α is used exclusively for complex conjugation, which in the
definition of ρσ we think of as a complex linear map C→ C.

Moreover, whenever we write a map V → V , we think of this as being the given map V → V ,
composed with the (transparant) real isomorphism V → V . For example, if we define a map V → V by
v 7→ iv, the complex structure is that of V , not V . If x : V → W , we use the same symbol x to refer to
the induced map V → W . Thankfully, once we establish Proposition 3.15 we will no longer need these
considerations.

Proposition 3.13. ρσ : (S1, σ)→ (S1, σ) is an isomorphism of spin structures.

Proof. To check that ρσ is an isomorphism of spin structures, we must verify that the following diagram
commutes

L⊗ L ρσ⊗ρσ−−−−−→ L⊗ L

φσ

y yφσ
(T ∗S1)C

c−−−−−→ (T ∗S1)C
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where the map c : (T ∗S1)C → (T ∗S1)C is complex conjugation with respect to the real subbundle T ∗S1.
Since dθ = dz

iz
is a real section of T ∗S1

C, we have

c∗f(z)
dz

iz
= f(z)

dz

iz
.

Note that as described in Caution 3.12, the complex multiplication f(z) dz
iz

takes place in T ∗S1
C and not

T ∗S1C.
Recall that if L = S1 ×C and f ⊗ g is a section of L⊗ L, then the action of the spin structures φNS

and φR on S1 are given by

φNS∗(f ⊗ g)(z) = z f(z)g(z)
dz

iz
, φR∗(f ⊗ g)(z) = f(z)g(z)

dz

iz
,

and using the convention of Caution 3.12 the action of (φσ)∗ on sections of the conjugate bundle is given
by the same formula.

We can check that

c∗(φNS)∗(ρ
⊗2
NS)∗(f ⊗ g)(z) = c∗zf(z)g(z)

dz

iz

= f(z)g(z)
dz

i

= φNS∗(f ⊗ g)(z).

The argument when σ = R is similar.

Definition 3.14. If X = (Σ, L,Φ, β) ∈ R, the conjugate X is given by X = (Σ, L,Φ, β), where

βj = (S1, σ(j))
ρσ(j)−→ (S1, σ(j))

βj−→ L|j .

Note that X 7→ X reverses the orientation of Σ, and so exchanges Γ0 and Γ1.
The relationship between the Hardy spaces H2(X) and H2(X) is given by the following proposition.

Proposition 3.15. Let X = (Σ, L,Φ, β) ∈ R. Then

H2(X) =
{
MNS
z f : f ∈ H2(X)

}
where MNS

z ∈ U(HΓ) is given by multiplication by the function z on copies of L2(S1) indexed by j ∈ π0(Γ)
with σ(j) = NS, and the identity on copies of L2(S1) indexed by j with σ(j) = R.

Proof. Let F ∈ O(Σ;L), and note that F is also a holomorphic section of the conjugate bundle L over
Σ. Then by construction

βj
∗
F = ρ∗σ(j)β

∗
jF = MNS

z β∗jF .

by the defintion of ρσ(j) in (3.2). The desired result now follows from the definition of the Hardy
space.

3.2.4 Sewing

Let X = (Σ, L,Φ, β) ∈ R, let j0 ∈ Γ0 and j1 ∈ Γ1, and assume that σ(j0) = σ(j1). Then

βj1 ◦ β
−1
j0 : L|j0 → L|j1

is an isomorphism of spin structures that is orientation reversing on the base space. Sewing L|j0 and Lj1

via this isomorphism yields a spin Riemann surface (Σ̂, L̂, Φ̂) by conformal welding (Theorem 2.34). We
set β̂j = βj for j ∈ π0(Γ̂) ⊂ π0(Γ), where Γ̂ is the boundary of Σ̂.

Definition 3.16. Let R∗ be the collection of triples (X, j0, j1), where X ∈ R and ji ∈ π0(Γi), such that
σ(j0) = σ(j1) and the sewn surface Σ̂ has no closed components. We call such a (X, j0, j1) a marked
spin Riemann surface with boundary parametrization.

Definition 3.17. Given (X, j0, j1) ∈ R∗ we define the sewn spin Riemann surface X̂ := (Σ̂, L̂, Φ̂, β̂) ∈ R.
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We now observe basic properties relating sewing, conjugation and the Hardy space.

Proposition 3.18. Let (X, j0, j1) ∈ R∗. The subspace of H2(X̂) consisting of (fj)j∈π0(Γ̂) ∈ H2(X̂)
which satisfy

• fj ∈ C∞(S1) for all j ∈ π0(Γ̂),

• there exists a fj0 = fj1 ∈ C∞(S1) such that (fj)j∈π0(Γ) ∈ H2(X).

is dense in H2(X̂).

Proof. This follows immediately from the definition of the Hardy space, and the characterization of
sections of L̂ given in Theorem 2.34.

Proposition 3.19. Let (X, j0, j1) ∈ R∗. Then (X, j1, j0) ∈ R∗ and H2(X̂) = H2(X̂).

Proof. Recall that by definition βj = βj ◦ ρσ(j) where ρσ : (S1, σ) → (S1, σ) is a fixed isomorphism of
spin circles constructed in Section 3.2.3. Since σ(j0) = σ(j1), we have

βj1 ◦ βj0
−1

= βj1 ◦ ρσ(j1) ◦ ρ
−1
σ(j0) ◦ β

−1
j0 = βj1 ◦ β

−1
j0 .

Let α = βj1 ◦ β−1
j0

. Recalling that a section of the holomorphic bundle L→ Σ is holomorphic if and

only if the corresponding section of L → Σ is, we see by Theorem 2.34 that holomorphic sections of L̂

and L̂ both correspond to holomorphic sections F of L such that F |j1 ◦ α = F |j0 . The desired result
immediately follows.

Proposition 3.18 gives the expected relation between H2(X̂) and H2(X), describing the compatibility
of the Hardy space construction with the sewing of spin Riemann surfaces. In Section 4 we will also require
the analogous compatibility relation between H2(X̂)⊥ and H2(X)⊥, where the orthogonal complements
are taken in HΓ̂ and HΓ, respectively. This precise statement of the compatibility relation is given below
as Lemma 3.20.

The compatibliity for orthogonal complements is not a consequence of Proposition 3.18. The proof
of Lemma 3.20 requires the formula for H2(X̂) given in Theorem 6.1 using the Cauchy transform.

Lemma 3.20. Let (X, j0, j1) ∈ R∗. The subspace of H2(X̂)⊥ ⊂ HΓ̂ consisting of (fj)j∈π0(Γ̂) ∈ H
2(X̂)⊥

which satisfy

• fj ∈ C∞(S1) for all j ∈ π0(Γ̂),

• there exist fj0 = −fj1 ∈ C∞(S1) such that (fj)j∈π0(Γ) ∈ H2(X)⊥.

is dense in H2(X̂).

Proof. By Theorem 6.1, we have
H2(X)⊥ = M±H

2(X), (3.3)

where M± is given by multiplication by 1 on copies of L2(S1) indexed by j ∈ π0(Γ1) and multiplication
by −1 on copies of L2(S1) indexed by j ∈ π0(Γ0). Combining this with Proposition 3.19, we have

H2(X̂)⊥ = M±H
2(X̂). (3.4)

Applying Proposition 3.18 to X completes the proof.

4 The free fermion Segal CFT

4.1 Definition of the free fermion Segal CFT

We continue to use the notation introduced at the beginning of Section 3.
The free fermion Segal CFT assigns to the circle a Hilbert space F , and to a spin Riemann surface

with boundary parametrization X = (Σ, L,Φ, β) ∈ R a one-dimensional space of trace class maps of
unordered tensor products

E(X) ⊂ B1

 ⊗
j∈π0(Γ0)

F ,
⊗

j∈π0(Γ1)

F

 .
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We will characterize the operators E(X) in terms of certain commutation relations derived from the
Hardy space H2(X), which we now describe.

Let H0 and H1 be Hilbert spaces, and let pi ∈ P(Hi). From this data we construct the Fock spaces
FHi,pi , which are super Hilbert spaces carrying representations πpi of CAR(Hi), as described in Section
2.1.

Definition 4.1. Given a closed subspace K ⊂ H1 ⊕H0, we say that a homogeneous bounded operator
T : FH0,p0

→ FH1,p1
satisfies the K commutation relations if

πp1(a(f1))T = (−1)p(T )Tπp0(a(f0)) (4.1)

for all (f1, f0) ∈ K, and

πp1(a(g1))∗T = −(−1)p(T )Tπp0(a(g0))∗ (4.2)

for all (g1, g0) ∈ K⊥. We have written elements of H1 ⊕H0 as (f1, f0) with respect to the given direct
sum decomposition. For non-homogeneous operators T , we extend the K commutation relations by
linearity, so that an operator satisfies the K commutation relations if and only if its even and odd parts
do.

We now fix notation for the free fermion Segal CFT.

Notation 4.2. Let H = L2(S1), and let p ∈ P(H) be the projection onto the classical Hardy space

pH = cl span{zn : n ≥ 0}.

Given X = (Σ, L,Φ, β) ∈ R, we set

Hi
Γ =

⊕
j∈π0(Γi)

H,

and HΓ = H1
Γ ⊕H0

Γ. Define pi ∈ P(Hi
Γ) by

pi =
⊕

j∈π0(Γi)

p. (4.3)

Let F iΓ = FHiΓ,pi .

Remark 4.3. There is a natural isomorphism between F iΓ and the unordered tensor product⊗
j∈π0(HiΓ)

FH,p

via Proposition 2.7. In light of this, we identify bounded maps of unordered tensor products⊗
j∈π0(H0

Γ)

FH,p →
⊗

j∈π0(H1
Γ)

FH,p

with elements of B(F0
Γ,F1

Γ).

Definition 4.4 (The free fermion). The free fermion Segal CFT assigns to a spin Riemann surface with
boundary parametrization X ∈ R the space of all trace class maps T ∈ B1(F0

Γ,F1
Γ) which satisfy the

H2(X) commutation relations. We denote this space by E(X).

The following theorem, one of the main theorems of the paper, summarizes the most important
properties of the free fermion Segal CFT.

Theorem 4.5. Let X = (Σ, L,Φ, β) ∈ R.

