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ABELIAN VARIETIES OVER FINITE FIELDS AS BASIC

ABELIAN VARIETIES

CHIA-FU YU

Abstract. In this note we show that any basic abelian variety with additional

structures over an arbitrary algebraically closed field of characteristic p > 0

is isogenous to another one defined over a finite field. We also show that the

category of abelian varieties over finite fields up to isogeny can be embedded

into the category of basic abelian varieties with suitable endomorphism struc-

tures. Using this connection, we derive a new mass formula for a finite orbit

of polarized abelian surfaces over a finite field.

1. Introduction

In this note we work on abelian varieties over fields of characteristic p > 0, par-
ticularly on basic abelian varieties with additional structures (endomorphisms, a
polarization and a level structure). Conceptually, an abelian variety with fixed ad-
ditional structures is basic if the corresponding point in a moduli space of PEL-type
over Fp lands in the minimal Newton stratum (Rapoport-Zink [6] and Rapoport [5]).
The group-theoretic definition was introduced by Kottwitz [1]. This notion is geo-
metric in the sense that an abelian variety with additional structures is basic if and
only if its base change to any algebraically closed field extension is also basic. As
isogenous abelian varieties land in the same Newton stratum, an abelian variety
with additional structures that is isogenous to a basic one is also basic.

Let B be a finite-dimensional semi-simple Q-algebra with a positive involution
∗ and OB an order in B stable under ∗. A polarized OB-abelian variety is a triple
(A, λ, ι) where A is an abelian variety with polarization λ and ι : OB → End(A) is
a ring monomorphism which is compatible with λ. We recall the definition of basic
polarized OB-abelian varieties (A, λ, ι) in Section 2.

Basic abelian varieties with additional structures share many similar properties
with supersingular abelian varieties without additional structures, and many tech-
niques employed there can be carried over here as well. For example, similar to
supersingular abelian varieties, one can formulate a geometric mass for a finite or-
bit of basic abelian varieties and relate this geometric mass to an arithmetic mass
defined by group theory. The well-known Deuring-Eichler mass formula is obtained
in this fashion. We refer to [15] for more discussions in this aspect. In this paper
we prove the following result, which may be regarded as another analogue property
enjoyed by supersingular abelian varieties.

Theorem 1.1. Let A = (A, λ, ι) be a basic polarized OB-abelian variety over an

algebraically closed field k of characteristic p > 0. Then there exists a polarized
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2 CHIA-FU YU

OB-abelian variety A′ = (A′, λ′, ι′) over a finite field κ and an OB-linear isogeny

ϕ : A′ ⊗κ k → A over k that preserves the polarizations.

The second part of this note studies the converse to Theorem 1.1. We show that
any abelian variety over a finite field can be regarded as a basic abelian variety with
suitable endomorphism structures. More precisely, if A is an abelian variety over the
finite field Fq of q = ps elements and F = Q(πA) ⊂ End(A)⊗Q is the Q-subalgebra
generated by its Frobenius endomorphism πA, then the abelian variety A together
with the F -action is a basic F -abelian variety (Proposition 4.1). See Remark 3.2
for the notion of a B-abelian variety being basic. A priori, the original definition of
basic abelian varieties with additional structures requires both structures of endo-
morphisms and polarizations. However, similar to supersingular abelian varieties,
polarizations play no role in the characterization of supersingularity.

Let AFq
denote the category of abelian varieties over Fq up to isogeny, and Brig

be the category of basic abelian varieties with rigidified endomorphisms over Fp up
to isogeny, defined in Section 4. We prove the following result.

Theorem 1.2. There is a functor Φ that embeds the category AFq
as a full subcat-

egory of Brig.

Theorem 1.2 connects (polarized) abelian varieties over a finite field Fq with basic

(polarized) F -abelian varieties over Fp equipped with a suitable commutative semi-
simple Q-algebra F . This connection is particularly useful when the Q-algebra F is
fixed. In this case one may consider a smaller class of (polarized) abelian varieties
over Fq whose endomorphism rings contain the maximal order OF . This smaller set
of isomorphism classes of polarized abelian varieties over Fq is embeddable into the
basic locus of a moduli space of polarized OF -abelian varieties; see Lemma 5.1 and
(5.2). Below is a example where we use this embedding to derive a mass formula
for a class of polarized abelian surfaces over Fp.

Choose a simple abelian variety A0 over the prime finite field Fp whose Frobenius
endomorphism π0 satisfies that π2

0 = p. Then A0 is a superspecial abelian surface,
i.e. the base change A0 ⊗ Fp is isomorphic to the product of two supersingular
elliptic curves. Let us consider the set Λ of isomorphism classes of principally
polarized simple abelian surfaces (A, λ) over Fp such that A is isogenous to A0.
Put F = Q(π0) = Q(

√
p) and OF its ring of integers. Let Λmax ⊂ Λ be the subset

of classes [(A, λ)] such that OF ⊂ End(A). We can show that Λmax is a nonempty
set. As usual, the mass Mass(Λmax) of Λmax is defined by

(1.1) Mass(Λmax) :=
∑

(A,λ)∈Λmax

|Aut(A, λ)|−1.

