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MAASS SPEZIALSCHAR OF LEVEL N
BERNHARD HEIM

ABSTRACT. In this paper the image of the Saito-Kurokawa lift of level N with
Dirichlet character is studied. We give a new characterization of this so called
Maass Spezialschar of level N by symmetries involving Hecke operators related
to T'g(N). We finally obtain for all prime numbers p local Maass relations. This
generalizes known results for level N = 1.

1. INTRODUCTION

In 2012 [Ib12], T. Ibukiyama gave a systematic treatment of Saito-Kurokawa lifts
of level N with possible Dirichlet character. First results in the classical setting had
been obtained by B. Ramakrishnan, M. Manickham, and T. Vasudewa [MRV93].
In this paper, we study the image of the lifting, the Maass Spezialschar of level
N. We obtain a new characterization by symmetries, generalizing previous work
on liftings for the full Siegel modular group of degree two [Hel(O]. We refer to the
original literature [Ma791, Ma791II, Ma79ITI, [Ku78] and [Za80] for the Saito-Kurokawa
conjecture and the Maass Spezialschar. An excellent introduction is given in [EZ85].
See also Oda’s general viewpoint of theta lifts [Od77].

Let F' € M?(T3(N),x) be a Siegel modular form of Hecke type of integral weight
k, degree 2 and level N with Dirichlet character x. Here x(—1) = (—1)*.

Let An(I) be the set of all integral matrices g = (%) with determinant I, with N|c
and (a, N) = 1. We put x(g) := x(a) and T'o(N) = An(1). Let | be the Petersson
slash operator and g™ be two dual embeddings of Ay(I) into the symplectic group
Spa(R). Then we have the following new characterisation of the Maass Spezialschar.
The Siegel modular form F € MZ(T3(N), x) is a lift if and only if for all [ € N:

(1.1) Yo x0T (Flg) = D> x(9) (Fligt). (1)

g€lo(N\AN (1) gelo(N\AN (1)

The level one case was previously proven [HelO] by working out the relation of the
Taylor expansion and properties of certain differential operators. In this paper we
give a new and more simple proof by studying the Fourier-Jacobi expansion. This ap-
proach, involving well-known properties of the Hecke algebra H(I'o(V), Ax) ([Mi06])
is more transparent and natural. Here Ay is the union of all Ay(l). The Hecke al-
gebra is commutative, zero-divisor free and decomposes in local components. Hence
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it is sufficient to check the symmetries only locally, which leads finally to the result
that [ is in the Maass Spezialschar iff (x,) is satisfied for all primes p. Of course
the symmetries degenerate if p|N. For further generalisation, note that the following
identity in the Hecke algebra ?—[(Fo( ), Ay) is crucial.

(1.2) T(m) - Y dTdd)T (d2)

d\mn
(d,N)=

The element T'(1) degenerates if (I, N) > 1 (see Miyake [Mi06], Theorem 4.5.13 (i)).
The symmetries (%;) encode a new type of Maass relations for Saito-Kurokawa lifts
of Hecke type. Let X denote the set of half-integral positive semi definite matrices

(;}2 % 2) Let X* be the subset, where the zero matrix is removed. We put A(7T") = 0

if T ¢ X. Let '€ MZ(T3(N), x) with Fourier coefficients A(T) = A(n,r,m). Then
F'is in the Maass space iff for all 7' € X* and [ € N:

1y nl r b1y r ml
13 Y d <d2,_, ) S d (nad_)
d|(n,r,l) d|(l,rym)
Here (n,r,l) denotes the greatest common divisor. As a consequence we obtain the
useful application that F'is in the Maass Spezialschar iff for all T" € A* and for all
prime numbers p the following Maass p-relations are satisfied:

(1.4) A(pn,r,m) + p*x(p)A (%, %, m)

_ T m

This gives a significant generalization to the known Maass p-relations for N =1 (see
the survey [FPRS13] for further background information). Note x(p) = 0 iff p|N.
For p|N we have A(pn,r,m) = A(n,r,pm). In the literature (see [EZ85], [[b12]) the
equivalent Maass relations are stated as

b1y nm r
(1.5) Anyrom) =Y d (?,3,1)
d|(n,r,m)
for all T € X*.

