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ON TORSION IN THE INTERSECTION COHOMOLOGY OF

SCHUBERT VARIETIES

GEORDIE WILLIAMSON

Abstract. We prove that the prime torsion in the local integral intersection
cohomology of Schubert varieties in the flag variety of the general linear group
grows exponentially in the rank. The idea of the proof is to find a highly sin-
gular point in a Schubert variety and calculate the Euler class of the normal
bundle to the (miraculously smooth) fibre in a particular Bott-Samelson reso-
lution. The result is a geometric version of an earlier result established using
Soergel bimodule techniques.

Dedicated to the memory of Sandy Green.

1. Introduction

Let X be a projective complex algebraic variety equipped with its metric topology
and let H∗(X,Q) denote its rational cohomology ring. If X is smooth then there are
several remarkable and useful theorems concerning H∗(X,Q): Poincaré duality, the
hard Lefschetz theorem, the Hodge decomposition, the Hodge-Riemann relations.
If instead one takes integral coefficients then (derived) Poincaré duality still holds.

None of these theorems are valid for singular X . Instead one can consider the
intersection cohomology IH∗(X,Q) of X as defined by Goresky and MacPherson.
If X is smooth then one has a canonical identification between cohomology and
intersection cohomology. Goresky and MacPherson proved that Poincaré duality
always holds in rational intersection cohomology. It was subsequently discovered
that (analogues of the) the hard Lefschetz theorem, the Hodge decomposition and
the Hodge-Riemann relations all hold in intersection cohomology [BBD82, Sai89].
Thus it is not surprising that intersection cohomology provides a powerful comple-
ment to ordinary cohomology in the study of singular algebraic varieties.

As with ordinary cohomology, it is also possible to define intersection cohomology
groups with coefficients in any field or the integers. In their original paper on in-
tersection (co)homology, Goresky and MacPherson noticed that (derived) Poincaré
duality does not hold over the integers for intersection cohomology [GM80, 6.3]. For
example, if X is smooth then Poincaré duality implies that the intersection form
on (the free part of) its middle cohomology is unimodular (i.e. non-degenerate
over Z). Goresky and MacPherson gave an example to show that the analoguous
statement need not hold for integral intersection cohomology. For a given singular
X it is appears to be a difficult question to decide whether its integral intersection
cohomology satisfies Poincaré duality over the integers, or for which primes p it
fails.

This question has a local variant. Just as the ordinary cohomology of a space
can be described as the cohomology of the constant sheaf, intersection cohomology
may be obtained as the hypercohomology of the intersection cohomology complex,
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a constructible complex of abelian groups on X . Let IC(X,Z) denote the integral
intersection cohomology complex of X . The local variant of the above question
which we consider in this paper is the following:

Question 1.1. Descibe the p-torsion in the stalks or costalks of IC(X,Z). In par-
ticular, for which primes p are all the stalks and costalks free of p-torsion?

Some remarks about this question are in order:

(1) If there is no torsion in the stalks or costalks of IC(X,Z) then the integral
intersection cohomology satisfies Poincaré duality. The p-local version of
this statement also holds: absence of p-torsion implies that Poincaré duality
holds after inverting all primes 6= p. These statements are not if and only
if in general, however in the case of Schubert varieties (considered below)
they are.

(2) In general the rational intersection cohomology complex IC(X,Q) is much
easier to describe. This is due to the decomposition theorem [BBD82],
which allows one to compute IC(X,Q) via resolutions. In particular in
many cases IC(X,Q) can be considered “known” and the above question
asks whether IC(X,Z) contains any surprises.

(3) For general X this question appears to be very hard. For example, if X has
only isolated singularities then the question is equivalent to understanding
the torsion in the cohomology of the links1 to all singular points. In general
the link of an isolated singularity can be a rather complicated manifold,
and describing the torsion in its cohomology can be a difficult task.

As well as their intrinsic interest, these questions have applications in the modu-
lar representation theory of finite and algebraic groups. Starting with the Kazhdan-
Lusztig conjectures, intersection cohomology methods have been very fruitful in
Lie theory (see [Lus91] for an impressive list of applications). The power of these
methods in characteristic zero representation theory is usually thanks to the de-
composition theorem. More recently it has been suggested that similar methods
could be used to attack questions in modular representation theory [Soe00, MV07,
Jut14, JMW12]. However here the decomposition theorem is missing. The above
questions asks for obstructions to transporting out knowledge in characteristic zero
to knowledge in characteristic p.

In geometric representation theory a central role is played by Schubert varieties.
The goal of this paper is to provide the following partial answer to the above
question in this case:

Theorem 1.2. The p-torsion (for p a prime) in the stalks and costalks of the
integral intersection cohomology complexes on Schubert varieties in the flag variety
of the general linear group grows at least exponentially in the rank.

Again, some remarks are in order:

(1) This is a geometric version of an earlier theorem proved using Soergel bi-
modules, diagrammatics and the nil Hecke ring in [HW15, Wil13]. Im-
portant contributions to this theorem were made by Soergel, Libedinsky,

1The link of a point x ∈ X is defined as follows: first we embed an affine neighbourhood of x

into CN so that x 7→ 0; then the link is defined to be X ∩S
2N−1
ε for small ε, where S

2N−1
ε ⊂ CN

denotes the sphere of radius ε centred at the origin.
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Elias-Khovanov, Elias and He. On the geometric side important contribu-
tions were made by Braden (who discovered 2-torsion for n = 8, see the
appendix to [WB12]) and Polo (who showed the existence of n-torsion in
rank 4n).

(2) Schubert varieties admit affine pavings and so their ordinary cohomology
is free over the integers. The above theorem tells us that (at least locally)
there is lots of torsion in intersection cohomology.