Then we show that Mass(Λmax) is equal to the mass of a finite Hecke orbit S in the
superspecial locus of a Hilbert modular surface modulo p. Furthermore, using the
geometric mass formula for the superspecial orbits established in [12], we obtain
the mass formula

(1.2) Mass(Λmax) =
ζF (−1)

4
,

where ζF (s) the Dedekind zeta function of F (see Section 5.2).
The paper is organized as follows. In Section 2 we recall the definition of basic

abelian varieties with additional structures. The proof and some consequences of
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Theorem 1.1 are given in Section 3. In Section 4 we show that any abelian variety
over a finite field, together with the action of the center of its endomorphism al-
gebra, is a basic abelian variety. This result is used to construct the functor Φ in
Theorem 1.2. In the last section we consider the isogeny class of simple supersin-
gular abelian surfaces mentioned as above and compute the associated mass (1.1).

Notation. If M is a Z-module or a Q-module and ℓ is a prime, we write Mℓ :=
M ⊗Z Zℓ or Mℓ = M ⊗Q Qℓ, respectively. For any perfect field k of characteristic
p > 0, denote byW (k) the ring of Witt vectors over k, B(k) the field of fractions of
W (k), σ the Frobenius map on W (k) and B(k) induced by σ : k → k, x 7→ xp. If
F is a finite product of number fields Fi, denote by OF the maximal order in F . A
prime p of F over p, denoted by p|p, means a prime of Fi for some Fi or a prime ideal
of OF over p. For an abelian variety A over a field k, write End(A) = Endk(A)
for the endomorphism ring of A over k and End0(A) = End(A) ⊗Z Q for the
endomorphism algebra of A over k. If A is defined over a finite field Fq, we denote
by πA the Frobenius endomorphism of A over Fq.

2. Basic abelian varieties with additional structures

In this section we recall the concept of basic abelian varieties with additional
structures introduced by Kottwitz [1]. Our reference is Rapoport-Zink [6, p.11,
p. 281 and 6.25, p. 291].

2.1. Setting. Let B be a finite-dimensional semi-simple algebra over Q with a
positive involution ∗, and OB be an arbitrary order of B stable under ∗.

Recall that a non-degenerate Q-valued skew-Hermitian B-space is a pair (V, ψ)
where V is a left faithful finite B-module, and ψ : V × V → Q is a non-degenerate
alternating pairing such that ψ(bx, y) = ψ(x, b∗y) for all b ∈ B and all x, y ∈ V .

A polarized OB-abelian variety (resp. polarized B-abelian variety) is a triple A =
(A, λ, ι), where (A, λ) is a polarized abelian variety and ι : OB → End(A) (resp.

ι : B → End0(A)) is a ring monomorphism such that λι(b∗) = ι(b)tλ for all b ∈ OB.
Here ι(b)t : At → At denotes the dual morphism of ι(b).

Let A be a polarized OB-abelian variety over k, where k is an arbitrary field.
For any prime ℓ (not necessarily invertible in k), we write A(ℓ) for the associ-
ated ℓ-divisible group with additional structures (A[ℓ∞], λℓ, ιℓ), where λℓ is the
induced quasi-polarization from A[ℓ∞] to At[ℓ∞] = A[ℓ∞]t (the Serre dual), and
ιℓ : (OB)ℓ → End(A[ℓ∞]) the induced ring monomorphism. If ℓ 6= char(k), let
Tℓ(A) denote the ℓ-adic Tate module of A, Vℓ := Tℓ(A)⊗Qℓ, and let

(2.1) ρℓ : Gk → GUBℓ
(Vℓ, eλ)

be the associated Galois representation. Here Gk := Gal(ks/k) is the Galois group
of k, ks a separably closure of k, and

GUBℓ
(Vℓ, eλ) := {g ∈ AutBℓ

(Vℓ) | eλ(gx, gy) = c eλ(x, y) for some c ∈ Q×ℓ }
is the group of Bℓ-linear similitudes with respect to the Weil pairing

eλ = eλ,ℓ : Tℓ(A)× Tℓ(A) → Zℓ(1),

where

Zℓ(1) := lim
←
µℓm(ks)
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is the Tate twist.
If k is a perfect field of characteristic p, letM(A) denote the covariant Dieudonné

module of A with the additional structures and put N(A) := M(A) ⊗W (k) B(k),
the rational Dieudonné module (or the isocrystal) with the additional structures;
see [10, Section 1].

In this note we consider only the objects A = (A, λ, ι) for which there is a non-
degenerate skew-Hermitian B-space (V, ψ) with 2 dimA = dimQ V . Namely, we
require that there exists a complex polarized OB-abelian variety with the same
dimension as A. For example, we exclude the case where A is a supersingular
elliptic curve and B is the quaternion Q-algebra ramified precisely at {p,∞}.
2.2. Basic abelian varieties. Let k be any field of characteristic p and k̄ be an
algebraic closure of k. Put W := W (k̄) and L := B(k̄). Let (Vp, ψp) be a Qp-
valued non-degenerate skew-Hermitian Bp-module. A polarized OB-abelian variety
A over k̄ is said to be related to (Vp, ψp) if there is a (Bp⊗Qp

L)-linear isomorphism
α : N(A) ≃ (Vp, ψp)⊗Qp

L which preserves the pairings for a suitable identification
L(1) ≃ L.

Let Gp := GUBp
(Vp, ψp) be the algebraic group over Qp of Bp-linear similitudes

with respect to the pairing ψp. A choice of α gives rise to an element b ∈ Gp(L) by
transport of structure of the Frobenius map on N(A), that is, α : N(A) ≃ (Vp ⊗
L, b(id⊗ σ), ψp) becomes an isomorphism of isocrystals with additional structures.
The σ-conjugacy class [b] of b in Gp(L) is independent of the choice of α. The
decomposition of Vp ⊗ L into isotypic components (the components of a single
slope) induces a Q-graded structure, and thus defines a (slope) homomorphism
νb : D → Gp over some unramified finite extension Qps of Qp, where D is the
pro-torus over Qp with character group Q. The set ν[b] = {νb} for b ∈ [b] is the
Gp(L)-conjugacy class of νb for a single b ∈ [b], called the Newton vector associated
to N(A).