Recently [HM15], together with Murase, we had been able to use a multiplica-
tive version of the symmetry principle (x;) to give a characterization of holomorphic
Borcherds lifts and a new proof of Bruiniers converse theorem for the discriminant
kernel group. Borcherds proved that his lifts have certain special divisors and Bru-
inier proved that if a form has these special divisors, then the form is a lift. We refer
to [Brl6] for recent developments. It would be interesting to transfer some of the
results of this paper to the theory of Borcherds lifts for congruence subgroups.
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2. MODULAR FORMS

For basic facts about elliptic modular forms and Hecke theory we refer to [Sh71l
Mi06]. For Siegel modular forms especially of degree 2 we recommend [EFr83], [An87]
and |[EZ85] (also standard reference for Jacobi forms).

2.1. Preliminaries and Basic Notations. Let R be a subring of the real numbers
R and let N, k, n,r,m usually denote integers. Let x be a Dirichlet character modulo
N. We denote e(Z) := exp(trace(Z)) for every suitable matrix Z. The symplectic
group GSpT(n,R) of positive similitudes of degree n acts on the Siegel upper half
space H,,. Further let F' be a holomorphic function on H,, and let v = (4 8) €

GSp*(n,R) and Z € H,,. Then

v(Z) =(AZ+ B)(CZ+ D)™
Flyy (Z)  =det(CZ + D)™ F((2))
¥ = det(y)
a 0 b 0
. _lo1oo
T T lecodo
0001
1000
0 a0 b a b
1 _ _
0 ¢c 0 d
Ay = {a = (CCL Z) € GLF (Q)NZ**| (a,N) =1, Nle, det(a) > O}
Sp(n,R) = {y € GSp*(n, R)| det(y) = 1}
I'(N)  ={yeSp(n,Z) | C=0 (mod N)}.

Let v € F(()")(N), we extend x by x(v) := x(det(D)). We identify GLo(R)" with
GSp*(1, R) and SLs(R) with Sp(1, R), and drop the index n = 1 for simplification.
In the case n = 2 we also identify

7 = (Tl Z) with (71, 2z, 72).
zZ To
We further put
X::{T:(” T/Q)\n,r,meZ,TZO}.
r/2 m

Then X* := X — (§9) and Xt := {T € X|T > 0}. We identify T with (n,r,m).
Note that for all T" with det(7") = 0 there exists a U € SLy(Z) such that T[U] :=
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U'TU = (1,0,0) with [ € Ny. Let us further denote by d|(n,m) or d|(n,r,m) that d
divides the ged of the involved numbers. The condition d|(0,0,0) is empty.

2.2. Modular forms of level N.

Definition. Let k, N be natural numbers. Let x a Dirichlet character modulo N. Let
I’ be a congruence subgroup of F(()")(N). A holomorphic function F on H,, is denoted
Siegel modular form of weight k, degree n and Dirichlet character x with respect to
[ if for all g € T' the functional equation

(2.1) Flg = x(9) F

1s satisfied. In the case n = 1 we additionally have to propose that F' is regqular at
the cusps. The space of these forms is denoted by M (T, x).

We refer briefly to the behavior of Saito-Kurokawa lifts at the cusps. The main
focus of this paper is the characterization of lifts independent of their Fourier expan-
sion, Although we consider the expansion at infinity to some extent.

Definition. We denote by SP(I',x) the subspace of cusp forms. These are F €
MT, x) with F|yy vanishing at all boundaries.

See [Fr83), [Mi06] and also [Ib12] for a more explicit version of the definition, guided
by the Satake compactificaton. In a nutshell, let F' be holomorphic on H,, satisfying
the functional equation for all elements of T'. Let V(Yp) := {Y e R™"|Y > Y, > 0}
for Yy positive definite and I'y kernel of x on I'. Then F € M}(I, x) iff F|y is
bounded on V (Yp) for all Y; and v € I', \Sp(n, Z). This property is always satisfied
for n > 1 (Koecher principle) and has only be checked for n = 1.

Further F' € SP(L', x) iff ®(F|y) = 0 for all v € I',\Sp(n, Z). Here ® is the Siegel
lowering operator. We refer to Freitag ([Fr83], chapter 1I, Satake compactification,
see also section 3.1 and 3.2 [Ib12]).