(3) We are still very far from a complete understanding of Question 1.1 in the
setting of Schubert varieties. This is already evident in the phrase“at least”
in the above theorem, whose proof produces many examples of torsion, but
certainly makes no claim to exhaustiveness.

(4) In many “simple” examples (Schubert varieties in Grassmannians [Zel83],
Schubert varieties for GL(n,C) for n ≤ 7 [WB12]) there is no torsion at all
in the stalks or costalks of integral intersection cohomology sheaves. The
above theorem tells us that these simple examples are rather deceptive.

(5) By results of Soergel one can use the above theorem to deduce that any
bound for Lusztig’s conjecture on the characters of simple rational repre-
sentations of GLn in characteristic p must grow at least exponentially in
n. Hence the above theorem gives many counterexamples to the expected
bounds in Lusztig’s conjecture [Lus80]. Similarly, in [Wil13] it is explained
how one can use such results to produce counterexamples to a conjecture
of James [Jam90] on the simple modular representations of the symmetric
group.

(6) All Schubert varieties in the flag variety of GLn also occur as Schubert
varieties in the flag varieties of groups of types Bn, Cn and Dn. Hence the
above theorem may be rephrased as saying that the torsion in the stalks
and costalks of the integral intersection cohomology of Schubert varieties
in the flag variety of any simple complex algebraic group grows at least
exponentially in the rank.

As already mentioned, the above theorem can be deduced from previous work
in the context of Soergel bimodules. However I think it is worthwhile to publish a
new proof for two reasons:

(1) The proof relies only on the combinatorics of expressions and geometric
ideas. In particular it does not use the theory of Soergel bimodules, their
diagrammatics, or the nil Hecke ring (as in [HW15, Wil13]). Hence this
paper is potentially accessible to a wider audience than [Wil13].

(2) The proof provides a recipe to find many highly singular points in Schubert
varieties, whose resolutions are nonetheless amenable to explicit analysis.
It is possible that these points and their resolutions will be useful in other
problems in singularity theory and the study of Schubert varieties. With
such potential future applications in mind, and also with the goal of un-
derstanding existing work more conceptually, an explicit description of the
geometry of the situation seems worthwhile.

1.1. Main theorem. We now give a more precise formulation of the main theorem
of this paper. The formulation is somewhat technical, and hence we need some more
notation.
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Let R = Z[ε1, ε2, . . . , εn] be a polynomial ring in n variables graded such that
deg εi = 2 and let W = Sn the symmetric group on n-letters. Then W acts by
permutation of variables on R. Let s1, . . . , sn−1 denote the simple transpositions
of Sn and let ℓ denote the length function. Let ∂i denote the ith divided difference
operator:

∂i(f) =
f − sif

εi − εi+1
∈ R.

For any element w ∈ Sn we have well-defined operators ∂w = ∂i1 . . . ∂im where
w = si1 . . . sim is a reduced expression for w.

Consider elements of the form

(1.1) C = ∂wm
(εam

n ∂wm−1
(εam−1

n . . . ∂w1
(εa1

n ) . . . ))

where wi ∈ Sn are arbitrary. We assume that
∑

ℓ(wi) = a where a =
∑

ai.
Because εi has degree 2 and ∂w has degree −2ℓ(w) it follows that C ∈ Z for degree
reasons.

Let N := n + a, and G = GLN (C). We identify SN (the symmetric group on
N letters) with the Weyl group of G in the standard way. Let B ⊂ G denote the
Borel subgroup of upper-triangular matrices. Given any subset I ⊂ {1, . . . , N − 1}
we let wI denote the longest element of the standard parabolic subgroup of SN

corresponding to I, and by PI ⊃ B denote the parabolic subgroup corresponding
to I. Let M := {1, . . . , n− 1}.

The main result of this paper is the following:

Theorem 1.3. Suppose that C 6= 0. Then there exists a Schubert variety X ⊂
GLn+a/PM and a (Bott-Samelson) resolution

f : X̃ → X ⊂ G/PM

such that the complex Rf∗(Z/CZX̃) (the derived pushforward of the constant sheaf

on X̃) is not isomorphic to a direct sum of intersection cohomology sheaves. More
precisely, the decomposition theorem fails at the point wI , where I = {1, 2, . . . , n−
1, n + 1, . . . , n + a− 1}.

Remarks:

(1) The Schubert variety X and resolution X̃ are explicit starting from the
expression (1.1) for C. We refer the reader § 7 for the description of all
spaces involved.

(2) The failure of the decomposition theorem in Theorem 1.3 implies the exis-
tence of some intersection cohomology complex supported on X which has
p-torsion in its stalk or costalk, for some prime p dividing C. This fact can
be easily deduced from the theory of parity sheaves [JMW14].

(3) Given the above theorem it is easy to produce many examples of C with
large prime factors relative to N = n + a (see [Wil13, §6]). For example,
one can find expressions which produce Fibonacci numbers linearly in N .
However to prove that these factors grow exponentially with respect to
N requires some rather sophisticated results from number theory. This is
discussed in detail in the appendix to [Wil13] by Kontorovich, McNamara
and the author.

(4) A technical point: The allowed expressions for C in [Wil13] are slightly more
general than those allowed above; in [Wil13] one is also allowed expressions
involving both εn and ε1, and not only εn as above. However I have checked
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that there are no essential gains by allowing these more general expressions,
and the setting of the current paper simplifies proofs.

1.2. Acknowledgements: Expressions of the form (1.1) emerged first in joint
work with Xuhua He [HW15]. Subsequently I tried to find a geometric expla-
nation, which is the Euler class lemma of § 8. I would like to thank him for many
useful discussions and observations. I am also grateful to Tom Braden, Daniel
Juteau, Carl Mautner and Patrick Polo from whom I learnt most of the geometric
and topological techniques of this paper.

