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THE LOCAL LANGLANDS CONJECTURE FOR THE p-ADIC INNER FORM OF Sp4

KWANGHO CHOIY

Abstract. This paper proves the local Langlands conjecture for the non quasi-split inner form Sp1,1 of Sp4

over a p-adic field of characteristic 0, by studying the restriction of representations from the non quasi-split
inner form GSp

1,1
of GSp

4
to Sp

1,1
. The L-packets for Sp

1,1
are constructed based on the earlier work on

the local Langlands correspondence for GSp
1,1

by Gan and Tantono. To parameterize them in terms of
so-called S-groups, we establish and utilize the local Langlands correspondence for reductive dual groups

which participate in the theta correspondence with Sp1,1 and GSp1,1 . An interesting phenomenon arises
when two distinct members in an L-packet of GSp1,1 are restricted to Sp1,1 .
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1. Introduction

The primary aim of this paper is to prove the local Langlands conjecture (LLC) for the non quasi-split
inner form Sp1,1 of Sp4 over a p-adic field F of characteristic 0. The conjecture for a general connected
reductive group G over F predicts that there is a surjective, finite-to-one map

L : Π(G) −→ Φ(G),

where Π(G) denotes the set of isomorphism classes of irreducible smooth complex representations of G(F ),

Φ(G) denotes the set of Ĝ-conjugacy classes of L-parameters, and Ĝ is the complex dual group of G [Bor79].
The map L is expected to satisfy a number of natural properties, for instance, it preserves certain γ-facotrs,
L-factors, and ǫ-factors, as long as they can be defined in both sides (cf. [HT01, Hen00]). For each L-
parameter ϕ ∈ Φ(G), its fiber, denoted by Πϕ(G), is called an L-packet for G. As a part of the conjecture, of
great interest is how to parameterize the L-packet Πϕ(G). For this purpose, we consider a central extension

Sϕ,sc(Ĝ) which sits into the following exact sequence

(1.1) 1 −→ Ẑϕ,sc(G) −→ Sϕ,sc(Ĝ) −→ Sϕ(Ĝ) −→ 1,

where Ẑϕ,sc(G) is a certain quotient group of the center of a simply connected covering group and Sϕ(Ĝ) is
the connected component group of a certain group in the adjoint group Ĝ/Z(Ĝ). The precise definitions will
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2 KWANGHO CHOIY

be reviewed in Section 2.4. It is conjectured that there is a one-to-one correspondence

(1.2) Πϕ(G)
1−1←→ Irr(Sϕ,sc(Ĝ), ζG)

(see [Vog93, Art06, Art13]), where Irr(Sϕ,sc(Ĝ), ζG) denotes the set of irreducible representations of Sϕ,sc(Ĝ)
with central character ζG, which is determined by G via the Kottwitz isomorphism [Kot86]. When G is
quasi-split, the character ζG turns out to be the trivial character 1, so that

Irr(Sϕ,sc(Ĝ),1) = Irr(Sϕ(Ĝ)).

The LLC has been proved for several cases for the last few decades [GK82, Rog90, Hen00, HT01, GT10,
HS11, GT11a, Sch13, Art13, GT14, KMSW14, Mok15]. Among them, our proof of the LLC for Sp1,1 is
deeply rooted in the approach to the LLC for SLn [GK82]. In their paper, Gelbart and Knapp studied the
restriction of L-packets of GLn, consisting of singletons, and established the LLC for SLn, assuming the LLC

for GLn which was proved afterwords [HT01, Hen00, Sch13]. It is a consequence of their study that Sϕ(ŜLn)
is abelian. This method was adjusted to the case of Sp4 [GT10] whose L-packets were constructed from
those of GSp4 [GT11a] by the restriction. Since L-packets for GSp4 consist of one or two members unlike
GLn, Gan and Takeda verified that those two members do not give the same restriction in Sp4 (see [GT10,
Proposition 2.2]). They also determined precisely the size of L-packets Πϕ(Sp4) for any ϕ, so that one can

have an explicit description of Sϕ(Ŝp4), which turns out to be an elementary 2-group (cf. [GP92, Art13]).
The method of restriction was also utilized in the case of non quasi-split F -inner forms SL′

n of SLn [HS11].
Based on the LLC for GLn and the local Jacquet-Langlands correspondence [JL70, DKV84, Rog83, Bad08],
Hiraga and Saito established the LLC for non quasi-split F -inner forms GL′

n of GLn and constructed L-
packets for GL′

n, which are all singletons. Extending Gelbart and Knapp’s work for SLn [GK82] and Labesse
and Langlands’ result for SL′

2 [LL79], they restricted the L-packets of GL′
n to SL′

n and constructed L-packets
for SL′

n . Unlike SLn and Sp4, the conjectural bijection (1.2) for SL′
n, which was proved in [HS11] using the

simple trace formula, implies that the multiplicity one property fails in this restriction. This follows from

the fact that the central extension Sϕ,sc(ŜL′
n) is not always abelian (cf. [LL79, Art06, Cho14a]). Later, more

general intermediate groups between a given group and its derived group were also carried out in [CL14].
For our case of G = Sp1,1, as did in the previous studies above for SLn, Sp4, and SL′

n, it is natural to
begin with the non quasi-split F -inner form GSp1,1 of GSp4, whose derived group is Sp1,1 . The LLC for
GSp1,1 was established by Gan and Tantono in [GT14], where their L-packets consist of one or two members.
Restricting these L-packets from GSp1,1 to Sp1,1, we construct L-packets for Sp1,1 . Interestingly, we here
encounter a new phenomenon which does not occur in the aforementioned cases; not only the multiplicity one
property fails, but it is also possible that two members in an L-packet of GSp1,1 have the same restriction.
In response to this phenomenon, we study the restriction of the reductive dual groups which participate in
the theta correspondence with GSp1,1 and Sp1,1 . It turns out that their group structures fit into a category
of intermediate groups between a finite product of GLn and a finite product of SLn, or between their F -inner
forms. This allows us to use the well-developed theory of the restriction in [LL79, GK82, Sha83, Lab85,
Tad92, HS11], and [CL14] with some modifications. We thus construct L-packets, prove the conjectural
bijection (1.2), and establish the LLC for these reductive dual groups.