1. (Existence) E(X) is one-dimensional, and its elements are homogeneous and trace class.

2. (Non-degeneracy) If every connected component of Σ has an outgoing boundary component, then
non-zero elements of E(X) are injective. If every connected component of Σ has an incoming
boundary component, then non-zero elements of E(X) have dense image.

3. (Monoidal) If Y ∈ R, then E(X t Y ) = E(X)⊗̂E(Y ).
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4. (Sewing) If (X, j0, j1) ∈ R∗, then the partial supertrace trsj0j1 induces an isomorphism E(X) →
E(X̂).

5. (Reparametrization) If (ψj , γj) ∈
∏
j∈π0(Γ) Diff

σ(j)
+ (S1), then

E((ψj , γj) ·X) =

 ⊗
j∈π0(Γ1)

Uσ(j)(ψj , γj)

E(X)

 ⊗
j∈π0(Γ0)

Uσ(j)(ψj , γj)
∗


where Uσ : Diffσ+(S1)→ U(FH,p) are the spin representations (see Section 2.1.3).

6. (Unitarity) E(X) = E(X)∗, where E(X)∗ denotes taking the adjoint elementwise.

As a result of the monoidal and sewing properties, we obtain the usual relationship between gluing
of surfaces and composition of operators.

Corollary 4.6. Let X,Y ∈ R, and let S ⊂ π0(Γ0
Y ) and T ⊂ π0(Γ1

X). Suppose we have a bijection
s : S → T such that σ(s(j)) = σ(j) for all j ∈ S. Let Z be the spin Riemann surface obtained by sewing
boundary components of X and Y along s, and suppose that Z has no closed components. Then elements
of E(Z) are compositions of elements of E(Y ) and E(X). More explicitly, we have

E(Z) = {(y⊗̂1Tc)(x⊗̂1Sc) : x ∈ E(X), y ∈ E(Y )}

where the composition is that of morphisms of unordered tensor products. Here 1Tc is given by

1Tc :=
⊗

j∈π0(Γ1
X

)\T

1F

and similarly for 1Sc .

Proof. By Property (3) of Theorem 4.5, E(X t Y ) = E(X)⊗̂E(Y ). Repeatedly applying Property (4)
yields

E(Z) =

(∏
j∈S

trsj,s(j)

)
E(X)⊗̂E(Y ).

By Proposition 2.3 the iterated partial supertrace is given by taking the partial supertrace over
⊗

j∈S FH,p
(identified with the corresponding factors of the codomain via s). By Proposition 2.4, this partial
supertrace corresponds to composition of operators, which gives the desired formula for E(Z).

4.2 Verification of properties

In each subsection below, we will establish one of the numbered results from Theorem 4.5. The technique
we will use is to first establish a corresponding property for the Hardy space H2(X), and show that the
property of the CFT is a consequence. We continue to use the notation of Notation 4.2.

4.2.1 Existence/uniqueness

The main tool for establishing dimE(X) = 1 is the Segal equivalence criterion (Theorem 2.10), of which
the following is essentially a restatement.

Lemma 4.7. Let H0 and H1 be Hilbert spaces, and let pi ∈ P(Hi). Let K be a closed subspace of
H1 ⊕H0 and let qK be the corresponding projection. Then the following are equivalent.

1. (p1 ⊕ (1− p0))− qK is Hilbert-Schmidt.

2. There exists a non-zero Hilbert-Schmidt operator T ∈ B2(FH0,p0
,FH1,p1

) which satisfies the K
commutation relations (Definition 4.1).

If the above conditions are satisfied, then the operator T is homogeneous and any other Hilbert-Schmidt
operator satisfying the K commutation relations is a scalar multiple of T . If (p1⊕ (1− p0))− qK is trace
class, then so is T .
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Proof. First assume condition (1) holds. Let r0 := (1 − 2p0) ∈ U(H0) be reflection across 1 − p0,
and set r := 1 ⊕ r0 ∈ B(H1 ⊕ H0). Since [r0, p0] = 0, the modified projection q := rqKr also satisfies
condition (1). Thus by Theorem 2.10 there exists a non-zero Ω̃q ∈ FH⊕K,p1⊕(1−p0) satisfying the vacuum

equations for q (Definition 2.6). By Proposition 2.14, Ω̃q is homogeneous. Identifying this Fock space
with FH1,p1 ⊗FH0,1−p0

as in Proposition 2.7, these vacuum equations read

(πp1(a(f1))⊗̂1 + 1⊗̂π1−p0(a(f0)))Ω̃q = 0

for all (f1, f0) ∈ Im(q) and

(πp1(a(g1))∗⊗̂1 + 1⊗̂π1−p0(a(g0))∗)Ω̃q = 0

for all (g1, g0) ∈ Im(q)⊥.
Let Φ : FH0,(1−p0) → F∗H0,p0

be the unitary defined in Section 2.1.2. By Proposition 2.9, we have

(πp1(a(f1))⊗̂1− 1⊗̂πp0(a(r0f0))∗d)(1⊗ Φ)Ω̃q = 0 (4.4)

and
(πp1(a(g1))∗⊗̂1 + 1⊗̂πp0(a(r0g0))d)(1⊗ Φ)Ω̃q = 0 (4.5)

where d is the grading involution.
Let µ : FH1,p1

⊗F∗H0,p0
→ B2(FH0,p0

,FH1,p1
) be the natural isomorphism, and let Tq = µ((1⊗Φ)Ω̃q).

Since Ω̃q is homogeneous, so is Tq. Applying Proposition 2.1 to Equation (4.4) gives

πp1(a(f1))Tq = d Tqd πp(a(r0f
0)) = (−1)p(Tq)Tqπp(a(r0f

0)) (4.6)

for all (f1, f0) ∈ Im(q). By construction, (f1, f0) ∈ Im(q) if and only if (f1, r0f
0) ∈ K, and so Tq

satisfies the first half of the K commutation relations, equation (4.1).
Similarly, if (g1, g0) ∈ Im(q)⊥, then applying Proposition 2.1 to equation (4.5) yields

πp1(a(g1))∗Tq = −(−1)p(Tq)Tqπp0(a(r0g
0))∗ (4.7)

whenever (g1, g0) ∈ Im(q)⊥. Hence Tq satisfies the second half of the K commutation relations, equation
(4.2). This completes the proof that (1) implies (2).

In fact, the proof shows that the grading preserving map FH1,p1
⊗FH0,1−p0

→ B2(H0, H1) given by
ξ 7→ µ((1⊗̂Φ)ξ) induces an isomorphism between the space of vectors satisfying the q commutation and
the space of Hilbert-Schmidt maps satisfying the K commutation relations. By Theorem 2.10, the space
of vectors satisfying the q commutation relations has dimension zero or one, with dimension one exactly
when (1) is satisfied. Thus (1) holds if and only if (2) holds.

It remains to show that if (p1 ⊕ (1 − p0)) − q is trace class, then Tq = µ((1 ⊗ Φ)Ω̃q) is trace class.
From the explicit formula for Ω̃q in, e.g., [Tha92, Thm. 10.6] or [Was98, §3], there exist unit vectors
fk, gk, hj ∈ H1 ⊕H0 such that

Ω̃q = y

∞∏
k=1

(1 + λkxk)(Ω⊗ Ω), (4.8)

where

xk = πp1⊕(1−p0)(a(fk)a(gk)∗), y = πp1⊕(1−p0)(a(h1) · · · a(hn)a(hn+1)∗ · · · a(hm)∗)

and λk ∈ R≥0 are distinct eigenvalues of |(p1 ⊕ (1− p0))− q|.
If f = (f1, f0) ∈ H1⊕H0, then πp1⊕(1−p0)(a(f)) = πp1(a(f1))⊗̂1+1⊗̂π1−p0(a(f0)). Thus if ‖f‖ ≤ 1

and ξ ∈ FH1,p1
⊗FH0,1−p0

is a linear combination of at most C simple tensors, each with norm at most
α, then πp1⊕(1−p0)(a(f))ξ is a linear combination of at most 2C simple tensors, each with norm at most
α.

Hence, expanding the product (4.8) for Ω̃q, we can write Ω̃q ∈ FH1,p1
⊗FH0,1−p0

as a sum of vectors

ξS indexed by finite subsets S ⊂ Z≥1, such that ξS is a sum of at most 22|S|+m simple tensors, each with
norm at most

∑
k∈S λk.

If ξ ∈ FH1,p1
⊗FH0,1−p0

is a simple tensor, then so is (1⊗̂Φ)ξ, and
∥∥µ(1⊗̂Φ)ξ

∥∥
1

= ‖ξ‖. Hence

‖Tq‖1 =
∥∥∥µ(1⊗̂Φ)Ω̃q

∥∥∥
1
≤
∑
S

‖ξS‖ ≤ 2m
∑
S

4|S|
∑
k∈S

λk = 2m
∞∏
k=1

(1 + 4λk).

The last term is finite because
∑
λk ≤ ‖p1 ⊕ (1− p0)− q‖1, and so Tq is trace class.
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Establishing that condition (1) of Lemma 4.7 holds for the Hardy spaces H2(X) ⊂ HΓ is one of the
main results of Section 6, which allows us to establish the existence property for E(X).

Theorem 4.8. If X ∈ R, then dimE(X) = 1 and the elements of E(X) are homogeneous and trace
class.

Proof. By Theorem 6.2, condition (1) of Lemma 4.7 holds for Hi = Hi
Γ, with pi as in (4.3), and K =

H2(X). Moreover, from the same theorem, (p1⊕ 1− p0)− qK is trace class. Thus the conclusion follows
immediately from Lemma 4.7.

4.2.2 Non-degeneracy

Before establishing the non-degeneracy property of the CFT (Theorem 4.5 (2)), we need the corresponding
property of the Hardy space.

Proposition 4.9. Let X ∈ R, and let S ⊂ π0(Γ). Let HΓ =
⊕

j∈π0(Γ) L
2(S1), and let pS be the

projection of HΓ onto the copies of L2(S1) indexed by S. If each connected component of Σ has a
boundary component not contained in S, then pSH

2(X) and pSH
2(X)⊥ are dense in

⊕
S L

2(S1).