It is a great pleasure to dedicate this paper to the memory of Sandy Green.
One of my first memories of representation theory is Gus Lehrer’s empassioned
description of Green functions and the character table of the finite general linear
group. I spent 2008 - 2011 as a postdoc in Oxford and I remember Sandy’s active
participation in the representation theory seminar. After one of my first lectures
on parity sheaves he excitedly asked many questions, and expressed his desire to
better understand perverse sheaves. I was impressed at his openness to new ideas,
and have tried to imitate it since.

2. Notation

Varieties and sheaves: Throughout all algebraic varieties are over C and are
equipped with their classical (metric) topologies. Dimension and codimension al-
ways refer to complex dimension. Given a ring Λ and a space X we denote by ΛX

the constant sheaf on X with values in Λ.
Expressions and subexpressions: Throughout we view the symmetric group Sn =

W as a Coxeter group with simple reflections S ⊂ W the simple transpositions. An
expression is a sequences w = (s1, . . . , sm) with si ∈ S. We write expressions as
w = s1 . . . sm and dropping the underline denotes the product w ∈ W . Given
a fixed subexpression w = s1 . . . sm a subexpression is a sequence e = e1 . . . em
with each ei ∈ {0, 1}. What is traditionally referred to as a subexpression is the
sequence (se11 , . . . , semm ), however we prefer the more economical notation. We write
e ⊂ w to indicate that e is a subexpression of w. Given e = e1 . . . em ⊂ w we set
we = se11 . . . semm .

3. What we need to do

In this section we recall some standard material on the role played by intersec-
tion forms in the decomposition theorem. This section gives the algebro-geometric
scaffolding of the rest of the paper. One can find background material for this
section in [BBD82, dCM02, CG97, JMW14].

Fix a (singular) normal and irreducible complex algebraic variety X and a reso-
lution of singularities2

f : X̃ → X.

We fix a stratification of X adapted to f , i.e. a stratification

X =
⊔

Xλ

2In this paper resolution of singularities is used to refer to any proper birational morphism of
algebraic varieties with smooth source. We do not require our map to be an isomorphism over the
smooth locus of X.
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of X into a finite disjoint union of locally closed, connected and smooth subvarieties
such that the induced map f : f−1(Xλ) → Xλ is a topologically locally trivial
fibration in (usually singular) varieties.

By the decomposition theorem of Beilinson, Bernstein, Deligne and Gabber,
Rf∗QX̃ is isomorphic to a direct sum of shifts of intersection cohomology sheaves
on X . Let us fix a non-unit M ∈ Z and consider the ring Λ = Z/MZ. We would
like to understand when the decomposition holds for Rf∗ΛX̃ .

For each stratum Xλ and point x ∈ Xλ we can choose a normal slice N to

the stratum Xλ through x. If we set F := f−1(x) and Ñ := f−1(N) we have a
commutative diagram of Cartesian squares:

F //

��

Ñ //

��

X̃

��

{x} // N // X

Set d := dim Ñ = dimN = codim(Xλ ⊂ X). The inclusion F →֒ Ñ equips the
integral homology of F with an intersection form (see [JMW14, § 3.1])

(3.1) IFλ : Hd−j(F ;Z) ×Hd+j(F ;Z) → H0(Ñλ;Z) = Z.

Remark 3.1. For different points x, x′ ∈ Xλ and normal slices N,N ′ the pairs
f−1(x) ⊂ f−1(N) and f−1(x′) ⊂ f−1(N ′) are diffeomorphic, though not canoni-
cally (the isotopy class of diffeomorphism depends on the homotopy type of a path
from x to x′).

Let us make the following (restrictive) assumptions, which hold for Schubert
varieties and their Bott-Samelson resolutions:

(1) the integral homology H∗(F ;Z) of all fibres F of f is free over Z;
(2) each stratum Xλ is simply connected.

Under these assumptions we have (see [JMW14, § 3]):

Theorem 3.2. The decomposition theorem for f holds with coefficients in Λ if and
only if all intersection forms (3.1) have the same rank over Q as they do over Λ.

The approach of this paper is to calculate these intersection forms in some special
cases. In general this is a difficult task. We now consider some situations where
the job is easier.

Let F and Ñ be as above. Suppose first that dimF < 1
2d. In this case Hd+j(F ) =

0 for j ≥ 0. Hence all intersection forms are zero and the conditions of the theorem
are vacuous. If one has the inequality

dim f−1(x) <
1

2
codim(Xλ ⊂ X)

for all strata Xλ and x ∈ Xλ except for those over which f is an isomorphism then
f is small. In this case Rf∗ΛX [dimX ] = IC(X,Λ) for any Λ, which explains why
the decomposition theorem is easy in this case.

Remark 3.3. By a theorem of Zelevinsky [Zel83], Schubert varieties in Grassman-
nians always admit small resolutions. In particular, the stalks and costalks of their
integral intersection cohomology complexes are free of p-torsion.
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Now suppose that dimF = 1
2d. In other words F ⊂ Ñ is half-dimensional and d

is the real dimension of F . Hence there is only one intersection form which can be
non-zero, namely

Hd(F ;Z) ×Hd(F ;Z) → Z.

In this case we have a canonical isomorphism

Hd(F ;Z) =
⊕

Z[Z]

where the direct sum is over the fundamental classes [Z] of the irreducible compo-
nents Z ⊂ F of maximal dimension.

If the inequality

dim f−1(x) ≤
1

2
codim(Xλ ⊂ X)

holds for all strata Xλ and x ∈ Xλ then f is called semi-small. In this case there
is only one intersection form per stratum. However in this case controlling the
intersection forms can be a difficult task.