Remark. Let n = 2 then it is sufficient to check to cuspidality for the representatives
of

v € I\\Sp(2,2)/Co1(Z).
Here Cy;(Z) is the subgroup of Sp(2,Z) with last row given by (0001).

2.3. Fourier and Fourier-Jacobi expansion. Let I' be a congruence subgroup of

I, S ot 22
(2 $)1sosez).

Then F' € M?(T, x) has the Fourier expansion
(2.2) F(Z) = ) A(T)e(TZ)
Tex

(2.3) = Y A(n,r,m) e(nmy + rz +mm)

(n,r,m)ex

Sp(2,7Z) containing
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In the following we will also put ¢; = e(71),( = e(2) and ¢ = e(72). Note that F' is
a cusp form then A(T) =0 for all T € X*. Note that the converse is not true. The
Fourier-Jacobi expansion of F'is given by

(2.4) F(r,2,m) =Y Fu(n,2) ¢"
m=0

Then F,, is called the m-th Fourier Jacobi coefficient of F. It is a Jacobi form of
weight k£ and index m. Note that F,, is a Jacobi cusp form, if F'is a cusp form.

2.4. Jacobi Group. We consider the Jacobi group G”(R) as the semi-direct product
of GLF (R) and the (additive written) Heisenberg group

H(R) = {h= (1, A 5) | 1 A k€ R}
(see [Ib12], Section 2). We consider h® = (), u) as a row vector. Then
G'(R) = {(9.h) | g € GL3 (R), h € H(R)} .

The explicit group operation is given by:

(91, 71) (g2, ha) = (192, det(ga) ™" (h] g2, k1) + ha).
We further define the following subgroups and monoids of G7(Z).

To(N) = {(9,h) € G'(Z)|g € Ty(N)}
Aﬁ = {(g,h) € G/(R)|g€ Ay and h € H(Z)} )

Let H/ :=H x C. Let v = (48) € GSpT(n,R). Let g = (¢%) € GLF(R) with
det(g) =l and h = (u, A\; k) € H(R). Let f be a complex valued function on H’ and
Fon H,. Let k,m € N,.

~

f(r, z,72) = f(m,2) e(mmy), for (m,z,7) € Hy

a 0 b 0

oz oo

g e 0 d 0
00 0 1
1 00 pu

~ I AR

h o 0 1 =)
00 0 1

G/(R) = {gﬁ | g€ GLI(R),h € H(R)}.

Obviously the map * is a group isomorphism between G7(R) and G’(R), where the
semi-direct product structure can be recovered. Let (g1, h1), (92, h2) € G'(R). Then

—

(91,1092, 12) = (5i33) (3" Iz
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—

32 'higs € H(R).

2.5. Jacobi Forms of level N. In this section we recall the definition of Jacobi
forms of level N with Dirichlet character. Let f: H x C — C and k,m € Ny. Let
g’ = (g,h) € G’(R) with det(g) = [. Then we attach to f the function f defined by

(2.5) (F165") (r1,2.72) = (71, 2) e(=mim).
This leads to a canonical action of G/(R) on H” and the definition of Jacobi forms.
This avoids explicit calculations and displays the essential properties directly.

Definition. Let ® be a holomorphic function on H’. Let k,m € Ny. Let x be a
Dirichlet character modulo N. Let I'V be a congruence subgroup of G’ (Z) with the
same Heisenberg part. We denote by ® a Jacobi form of weight k and index m with
character x with respect to I'Y if ® satisfies:

(1) lemg” =x(9)®,  forall g’ = (g,h) €T’
(ii) For any g € GL3(Q), ®|x.mg has the Fourier expansion

S ) " ¢

r,neQ
where ¢ (n,r) = 0 unless 4nm — r? > 0.

We say ® is a Jacobi cusp form if ¢?(n,r) = 0 unless 4nm — r* > 0 is satisfied.
The space of Jacobi form is denoted by Ji.m(I'7,x) and the subspace of cusp forms
by i (I, X)

Remark. The property(ii) needs only be checked for g € SLy(Z). Here the sum is
running over n € hy'Z, v € Z with ¢?(n,r) = 0, unless 4nm — 7> > 0 (and > for
being a cusp form).