Proof. In light of Proposition 3.9, we may assume without loss of generality that Σ is connected. By
Corollary 2.35, we may assume that (Σ, L,Φ) is embedded in an open spin Riemann surface (Σ̃, L̃, Φ̃).
By Theorem 2.36, we may assume that L is the trivial C-bundle. By Bishop’s approximation theorem
[Bis58, Cor. 2], every continuous function on

⊔
j∈S j can be uniformly approximated by holomorphic

functions on Σ̃, and thus pSH
2(X) is dense in

⊕
S L

2(S1).
By Theorem 6.1, H2(X)⊥ = M±H

2(X), where M± is multiplication by 1 and −1 on copies of L2(S1)
indexed by outgoing and incoming boundary componenents, respectively. Thus the density of pSH

2(X)⊥

follows from that of pSH
2(X).

And now non-degeneracy of the CFT follows from Proposition 4.9.

Proposition 4.10. Let X = (Σ, L,Φ, β) ∈ R.

1. If every connected component of Σ has an outgoing boundary component, then non-zero elements
of E(X) are injective.

2. If every connected component of Σ has an incoming boundary component, then non-zero elements
of E(X) have dense image.

Proof. Assume first that every connected componenet of Σ has an outgoing boundary component. Let
T ∈ E(X). That is, T ∈ B1(FH0

Γ,p0
,FH1

Γ,p1
) and satisfies the commutation relations for H2(X) ⊂

H1
Γ ⊕H0

Γ. We will show that kerT is invariant under CAR(H0
Γ), and since CAR(H0

Γ) acts irreducibly on
FH0

Γ,p0
this will imply the desired result.

Applying Proposition 4.9 with S = π0(Γ0), we get that the projection of H2(X) onto H0
Γ has dense

image. Call this subspace K. By definition, for every f0 ∈ K, there exists an f1 ∈ H1
Γ such that

(f1, f0) ∈ H2(X).
Now let ξ ∈ kerT . Since T satisfies the H2(X) commutation relations, we have

Ta(f0)ξ = (−1)p(T )a(f1)Tξ = 0

for every f0 ∈ K. Since K is dense in H0
Γ, kerT is invariant under a(f) for all f ∈ H0

Γ. A similar
argument, using the projection of H2(X)⊥ onto incoming boundary componenets, shows that kerT is
invariant under a(f)∗ for all f ∈ H0

Γ, which completes the proof of item (1).
The proof of item (2) is similar, or alternatively (2) follows from (1) and the unitarity property

Proposition 4.16.

4.2.3 Monoidal property

Proposition 4.11. If X,Y ∈ R, then E(X t Y ) = E(X)⊗̂E(Y ).

Proof. By Proposition 3.9, we have H2(X t Y ) = H2(X)⊕H2(Y ). It is now a simple exercise to check
that if T1 satisfies the L1 commutation relations and T2 satisfies the L2 commutation relations, then
T1⊗̂T2 satisfies the L1⊕L2 commutation relations. This gives us an inclusion E(X)⊗̂E(Y ) ⊆ E(X tY ),
but since both spaces are 1-dimensional by Theorem 4.8, this is an equality.
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4.2.4 Reparametrization

We saw in Proposition 3.11 that reparametrizing the boundary components of X ∈ R acted on H2(X) by
unitary operators coming from the spin representations uσ of Diffσ+(S1) (see Section 2.1.3). The following
proposition describes the corresponding action on maps satisfying the H2(X) commutation relations.

Proposition 4.12. Let H0 and H1 be Hilbert spaces, and let K ⊂ H1 ⊕H0 be a closed subspace. Let
pi ∈ P(Hi) and let ui ∈ Ures(Hi, pi). Let ui 7→ Ui denote the basic representation (see Section 2.1.2).
If T ∈ B(FH0,p0

,FH1,p1
) satisfies the K commutation relations, then dp(U1)+p(U2)U1TU

∗
0 satisfies the

(u1 ⊕ u0)K commutation relations.

Proof. Let (u1f
1, u0f

0) ∈ (u1 ⊕ u0)K. Then we have

πp1(a(u1f1))dp(U1)+p(U2)U1TU
∗
0 = (−1)p(U1)+p(U2)dp(U1)+p(U2)U1πp1(a(f1))TU∗0

= (−1)p(U1)+p(U2)+p(T )dp(U1)+p(U2)U1TU
∗
0 πp0(a(u0f0)).

Thus dp(U1)+p(U2)U1TU
∗
0 satisfies the first half of the (u1 ⊕ u0)K commutation relations. The relations

for (u1g
1, u0g

0) ∈ (u1 ⊕ u0)K⊥ are similar.

In our case, the spaces Hi will be given as a direct sum

Hi =
⊕

j∈π0(Γi)

H.

Thus we also need to know how the basic representation on FH1 relates to the basic representation on⊗
j FH under the isomorphism of Proposition 2.7.

Proposition 4.13. Let H1 and H2 be Hilbert spaces, with pi ∈ P(Hi). Suppose ui ∈ Ures(Hi, pi), and
Ui ∈ U(FHi,pi) is the image of ui under the basic representation. Let U ∈ Ures(H1 ⊕ H2, p1 ⊕ p2) be
the image of u1 ⊕ u2 under the basic representation. Then, up to a scalar multiple, the isomorphism
FH1⊕H2,p1⊕p2

∼= FH1,p1 ⊗FH2,p2 identifies U with U1d
p(U2)⊗̂U2d

p(U1).

Proof. It suffices to check that U1d
p(U2)⊗̂U2d

p(U1) implements the Bogoliubov automorphism correspond-
ing to u1 ⊕ u2 in the representation of CAR(H1 ⊕H2) on FH1 ⊗ FH2 (given by Equation (2.12)). This
computation is straightforward.

We can now prove the reparametrization property for the CFT.

Proposition 4.14. If (ψj , γj) ∈
∏
j∈π0(Γ) Diff

σ(j)
+ (S1), then

E((ψj , γj) ·X) =

 ⊗
j∈π0(Γ1)

Uσ(j)(ψj , γj)

E(X)

 ⊗
j∈π0(Γ0)

Uσ(j)(ψj , γj)
∗


Proof. By Proposition 3.11,

H2((ψj , γj) ·X) =

 ⊕
j∈π0(Γ)

uσ(j)(ψj , γj)

H2(X).

Let Ui be the image of
⊕

j∈π0(Γi) uσ(j)(ψj , γj) under the basic representation on F iΓ. By Proposition 4.12

and the fact that the Ui are even (Corollary 2.17), we have E((ψj , γj) ·X) = U1E(X)U∗0 . The desired
result now follows from Proposition 4.13.

4.2.5 Unitarity

As with the other properties of the CFT, to establish unitarity we first need to understand what happens
at the level of Hardy spaces.

Proposition 4.15. Let K ⊂ H1 ⊕ H0 be a closed subspace, and let pi ∈ P(Hi). Then T : FH0,p0
→

FH1,p1
satisfies the K commutation relations if and only if T ∗ satisfies the commutation relations for

M±K
⊥ ⊂ H0 ⊕H1, where M± = 1H0 ⊕−1H1 .
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Proof. It suffices to prove that T ∗ satisfies the M±K
⊥ commutation relations, since the converse is

equivalent. The statement for T ∗ follows immediately from taking adjoints in the definition of the K
commutation relations (Definition 4.1).

Unitarity now follows as an easy consequence of the formula for H2(X)⊥ calculated in Section 6.

Proposition 4.16. E(X) = E(X)∗

Proof. By Theorem 6.1, we have H2(X)⊥ = M±H
2(X). Thus by Proposition 4.15, adjoints of elements

of E(X) lie in E(X), and vice versa.

4.2.6 Sewing

Suppose (X, j0, j1) ∈ R∗, and let X̂ be the result of sewing X along j0 and j1 (see Section 3.2.4). Recall
that by the definition of R∗, X̂ has no closed components.

The partial supertrace trsj0j1 gives a map

trsj0j1 : B1(F0
Γ,F1

Γ)→ B1(F0
Γ̂,F

1
Γ̂),

where Γ̂ = ∂Σ̂.

Theorem 4.17. Let (X, j0, j1) ∈ R∗ and let X̂ ∈ R be the result of sewing j0 to j1. Then trsj0j1 induces

an isomorphism E(X)→ E(X̂).

Proof. We first show that trsj0j1(E(X)) ⊂ E(X̂). That is, for T ∈ E(X) we show that trsj0j1(T ) satisfies

the H2(X̂) commutation relations.
Fix f = (f1, f0) ∈ H2(X̂) ⊆ H1

Γ̂
⊕H0

Γ̂
and g = (g1, g0) ∈ H2(X̂)⊥. We write

(f1, f0) = (fj) ∈
⊕

j∈π0(Γ̂)

L2(S1),

and similarly for (g1, g0).
We must show that

a(f1) trsj0j1(T ) = (−1)
p(trs

j0j1
(T ))

trsj0j1(T )a(f0)

and that
a(g1)∗ trsj0j1(T ) = −(−1)

p(trs
j0j1

(T ))
trsj0j1(T )a(g0)∗.

It suffices to verify these identities for (f1, f0) lying in a dense subspace of H2(X̂), and for (g1, g0) lying
in a dense subspace of H2(X̂)⊥. Hence by Proposition 3.18 we may assume without loss of generality
that there exists a h = (h0, h1) ∈ H2(X) such that hj = fj for j 6= ji, and hj1 = hj0 .

To reduce notational complexity, we will simply write a(f) instead of πpi(a(f)) for the action of
CAR(Hi

Γ) on F iΓ.
We embed Hi

Γ̂
as a subspace of Hi

Γ by the natural inclusion coming from π0(Γ̂) ⊂ π0(Γ). We then

have hi = f i + hji , with respect to the decomposition Hi
Γ = Hi

Γ̂
⊕ L2(S1). By Proposition 2.7, this

implies that
a(hi) = a(f i)⊗̂1ji + 1π0(Γi)\ji⊗̂a(hji).

Using the partial supertrace properties from Proposition 2.2, we now have have

a(f1) trsj0j1(T ) = trsj0j1
(
(a(f1)⊗̂1j1)T

)
= trsj0j1

((
a(h1)− 1π0(Γ1)\j1⊗̂a(hj1)

)
T
)

= (−1)p(T ) trsj0j1
(
T
(
a(h0)− 1π0(Γ0)\j0⊗̂a(hj1)

))
= (−1)p(T ) trsj0j1

(
T
(
a(f0)⊗̂1j0

))
= (−1)p(T ) trsj0j1(T )a(f0).