Example 3.4. A simple and rich source of semi-small maps are provided by the
minimal resolutions of Kleinian surface singularities X (i.e. quotients C2/Γ where
Γ ⊂ SL2(C) is a finite subgroup). Here X has a unique singular point 0 ∈ X and the
exceptional fibre f−1(0) gives a collection of transversely intersecting P1’s, whose
dual graph determines a simply laced Dynkin diagram. The intersection form is
given by the negative of the corresponding Cartan matrix. Hence the decomposition
theorem is controlled by the determinant of the Cartan matrix. This example has
been studied in detail by Juteau [Jut09].

Remark 3.5. In the case of semi-small maps these forms are non-degenerate and
even definite (of sign determined by the codimension of the strata). This observation
is the starting point for de Cataldo and Migliorini’s Hodge theoretic proof of the
decomposition theorem [dCM02, dCM05].

Now assume that the equality dimF = d holds and that F is irreducible. Then
Hd(F ;Z) is free of rank one (with basis given by the fundamental class [F ]) and
the intersection form is a 1 × 1-matrix. If F is in addition smooth then we have a
diffeomorphism of pairs

(F ⊂ Ñ)
∼
→ (F ⊂ NÑ/F )

where NÑ/F is the normal bundle to F in Ñ . It follows from standard alge-

braic topology that in this case the intersection form is given p!e(NÑ/F ) where

p! : Htop(F ) → Z denotes the trace map on cohomology and e(NÑ/F ) denotes the

Euler class of the vector bundle NÑ/F on F .

We refer to this case (F irreducible and smooth) as the miracle situation because
it gives a situation in which the intersection forms are manageable but non-trivial.
After all it is not difficult to calculate the determinant of a 1 × 1-matrix!

Example 3.6. Suppose that Y is a smooth variety such that Y ⊂ T ∗Y may be
contracted to a point. (That is, there exists a map f : T ∗Y → X which is an
isomorphism on T ∗Y \ Y and maps Y to a point x0 ∈ X .) In this case x0 is the
only singular point in X and f is semi-small. Also, as f−1(x0) = Y we are in the
miracle situation. The intersection form is given by the Euler class of T ∗Y which
is the −χ(Y ), where χ(Y ) denotes the Euler characteristic of Y . By the above
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discussion, the decomposition theorem holds with coefficients in Λ if and only if the
image of χ(Y ) in Λ is invertible.

An example of this situation is when Y = Pn in which case X may be realized as
the space of rank one matrices in sln(C) (a minimal nilpotent orbit), see [JMW12,
§3.2]. In this case the intersection form is (−χ(Pn)) = (−(n + 1)).

4. Groups and Schubert varieties

Throughout we work with G = GLN (C), with T ⊂ G the maximal torus of
diagonal matrices. We denote by W = SN the Weyl group of G with simple
reflections S = {si}

N−1
i=1 the simple transpositions. We will often regard W as the

subgroup of G of permutation matrices.
Let εi denote the character of T given by εi(diag(λ1, . . . , λn)) = λi. We let B

(resp. B−) denote the subgroup of upper (resp. lower) triangular matrices. Let
Φ = {εi − εj | i 6= j} denote the roots, Φ+ := {εi − εj | i < j} denote the positive
roots and Φ− := −Φ+ the negative roots. For 1 ≤ i ≤ n let αi := εi − εi+1 denote
the simple root.

For any t = si ∈ S we denote by Pt the minimal standard parabolic subgroup
with roots Φ+ ∪ {−αi}. For any subset M ⊂ S we consider the corresponding
standard parabolic subgroups WM = 〈t | t ∈ M〉 ⊂ W and PM = 〈Pt | t ∈ M〉 ⊂ G.
We denote the corresponding subroot system by ΦM and its positive and negative
roots by Φ+

M and Φ−
M .

For M ⊂ S we have the partial flag variety G/PM . Keeping in mind that we iden-
tify W with permutation matrices we have a natural map W → G/B whose image
is (G/B)T , the T -fixed points on G/B. Simiarly we have a canonical identification

W/WM
∼
→ (G/PM )T .

We will abuse notation and identify a coset wWM ∈ W/WM with the corresponding
fixed point in G/PM . Given any xWM ∈ W/WM we have a Schubert cell

Xx := B · xPM/PM ⊂ G/PM

(an affine space) and its closure

Xx ⊂ G/PM

a Schubert variety.
Let ζ∨ : C∗ → T denote a dominant regular cocharacter (i.e. such that the

induced action of C∗ on the Lie algebra of the unipotent radical of B has strictly
positive weights). Then the Bia lynicki-Birula cells on G/PM coincide with the
Bruhat cells. In other words, for any for any T -fixed point xWM in G/PM we have:

Xx = {q ∈ G/PM | lim
z→0

ζ∨(z) · q = x}.

If instead we consider the dual Bia lynicki-Birula cells we get a stratification dual
to the Bruhat stratification. We have

Sx := B− · xPM/PM = {q ∈ G/PM | lim
z→∞

ζ∨(z) · q = x}.
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5. Bott-Samelson varieties

Given a sequence w := t1t2 . . . tm with ti ∈ S consider the Bott-Samelson variety

BS(w) := Pt1 ×B Pt2 ×B · · · ×B Ptm/B

defined as the quotient of Pt1 × Pt2 × · · · × Ptm by Bm acting on the right by

(p1, p2 . . . , pm) · (b1, b2, . . . , bm) = (p1b1, b
−1
1 p2b2, . . . , b

−1
m−1pmbm).

We denote the image of (p1, . . . , pm) in BS(w) by [p1, . . . , pm]. The Bott-Samelson
variety BS(w) is a (left) B-variety via b · [p1, p2, . . . , pm] := [bp1, p2, . . . , pm].

Given any subexpression e of w we have a point [e] := [se11 , . . . , semm ] ∈ BS(w)
which is fixed by T . For any t ∈ S we let ut(λ) denote the root subgroup corre-
sponding to −αt. Then for any subexpression e we have a chart around [e] given
by

(5.1) Cm ∋ (λ1, . . . , λm) 7→ [te11 ut1(λ1), te22 ut2(λ2), . . . , temm utm(λm)] ∈ BS(w).