Definition 2.1. (1) A polarized OB-abelian variety A over k̄ is said to be basic

with respect to (Vp, ψp) if

(a) A is related to (Vp, ψp), and
(b) the slope homomorphism νb : D → Gp for b ∈ [b] is central.

(2) The object A over k̄ is said to be basic if it is basic with respect to (Vp, ψp)
for some non-degenerate skew-Hermitian Bp-space (Vp, ψp).

(3) A polarized OB-abelian variety A over any field k is said to be basic if its
base change A⊗k k̄ is basic.

Clearly a polarizedOB-abelian varietyA is basic if (and only if) it is so considered
as polarized B-abelian variety. Two polarized B-abelian varieties A1 and A2 are
said to be isogenous, denote A1 ∼ A2, if there is a B-linear isogeny ϕ : A1 → A2

such that the pull-back ϕ∗λ2 is a Q-multiple of λ1. Clearly the property for an
object A being basic is an isogeny invariant property. From the definition it is also
easy to see that this is a geometric notion: an object A = (A, λ, ι) over k is basic if
and only if the base change A⊗k k1 is basic for any algebraically closed field k1 ⊃ k.

3. Proof of Theorems 1.1 and its corollaries

3.1. To prove Theorem 1.1, we need some properties of basic abelian varieties with
additional structures. Let (V, ψ) be a non-degenerate (Q-valued) skew-Hermitian
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B-space and let G := GUB(V, ψ) be the algebraic group over Q of B-linear simili-
tudes with respect to the pairing ψ.

Let F be the center of B and F0 be the Q-subalgebra fixed by the induced
involution on F , which we denote by a 7→ ā. Let Σp be the set of primes p of F
over p, and for each prime p|p, denote by ordp the corresponding p-adic valuation
normalized in a way that ordp(p) = 1. Let Fp := F ⊗ Qp =

∏
p|p Fp be the

decomposition into a product of local fields. For each isocrystal N with an Fp-
linear action, let

(3.1) N = ⊕p|pNp

be the decomposition with respect to the Fp-action.

Lemma 3.1 (Rapoport-Zink). Let the notation be as above.

(1) The center Z of G is the algebraic subgroup over Q whose group of R-points
is

Z(R) = {x ∈ (F ⊗R)×; xx̄ ∈ R× },
for any Q-algebra R.

(2) Let N be an isocrystal with additional structures and suppose that it is related

to (V ⊗ Qp, ψ). Then N is basic with respect to (V ⊗ Qp, ψ) if and only if each

component Np is isotypic. In particular, if N is basic, then Np is supersingular for

primes p with p = p̄.

Proof. Statement (1) and the only if part of statement (2) are proved in 6.25
of [6]. The if part is easier: as each Np is isotypic, say of slope rp/s, the slope
homomorphism sνb factors through D → Gm and the action of sνb(p) on Np is a
scalar. Thus, the slope homomorphism νb : D → Gp must be central.

Remark 3.2. Lemma 3.1 provides a simple criterion for checking a polarized B-
abelian variety A = (A, λ, ι) being basic. Note that the assertion of the statement
(2) depends only on the underlying structure of B-action, and not on the equipped
polarization structure. Therefore, it makes sense to call a B-abelian variety (A, ι)
basic if for any B-linear polarization λ on (A, ι), the polarized B-abelian variety
(A, λ, ι) is basic in the sense of Definition 2.1. Such a polarization λ always exists;
see Kottwitz [2, Lemma 9.2].

It follows from Lemma 3.1 that a B-abelian variety (A, ι) is basic if and only if
the F -abelian variety (A, ι|F ) is basic, where ι|F is the restriction of ι to F .

The following two lemmas are reorganized from [6, 6.26-6.29]; proofs are provided
solely for the reader’s convenience.

Lemma 3.3. Given any set {λp}p|p of rational numbers with 0 ≤ λp ≤ 1 and

λp + λp̄ = 1, there is a positive integer s and u ∈ OF [1/p]
× such that

(3.2) uu = q := ps, and ordp u = sλp, ∀p ∈ Σp.

Proof. Consider the map

ord : OF

[
1

p

]×
→

⊕

p∈Σp

(1/ep)Z, u 7→ (ordp(u))p∈Σp
,

where ep is the ramification index of p. By Dirichlet’s unit theorem, the image has
rank |Σp| and is of finite index. Therefore, there are a positive integer s and an
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element u ∈ OF [1/p]
× such that ordp(u) = sλp =: rp for all p ∈ Σp. Let q = ps

and u′ := qu/ū, then one computes

ordp u
′ = 2rp and u′u′ = q2.

Replacing u by u′ and q by q2, one gets the desired result.

The element u in Lemma 3.3 actually lies in OF as ordp(u) ≥ 0 for all p|p.
Lemma 3.4. Fix {λp}p|p and q = ps as in Lemma 3.3, and an positive integer g.
Then there is a positive integer n such that for any basic g-dimensional polarized

OB-abelian variety A over a finite extension Fqm of Fq with slopes {λp}p|p, the n-th
power of Frobenius morphism πn

A lies in ι(F ).