Hence trsj0j1(T ) satisfies the first H2(X̂) commutation relations (4.1).
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The same proof establishes the corresponding relations for (g1, g0) ∈ H2(X̂)⊥. By Lemma 3.20, we
may assume without loss of generality that there exists (k1, k0) ∈ H2(X)⊥ such that kj = gj for j 6= ji,
and kj1 = −kj0 . The same computation as above now yields

a(g1)∗ trsj0j1(T ) = −(−1)p(T ) trsj0j1(T )a(g0)∗.

We conclude that trsj0j1(T ) ∈ E(X̂).

To complete the proof, we must show that trsj0j1 : E(X) → E(X̂) is an isomorphism. Since both
spaces are one-dimensional, it suffices to prove that if trsj0j1(T ) = 0 then T = 0.

Assume first that j0 and j1 lie on the same connected component of Σ, and suppose that trsj0j1(T ) = 0.
By the monoidal property, we may assume without loss of generality that Σ is connected.
Suppose that (h1, h0) ∈ H2(X), write hi = f i + hiji with respect to the decomposition Hi

Γ = Hi
Γ̂
⊕

L2(S1). Calculating as above, we have

0 =a(f1) trsj0j1(T )

= trsj0j1
(
(a(f1)⊗̂1j1)T

)
= trsj0j1

(
(a(h1)− (1π0(Γ̂1)⊗̂a(h1

j1))T
)

=(−1)p(T ) trsj0j1
(
Ta(h0)

)
− trsj0j1

(
(1π0(Γ̂1)⊗̂a(h1

j1))T
)

=(−1)p(T ) trsj0j1
(
T (1⊗̂a(h0

j0))
)

+ (−1)p(T ) trsj0j1(T )a(f0)−

− trsj0j1
(

(1π0(Γ̂1)⊗̂a(h1
j1))T

)
=(−1)p(T ) trsj0j1

(
T (1π0(Γ̂0)⊗̂a(h0

j0))
)
− trsj0j1

(
(1π0(Γ̂1)⊗̂a(h1

j1))T
)

(4.9)

Since (X, j0, j1) ∈ R∗, the connected component of Σ containing j0 and j1 has at least one more
boundary component, and so the projection of H2(X) onto

⊕
j∈{j0,j1} L

2(S1) has dense image by Propo-

sition 4.9. Thus given any f ∈ L2(S1) we may take a sequence (h1,n, h0,n) ∈ H2(X) with h0,n

j0
→ 0 and

h1,n

j1
→ f . Hence

T (1π0(Γ̂0)⊗̂a(h0,n

j0
))→ 0, and (1π0(Γ̂1)⊗̂a(h1

j1))T → (1π0(Γ̂1)⊗̂a(f))T (4.10)

in the trace norm. We can apply the result of the calculation (4.9) to (h1,n, h0,n), and by (4.10) and the
continuity of the partial trace, we have

trsj0j1
(

(1π0(Γ̂1)⊗̂a(f))T
)

= 0.

Applying this argument repeatedly using elements of H2(X) and H2(X)⊥ yields

trsj0j1
(

(1π0(Γ̂1)⊗̂x)T
)

= 0 (4.11)

when x is an arbitrary word in a(f)’s and a(g)∗’s.
Now for arbitrary y ∈ B(F1

Γ̂
,F0

Γ̂
), by Proposition 2.2 we have

0 = y trsj0j1
(

(1π0(Γ̂1)⊗̂x)T
)

= trsj0j1
(
(y⊗̂x)T

)
. (4.12)

Let A be the the linear span of operators y⊗̂x with x and y as above. Since CAR(L2(S1)) acts
irreducibly on FL2(S1),p, A is dense in B(F1

Γ,F0
Γ) in the strong operator topology. A standard argument

using the Kaplansky density theorem shows that every element of B(F1
Γ,F0

Γ) is a limit of a sequence in
A.

If Sn is a sequence of operators on a Hilbert space converging strongly, and T is trace class, then
SnT → ST in the trace norm. Hence by the continuity of the partial supertrace, we have trsj0j1(ST ) = 0

for all S ∈ B(F1
Γ,F0

Γ). In particular,

tr(T ∗T ) = trsF0
Γ̂

(trsj0j1(dF0
Γ
T ∗T )) = 0.
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It follows that T = 0, which completes the proof of injectivity in the case where j1 and j0 lie on the
same connected component of Σ.

Now consider when X = X0tX1, with ji a boundary component of the surface underlying Xi. Since
(X, j1, j0) ∈ R∗, either X0 or X1 has a boundary component which is neither j1 nor j0. If it is X1 that
has the additional boundary component, then we may use the same argument as above, and may even
take h0,n

j0
= 0 for all n. On the other hand, if X0 has the additional boundary component, then we must

take h1,n

j1
= 0, and choose h1,n

j1
→ f . The rest of the argument is the same.

5 From Segal CFT to vertex operators

The main result of this section is Theorem 5.4, in which we identify the value of the CFT on standard
pairs of pants (Pw,q1,q2 , NS) with fields from the free fermion vertex operator algebra. We fix the notation
H = L2(S1), p ∈ P(H) is the projection onto the classical Hardy space H2(D), and F = FH,p. We will
drop the notation πp for the representation of CAR(H) on F , and simply write a(f).

5.1 Warmup: Disks and annuli

Let (D, NS) be the standard spin disk with its standard parametrization, descibed in Example 3.2, and
for q ∈ D and σ ∈ {NS,R} let (Aq, σ) be the standard spin annuli described in Example 3.3.

Proposition 5.1. E(D, NS) = CΩp ∈ F

Proof. The boundary parametrization of (D, NS) is the identity, so H2(D, NS) is just the classical
Hardy space H2(D). Hence the H2(D, NS) commutation relations coincide with the p vacuum equations
(Definition 2.6) which characterize Ωp up to scale .

Proposition 5.2. E(Aq, σ) = CqL
σ
0 , where both sides of the equation are understood as depending on a

fixed choice of q1/2 when σ = NS.

Proof. Since qL
σ
0 is trace class (see [Kac98, §5.1]), it suffices in both cases to show that qL

σ
0 satisfies the

H2(Aq, σ) commutation relations. We first consider σ = NS. Recall that the boundary parametrizations
are given by

βj(z, α) =

{
(z, α) j = S1

(qz, q−1/2α) j = rS1

and thus

H2(Aq, NS) = cl span{(zn, qn+1/2zn) : n ∈ Z} ⊂ H1 ⊕H0 := H ⊕H

and
H2(Aq, NS)⊥ = cl span{(zn,−q−(n+1/2)zn) : n ∈ Z}.

Hence an operator T ∈ B(F) satisfies the H2(Aq, NS) commutation relations if and only if

a(zn)T = qn+1/2Ta(zn)

and
a(zn)∗T = q−(n+1/2)Ta(zn)∗

for all n ∈ Z. These equations are satisfied by qL
NS
0 by (2.14) and (2.15).

Similarly, one has H2(Aq, R) = cl span{(qnzn, zn) : n ∈ Z}, which corresponds to the commutation
relations

a(zn)T = qnTa(zn)

and
a(zn)∗T = q−nTa(zn)∗

for all n ∈ Z. The operator qL
R
0 satisfies these equations by (2.14) and (2.15).
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5.2 Vertex operators

Recall (Example 3.4) that the the moduli space of standard Neveu-Schwarz spin pairs of pants with
standard boundary parametrizations is

MNS = {(w, q1, q1/2
1 , q2, q

1/2
2 ) ∈ (C×)5 : 0 < |q1|+ |q2| < |w| < 1− |q1|}.

Coresponding to a point x ∈MNS , we have a spin pair of pants Px, given as a manifold by

D \ ((q1D̊ + w) ∪ q2D̊)

with spin structure inherited from D. The boundary trivializations are

βj(z, α) =


(z, α) j = S1

(q1z + w, q
−1/2
1 α) j = q1S

1 + w

(q2z, q
−1/2
2 α) j = q2S

1

We will now show that E(Px) can be described by the free fermion vertex operator algebra. We will
not give an introduction to vertex operators (see, e.g., [Kac98, Was11]). Instead, we will introduce just
the necessary objects and properties, with references to the literature. The free fermion vertex operator
algebra is introduced in [Kac98, §5.1] under the name “charged free fermions.”

Let F0 ⊂ F be the dense subspace spanned algebraically by vectors

a(znp)∗ · · · a(zn1)∗a(zm1) · · · a(zmq )Ω.

Let End(F0) denote the space of linear (not necessarily bounded) linear endomorphisms of F0, and let
End(F0)[[z±1]] denote the space of formal distributions with coefficients in End(F0). That is, an element
of End(F0)[[z±1]] is a formal sum ∑

n∈Z

ξnz
−n−1

where ξn ∈ End(F0) and z is a formal variable.
The vertex operator algebra structure on F0 gives a state-field correspondence

Y : F0 → End(F0)[[z±1]].

This is commonly written

Y (ξ, z) =
∑
n∈Z

ξnz
−n−1

for ξ ∈ F0. The endomorphisms ξn are called the modes of ξ (or of Y (ξ, z)).
The vacuum state is assigned to the identity field. That is, Y (Ω, z) = 1 or more formally

Ωn = δn+1,01.

The generating fields are those assigned to the states a(z0)∗Ω and a(z−1)Ω, where we have written z0

for the constant function z 7→ 1. The generating fields are given by

Y (a(z−1)Ω, z) =
∑
n∈Z

a(zn)z−n−1. (5.1)

and
Y (a(z0)∗Ω, z) =

∑
n∈Z

a(z−n−1)∗z−n−1 (5.2)

The modes of the generating fields extend to bounded operators on F , which is not a general feature
of modes of vertex operators.