We denote this chart by Ce ⊂ BS(w). The charts Ce cover BS(w) as we run over
all subexpressions e. Moreover, using the relation γut(λ)γ−1 = ut(αt(γ)−1λ) one
checks easily that the T -action on Ce is linear, with weights

(5.2) (te11 (−αt1), (te11 te22 )(−αt2), . . . , (te11 . . . temm )(−αtm)).

In particular the set {[e] | e a subexpression of w} coincides with the set of T -fixed
points on BS(w).

For any subsequence e of w we have a closed subvariety

BS(e) := {[p1, . . . , pm] | pi = 1 if ei = 0} ⊂ BS(w).

For example BS(11 . . . 1) = BS(w) and BS(00 . . . 0) = pt. It is easy to see that
BS(e) is isomorphic to the Bott-Samelson variety BS(z) where z is the expression
obtained from se11 . . . semm by deleting all occurrences of the identity.

We denote by C+
e ⊂ BS(w) the Bia lynicki-Birula cell corresponding to the T -

fixed poing [e] and cocharacter ζ∨. That is

C+
e := {x ∈ BS(w) | lim

z→0
ζ∨(z) · x = [e]}.

Because Ce ⊂ BS(w) is open and T -stable we have

C+
e ⊂ Ce.

Moreover, from the above calculation of T -weights it follows that

(5.3) C+
e = {(λi) ∈ Ce | λi = 0 if (te11 . . . teii )(−αti) ∈ Φ−}.

(We use the above identification of Ce with Cm.)
For any M ⊂ S, the multiplication map induces a proper morphism of varieties

f : BS(w) → G/PM .

If w is minimal in its coset wWM and if w is a reduced expression for w then f is
an isomorphism over the Schubert cell Xw ⊂ G/PM . In particular, in this case f
gives a resolution of singularities of the Schubert variety Xw. The following easy
lemma will be useful later:

Lemma 5.1. The T -fixed points in the fibre f−1(xWM ) are given by

{[e] | subexpressions e of w with (we)WM = xWM}.
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6. Combinatorics of reduced expressions

In this section we define the reduced expression which determines both the Schu-
bert variety and the Bott-Samelson resolution occurring in Theorem 1.3. We also
establish two combinatorial lemmas involving this subexpression. Their statements
are essentially copied from [Wil13].

Remark 6.1. The reduced expression combinatorics involved in [Wil13] is slightly
more general than that considered here. We hope that this makes the treatment
below easier to follow.

Recall the ring R = Z[ε1, . . . , εn], the divided difference operators ∂i : R → R
and their composites ∂w : R → R for w ∈ Sn from the introduction. Fix an
expression of the form:

C = ∂wm
(εam

n . . . ∂w2
(εa2

n ∂w1
(εa1

n )) . . . ).

The following assumption will be in place for the rest of this paper:

(6.1) 0 6= C ∈ Z.

We set a :=
∑m

i=1 ai. Because εi has degree 2 and ∂w has degree −2ℓ(w), (6.1) is
equivalent to the assumptions:

a =

m∑

i=1

ℓ(wi),(6.2)

C 6= 0.(6.3)

Because [∂j , εn] = 0 for j 6= n− 1 we may and do assume that wi is minimal in
Sn/〈s1, . . . , sn−2〉 for all i. It follows that each wi has a unique reduced expression.
It has the form

wi = ski
ski+1 . . . sn−1

for some 1 ≤ ki ≤ n− 1.
We work in SN where N = n+ a. Consider the subsets M = {s1, . . . , sn−1} and

A = {sn+1, . . . , sn+a−1}. That is, we divide the nodes of our Coxeter diagram as
follows:

• • • • • •

s1 s2 sn−1 sn sn+1 sn+a−1

. . . . . .

M A

Let WM and WA denote the corresponding parabolic subgroups. The simple reflec-
tion sn plays a special role, as will become clear shortly.

Consider

x = wmzm . . . w2z2w1z1

where

z1 = (snsn+1 . . . sn+a1−1) . . . (snsn+1)(sn),

z2 = (snsn+1 . . . sn+a1+a2−1) . . . (snsn+1 . . . sn+a1+1)(snsn+1 . . . sn+a1
),

...

zm = (snsn+1 . . . sb−1) . . . (snsn+1 . . . sn+a−am+1)(snsn+1 . . . sn+a−am
).
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We denote by z′1, z
′
2, . . . , z

′
m the similar reduced expressions with all occurrences of

sn deleted:

z′1 = (sn+1 . . . sn+a1−1) . . . (sn+1),

...

z′m = (sn+1 . . . sa−1) . . . (sn+1 . . . sn+a−am+1)(sn+1 . . . sn+a−am
).

Remark 6.2. The expression zm . . . z2z1 is a reduced expression for w{sn}∪A. Sim-
ilarly, z′m . . . z′2z

′
1 is a reduced expression for wA.

Example 6.3. We give an example of the expression x. Let n = 4 and consider
wi defined as follows:

w1 = s2s3, w2 = s3, w3 = s2s3, w4 = s1s2s3 = w5.

Take a1 = 3, a2 = 2, a3 = 2, a4 = 2, a5 = 2, so that a = 3 + 2 + 2 + 2 + 2 = 11 and
N = 4 + 11 = 15. Then we may depict x via the following string diagram:

M A

z1

w1

z2

w2

z3

w3

z4

w4

z5

w5

Let x denote the element of W expressed by x. The following lemma follows by
careful consideration of a string diagram depicting x (see Example 6.3 above):

Lemma 6.4. (1) x is a reduced expression for x;
(2) x is minimal in its coset xWM .

Write x = t1 . . . tℓ.