Proof. We first prove that the statement holds for one such object A, i.e. there is
an integer nA possibly depending on A such that πnA

A ∈ ι(F ). Clearly the statement
depends only on the isogeny class of A. Let M be the Dieudonné module of A.
Within the isogeny class, we can choose A so that ι(OF ) ⊂ End(A) and F sMp =
prpMp for all p ∈ Σp, where rp = sλp and M = ⊕p|pMp is the decomposition with

respect to (3.1). Let u be as in Lemma 3.3, then ι(u)−mπA is an automorphism of A
that preserves the polarization as ι(u)−mπA(Mp) =Mp for all p ∈ Σp. Therefore,
a power of this automorphism is the identity by a theorem of Serre. Thus, a power
of πA is contained in ι(F ).

Let C := End0B(A). As dimC is bounded by 4g2, there is a fixed positive integer
n such that ζn = 1 for any element ζ ∈ C of finite order. By the result we just
proved that ι(u)−mπA ∈ C is of finite order, we have πn

A ∈ ι(F ) for all such objects
A.

3.2. Proof of Theorem 1.1. Let the notation be as in Theorem 1.1. It suffices
to show that A has smCM, that is, any maximal commutative semi-simple Q-
subalgebra of End0(A) has degree 2 dimA. Then by a theorem of Grothendieck
(see a proof in [4] or [11]) there exists an abelian variety A′ over a finite field κ
and an isogeny ϕ : A′ ⊗κ k → A over k. Replacing A′ by one in its isogeny class
if necessary, we may assume that A′ admits an action ι′ of OB so that the isogeny
ϕ is OB-linear. Take the pull-back polarization λ′ on A′, which is clearly defined
over a finite field extension of κ.

Let {λp}p|p be the set of slopes for A. Take q = ps and a positive integer n as in
Lemmas 3.3 and 3.4. We can choose a field k0 finitely generated over Fq over which
A is defined. The abelian variety A extends to a polarized OB-abelian scheme
A over S = SpecR for a finitely generated Fq-subalgebra R of k0 with fraction
field Frac(R) = k0. We may assume further that S is smooth over SpecFq. Let s
be a closed point of S and η the generic point. By Grothendieck’s specialization
theorem, the special fiber As over s also has the same slopes {λp}p|p, and hence is
basic.

We identify the endomorphism rings Endk0
(A) = EndR(A) ⊂ End(As̄), and

write ι for the OB-actions on these abelian varieties. Let

ρℓ : π1(S, η̄) → Aut(Tℓ(Aη̄))

be the associated ℓ-adic representation. The action of Gal(η̄/η) on Tℓ(Aη̄) factors
through ρℓ. Again we identify the Tate modules Tℓ(As̄) = Tℓ(AS̃s̄

) = Tℓ(Aη̄),

where S̃s̄ is the (strict) Henselization of S at s̄. Put Vℓ(Aη̄) := Tℓ(Aη̄)⊗Qℓ.
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Let πAs
be the Frobenius morphism on As and Frobs the geometric Frobenius

element in π1(S, η̄) corresponding to the closed point s. We have

(i) πn
As

∈ ι(F ) ⊂ End(Tℓ(As̄)), by Lemma 3.4;
(ii) ρℓ(Frob

n
s ) = πn

As
lies in the center Z(Qℓ) of GUBℓ

(Vℓ(Aη̄), 〈 , 〉), by the
identification of the Tate modules and (i);

(iii) the Frobenius elements Frobs for all closed points s generate a dense sub-
group of π1(S, η̄).

Let Gℓ := ρℓ(π1(S, η̄)) be the ℓ-adic monodromy group. Let mn : Gℓ → Gℓ be
the map x 7→ xn. It is an open mapping and its image contains an open subgroup
U of Gℓ, which is of finite index. Clearly U lies in the center Z(Qℓ) by (ii) and
(iii). Replacing k0 by a finite extension, we have Gℓ ⊂ Z(Qℓ). Let Qℓ[π] be the
(commutative) subalgebra of End(Vℓ(Aη̄)) generated by Gℓ. By Zarhin’s theorem
[16], Qℓ[π] is semi-simple and commutative, and EndQℓ[π](Vℓ(Aη̄)) = End(A)⊗Qℓ.
Hence any maximal commutative semi-simple Qℓ-subalgebra of End(A) ⊗ Qℓ is
also a maximal one in End(Vℓ(Aη̄)). This shows that any maximal commutative

semi-simple subalgebra of End0(A) has degree 2g, and hence completes the proof.

3.3. Consequences. In [15] we defined a class of polarized B-abelian varieties,
called of arithmetic type. For these abelian varieties the “simple mass formula” in
[15, Theorem 2.2] remain valid for algebraically closed ground fields, not just for
finitely generated fields over a prime field. We related these B-abelian varieties with
basic B-abelian varieties in the case where the ground field k is Fp; see [15, Theorem
4.5]. Using Theorem 1.1, we extend this result to an arbitrary algebraically closed
field k of characteristic p > 0,

Recall that a polarized B-abelian variety (A, λ, ι) over an algebraically closed
field k of characteristic p > 0 is said to be of arithmetic type if there is a model
(A0, λ0, ι0) of (A, λ, ι) over a subfield k0 finitely generated over Fp such that the
associated Galois representation ρℓ : Gk0

→ GUB(Vℓ(A0), eλ,ℓ) (Section 2.1) is cen-
tral for some prime ℓ 6= p (or equivalently, for all primes ℓ 6= p, see [15, Proposition
3.10]). It is shown in [15, Section 3] that this is again a geometric notion which
depends only on the underlying B-abelian variety (A, ι) and not on the carried
polarization structure λ.