The modes of other fields can be reconstructed from the Borcherds product formula (given as [Kac98,
Eqn. 4.8.3] with m = 0, and in [Was11, §5]):
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Theorem 5.3. Suppose ξ, η ∈ F0, and write Y (ξ, z) =
∑
n∈Z ξnz

−n−1 and Y (η, z) =
∑
n∈Z ηnz

−n−1

for the fields in the free fermion vertex operator algebra. Then the modes of Y (ηnξ, z) are given by the
following formula:

(ηnξ)m =
∑
j≥0

(−1)j
(
n

j

)(
ηn−jξm+j − (−1)p(η)p(ξ)+nξm+n−jηj

)
. (5.3)

for homogeneous ξ and η, and extended linearly in general.

The modes of any field will satisfy ξnη = 0 for n sufficiently large (depending on ξ and η), so the sum
on the right-hand side of (5.3) is finite when applied to any fixed vector in F0.

With this description of the vertex operators in hand, we can prove the main theorem of the section.

Theorem 5.4. Let x = (w, q1, q
1/2
1 , q2, q

1/2
2 ) ∈ MNS. For every ξ ∈ F0 and n ∈ Z, the map ξnq

LNS0
2

extends to a bounded operator on F . E(Px) is spanned by the map T : F ⊗F → F given on F0 ⊗F0 by

T (ξ ⊗ η) = Y (q
LNS0
1 ξ, w)q

LNS0
2 η =

∑
n∈Z

(q
LNS0
1 ξ)nq

LNS0
2 w−n−1η. (5.4)

We have ordered the input cicles so that the one centered at w comes first.
For every fixed ξ ∈ F0, the sum in (5.4) converges absolutely in operator norm as a function of η,

uniformly on compact subsets of MNS.

Proof. To simplify notation, we will write L0 instead of LNS0 throughout the proof. It suffices to prove
the theorem for ξ of the form

ξ = a(znp) · · · a(zn1)a(zm1)∗ · · · a(zmq )∗Ω, (5.5)

where ni ∈ Z<0 and mi ∈ Z≥0. Since qL0
1 is invertible as a map F0 → F0, we will instead prove

T (q−L0
1 ξ ⊗ η) = Y (ξ, w)qL0

2 η =
∑
n∈Z

ξnq
L0
2 w−n−1η (5.6)

for some T ∈ E(Px), all ξ as in (5.5), and all η ∈ F0, with the stated convergence properties.
Let T be a nonzero element of E(Px). By Corollary 4.6 and the calculation of E(D) and E(Aq2)

(Propositions 5.1 and 5.2), the map η 7→ T (Ω⊗ η) lies in CqL0
2 . Rescale T so that

T (Ω⊗ η) = qL0
2 η. (5.7)

In particular, note that T (Ω⊗ Ω) = Ω. Since T is homogeneous by Theorem 4.8, we can conclude that
T is even.

We now establish (5.6) by induction on the length of the word in a(zn) and a(zm)∗’s in (5.5).
Since Ωn = δn+1,01, equation (5.6) holds when ξ = Ω by (5.7). The convergence properties are trivial,

as the sum only has one term.
Now assume that (5.6) holds for ξ, with the sum converging absolutely in operator norm as a function

of η, uniformly on compact subsets of MNS . We will show that the same holds with a(zn)ξ and
a(z−n−1)∗ξ in place of ξ, for all n ∈ Z.

We first consider a(zn)ξ. From the holomorphic function (z − w)n ∈ O(Px), we have

((z − w)n, q
n+ 1

2
1 zn, q

1
2
2 (q2z − w)n) ∈ H2(Px, NS). (5.8)

Here we have ordered the boundary circles with S1 first, q1S
1 + w second, and q2S

1 third. By the
definition of E(Px, NS), T satisfies the commutation relation

a((z − w)n)T = T (a(q
n+ 1

2
1 zn)⊗̂1) + T (1⊗̂a(q

1/2
2 (q2z − w)n)).

Hence

T (q−L0
1 a(zn)ξ ⊗ η) = T (a(q

n+1/2
1 zn)q−L0

1 ξ ⊗ η)

= a((z − w)n)T (q−L0
1 ξ ⊗ η)− T (dF ⊗ a(q

1
2
2 (q2z − w)n))(q−L0

1 ξ ⊗ η)

= a((z − w)n)T (q−L0
1 ξ ⊗ η)− (−1)p(ξ)T (q−L0

1 ξ ⊗ a(q
1
2
2 (q2z − w)n)η). (5.9)
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We treat the two summands in (5.9) separately. Since (z − w)n appears as a function of z ∈ S1, we
can expand it as a power series converging uniformly on compact subsets of |w| < 1. Combining this
with the inductive hypothesis for ξ, we compute

a((z − w)n)T (q1
−L0ξ ⊗ η) =

∑
j≥0

(−1)j
(
n

j

)
a(zn−j)T (q−L0

1 ξ ⊗ η)wj

=
∑
j≥0

∑
m∈Z

(−1)j
(
n

j

)
a(zn−j)ξmq

L0
2 wj−m−1η (5.10)

: =
∑
j≥0

∑
m∈Z

Sj,mη.

Observe that every Sj,m is a bounded operator, and since
∥∥a(zn−j)

∥∥ =
∥∥zn−j∥∥

L2(S1)
= 1, we have

∑
j≥0

∑
m∈Z

‖Sj,m‖ ≤

∑
j≥0

(
n

j

)
|w|j

(∑
m∈Z

∥∥∥ξmqL0
2

∥∥∥ |w|−m−1

)
.

The sum indexed by j on the right-hand side converges uniformly on compact subsets of |w| < 1. The
sum indexed by m converges by the inductive hypothesis, uniform on compact subsets of MNS . Hence∑
j≥0

∑
m∈Z Sj,m is absolutely summable, uniformly on compact subsets of MNS .

We now reindex the sum (5.10) in m and exhange the order of summation to get

∑
j≥0

∑
m∈Z

Sj,mη =
∑
m∈Z

∑
j≥0

(−1)j
(
n

j

)
a(zn−j)ξm+jq

L0
2

w−m−1η

: =
∑
m∈Z

S̃mw
−m−1η, (5.11)

where S̃m is a bounded operator and the sum (5.11) converges uniformly absolutely in operator norm on
compact subsets of MNS .

We now treat the second summand of (5.9) similarly to how we treated the first, expanding (q2z−w)n

as a power series in q2/w. We have

T (q1
−L0ξ ⊗ a(q

1
2
2 (q2z − w)n)η) =

∑
j≥0

(−1)j
(
n

j

)
(−1)nT (q1

−L0ξ ⊗ a(zj)η)q2
j+ 1

2wn−j

=
∑
j≥0

∑
m∈Z

(−1)j
(
n

j

)
(−1)nξmq2

L0a(zj)q2
j+ 1

2wn−m−j−1η (5.12)

: =
∑
j≥0

∑
m∈Z

Uj,mη.

The operators Uj,m are bounded, with

∑
j≥0

∑
m∈Z

‖Uj,m‖ ≤ |q2|
1
2 |w|n

∑
j≥0

(
n

j

)∣∣∣q2
w

∣∣∣j
(∑

m∈Z

∥∥∥ξmqL0
2

∥∥∥ |w|−m−1

)
. (5.13)

By the inductive hypothesis, the right-hand side of (5.13) converges uniformly on compact subsets of
MNS . Hence the same summability holds for ‖Uj,m‖. We now rewrite Uj,m using the commutation
relation (2.14) for a(zj) and q2

L0 , along with reindexing and interchanging the sums, to get
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∑
j≥0

∑
m∈Z

Uj,mη =
∑
j≥0

∑
m∈Z

(−1)j
(
n

j

)
(−1)nξma(zj)∗qL0

2 wn−j−m−1η

=
∑
m∈Z

∑
j≥0

(−1)j
(
n

j

)
(−1)nξm+n−ja(zj)qL0

2

w−m−1η (5.14)

: =
∑
m∈Z

Ũmw
−m−1η. (5.15)

Observe that each Ũm is a bounded operator, and the sum (5.15) converges uniformly absolutely in
operator norm (as a function of η) on compact subsets of MNS .

From the formula for the generating field (5.2), we see that (a(z−1)Ω)n = a(zn). Hence the Borcherds
product formula (5.3) asserts that

(a(zn)ξ)m =
∑
j≥0

(−1)j
(
n

j

)(
a(zn−j)ξm+j − (−1)p(ξ)+nξm+n−ja(zj)

)
. (5.16)

Comparing (5.16) with the definitions of S̃m (5.11) and Ũm (5.14) yields

S̃m + (−1)p(ξ)Ũm = (a(zn)ξ)mq2
L0 . (5.17)

Plugging the results of the computations (5.10) through (5.14) into (5.9), and then applying (5.17), yields

T (q1
−L0a(zn)ξ ⊗ η) =

∑
m∈Z

(S̃m + (−1)p(ξ)Ũm)w−m−1η

=
∑
m∈Z

(a(zn)ξ)mq2
L0w−m−1η, (5.18)

which establishes (5.6) for a(zn)ξ. The required convergence property of the sum (5.18) follows from the
corresponding convergence properties of

∑
S̃mw

−m−1 and
∑
Ũmw

−m−1 that we previously established.
To complete the proof, we must establish (5.6) with a(z−n−1)∗ξ in place of ξ. This is nearly identical to

the computation above for a(zn)ξ, so we will only sketch the argument. By Theorem 6.1, H2(Px, NS)⊥ =
M±zH2(Px, NS), where M±z is multiplication by the function z on outgoing boundary components and
multiplication by −z on incoming boundary components.

We saw in (5.8) that

((z − w)n, q
n+ 1

2
1 zn, q

1
2
2 (q2z − w)n) ∈ H2(Px, NS),

and so
(z−1(z−1 − w)n, −q1n+ 1

2 z−n−1, q2
1
2 z−1(q2z

−1 − w)n) ∈ H2(Px, NS)⊥.

By the definition of E(Px, NS), we have

a((z−1 − w)n)∗T = T (a(q1
n+ 1

2 z−n−1)∗⊗̂1) + T (1⊗̂a(q2
1
2 z−1(q2z

−1 − w)n)∗)

and thus

T (q1
−L0a(z−n−1)∗ξ⊗η) = a((z−1−w)n)∗T (q1

−L0ξ⊗η)−(−1)p(ξ)T (q1
−L0ξ⊗a(q2

1
2 z−1(q2z

−1−w)n)∗η).