Lemma 6.5. Any subsequence e of x with xe ∈ wAWM has εi = 1 if ti ∈ A and
εi = 0 if ti = sn.
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Proof. This is (a special case of) Lemma 5.6 in [Wil13]. We give an idea of the
proof: We have already remarked that z′m . . . z′2z

′
1 is a reduced expression for wA.

In particular, to achieve xe ∈ wAWM we must have εi = 1 for every i with ti ∈ A.
Now, if εi = 1 for some i with ti = sn then it is impossible for xe to belong to
WM∪A, as is seen by considering the string diagram of x. The result follows. �

7. Geometry

We keep the notation from the previous section. Let G = GLN (C) and PM

denote the standard parabolic subgroup corresponding to M = {s1 . . . , sn−1}.
Consider the Bott-Samelson variety associated to the expression x = t1 . . . tℓ

defined in the previous section:

BigBS := BS(x) = Pt1 ×B Pt2 ×B · · · ×B Ptℓ ×B PM/PM .

It follows from Lemma 6.4 that multiplication induces a resolution of singularities

f : BigBS → Xx

where Xx denotes the Schubert variety Xx := BxPM/PM ⊂ G/PM .
Consider the closed subvariety

F := {[g1, . . . , gℓ] ∈ BigBS | gi = 1 if ti = sn, gi = ti if ti ∈ A} ⊂ BigBS.

(More precisely, we consider the image of the corresponding subset in Pt1 × Pt2 ×
· · · × Ptℓ in BigBS.)

Lemma 7.1. F = f−1(wAPM/PM ).

Proof. It is clear that F ⊂ f−1(wAPM/PM ). It remains to show the reverse in-
clusion. Consider the subexpression g := g1 . . . gℓ where gi = 1 if ti ∈ M ∪ A and
gi = 0 if ti = sn. We first claim that

(7.1) f−1(wAPM/PM ) ⊂ BS(g).

(The subvariety BS(g) was defined in §5.) Suppose that q ∈ f−1(wAPM/PM ).

Recall our dominant regular cocharacter ζ∨ from earlier. Then limz→0 ζ
∨(z) · q ∈

f−1(wAPM/PM ) and is a T -fixed point. Hence limz→0 ζ
∨(z) · q = [e] for some

subexpression e of x, and q ∈ C+
e . Now combining Lemma 5.1 and Lemma 6.5,

we see that e satisfies ei = 0 if ti = sn and ei = 1 if ti ∈ A. It follows that
C+

e ⊂ BS(g) by (5.3). (We use that if α ∈ Φ− is not in ΦM∪A, then w(α) ∈ Φ−

for all w ∈ WM∪A.) Now (7.1) follows.
Because the sets M and A are disconnected in the Dynkin diagram we have an

isomorphism

(7.2) BS(g)
∼
→ BS(wmwm−1 . . . w1) ×BS(z′mz′m−1 . . . z

′
1)

which commutes with the multiplication map f . (The expressions z′i were defined
in the previous section.) On the first factor of the right hand side of (7.2) the
multiplication map is the projection to the base point PM/PM ∈ G/PM . Now
z′mz′m−1 . . . z

′
1 is a reduced expression for wA, and hence the fibre of

BS(z′mz′m−1 . . . z
′
1) → G/PM

over wA consists only of one point. The result follows. �

The following is easily deduced from (7.2).
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Corollary 7.2. The fibre F is smooth and we have a T -equivariant isomorphism

φ : BS(wm . . . w1)
∼
→ F.

In particular, by (6.2):

(7.3) dimF = a.

Recall the dual cells XwA
⊂ G/PM and SwA

⊂ G/PM which are the attracting
and repelling sets for the fixed point wA ∈ G/PM and cocharacter ζ∨ : C∗ → T .
Because SwA

is a normal slice to the stratum XwA
⊂ Xx ⊂ G/PM we conclude:

f−1(SwA
) ⊂ BigBS is smooth,(7.4)

dim f−1(SwA
) = dimSwA

= ℓ(x) − ℓ(wA) = 2a.(7.5)

In particular we are in the “miracle situation”: by (7.3) and Lemma 7.1 the fibre of
f over wAPM/PM is irreducible, smooth, and half-dimensional inside f−1(SwA

).
By the discussion in §3 it follows that in order to decide when the decomposi-

tion theorem holds at wA we need to calculated the self-intersection of F inside
f−1(SwA

). This will be done in the next section, and will rely on the following
lemma.

Lemma 7.3. Let [e] be a T -fixed point belonging to F . Then the T -weights on the
normal bundle to F ⊂ f−1(SwA

) at [e] are

{te11 te22 . . . t
ej
j (−αn) | 1 ≤ j ≤ ℓ; tj = sn}.

Proof. Consider the chain of inclusions (where T[e] denotes the tangent space)

T[e]F ⊂ T[e](f
−1(SwA

)) ⊂ T[e]BigBS.

Our goal is to calculate the T -weights on the normal bundle to F ⊂ f−1(SwA
) at

the T -fixed point [e]:

(NF (f−1SwA
))[e] = T[e](f

−1SwA
)/T[e]F.

We work in the chart Ce around [e]. As Ce is an affine space with linear T -action
we have a T -equivariant identification Ce = T[e]BS(x). Under this identification
we claim:

T[e]F = {(λi)
ℓ
i=1 | λi = 0 unless ti ∈ WM},(7.6)

T[e]SwA
= {(λi)

ℓ
i=1 | λi = 0 if ti ∈ WA}.(7.7)

(We identify Ce = Cℓ as in (5.1).) The first equality follows from the proof of the
previous lemma. For the second equality notice that if j is such that tj = sn (and
hence ej = 0) then the curve

c : γ 7→ [se11 , . . . , s
ej−1

j−1 , uαn
(γ), s

ej+1

j+1 , . . . , s
em
m ] ∈ BigBS

has T -weight in Φ−\Φ−
M∪A). (Recall that ej = 0 if tj = sn and that w(−αn) ∈ Φ−\

Φ−
M∪A for all w ∈ WM∪A.) In particular for any γ ∈ C, limz→∞ ζ∨(z) · c(γ) = [e].