Remark. Let F be a cusp form for a congruence subgroup on Hy. Then F' vanishes
at every cusp. Equivalent the Fourier expansion at each cusp has only support
(parametrization of Fourier coefficients) at positive definite half-integral matrices.
Hence at each cusp the Fourier Jacobi coefficients are Jacobi cusp forms.

Next we recall the definition of the index shift operator V;, (see [Ib12], section 3)
and finally define the Saito-Kurokawa lift.

Definition. For x a Dirichlet character modulo N and an element of Ay

(2.6) x(25) = x(a).

Definition. Let k, N € N and let x be a Dirichlet character modulo N. Let ® €
Jm(Do(N), x), m € Ng. Then we define for alll € N the index shift operator:

W,X : Jk,m(FO(N)u X)J — ']k,ml(FO(N)v X)J
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given by the explicit construction

Vie @) =11 > x(9) Blemg

geTo(N\AN (1)
= Y @) (er +d) e a(g(r), CTZicﬁ
geTo(N\AN (1)
= I"VE(D).
Here (25) and g(7) = Z:S

Definition. Let x be a Dirichlet character modulo N. Let ® € Ji,(Lo(N)7, x).
Then Ly (P) is called the Saito-Kurokawa lift of ®. It is defined by

T Z

(2.7) Ly (D) ( ) = ¢(0) frx (1) + Z Vin (D) (71, 2) e(lz).

z T2

Here ¢(0) is the constant term of ®. For the definition of the Eisenstein series f
we refer to [Ib12], section 3.2.

Theorem 3.2 and Theorem 3.6 [Ib12] states that £ is a linear injective map to
My(TJ(N),x). If ® is a cusp form. Then L£(®) is a cusp form. The image of L is
called Maass Spezialschar of level V.

3. HECKE THEORY

References: Krieg [Kr90], Miyake [Mi06], Shimura [Sh71]. Let G be a group and
I' a subgroup. Two subgroups are commensurable if the intersection has finite index
in each of the two subgroups. Let [ be all elements g € T such that gI'g~! is
commensurable with the subgroup I itself.

Let A C G be a monoid and = a set of commensurable subgroups I' of G, such
that ' C A C I'. Let R be a commutative ring with 1. Then we denote by

Hr(T,A) = {Z a,T'al’ | a, € R and a, = 0 for almost all a}
aeA

the free R-module generated double cosets. Let further R[I'\A] denote the free R-

module generated by the ' cosets, where a € A.

Next, let A act on a R-module M by m ~ m® Let M" be the submodule
of I'-invariant elements of M. Let I'al’ = U;I'a; € R[I'\A] be the disjoint coset
decomposition. This identification leads to Hp([', A) = R[[\A]'. Note that H =
Hr(T,A) acts on M via

m|lal := Zmai.

Note that m is in general not invariant by I", but by a 'T'aNT. Let M = R[T\AJ.
Then the action of H on M implies the following multiplication of double cosets. Let
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lal’ = U;T'a; and I'BT = L;I'B;. Then

(3.1) Tal oIAT =Y T,
Y

where
¢y = 8{(@,)) |[Tesff; =T}

3.1. Representations of Hecke algebras. We make the assumption that G =
GL$(R) and T a Fuchsian group with finite character x. Let H be the Hecke algebra
attached to the Hecke pair (I', A). We further assume that

(i) x can be extended to a character of A and
(i) that for « € A and v € T with al'a™! € T":
x(aya™) = x(7).
Let = be the set of all subgroups of I' of finite index. Let k € Z be fixed. Let I'; be
any element of =. Let M (I'1, x) be the vector space of holomorphic functions on H
(and the cusps) satisfying:

(fls7) (1) = Gy, m) " f((7))
= x(v) f(r) for all v € I';.
Then A acts on the Z-module
M = U My (v, x)
I'he =
by mapping f € M(T'y, x) to an element f* € My(T'y Na™'Ta, x):
= f = x(a) flra
(here we apply property (ii) from above). Let I'al’ = U;T'a;. Then the operation of
of the Hecke algebra H on M' is given by
(3.2) fICal =" fo.

This extends linearly to h € H and called Hecke operators. We refer to Miyake [Mi06],
Remark 2.8.1 and 2.8.2 for a short discussion on elements of the Hecke algebra and
Hecke operators.