Theorem 3.5. A B-abelian variety (A, ι) over an algebraically closed field k of

characteristic p > 0 is of arithmetic type if and only if it is basic.

Proof. By Theorem 1.1, there is a B-abelian variety (A0, ι0) over Fp and a B-
linear isogeny ϕ : (A0, ι0)⊗Fp

k → (A, ι). As a result we can reduce the statement

to the case where k = Fp and this is Theorem 4.5 of [15].

Proposition 3.6 (cf. [6, Corollary 6.29] ). Let K be a finite-dimensional semi-

simple Q-algebra that admits a positive involution. Let (A, ι) and (A′, ι′) be two

basic K-abelian varieties over an algebraically closed field k of characteristic p > 0.
Then we have

(3.3) HomK(A,A′)⊗Z Qℓ ≃ HomK(Vℓ(A), Vℓ(A
′)) ∀ ℓ 6= p,

and

(3.4) HomK(A,A′)⊗Z Qp ≃ HomK((N,F), (N ′,F)),
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where N and N ′ are the isocrystals associated to (A, ι) and (A′, ι′), respectively.

Proof. Let E be the center of K. If (3.3) and (3.4) hold true where K is replaced
by E, then (3.3) and (3.4) hold true. Note that A is a basic K-abelian variety if
and only if it is a basic E-abelian variety (Remark 3.2) . Replacing K by its center,
we may assume that K is commutative.

By Theorem 1.1, there are K-abelian varieties (A0, ι0) and (A′0, ι
′
0) over Fp such

that (A0, ι0)⊗Fp
k ∼ (A, ι) and (A′0, ι

′
0)⊗Fp

k ∼ (A′, ι′). We have a natural isomor-

phism

HomK(A0, A
′
0)⊗Z Q ≃ HomK(A,A′)⊗Z Q,

and natural identifications Vℓ(A0) = Vℓ(A) and Vℓ(A
′
0) = Vℓ(A

′) for ℓ 6= p. For ℓ =
p, we have also the identification HomK((N0,F), (N ′0,F)) = HomK((N,F), (N ′,F)),
where N0 and N

′
0 are the isocrystals associated to (A0, ι0) and (A′0, ι

′
0), respectively.

Therefore, we are reduced to prove the statement where k = Fp, which is done by
Rapoport-Zink (see [6, Corollary 6.29, p. 293]).

Corollary 3.7. Let (A, ι) and (A′, ι′) be two basic B-abelian varieties over an

algebraically closed field k of characteristic p, with slopes {λp}p|p and {λ′p}p|p,
respectively. Then (A, ι) and (A′, ι′) are isogenous if and only if λp = λ′p and

rankNp = rankN ′p for all p|p.

Proof. This follows from Proposition 3.6.

4. A correspondence

4.1. Let Fq be the finite field of q = ps elements. Let AFq
denote the category of

abelian varieties over Fq up to isogeny. Let B be the category defined as follows,

which we call the category of basic abelian varieties with endomorphisms over Fp

up to isogeny. The objects of B consist of all triples (F,A, ι), where

• F is a finite-dimensional commutative semi-simple Q-algebra that admits
a positive involution, and

• (A, ι) is a basic F -abelian variety over Fp.

For any two objects A1 = (F1, A1, ι1) and A2 = (F2, A2, ι2) in B, a morphism in
HomB(A1, A2) is a pair (ϕ, ϕ̃), where

• ϕ̃ : F1 → F2 is a Q-linear algebra homomorphism in a broader sense that
the image ϕ̃(1F1

) of the identity 1F1
may not be the identity 1F2

, and
• ϕ is an element in Hom(A1, A2) ⊗ Q which is (F1, F2)-equivariant in the
sense that ϕ ◦ ι1(a) = ι2(ϕ̃(a)) ◦ ϕ for all a ∈ F1.

Note that if the map ϕ̃ : F1 → F2 as above is surjective, then ϕ̃(1F1
) = 1F2

(as
ϕ̃(1F1

)y = y for all y ∈ F2), i.e. it is also a ring homomorphism. A reason we need
to allow more general maps ϕ̃ is as follows. Let (Ai, ιi) be an Fi-abelian variety for
i = 1, 2, and ι1 × ι2 : F1 × F2 → End(A1 × A2) the product map. Then the map
ϕ = idA1

×0 : A1 → A1 × A2 is an (F1, F1 × F2)-equivariant with respect to the
map ϕ̃ = idF1

×0 : F1 → F1 × F2. The latter map is not a ring homomorphism.
Clearly two objects A1 and A2 in B are isomorphic if and only if there is a

Q-algebra isomorphism ϕ̃ : F1 ≃ F2, and an (F1, F2)-equivariant quasi-isogeny
ϕ : A1 → A2 over Fp.
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The category B is not yet good enough in comparison with the category of
abelian varieties with fixed endomorphism structures; there are simply too many
morphisms ϕ̃ among the fields F . For example, when F1 = F2 = F , the usual
notion of morphisms between two F -abelian varieties would require ϕ̃ to be the
identity and not an arbitrary automorphism as in the category B.