From the definition of SwA
as a repelling set we deduce that f ◦ c is contained in

SwA
and hence the image of c is contained in f−1(SwA

). Taking derivatives of all
such curves we deduce an inclusion

(7.8) {(λi)
ℓ
i=1 | λi = 0 if ti ∈ WA} ⊂ T[e]SwA

.

However both sides have dimension 2a: the left hand side by inspection, and the
right hand side by (7.5). We deduce that (7.8) is an equality, which is (7.7).
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The lemma now follows easily from (7.6), (7.7) and (5.2). �

8. Euler class lemma

The goal of this section is to prove a lemma which computes the proper direct
image of certain “combinatorial” cohomology classes in the equivariant cohomology
of Bott-Samelson resolutions.

We keep the notation of the previous sections. Recall that T ⊂ G = GLn(C)
denotes the maximal torus of diagonal matrices and εi for 1 ≤ i ≤ n denote the
coordinate characters. Given a T -space X we denote by H∗

T (X) its equivariant
cohomology. (In this section we always take cohomology with coefficients in Z.)
The Borel isomorphism gives a canonical isomorphism

H∗
T (pt) = Z[ε1, . . . , εn] = R

with deg εi = 2 for 1 ≤ i ≤ m.
Let us fix an expression w = t1t2 . . . tm and let BS(w) denote the corresponding

Bott-Samelson variety. By the localization theorem the restriction map

H∗
T (BS(w)) → H∗

T (BS(w)T ) =
⊕

e⊂w

H∗
T ([e])

is injective. In particular, any cohomology class c ∈ H∗
T (BS(w) is determined by a

tuple (ce) of elements of R indexed by all subexpressions e of w.
We say that a class c ∈ H∗

T (BS(w) is combinatorial if there exists polynomials
f1, f2, . . . , fm such that, for any subexpression e = e1 . . . em of w, we have

ce = se11 (f1s
e2
2 (f2 . . . s

em
m (fm) . . . )).

Given a combinatorial c we say that it is described by the polynomials f1, f2, . . . , fm.

Example 8.1. We give an example of a naturally occurring combinatorial coho-
mology class. Fix a representation V of Bm and consider the induced bundle

LV := (Pt1 × · · · × Ptm) ×Bm V

which is naturally a vector bundle on BS(w) with fibre V . For any 1 ≤ i ≤ m
let Vi denote the restriction of V to the ith copy B ⊂ Bm and let fi := detVi ∈
Z[ε1, . . . , εm] denote the product of the characters of T ⊂ B occurring in Vi. Then
the equivariant Euler class of LV is combinatorial, being described by the polyno-
mials f1, f2, . . . , fm.

Let v := t1t2 . . . tm−1 be the expression obtained by ignoring the last term of w.
The projection map Pt1 ×· · ·×Ptm−1

×Ptm → Pt1 ×· · ·×Ptm−1
induces a morphism

r : BS(w) → BS(v)

which is easily seen to be a P1-fibration. Given a subexpression e of v we obtain
two subexpressions of w by appending either a 0 or a 1 to e. We denote these
subexpressions simply by e0 and e1. The T -fixed points in the fibre r−1([v]) are
precisely the points e0 and e1.

Proposition 8.2. Suppose that c ∈ H∗
T (BS(w) is a combinatorial class described

by f1, f2, . . . , fm. Then r!(c) is also combinatorial and is described by g1, . . . , gm−1

where

gi :=

{
fi if i < m− 1,

fm−1∂tm(fm) if i = m− 1.
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The following well-known lemma provides the key calculation:

Lemma 8.3. Suppose that X = P1 with non-trivial linear T -action and weights at
0 and ∞ given by −γ and γ respectively. For any class g = (g0, g∞) ∈ H∗

T (P1) we
have

p!(g) =
g0 − g∞

γ
where p : X → pt is the projection.

Proof. By the localization theorem H∗
T (P1) identifies with pairs (g0, g∞) ∈ R ⊕ R

such that g0 − g∞ ∈ (γ). It is easy to see that it is free over R with generators in
degree 0, 2. Hence p! is determined by what what it does to the R-basis (1, 1) and
(0, γ). However it must annihilate (1, 1) for degree reasons and must send (−γ, γ) to
2 (the Euler characteristic of P1). Hence p! must be given by the above formula. �

Proof of Proposition 8.2. We claim that the localization of the push-forward of c
at the point [e] (for e a subexpression of v) is given by

(8.1) (r!c)e =
ce0 − ce1

te11 . . . t
em−1

m−1 (αtm)
.

As remarked above, f−1([v]) is isomorphic to P1. Moreover, by (5.2) the T -weights
at the T -fixed points e0 and e1 are te11 . . . t

em−1

m−1 (−αtm) and t1 . . . t
em−1

m−1 (αtm) respec-
tively. The equality in (8.1) now follows by Lemma 8.3 and proper base change.

By our assumption that c is combinatorial and described by f1, . . . , fm we can
rewrite the right hand side of (8.1) as

te11 (f1 . . . t
em−1

m−1 (fm−1

(
fm − tmfm

αtm

)
) . . . ) = te11 (f1 . . . t

em−1

m−1 (fm−1∂tm(fm)) . . . )

which is what we wanted to show. �

By iterating the above proposition to the maps BS(w) → BS(v) → . . . → pt we
deduce:

Corollary 8.4. Let c ∈ H∗
T (BS(w) be a combinatorial class described by

f1, f2, . . . , fm.