3.2. Structure of the Hecke Algebra H(I'o(N), Ay).

Let x be a Dirichlet character modulo N. We have extented (2.6) to Ay in such a
way that (ii) is satisfied. The Hecke theory applies to G = GLj (R),A = Ay, =
I'o(N) and R =Z. Let H = H(To(N),An). Let [a,d] be the diagonal matrix (9).
Every double coset

To(N) aTo(N) = To(N) [a, d] To(N) =: T(a, b)
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can be uniquely represented by a diagonal matrix [a, d|, where (a, N) = 1, a|d, and ad =
det(a). Further let

(33) T = > T@d= || T (g5 =To(N\Ax().
ad=l, a|d, ad=l, (a,N)=1,
(a,N)=1 b mod d

Here we identified double cosets with elements in

Z[Do(N)\A o),
Double cosets decompose in local components. Let a;|d; and as|ds. Then
(3.4) T(ayaz,didy) = T(a1,dy) o T(ag, ds) if (di,ds) = 1.

The Hecke algebra is commutative and decomposes as a restricted tensor product in
local Hecke algebras H, for all prime numbers p.

H = ®,H,,

where H,, is generated by T'(p) and T'(p,p) if p fN and T'(p) otherwise. Hence for
every h € H, with (p fN) we have h € Z[x,y], where

v o= Tp)=ToN) (57) || To)(6)
b (mod d)
y = T(p,p)=To(N)(5,)-
Let p|N. Then h € Z[T (p)], where

T = || To(N) ((1] Z) for p|N.

b (mod d)

We will transfer the result of [Mi06], Theorem 4.5.13 (1) to the theory of lifts.

Theorem 3.1. Let m,n are natural numbers. Then we have the following identity
in the Hecke algebra H(T'o(N), An).

(3.5) T(m)oT(n)= Y dT(dd)T (%) .
dl(mn)
(d,N)=1

To apply the general theory define = to be the set of all subgroups of I'o(/NV) and
M = Mu(T,x).
rez

Then Ay operates on M by f® := x(«) flzga. The Hecke algebra operates on
MPoMN) - Actually it already operates on M (To(N),x). We are mainly interested in
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the operation of T'({,1) and T(I) on M),
o= TAO() = M =X f
— a b
FoeTon= X N@i ()
ad=l, (a,N)=1

b (mod d)

We have the two Hecke algebras H := H(I'o(N)), Ay) and H’ := H(TI(N)),A).
We are mainly interested in the image of the embedding

i H =M, To(N)alg(N) = To(N)” @ To(N)”.
This map respects the coset decomposition
| |To(N) ai = | |To(V) &

Note that this property is implicitly used in the definition of the operator Vi (1) in
[EZ85], [Ib12] (see also [He99], section 3). Let

(3.6) M= U Jem (T x H(Z), x).

Here = denotes the set of all congruence subgroup of I'y(N). Let a € Apn(l), then
M) — MY, ® s & where ® € J;,,,(I'J(N), x). Then

BITY(N)aTy(N) = Y 0% € Jpm(IF(N),x)

= Zm D[k mav;.

We frequently switch between ® and ® and consider « as element of A N, A%, and A N
accordingly. We make all the obvious identifications if clear from the context. Note
that cusp forms map to cusp forms. Finally we perform the translation of the formula
(B into the Hecke-Jacobi algebra. Note that a priori it was not clear that this is
possible, since the general Hecke-Jacobi algebra is not abelian and has zero divisors
[He99]. Let VO(m) correspond to T'(m) and VO(d,d) if (d, N) = 1 as elements of H”.
Then we obtain inside the Hecke algebra H(I'J(N), Ay) the important algebraic
identity

mn
(3.7) Vom)oVon) = 3 dV(d.d) V° (?)
Gl

4. MAIN RESULTS

The Maass Spezialschar of level N is given by
(4.1) M (T(N), x) = {Lnx(®) | © € Jiea(Tg (V) 1) } -
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The subspace of cusp form we denote by S;**(I'2(N), x). A Siegel modular form
FMZ2(To(N)7,x) is in the Maass Spezialschar iff all the Fourier coefficients of F
satisfy the general Maass relations
1y, nm

(4.2) A(n, r,m) § nzm d (?,3,1) .
See also [Ib12]section 3.4 and the observations at the end of the proof of Theorem [4.11
Our argument is the following. All Fourier coefficients A(T'), T € X'* are determined
by the first Fourier-Jacobi coefficient of F'. This is a Jacobi form of weight k£ and
index 1 of level N and the relations reflect exactly the definition of Ly .