We introduce another category Brig, which we call the category of basic abelian
varieties with rigidified endomorphisms over Fp up to isogeny. The objects of Brig

consist of all tuples (F, x,A, ι) over Fp, where (F,A, ι) is an object in B and x ∈ F
is an element generating F over Q. Suppose (F, x,A, ι) is an object in Brig, let

Q[t] → F be the natural surjective map sending t to x, and f : Q[t] → End0(A)
be the morphism obtained by composing with the map ι. Given two objects Ai =
(Fi, xi, Ai, ιi) in Brig (i = 1, 2), a morphism ϕ : A1 → A2 in Brig is an element
ϕ ∈ Hom(A1, A2) ⊗ Q such that ϕ ◦ f1(a) = f2(a) ◦ ϕ for all a ∈ Q[t], where fi :
Q[t] → End0(Ai) are the maps associated as above. In the case when F1 = F2 = F ,
we have

HomF ((A1, ι1), (A2, ι2))⊗Z Q = HomBrig((F, x,A1, ι1), (F, x,A2, ι2))

for any element x generates F over Q, which recovers the usual notion of morphisms
of F -abelian varieties (though we may not really want the additional structure x).

We shall embed AFq
as a full subcategory of Brig. As the first step, we prove the

following result.

Proposition 4.1. Let A be an abelian variety over Fq and πA its Frobenius en-

domorphism. Put F := Q(πA) and ι : F → End0(A) for the inclusion. Then the

F -abelian variety (A, ι) is basic.

Proof. Suppose that the finite field k has q = ps elements. Let A ∼ Πt
i=1A

ni

i

be the decomposition into components up to isogeny, where each abelian variety
Ai is simple and Ai 6∼ Aj for any i 6= j. Let πi be the Frobenius endomorphism

of Ai and put Fi := Q(πi). Then we have F =
∏t

i Fi. Let Σp,i be the set of the
primes p of Fi over p. Thus, Σp is the disjoint union of Σp,i for i = 1, . . . , t. Let
N (resp. Ni) be the isocrystal associated to the F -abelian variety A = (A, ι) (resp.
Ai = (Ai, ιi)). Clearly if p ∈ Σp,i then Np = Nni

i,p. In particular, Np is isotypic for
all p ∈ Σp if and only if Ni,p is isotypic for all i and all p ∈ Σp,i. It follows from
Lemma 3.1 that A is basic if and only if Ai is basic for all i = 1, . . . , t. Therefore,
it suffices to prove the statement when A is simple. In this case, as F s = π and
π ∈ Fp, the component Np has slope ordp(π)/s.

By Lemma 3.1, if K is any commutative semi-simple Q-subalgebra of the endo-
morphism algebra End0(A) which is stable under a Rosati involution and contains
F , then (A, i) with i : K ⊂ End0(A), is also a basic K-abelian variety. Our way of
making A into a basic abelian variety with endomorphism structures as in Propo-
sition 4.1 is, after a suitable base change, the most “economical” one. Namely, one
uses the least endomorphisms.

Proposition 4.2. Let A be an abelian variety over Fq such that End(A) = End(A),

where A = A ⊗ Fp. Suppose that K is a commutative semi-simple Q-algebra ad-

mitting a positive involution, and (A, ι) is a basic K-abelian variety. Then ι(K)

contains the center F of the endomorphism algebra End0(A).
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Proof. Let π be the Frobenius endomorphism of A. Then for any positive
integer n one has F = Q(πn) as F is the center of the endomorphism algebra
End0(A⊗Fq

Fqn). Now using Lemma 3.4, there is a positive integer n such that πn

is contained in ι(K). As a result, the center F is contained in ι(K).

Now we define a functor Φ : AFq
→ Brig as follows. To each abelian variety A

over Fq we associate a tuple (F, πA, A, ι), where πA is the Frobenius endomorphism

of A, F := Q(πA), A := A⊗Fq
Fp and ι : F → End0(A) is the inclusion. Clearly we

have the associated map

(4.1) Φ∗ : Hom(A1, A2)⊗Q → HomBrig (Φ(A1),Φ(A2))

as ϕ ◦ ι1(πA1
) = ι2(πA2

) ◦ ϕ for any map ϕ ∈ Hom(A1, A2)⊗Q.

Theorem 4.3. The functor Φ : AFq
→ Brig is fully faithful.

Proof. Let A1 andA2 be two abelian varieties over Fq, and let Ai := (Fi, πi, Ai, ιi)
be the associated object in Brig for i = 1, 2. We must show that the associated map
Φ∗ in (4.1) is bijective. It is clear that Φ∗ is injective. Let f : A1 → A2 be an ele-
ment in HomBrig (Φ(A1),Φ(A2)), particularly π2f = fπ1. As σq(f) = π2fπ

−1
1 = f ,

where σq ∈ Gal(Fp/Fq) is the Frobenius map, the morphism f is defined over Fq.

4.2. We restrict the functor Φ to the objects for which the endomorphism algebras
have a common center. Fix any abelian variety A0 over Fq. Let π0 be the Frobenius
endomorphism of A0 over Fq, p(t) ∈ Z[t] its minimal polynomial over Q and F :=
Q[t]/(p(t)). A commutative semi-simple Q-algebra F arising in this way is called a
q-Weil Q-algebra.

Let Aπ0,Fq
denote the full subcategory of AFq

consisting of all abelian varieties
A such that the minimal polynomial of the Frobenius endomorphism of A is equal
to p(t). In other words, every abelian variety A over Fq in Aπ0,Fq

shares the same
simple components of A0 up to isogeny.

Let BF denote the category of basic F -abelian varieties over Fp up to isogeny.
Similarly we define a functor

(4.2) ΦF : Aπ0,Fq
→ BF , A 7→ (A, ι),

where A := A⊗Fq
Fp and ι : F → End0(A) is the ring monomorphism sending t to

πA. By Theorem 4.3, we obtain the following result.