We can now establish the desired formula for the left-hand side by expanding (z−1 −w)n in the domain
|w| < 1, expanding (q2z

−1 − w)n in the domain |q2| < |w|, and applying the inductive hypothesis, just
as before.
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6 The Cauchy transform for Riemann surfaces

6.1 Main theorems

When establishing the properties of the free fermion Segal CFT in Section 4.2, we deferred the proof of
two key analytic properties of the Hardy space H2(X). In order to prove the sewing property, we needed
a formula for H2(X)⊥:

Theorem 6.1. Let X = (Σ, L,Φ, β) ∈ R be a spin Riemann surface with boundary parametrization. Let
HΓ =

⊕
j∈π0(Γ) L

2(S1) and let H2(X) ⊂ HΓ be the Hardy space. Then

H2(X)⊥ = M±MNS
z H2(X) = M±H

2(X). (6.1)

Here M± is multiplication by 1 on copies of L2(S1) indexed by outgoing boundary components, and
multiplication by −1 on copies of L2(S1) indexed by incoming boundary components, and MNS

z is mul-
tiplication by the function z on copies of L2(S1) indexed by j for which L|j is Neveu-Schwarz, and the
identity on other boundary components.

In order to establish non-triviality of the spaces E(X), we required the following theorem.

Theorem 6.2. Let X = (Σ, L,Φ, β) ∈ R be a spin Riemann surface with boundary parametrization. Let
HΓ =

⊕
j∈π0(Γ) L

2(S1) and let H2(X) ⊂ HΓ be the Hardy space. Let qX ∈ P(HΓ) be the projection onto

H2(X), and let

pΓ =
⊕

j∈π0(Γ1)

p⊕
⊕

j∈π0(Γ0)

1− p,

where p ∈ P(L2(S1)) is the projection onto H2(D). Then qX − pΓ is trace class.

The main tool for establishing Theorems 6.1 and 6.2 will be a generalization of the Cauchy transform
to Riemann surfaces. A treatment of these theorems when Σ is a planar domain appears in the book
of Bell [Bel92, §1-5]. We will follow Bell’s treatment, making adjustments for the non-planar case when
needed and reducing to the planar case when possible.

The author would like to thank Antony Wassermann for suggesting the reference [Bel92], and for
explaining the role of the Cauchy transform in proving Theorem 6.2 in the planar case.

6.2 The Cauchy transform

6.2.1 Definitions

Let Σ be a compact Riemann surface with no closed components, and let Γ = ∂Σ. By welding annuli
onto each component of Γ as in Theorem 2.33, we may assume that Σ is embedded in an open Riemann
surface Σ̃.

By [GN67], there exists a locally injective holomorphic map ρ : Σ̃ → C. By [Sch78], there exists a
meromorphic function q(s, t) : Σ̃× Σ̃→ C which is holomorphic except on the diagonal s = t, and such
that q(s, t) − (ρ(s) − ρ(t))−1 is holomorphic on U × U for any open U on which ρ is injective. We can
assume that q(s, t) = −q(t, s) by replacing q with 1

2
q(s, t)− 1

2
q(t, s). Let ωt(s) = q(s, t)dρ(s).

We call q a Cauchy kernel on Σ̃, which is justified by the following Cauchy integral formula.

Proposition 6.3 ([Sch78, Prop. 7.1]). Let U be an open set in Σ̃ with U compact, and with a piecewise
C1 oriented boundary ∂U . If u ∈ C1(U), then for every t ∈ U ,

u(t) =
1

2πi

∫
∂U

uωt −
1

2πi

∫
U

∂u ∧ ωt.

We denote by C∞(Σ̊) and O(Σ̊) the smooth (resp. holomorphic) functions on the interior of Σ. We
will write C∞(Σ) for the subspace of C∞(Σ̊) consisting of functions which extend to smooth functions
on the boundary, and O(Σ) for the subspace of C∞(Σ) consisting of functions which are holomorphic in
the interior.

Definition 6.4. If u ∈ C∞(Γ), then define its Cauchy transform Cu ∈ O(Σ̊) by

(Cu)(t) =
1

2πi

∫
Γ

uωt.

This definition has appeared many places in the literature, with early examples including [Sch78,
Gau79, Boi87].

33



6.2.2 Basic properties

Note that C depends on the choice of ρ and q, so we will regard these as fixed. We will now show that
Cu ∈ O(Σ), but first we need the following version of [Bel92, Thm. 2.2].

Theorem 6.5. Suppose v ∈ C∞(Σ). Then the function u defined by

u(t) =
1

2πi

∫
Σ

vωt ∧ dρ

for t ∈ Σ satisfies ∂u = vdρ and u ∈ C∞(Σ).

Proof. We first check that the integral defining u makes sense. Fix t0 ∈ Σ, and let V be a neighborhood
of t0 in Σ on which ρ is injective. Let z0 = ρ(t0), and let τ = (ρ|V )−1. For z ∈ ρ(V ) we have an identity
of 1-forms on ρ(V )

τ∗ωτ(z) =
dw

w − z + f(z, w)dw,

where f is holomorphic and w is the standard global parameter for C. We then have

u(τ(z)) =
1

2πi

∫
Σ\V

vωτ(z) ∧ dρ+
1

2πi

∫
ρ(V )

v(τ(w))dw ∧ dw
w − z +

+
1

2πi

∫
ρ(V )

v(τ(w))f(z, w)dw ∧ dw

:= u1(z) + u2(z) + u3(z).

Both u1 and u3 are clearly smooth in a neighborhood of z0. From [Bel92, Thm 2.2], u2 is well-defined
and u2 ∈ C∞(ρ(V )). Thus u is smooth in a neighborhood of t0, and since t0 was arbitrary u ∈ C∞(Σ).

Differentiating under the integral, we see that

∂

∂z
u ◦ τ =

∂

∂z
u2 = v ◦ τ

by [Bel92, Thm 2.2]. Pulling back by ρ gives ∂u = vdρ on V , and since z0 was arbitrary, the equality
holds on all of Σ.

As a corollary, we can show that Cu extends smoothly to the boundary.

Proposition 6.6. The Cauchy transform maps C∞(Γ) into O(Σ).

Proof. Let u ∈ C∞(Γ) and let ũ be a function in C∞(Σ) which is equal to u on Γ. The Cauchy integral
formula says

ũ(t) = (Cu)(t)− 1

2πi

∫
Σ

∂ũ ∧ ωt.

We can write ∂ũ = vdρ for some v ∈ C∞(Σ), so by the preceding theorem, the integral term is in C∞(Σ).
Hence Cu ∈ C∞(Σ) as well.

By restriction, we can consider C as a map from C∞(Γ) into itself. The Cauchy integral formula says
that C is idempotent.

We will need the following technical results, which are a generalization of [Bel92, Lem. 2.3 and Thm
3.4].

Proposition 6.7. Suppose that v ∈ C∞(Σ). Then there exists a function Φ ∈ C∞(Σ) which vanishes
on Γ and satisfies ∂Φ|Γ = ∂v|Γ.

Proof. We may choose annular neighborhoods Uj in Σ of each boundary component j, and holomorphi-
cally identify these with annuli in C. Thus by the planar version of the proposition [Bel92, Lem. 2.3],
there exist smooth functions on each Uj with the desired property. Since the conclusion only depends
on a neighborhood of Γ, we can extend these functions to Σ via smooth cutoff functions with support in
the Uj and which are identically 1 in a neighborhood of Γ.
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Proposition 6.8. Suppose that u ∈ C∞(Γ). Then there is a Ψ ∈ C∞(Σ) with ∂Ψ|Γ = 0 such that the
boundary values of Cu are expressed by

(Cu)(t) = u(t) +
1

2πi

∫
Σ

∂Ψ ∧ ωt,

for all t ∈ Γ. The 2-form (∂Ψ ∧ ωt)(s) extends continuously to (s, t) ∈ Σ× Γ.

Proof. Let ũ be an element of C∞(Σ) with boundary values u. Let Φ ∈ C∞(Σ) be a function from
Proposition 6.7 that vanishes on Γ such that ∂Φ|Γ = ∂ũ|Γ. Let Ψ = ũ−Φ. Applying the Cauchy integral
formula to Ψ yields

Ψ(t) = (Cu)(t)− 1

2πi

∫
Σ

∂Ψ ∧ ωt.

Since Ψ = u on the boundary, we have established the desired boundary value formula for Cu.
The 2-form ∂Ψ ∧ ωt is clearly continuous at all points of Σ × Γ not of the form (t0, t0) with t0 ∈ Γ.

Fix a neighborhood V of t0 on which ρ is injective and set z = ρ(t) and τ = ρ|−1
V . We have

τ∗(∂Ψ ∧ ωt)(w) =

(
∂w(Ψ ◦ τ)(w)

w − z + smooth

)
dw ∧ dw

for (w, z) ∈ ρ(V ) × ρ(V ) with w 6= z. Since ∂w(Ψ ◦ τ) is smooth and vanishes on ρ(Γ ∩ V ), the
above expression defines a continuous function on ρ(V ) × ρ(V ∩ Γ). Pulling back by ρ, we see that
(s, t) 7→ (∂Ψ ∧ ωt)(s) extends continuously to Σ× Γ.

We will now define the Hilbert transform for C∞(Γ), and relate it to the Cauchy transform. If t0 ∈ Γ,
let V be a neighborhood of t0 in Σ on which ρ is injective, and let

Γε = (Γ \ V ) ∪ {t ∈ V : |ρ(t)− ρ(t0)| ≥ ε}.

Observe that for a different choice of V , the resulting sets Γε coincide for sufficiently small ε. Define the
Hilbert transform Hu for u ∈ C∞(Γ) by

(Hu)(t0) = P.V.
1

2πi

∫
Γ

uωt0 := lim
ε↓0

1

2πi

∫
Γε

uωt0 .

We will now establish the Plemelj formula relating the Cauchy and Hilbert transforms, as in [Bel92,
§5].

Lemma 6.9. The limit defining (Hu)(t0) exists and

(Cu)(t0) =
1

2
u(t0) + (Hu)(t0).