In this section we prove that F' is a Saito-Kurokawa lift iff F' satisfies symmetries
(%) for all [ € N. We state two applications. First, it is sufficient to check (x,) for
prime numbers and second we obtain symmetric Maass relations (of course equivalent

to ({.2). Combined we obtain local Maass p-relations generalizing the known level
N =1 case, discovered first by Pitale, Schmidt and the author [FPRS13].

4.1. Maass Spezialschar and Symmetries. Saito-Kurokawa lifts, elements in the
Maass Spezialschar, can be characterized by symmetries. Note that these symmetries
(#;) for all [ € N make it possible to study Saito-Kurokawa lifts by properties of the
Hecke algebra H(I'o(N), Ay) originally constructed to study elliptic modular forms.

Theorem 4.1. Let k and N be positive integers. Suppose x is a Dirichlet character
modulo N satisfying x(—1) = (=1)k. Let F € Mk(F(()2)(N),X) be a Siegel modular
form of weight k, degree 2, and level N with Dirichlet character x. Then F is a
Saito-Kurowaka lift if and only if F satisfies for all | € N the symmetry relation (x;)
given by

(4.3) Y x0T (Flg) = D> x(9) (Flgt). (x).

9€lo(N\AN (1) g€To(N\AN ()
Proof. Note that (%) is well-defined, since
_ a b
X9 =x(o) =x(@ 5 g= (¢ §) € Ax(D) mdy o)

First we show that (x;) implies that the I-th Fourier-Jacobi (FJ) coefficients Fj of
F satisfy F; = V;,(F1). This implies that for F' € Sk(F((]z)(N), x) all FJ coefficients
are obtained by Vi, (F), where Fy € J;7P(IJ(N), x). Hence F = L, (Fy). For the
general case we refer to the end of this proof. Let

A= ((1) (1)) X (‘(/]Z J(z)*) _then A (T; :2) - (Tl,\/zz,m).

We deform (x;) on both sides by | A. This breaks the symmetry of (x;). Nevertheless
the projective matrices g™ become integral and the iff part of the Theorem still
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remains. Let (+{') be given by
44 Y x@ T (FRTTA) = D> x(9)t (FligtA). (")
gelo(N\AN (1) gelo(NN\AN (1)

We calculate the left side of (;'). Note that

o (ox ()

which implies that (F|,g"A) = I[*F|,g. This action is compatible with the FJ expan-
sion of F':

F(r,2z,m) = Z Fo(m1,2) 3 with go = e(72).

m=1

Finally we obtain for the [-th FJ coefficient of the left side of (') the expression
V2 (Fy).

Next we determine the I-th FJ-coefficient of the right side of (xi!). We fix for
Fo(N)\An (1) the special representation system (3.3]) and obtain:

S () @ (o)

a,deN; ad=l
b (mod d)

The [-th of this expression is equal to

3 (‘;)_k x(@) Fy(maz) [ )e<ég) ’

a,deN; ad=l b (mod d

which simplifies to [ F; (only the term d = [ contributes).

Conversely, assuming that V;, (F}) = F; for all implies (%;) for all [ € N by applying
a pure algebraic relation in a corresponding Hecke algebra. We start in comparing
the m-th Fourier Jacobi coefficients of both sides of (*f‘), where m = [; s and [, = .
We obtain for the left side:

ary +b
15 Z x(a) F, <7ld , a2, 1272)

a,d€N; ad=l
b (mod d)

=13 Vi (Fu) =15 1771 (Vig 0 Vi) ,) (F).

l2,x 2,X
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For the right side we obtain:

3 <g>_k x(@) Fy(raz) | e(%%)

a,d €N; ad=l2 b (mod d)
g\ *
= Z d A x(a) F%(Tl, az)
ad=lz, a|lx 2
= I a*" x(a) Fz (1, az)

= L)Y ot ()vlm (F1) (11, a2).

al(l1,l2)

The operator V%(a, a) is defined by

VO(a,a)(F)(Tl,z,Tg) = x(a) F|k(g 2)(7’1,2,7'2)
= x(a) a " F(1,az,a*n),

which leads to an action on Jacobi forms. Hence the right side is equal to

(4.5) (b)) a(Vo(a,@on??x) (F)-
(o)

Comparing the left and right side, we are left with showing the following identity
inside the Hecke algebra H(T'J(N), A%):

(4.6) Vo(m) o VO(n) Zdvodd)vo<d2>.
NG

This is pure algebraic and independent of the involved Jacobi forms and Fourier
Jacobi expansions. This formula has been obtained in section 3 on Hecke theory.