Then
p!(c) = ∂t1(f1∂t2(f2 . . . ∂tm(fm) . . . ))

where p : BS(w) → pt denotes the projection.

Remark 8.5. Corollary 8.4 seems to be very useful for calculating the proper push-
forward of Euler classes of vector bundles on Bott-Samelson varieties (see Example
8.1). This explains the title of this section. In the next section we will see another
example of its utility.

9. Proof of the main theorem

Finally, we return to the setting of §6 and §7. Recall our reduced expression x
for s ∈ SN , our Schubert variety Xx ⊂ G/PM , our resolution of singularities

f : BigBS → Xx

and the normal slice SwA
⊂ G/PM to the Schubert cell XwA

⊂ G/PM . We saw in
§7 that we are in the miracle situation. Namely, that the fibre F := f−1(wA) is
smooth and irreducible, and is half-dimensional inside f−1(SwA

).
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Moreover we saw in Corollary 7.2 that we have a T -equivariant isomorphism

φ : BS(wm . . . w1)
∼
→ F.

Let us define polynomials fi ∈ R for i = 1, . . . ,
∑

ℓ(wi) = a by

f1 = f2 = · · · = fℓ(wm)−1 = 1, fℓ(wm) = (εn − εn+1) . . . (εn − εn+am
),

fℓ(wm)+1 = · · · = fℓ(wm)+ℓ(wm−1)−1 = 1, fℓ(wm)+ℓ(wm−1) = (εn − εn+1) . . . (εn − εn+am−1
),

...
...

fℓ(wm)+...ℓ(w2)+1 = · · · = fa−1 = 1, fa = (εn − εn+1) . . . (εn − εn+a1
).

Lemma 9.1. Under the isomorphism φ above the equivariant Euler class of the
normal bundle of F ⊂ f−1(SwA

) is combinatorial, and is described by the polyno-
mials f1, . . . , fa.

Proof. Recall that the localization in T -equivariant cohomology of an Euler class
of an equivariant vector bundle is given by the product of the T -weights at each
fixed point. Hence, by Lemma 7.3 the localization of the Euler class of the normal
bundle at a T -fixed point e in F is given by the product

(9.1) Ee :=
∏

1≤j≤ℓ
tj=sn

te11 . . . t
ej
j (−αn).

To complete the proof, we will argue that we can rewrite the above expression to
yield a combinatorial class described by the above polynomials.

Recall that x has the form

x = wmzm . . . w2z2w1z1

where each wi is an expression in M , and each zi an expression in A ∪ {sn}. Let
us write

e = e′mf ′

m
. . . e′2f

′

2
e′1f

′

1
,

where each e′i (resp. f ′

i
) is the corresponding subexpression of wi (resp. zi). By

Lemma 6.5 the fixed points [e] in BigBS correspond to those subexpressions e of x
with ei = 0 if ti = sn and e1 = 1 if ti ∈ A. An alternative way of saying this is that
we have no choice for the subexpressions f ′

i
: if we bracket zi as

(snsn+1 . . . sn+a1+···+ai−1) . . . (snsn+1 . . . sn+a1+···+ai−1+1)(snsn+1 . . . sn+a1+···+ai−1
),

then f ′

i
has the form

(01 . . . 1) . . . (01 . . . 1)(01 . . .1).

Hence we can rewrite Ee as

w
e′m
m (nm) · w

e′m
m w

e′m−1

m−1 (nm−1) · . . . · w
e′m
m w

e′m−1

m−1 . . . w
e′
1

1 (n1)

where
ni = (εn − εn+1)(εn − εn+2) . . . (εn − εn+ai

).

For example:

n1 = (−αn)(snsn+1 . . . sn+a1−1(−αn)) . . . ((sn+1 . . . sn+a1−1) . . . (snsn+1)(−αn))

= (εn − εn+1)(εn − εn+2) . . . (εn − εn+a1
)

The lemma now follows. �
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Remark 9.2. One might hope that the reason that the Euler class of the normal
bundle to F ⊂ f−1(SwA

) is combinatorial is because it is an induced bundle as in
Example 8.1. I was unable to decide whether this is the case.

Proof of Theorem 1.3. We can now complete the proof of theorem 1.3. If we denote
by c ∈ H∗

T (F ) the Euler class of the normal bundle to F ⊂ f−1(wAPM/PM ) and
p : F → pt denotes the projection then, by Lemma 9.1 and Corollary 8.4 we have

p!(c) = ∂wm
(nm∂wm−1

(nm−1 . . . (∂w1
n1) . . . )).

By repeated application of Lemma 9.3 below

∂wm
(nm∂wm−1

(nm−1 . . . (∂w1
n1) . . . )) = ∂wm

(εam
n ∂wm−1

(εam−1

n . . . (∂w1
εa1

n ) . . . )) = C

where C is as in the introduction. This completes the proof. �

Lemma 9.3. Consider an expression of the form

D = ∂u1
(g1∂u2

(g2 . . . ∂um
(gm + h+

mg′m) . . . )) ∈ R

with ui ∈ WM , gi ∈ R, g′m ∈ R and h+
m ∈ RWM . If D ∈ Z and h+

m is of degree > 0
then

D = ∂u1
(g1∂u2

(g2 . . . ∂um
(gm) . . . )).

Proof. Because ∂ui
(h+

mg) = h+
m∂ui

(g) for all g ∈ R we have

D = ∂u1
(g1∂u2

(g2 . . . ∂um
(gm + h+

mg′m) . . . )) =

= ∂u1
(g1∂u2

(g2 . . . ∂um
(gm) . . . )) + h+

m∂u1
(g1∂u2

(g2 . . . ∂um
(g′m) . . . )).

Because D ∈ Z, the term ∂u1
(g1∂u2

(g2 . . . ∂um
(g′m) . . . )) is of negative degree, and

hence is zero. The lemma follows. �
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