Proposition 4.4. For any q-Weil Q-algebra F = Q(π0), the functor ΦF : Aπ0,Fq
→

BF is fully faithful.

Remark 4.5. The functor ΦF is usually not essentially surjective. For example take
q = p2 and π0 = pζ6 with p ≡ 1 (mod 3). The corresponding abelian variety A0 is
a simple supersingular abelian surface, and any object in Aπ0,Fq

is isogenous to a

finite product of copies of A0. However, as F = Q(
√
−3) and p splits in F , there is

an ordinary elliptic curve E over Fp and there is an isomorphism i : F ≃ End0(E).
The F -elliptic curve (E, i) is clearly in BF but is not isogenous to a finite product
of copies of A0. In this case the functor ΦF is not essentially surjective. A point is
that different Weil numbers can generate the same field.
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5. A mass formula

5.1. Within a simple isogeny class. Let π be a Weil q-number, F = Q(π) the
number field generated by π over Q, and OF the ring of integers in F . Let Isog(π)
denote the simple isogeny class corresponding to π by the Honda-Tate theory [8].
Let A0 be an abelian variety over Fq in Isog(π) and put d := dim(A0).

Let Λ(π) denote the set of isomorphism classes of abelian varieties over Fq in
Isog(π), and Λ(π)max ⊂ Λ(π) be the subset consisting of all abelian varieties A such
that the ring OF is contained in End(A). Let Bd,OF

denote the set of isomorphism

classes of d-dimensional basic OF -abelian varieties over Fp.
The following lemma follows from Proposition 4.4.

Lemma 5.1. The association A 7→ (A, ι) induces an injective map Φπ : Λ(π)max →
Bd,OF

.

If A ∈ Λ(π)max is an abelian variety over Fq and (A, ι) the corresponding basic

OF -abelian variety over Fp, then clearly any OF -linear polarization λ on (A, ι)
descends uniquely to a polarization λ on A over Fq. Particularly, the map λ 7→ λ̄
gives rise to a one-to-one correspondence between polarizations on A and OF -linear
polarizations on (A, ι) over Fp. It follows that A admits a principal polarization

if and only if (A, ι) admits a principal OF -linear polarization. Moreover, we also
have a natural isomorphism of finite groups

(5.1) Aut(A, λ) ≃ Aut(A, λ, ι).

Now we let Λ(π)max
1 be the set of isomorphism classes of principally polarized

abelian varieties (A, λ) over Fq such that the underlying abelian variety A belongs
to Λ(π)max. The set Λ(π)max

1 could be empty; nevertheless, it is always finite. This
follows from the finiteness of the set Ad,1(Fq) of Fq-rational points of the Siegel
modular variety Ad,1,

Let Ad,OF ,1 be the moduli space over Fp of d-dimensional principally polarized

OF -abelian varieties, and Bd,OF ,1 ⊂ Ad,OF ,1(Fp) be its basic locus. Then the map
Φπ induces an injective map

(5.2) Φπ : Λ(π)max
1 → Bd,OF ,1.

We have the following commutative diagram

Λ(π)max
1

Φπ−−−−→ Bd,OF ,1

y y

Λ(π)max Φπ−−−−→ Bd,OF
,

where the vertical maps forget the polarization.
The mass of Λ(π)max

1 is defined as

(5.3) Mass(Λ(π)max
1 ) :=

∑

(A,λ)∈Λ(π)max
1

|Aut(A, λ)|−1

if it is nonempty, and to be zero otherwise. Similarly, any finite subset S ⊂
Ad,OF ,1(Fp), the mass of S is defined as

(5.4) Mass(S) :=
∑

(A,λ,ι)∈S

|Aut(A, λ, ι)|−1
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if S is nonempty and Mass(S) = 0 otherwise. It follows from (5.1) that

(5.5) Mass(Λ(π)max
1 ) = Mass(ImΦπ).

5.2. An example with π =
√
p. We consider a special case of the previous con-

struction when π =
√
p. The result we obtain is the following.

Theorem 5.2. Let π =
√
p. Then the finite set Λ(π)max

1 is nonempty and we have

(5.6) Mass(Λ(π)max
1 =

1

4
ζQ(
√
p)(−1).

We need a general result.

Proposition 5.3. Let F be a totally real field, O := OF⊗ZZp and k an algebraically

closed field of characteristic p > 0.
(1) Let M = (M, 〈 , 〉, ιM ) be a supersingular separably quasi-polarized Dieudonné

O-module over k satisfying the following condition

(∗) tr(ιM (a)) · [F : Q] = (rankW M) · trF/Q(a), ∀ a ∈ OF .

Then there is a supersingular principally polarized OF -abelian variety A = (A, λ, ι)
over k whose Dieudonné module M(A) is isomorphic to M .

(2) Assume that p is totally ramified in F . Then for any supersingular Dieudonné

O-module M = (M, ιM ) over k of W -rank 2[F : Q], there is a principally polarized

OF -abelian variety A = (A, λ, ι) over k such that the Dieudonné O-module M(A, ι)
is isomorphic to M .

Proof. (1) By [13, Theorem 1.1], there is a (prime-to-p degree) polarized OF -
abelian variety A = (A, λ, ι) such that M(A) ≃ M . We can choose a self-dual
(OF ⊗ Zℓ)-lattice Lℓ in Vℓ(A) with respect to eλ,ℓ for each prime ℓ 6= p with
Lℓ = Tℓ(A) for almost all ℓ. The proof of the existence of such a lattice Lℓ is
elementary and left to the reader. Then there is an OF -abelian variety (A′, ι′)
and a prime-to-p degree OF -linear quasi-isogeny ϕ′ : (A′, ι′) → (A, ι) such that
ϕ′∗(Tℓ(A

′)) = Lℓ for all ℓ 6= p. Then the pull-back λ′ := ϕ∗λ by ϕ is a principal
polarization as Lℓ is self-dual. The object (A′, λ′, ι′) is a desired one.