Proof. We first prove the theorem in the case where u is a constant function. Let

Cε = {t ∈ V : |ρ(t)− ρ(t0)| = ε},

oriented so that Γε ∪Cε is an oriented curve for sufficiently small ε (i.e. so that Cε is oriented negatively
around t0). We give ρ(Cε) the opposite of the orientation coming from Cε, so that it is oriented counter-
clockwise about ρ(t0). Let τ = ρ|−1

V . Using the holomorphicity of u(s)ωt0(s) away from s = t0 and the
fractional residue formula, we compute

lim
ε↓0

1

2πi

∫
Γε

u(s)ωt0(s) = lim
ε↓0

1

2πi

∫
Γε

u(s)q(s, t0)dρ(s)

= − lim
ε↓0

1

2πi

∫
Cε

u(s)q(s, t0)dρ(s)

= lim
ε↓0

1

2πi

∫
ρ(Cε)

u(τ(w))

w − ρ(t0)
dw

=
1

2
u(t0).
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We now return to arbitrary u ∈ C∞(Γ), but we assume without loss of generality that u(t0) = 0.
Hence the integrand in the Hilbert and Cauchy transforms uωt0 is continuous at t0, and thus on Σ. In
this case (Hu)(t0) is given by the ordinary integral

(Hu)(t0) =
1

2πi

∫
Γ

uωt0 ,

and the same for (Cu)(t0).

6.2.3 Adjoint of the Cauchy transform

Define a bilinear form [·, ·] on C∞(Γ) by

[u, v] =
1

2πi

∫
Γ

uvdρ.

Lemma 6.10. For u, v ∈ C∞(Γ), we have [Cu, v] = [u, (1− C)v].

Proof. By Proposition 6.8, for t ∈ Γ we have Cu = u+ I where

I(t) =
1

2πi

∫
Σ

∂Ψ ∧ ωt

and Ψ is as in Proposition 6.8. By Proposition 6.8, the integrand in the definition of I is continuous, and
so we may apply Fubini’s theorem to compute∫

Γ

I(t)v(t)dρ(t) =

∫
Γ

(
1

2πi

∫
Σ

∂Ψ(s) ∧ ωt(s)
)
v(t)dρ(t)

=

∫
Σ

(
1

2πi

∫
Γ

−q(s, t)v(t)dρ(t)

)
dρ(s) ∧ ∂Ψ(s)

=

∫
Σ

(
1

2πi

∫
Γ

q(t, s)v(t)dρ(t)

)
dρ(s) ∧ ∂Ψ(s)

=

∫
Σ

(Cv)(s) dρ(s) ∧ ∂Ψ(s). (6.2)

Recall that Ψ|Γ = u|Γ. Since ρ and Cv are holomorphic,

d(Ψ(Cv)dρ) = −(Cv) dρ ∧ ∂Ψ

and we may apply Stokes’ theorem to obtain∫
Σ

(Cv)dρ ∧ ∂Ψ = −
∫

Γ

Ψ(Cv)dρ = −
∫

Γ

u(Cv)dρ. (6.3)

Combining (6.2) and (6.3), we get ∫
Γ

I(t)v(t)dρ(t) = −
∫

Γ

u(Cv)dρ.

Hence ∫
Γ

(Cu)vdρ =

∫
Γ

(u+ I)vdρ =

∫
Γ

u(v − Cv)dρ,

which was to be shown.

Let γ :
⊔
j∈π0(Γ) S

1 → Γ be family of diffeomorphisms. Let Γ0 be the subset of the boundary consisting

of boundary components on which γ is orientation reversing, and Γ1 be the complement, on which γ is
orientation preserving.

Let HΓ =
⊕

j∈π0(Γ) L
2(S1), and let WΓ = C∞(tj∈π0(Γ)S

1) ⊂ HΓ. Define the Hardy space

H2(Σ, γ) = cl{γ∗F : F ∈ O(Σ)} ⊆ HΓ.
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Using the parameterization γ :
⊔
S1 → Γ, we may identify C∞(Γ) with WΓ. Thus the Cauchy

transform C ∈ End(C∞(Γ)) induces a linear map C ∈ End(WΓ) by

Cu = γ∗C(u ◦ γ−1).

Let r ∈WΓ be given by γ∗dρ = rdz. Define the formal adjoint C∗ ∈ End(WΓ) by

(C∗v)(z) := v(z)−±zr(z)C(M±zr−1v)(z), (6.4)

where M±z is the operator on HΓ given by multiplication by the function z on direct summands indexed
by j ∈ π0(Γ1), and multiplication by −z on the complement. We think of C and C∗ as unbounded
operators on HΓ (although the adjoint of C will turn out to actually be an extension of C∗, since we will
see that C is bounded).

Proposition 6.11. Let u, v ∈WΓ ⊂ HΓ. Then 〈Cu, v〉 = 〈u,C∗v〉 .

Proof. Let ũ, ṽ ∈ C∞(Γ) be given by ũ = u ◦ γ−1 and ṽ = v ◦ γ−1. Then we have

〈u,M±zrv〉 =
1

2πi

∫
⊔
S1

±u(z)v(z)r(z)dz

=
1

2πi

∫
Γ

ũ(t)ṽ(t)dρ(t)

= [ũ, ṽ].

By Lemma 6.10, [Cũ, v] = [ũ, (1− C)ṽ]. Hence

〈Cu,M±zrv〉 =
〈
u,M±zr(1− C)v

〉
,

which was to be shown.

We now establish the Kerzman-Stein formula

qΣ(1 +A) = C (6.5)

where A = C − C∗ and qΣ is the orthogonal projection of HΓ onto H2(Σ, γ). For now, we regard (6.5)
as an identity of endomorphisms of WΓ. Soon, however, we will show that A is trace class, and thus C
extends to a bounded operator on HΓ, and (6.5) gives an equality of operators on HΓ.

Proposition 6.12. If u ∈WΓ, then
qΣ(I +A)u = Cu.

Proof. For v ∈ H2(Σ, γ) we have

〈(1− C∗)u, v〉 = 〈u, v〉 − 〈C∗u, v〉 = 〈u, v〉 − 〈u,Cv〉 = 0.

Thus (1 − C∗)u is orthogonal to any smooth function in H2(Σ, γ). By construction, such functions are
dense in H2(Σ, γ) so we have qΣ(1− C∗)u = 0. We now have

qΣ(1 +A)u = qΣCu = Cu.

Our proof that A is an integral operator with smooth kernel follows [Bel92, Ch. 4-5].

Theorem 6.13. For u ∈WΓ, the operator A = C − C∗ is given by the formula

(Au)(z) =
1

2π

∫
⊔
j∈π0(Γ) S

1

a(w, z)u(w)
dw

iw

for a smooth function a :
⊔
S1 ×

⊔
S1 → C. In particular, A is trace class.
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Proof. Recall that for u ∈WΓ, the formal adjoint C∗ is given by the formula

(C∗u)(z) = u(z)−±zr(z)C(M±zr−1u)(z),

where r(z)dz = γ∗dρ.
By definition,

(Cu) = C(u ◦ γ−1) ◦ γ.
Thus we can apply Lemma 6.9 to get

(Au) = H(u ◦ γ−1) ◦ γ +M±zr(H(v ◦ γ−1) ◦ γ)

where v = M±zr
−1u. That is, for z ∈

⊔
j∈π0(Γ) S

1 we have

(Au)(z) =
1

2πi
P.V.

∫
Γ

u(γ−1(s))q(s, γ(z))dρ(s)

− 1

2πi
± zr(z) P.V.

∫
Γ

±γ−1(s)r(γ−1(s))−1u(γ−1(s))q(s, γ(z))dρ(s)

where the two ± are determined by whether the boundary near s and γ(z) is incoming or outgoing.
It is clear that the kernel of A is smooth in any neighborhood of (s, t) when s and t lie on distinct
components of Γ. Thus in order to simplify notation, we will assume that Γ has a single outgoing
connected component, and the general case is no different. When restricting to s and t on the same
connected component, the signs ± cancel.

Pulling the integral back to S1, we get

(Au)(z) =
1

2π
P.V.

∫
S1

wu(w)q(γ(w), γ(z))r(w)
dw

iw

+
1

2π
zr(z) P.V.

∫
S1

u(w)q(γ(w), γ(z))
dw

iw

=
1

2π
P.V.

∫
S1

wr(w)q(γ(w), γ(z))u(w)
dw

iw

+
1

2π
P.V.

∫
S1

zr(z)q(γ(w), γ(z))u(w)
dw

iw

=
1

2π
P.V.

∫
S1

a(w, z)u(w)
dw

iw

where
a(w, z) = wr(w)q(γ(w), γ(z)) + zr(z)q(γ(w), γ(z)).

Clearly a is smooth away from w = z, so we fix z and consider when w− z is small. In this scenario, we
may write

a(w, z) =
wr(w)

ρ(γ(w))− ρ(γ(z))
+

zr(z)

ρ(γ(w))− ρ(γ(z))
+ smooth

=
w

w − z

(
r(w)(w − z)

ρ(γ(w))− ρ(γ(z))
− r(z)(w − z)
ρ(γ(w))− ρ(γ(z))

)
+ smooth. (6.6)

Since ∂
∂w

ρ ◦ γ = r, we have that (w − z)a(w, z) is a smooth function vanishing on the diagonal (z, z).
Hence a(w, z) is itself a smooth function.

Theorem 6.14. Let H2(Σ, γ) ⊂ HΓ be the Hardy space, and let qΣ ∈ P(HΓ) be the projection onto
H2(Σ, γ). Then the Cauchy transform C extends to a bounded operator on HΓ and qΣ−C is trace class.
We have H2(Σ, γ)⊥ = rM±zH2(Σ, γ), where r satisfies γ∗R = rdz for any non-vanishing holomorphic
1-form R. In particular, one may take R = dρ.
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Proof. The fact that C is bounded follows immediately from Proposition 6.12 and the fact that A is
bounded. Rewriting the Kerzman-Stein formula as qΣ−C = −qΣA we can see that qΣ−C is trace class.

Since C is an idempotent with image H2(Σ, γ), we have that 1 − C∗ is an idempotent with image
H2(Σ, γ)⊥. Since C is bounded, the formula for the formal adjoint from Lemma 6.10 indeed gives the
adjoint. It follows that H2(Σ, γ)⊥ = rM±zH2(Σ, γ), where γ∗dρ = r(z)dz. Since H2(Σ, γ) is invariant
under multiplication by γ∗F for any F ∈ O(Σ), the formula for H2(Σ, γ)⊥ holds when γ∗R = r(z)dz for
any non-vanishing holomorphic 1-form R.