Finally we consider the case when F'is not necessarily a cusp form. Let A(n,r, m)
be the Fourier coefficients of F. Then (x;) implies that

(4.7) > dy <d2, ) >ty (n,0,0).
dl(n,l) dl
Let a(l) := A(l,0,0). Then we obtain
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All possible a(0) such that

(4.8) f(r) =3 a(n) ¢" € My(To,x)

n=0
are classified in [Ib12]. Hence F' is a Saito-Kurokawa lift in the sense of Ibukiyama.
O

4.2. Applications.

Corollary 4.2. Let F € M,?(F(()z)(]\f), X) with Fourier expansion
F(r,2z,m) = Z A(n,r,m) qi ¢" g5
T=(n,r,m)eX
Then the following properties are equal.

(i) F' is a Saito-Kurokawa lift (also called Maass lift)
(ii) All the Fourier coefficients of F satisfy:
nm r )

Alnyrm) = 3 A x(d) A (S 50

d| (n,r,m)

(iii) All the Fourier coefficients of F satisfy for all | € N:

1 nl r B b1 r ml
> ) A (G hm) = X ¢ A (055

d|(n,m,0) d|(l,r,m)

Proof. The Maass lift (called also Saito-Kurokawa lift, see [Ib12] Introduction) and
the relations of Fourier coefficients is given in [Ib12], section 3.4. For the readers
convenience we recall the equivalence of (i) and (ii). Let ' be a Maass lift then (ii)
is satisfied (Proposition 3.8, [Ib12]). If (ii) is satisfied then F is uniquely determined
by the first Fourier-Jacobi coefficient and all the other Fourier-Jacobi coefficients are
the expected lifts in the setting of Jacobi forms.

(iii) implies (i) by putting m = 1 in formula (iii). Next we show that (i) implies (iii).
We have already proven that F'is a Maass lift if and only if

Yoo x@ T (FERI) = DY xle) (Fhat). (x1)

gelo(N\AN (1) g€lo(N\AN (1)

for all [ € N. We fix for I'\Ay (1) the special representative system

(4.9) {(g Z) }a,bEN; ad =1; (a,N) = 1; b:O,l,...,d—l}.
' =x(a

Note that x(g)~ ). Then the left side of the equation (x;) is equal to

b
Z lgd_kx(a)F(m—lc;L ,l‘éaz,ﬁ)

a,beN; ad=l
b (mod d)
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We consider the left side of (¥;). For convenience we map z — v/ z and keep in mind
that 3y (mod 4) e(n) = d if djn and 0 otherwise. We obtain

k — T ra.m

> 12 Y A7 x(a) Aln,rom) g, (g
n,r,m (I,dEN
ad=l, d|n

This is equal to
—k — nl r n r o _m
1D S DRISNOPY (LR PRy
n,r,m al(n,r,l)

Since the left side of the relation (x;) is symmetric to the right side this leads to the
proof. O

Actually one has to check the relations in (iii) only for [ prime numbers. This
follows from the observation

Corollary 4.3. Let F be a Siegel modular form of level N. Then F is a Saito-
Kurowaka lift if and only if F' satisfies the symmetry relation (%) for all prime num-
bers [.

Proof. This follows from the results of section 3.2. O
Putting this together leads to

Corollary 4.4. (Maass p-relations)
Let F' be a Siegel modular form of level N. Then F is a Saito-Kurokawa lift iff the
Fourier coefficients of F' satisfy

_ nr _ rom
(110) Alup,rym) 47 x) A (2,5 om ) = A+~ 4 (052,
for all prime numbers p. Note that for p|N the relations degenerate to

A(np,r,m) = A(n,r,pm).

Acknowledgements. To be entered later.
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