(2) Since there is only one prime of OF over p, the condition (∗) is satisfied.
By [10, Proposition 2.8], the Dieudonné O-module M admits a separable O-linear
quasi-polarization, noting that an equivalent condition (5) of loc. cit. is satisfied
when p is totally ramified. Then the statement follows from (1).

Now we return to our case F = Q(
√
p), where O = OF⊗Zp = Zp[

√
p]. The prime

p is ramified in F with ramification index e = 2. Clearly any member A in Λ(π)max

is a superspecial abelian surface over Fp. The Dieudonné module M = M(A) of
A is a rank 4 free Zp-module together with a Zp-linear action by OF . Therefore,
M ≃ O2 on which both the Frobenius F and the Verschiebung V operate by

√
p.

From this the Lie algebra Lie(A) = M/VM of A is isomorphic to Fp ⊕ Fp as an
(OF /p)-module. In other words, A has Lie type (1, 1) in the terminology of [10,
Section 1]. Therefore, the injective map Φπ : Λ(π)max → B2,OF

factors through
the subset S ⊂ B2,OF

of superspecial abelian OF -surfaces of Lie type (1, 1).
We first claim that the induced map

(5.7) Φπ : Λ(π)max → S
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is bijective. Fix a member A0 ∈ Λ(π)max. By Waterhouse [9, Theorem 6.2], there
is a natural bijection between the set Λ(π)max and the set Cl(End(A0)) of right
ideal classes. Since the map Φπ is injective, it suffices to show that S has the same
cardinality as Cl(End(A0)). Note that the isomorphism classes of (unpolarized)
superspecial Dieudonné O-modules are uniquely determined by their Lie types [12,
Lemma 3.1]. It follows that the Dieudonné modules and Tate modules of any
two members in S are mutually isomorphic (compatible with the actions of OF ).
By (the unpolarized variant of) [12, Theorem 2.1], there is a natural bijection
S ≃ Cl(EndOF

(A0)). Since we have End(A0) = EndOF
(A0), our claim is proved.

Let S1 ⊂ B2,OF ,1 be the subset consisting of objects (A, λ, ι) so that the un-
derlying abelian OF -surface (A, ι) belongs to S. Proposition 5.3 implies that S1 is
nonempty. Consider the commutative diagram

(5.8)

Λ(π)max
1

Φπ−−−−→ S1

fΛ

y fS

y

Λ(π)max Φπ−−−−→
≃

S

Note that a member A in Λ(π)max admits a principal polarization if and only if
Φπ(A) = (A, ι) admits a principal OF -linear polarization. Moreover, the equiva-
lence classes of principal polarizations on A are in bijection with the equivalence
classes of principal OF -linear polarizations on (A, ι). It follows that the diagram
(5.8) is cartesian, which particularly implies that the map Φπ : Λ(π)max

1 ≃ S1 is an
isomorphism. Thus, we have proved Mass(Λ(π)max

1 ) = Mass(S1).
Now we use the mass formula for Mass(S1) [12, Theorem 3.7]∗

(5.9) Mass(Λ(π)max
1 ) = Mass(S1) =

1

4
ζF (−1);

this proves Theorem 5.2.

5.3. Fibers of the map fS. We describe the fibers of the map fS in (5.8). Suppose
(A, λ0, ι) is a member in S1. Put D := End0OF

(A) and OD := EndOF
(A). Then D

is the quaternion F -algebra ramified only at the two real places of F and OD is a
maximal order. Note that the canonical involution ′ is the unique positive involution
on D. Therefore the Rosati involution induced by any OF -linear polarization must
be ′. Suppose λ is another OF -linear principal polarization, then λ = λ0a for some
totally positive symmetric element a ∈ O×D, so a ∈ O×F,+, the set of totally positive

units in OF . Suppose b ∈ AutOF
(A) is an OF -linear automorphism. Then the

pull-back
b∗(λ0a) = btλ0ab = λ0λ

−1
0 btλ0ba = λ0(b

′b)a.

Therefore, the set of equivalence classes of principal OF -linear polarizations on
(A, ι) is in bijection with the set O×F,+/Nr(O

×
D), where Nr : OD → OF is the

reduced norm. In other words, we obtain an isomorphism

(5.10) f−1S (A, ι) ≃ O×F,+/Nr(O
×
D).

∗There is an error in the computation of the mass formula there. The error occurs in Lemma

3.4 of loc. cit., where the unramified quadratic order O
F

′

p
of OFp

cannot be written as OFp
[
√

c]

when p = 2 as stated. As a result, the order Aǫ when ǫ = 0 as in Lemma 3.4 should be maximal,

and the term op should be always one in that paper, particularly in the formulas of Theorems 4.4

and 4.5.
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As Nr(O×D) ⊃ (O×F )
2, the groupO×F,+/Nr(O

×
D) is a homomorphism image ofO×F,+/(O

×
F )

2.
The latter group has 1 or 2 elements according as the fundamental unit ǫ of F has
norm −1 or not. Therefore, if N(ǫ) = −1, then f−1S (A, ι) has one element. Other-

wise, the fiber f−1S (A, ι) has at most two elements.
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