Recall that the Cauchy transform C for C∞(Γ) depended on a choice of holomorphic immersion
ρ and Cauchy kernel q. The induced Cauchy transform C ∈ B(HΓ) also depended on the boundary
parametrization γ. However we will see that, modulo a trace class perturbation, C does not actually
depend on the choices of ρ, q and γ. That C is independent of ρ and q modulo trace class operators is a
simple corollary of Theorem 6.14.

Corollary 6.15. Suppose C1 and C2 are two Cauchy transforms for HΓ coming from different choices
of q and ρ. Then C1 − C2 is trace class.

Proof. Note that qΣ only depends on H2(Σ, γ), and not on ρ or q. Thus C1−C2 is trace class by Theorem
6.14.

Let p ∈ P(L2(S1)) be the projection onto the classical Hardy space H2(D), and let

pΓ =
⊕

j∈π0(Γ1)

p⊕
⊕

j∈π0(Γ0)

1− p ∈ P(HΓ).

Let qΣ ∈ P(HΓ) be the projection onto H2(Σ, γ).
We wish to show that qΣ − pΓ is trace class. We begin by showing that this property is independent

of the choice of γ. First, a simple observation relating idempotents and range projections.

Proposition 6.16. Let K be a Hilbert space, and let p be a projection on K. Let c be an idempotent
operator on K with c− p trace class, and let q be the range projection of c. Then q − p is trace class.

Proof. Since c− p is trace class, so is (c− p)− (c− p)∗ = c− c∗. We compute

q − p = cq − p
= (c− c∗)q + (qc− p)∗

= (c− c∗)q + (c− p)∗

which is evidently trace class.

Proposition 6.17. Let Σ be a compact Riemann surface, let γ be a family of boundary trivializations for
Σ, and let qΣ ∈ P(HΓ) be the projection onto H2(Σ, γ). Let α :

⊔
j∈π0(Γ) S

1 →
⊔
j∈π0(Γ) S

1 be a family

of orientation preserving diffeomorphisms, and let q′Σ ∈ P(HΓ) be the projection onto H2(Σ, γ ◦ α−1).
Then qΣ − pΓ is trace class if and only if q′Σ − pΓ is trace class.

Proof. Suppose that qΣ−pΓ is trace class. Let cα be the bounded operator on HΓ given by f 7→ f ◦α−1.
Observe that

H2(Σ, γ ◦ α−1) = cαH
2(Σ, γ).

Thus cαqΣc
−1
α is an idempotent whose range projection is q′Σ. But [cα, pΓ] is trace class by [PS86, Prop.

6.3.1 and Prop. 6.8.2], and so cαpΓc
−1
α − pΓ is trace class as well. Since cαqΣc

−1
α − cαpΓc

−1
α is trace class

by assumption, we must also have that cαqΣc
−1
α − pΓ is trace class. By Proposition 6.16 we can conclude

that q′Σ − pΓ is trace class.

Theorem 6.18. Let Σ be a compact Riemann surface, let γ be a family of boundary trivializations for
Σ, and let qΣ be the projection of HΓ onto H2(Σ, γ). Then qΣ − pΓ is trace class.

Proof. Fix ρ and q, and let C be the corresponding Cauchy transform for Σ. For j ∈ π0(Γ), let pj :
HΓ → L2(S1) be the projection from HΓ onto the copy of L2(S1) indexed by j. We will show

1. pjCp
∗
j − p is trace class when j ∈ π0(Γ1),

2. pjCp
∗
j − (1− p) is trace class when j ∈ π0(Γ0),
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3. pjCp
∗
k is trace class when j, k ∈ π0(Γ) and j 6= k.

The statement of condition (3) is clear, since pjCp
∗
k is an integral operator with smooth kernel.

We now consider condition (1). Let j ∈ π0(Γ1), and let Kj be a closed annulus in Σ with one boundary
component j. There is an annulus

A = {z ∈ C : 1− ε ≤ |z| ≤ 1} ⊂ C

such that we can find a biholomorphic map gj : A → Kj . By Proposition 6.17, the conclusion of the
theorem is independent of the choice of γ, so we may assume without loss of generality that γj = gj |S1 .

There is a Cauchy transform CA for A coming from the holomorphic immersion ρ◦gj and Cauchy kernel
q(gj(z), gj(w)). Let ΓA be the boundary of A, and parametrize ΓA via the identity map on the boundary
component S1, and arbitrarily on the other component. Conjugating by these parametrizations, we get
a Cauchy transform

CA ∈ B

 ⊕
π0(ΓA)

L2(S1)

 =: B(HΓA).

By construction, we have
pjCp

∗
j = pS1CAp

∗
S1 ,

where pS1 : HΓA → L2(S1) is the projection onto the copy of L2(S1) indexed by the boundary component
S1 of A.

On the other hand, we have the standard Cauchy transform Cst on A given by the standard Cauchy
kernel 1

w−z , and the same parametrizations used before to define CA. By Corollary 6.15, CA − Cst is
trace class. Hence pjCp

∗
j − pS1Cstp

∗
S1 is trace class as well. But pS1Cstp

∗
S1 is just the projection onto

the standard Hardy space H2(D). Hence pjCp
∗
j − p is trace class, as desired.

If j ∈ π0(Γ0), we can establish (2) using essentially the same argument. The only modification is that
we identify an annular neighborhood of j with

A′ = {z ∈ C : 1 ≤ |z| ≤ 1 + ε}.

We now prove Theorem 6.1 and Theorem 6.2 by applying the preceding results to Hardy spaces
coming from spin structures. We restate the theorems here for the convenience of the reader.

Theorem (Theorem 6.1). Let X = (Σ, L,Φ, β) ∈ R be a Riemann spin surface with boundary parametriza-
tion. Let HΓ =

⊕
j∈π0(Γ) L

2(S1) and let H2(X) ⊂ HΓ be the Hardy space. Then

H2(X)⊥ = M±MNS
z H2(X) = M±H

2(X). (6.7)

Here M± is multiplication by 1 on copies of L2(S1) indexed by outgoing boundary components, and
multiplication by −1 on copies of L2(S1) indexed by incoming boundary components, and MNS

z is mul-
tiplication by the function z on copies of L2(S1) indexed by j for which L|j is Neveu-Schwarz, and the
identity on other boundary components.

Proof of Theorem 6.1. The second equality of (6.7) is Proposition 3.15, and so we only need to establish
the first.

By Theorem 2.36, there exists a non-vanishing holomorphic section F of L, and we denote the
corresponding boundary values by f := β∗F ∈ H2(X). We then have

H2(X) = fH2(Σ, γ) := {fh : h ∈ H2(Σ, γ)}, (6.8)

where γj = βj |S1 is the boundary parametrization of Σ given by β. We then have

H2(X)⊥ = (fH2(Σ, γ))⊥ = f
−1
H2(Σ, γ)⊥.

Applying Theorem 6.14 we get
H2(X)⊥ = M±f−1rzH2(Σ, γ) (6.9)

where Mz is multiplication by z on each copy of L2(S1) in HΓ, and r is characterized by r dz = γ∗R for
any non-vanishing holomorphic section R of KΣ.
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In particular, we can take R = iΦ∗(F ⊗ F ). Let j ∈ π0(Γ). We will now show that

γ∗jR =

{
f2
j dz σ(j) = NS
f2
j
dz
z

σ(j) = R.
(6.10)

Once we establish (6.10), then the desired result easily follows. Indeed, since r dz = γ∗R, we can rewrite
(6.10) as

r = MNS
z z−1f2, (6.11)

Now (6.7) follows from plugging (6.11) into (6.9).
We now turn to establishing (6.10). Recall that βj : (S1, σ(j)) → L|j is an isomorphism of spin

structures, and that γj is the restriction of βj to the base space S1. Since βj : (S1, σ(j)→ (Φ|j , L|j) is a
spin isomorphism, by definition (2.16) we have

γ∗jΦ∗(F ⊗ F ) = (φσ(j))∗(β
∗
jF ⊗ β∗jF ) = (φσ(j))∗(fj ⊗ fj). (6.12)

Recall that we defined the spin structure φσ(j) in (2.17) so that

i(φσ(j))∗(fj ⊗ fj) =

{
f2
j dz σ(j) = NS

f2
j
dz
z

σ(j) = R.
. (6.13)

Combining (6.12) and (6.13) yields (6.10) and completes the proof.

Theorem (Theorem 6.2). Let X = (Σ, L,Φ, β) ∈ R be a spin Riemann surface with boundary parametriza-
tion. Let HΓ =

⊕
j∈π0(Γ) L

2(S1) and let H2(X) ⊂ HΓ be the Hardy space. Let qX ∈ P(HΓ) be the

projection onto H2(X), and let

pΓ =
⊕

j∈π0(Γ1)

p⊕
⊕

j∈π0(Γ0)

1− p,

where p ∈ P(L2(S1)) is the projection onto H2(D). Then qX − pΓ is trace class.

Proof of Theorem 6.2. Let γj = βj |S1 be the parametrization of Γ induced by β. Let qΣ be the projection
onto H2(Σ, γ). By Theorem 6.18, qΣ − pΓ is trace class, so we just need to show that qX − qΣ is trace
class. Let F be a non-vanishing section L, and let f = β∗F ∈ H2(X) be the corresponding element of
the Hardy space. Note that f is a smooth function on

⊔
S1.

We have H2(X) = fH2(Σ, γ), so fqΣf
−1 is an idempotent whose range projection is qX . By Propo-

sition 6.16, to prove that qX − qΣ is trace class, it suffices to prove that [f, qΣ] is trace class. This is done
in [PS86, Prop. 6.3.1].

References

[Ati71] Michael F. Atiyah. Riemann surfaces and spin structures. Ann. Sci. École Norm. Sup. (4),
4:47–62, 1971.

[Bel92] Steven R. Bell. The Cauchy transform, potential theory, and conformal mapping. Studies in
Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.

[Bis58] Errett Bishop. Subalgebras of functions on a Riemann surface. Pacific J. Math., 8:29–50, 1958.
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