We finally define a surjective, finite-to-one map

(1.3) L1,1 : Π(Sp1,1) −→ Φ(Sp1,1)

for G = Sp1,1 . We then prove the conjectural bijection (1.2), using the LLC for each reductive dual group
and studying a relationship of the central extension (1.1) between Sp1,1 and each reductive dual group (see
Theorem 7.4). At this point, we bring in a uniquely determined bijection between restrictions of reductive
dual pairs (see Proposition 4.11). This bijection is provided by the theta correspondence and preserves
the multiplicity in the restriction (see Section 4.4). Furthermore, we take the same idea to complete the
conjectural bijection (1.2) for the split group Sp4 as well (see Appendix A), which was also discussed in
[GT10, pp.3002-3003] in another way.
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Considering two facts: there is no Whittaker model for the non quasi-split group Sp1,1 and our method

relies on that of SL′
n by Hiraga and Saito in [HS11], we should mention that our parameterization of L-

packets for Sp1,1 has no natural base point and depends on the choice of a certain homomorphism ΛSLn

described in Section 4.3. We also note that there is one exceptional case of L-parameters, denoted by ‘Case
I-(b)’ in Section 7.3, where we verify only the bijection (1.2) and establish no decomposition unlike other
cases (see Theorem 7.4). This is because two members in an L-packet of GSp1,1 share the same restriction
for Case I-(b), which leads to a difference between the dimension in restriction from GSp1,1 to Sp1,1 and the

dimension of irreducible representations in Irr(Sϕ,sc(Ŝp1,1), ζSp1,1
). This will be also interpreted in terms of

the center of the finite group Sϕ,sc(Ĝ) for the non quasi-split group Sp1,1 and its reductive dual groups (see
Remark 7.7).

The last part of the paper is dedicated to classifying the central extension (1.1) for all ϕ ∈ Φ(Sp1,1) and
illuminating all sizes of L-packets of Sp1,1 as well as all multiplicities in restriction from GSp1,1 to Sp1,1 . The

group Sϕ,sc(Ŝp1,1) in (1.1) turns out to be isomorphic to one of the following seven groups: Z/2Z, (Z/2Z)2,
Z/4Z, Z/2Z× Z/4Z, the dihedral group D8 of order 8, the Pauli group, and the central product of D8 and
the quaternion group. The size is either 1, 2, or 4, and the multiplicity is either 1, 2, or 4. Furthermore, we
give an explicit example where the new phenomenon arises, that is, the multiplicity one property fails and
two members in an L-packet of GSp1,1 have the same restriction in Sp1,1 .

We note that, since the definitions of the local L-, ǫ-, γ-factors on the representation side are not yet
available for the non quasi-split group Sp1,1, our paper does not contain arguments regarding the preservation
of the local factors or the uniqueness of our L-map (1.3). Recently, M. Asgari and the author established the
LLC for GSpin4,GSpin6, and their F -inner forms in [AC15], where the local factors for generic representations
of two split cases of GSpin4 and GSpin6 are available via the Langlands-Shahidi method [Sha90] and those
local factors are proved to be preserved via the L-map for GSpin4 and GSpin6 .

The organization of this paper is as follows. In Section 2, we review basic notions and backgrounds such
as inner forms, the LLC in a general setting, and the conjectural structure of L-packets. Section 3 describes
the structure of groups under consideration and their mutual relations. Some well-known results on the
restriction are recalled and modified for our case in Section 4. We prove the LLC for GSO2,2, SO2,2, and
their F -inner forms in Section 5 and the LLC for GSO3,3, SO3,3, and their F -inner forms in Section 6. These
groups are all reductive dual groups which participate in the theta correspondence with GSp1,1 and Sp1,1 .
In Section 7, we state and prove our main result, classify all cases of the central extension (1.1) for Sp1,1,
describe all sizes of L-packets of Sp1,1, and give an explicit example in which the new phenomenon appears.
In Appendix A, we apply the same method developed in Section 7 to parameterize L-packets for Sp4 .

2. Preliminaries

In this section, we recall basic notions and backgrounds, and review the local Langlands conjecture in a
general setting and the conjectural structure of L-packets.

2.1. Basic definitions and backgrounds. Throughout the paper, we denote by F a finite extension of
Qp for any prime p. Fix an algebraic closure F̄ of F. For any topological group G, we write Z(G) for the
center of G. We let π0(G) denote the group G/G◦ of connected components of G, where G◦ is the identity
component of G.

Given a connected reductive algebraic group G over F, we let Π(G) denote the set of isomorphism classes
of irreducible smooth complex representations of the group G(F ) of F -points of G. By abuse of notation,
we identify an isomorphism class with its representative. We let Πdisc(G), Πtemp(G), and Πunit(G) denote
the subsets of Π(G) which respectively consist of discrete series, tempered, and unitary representations. We
further denote by Πess,disc(G) and Πess,temp(G) the subsets of Π(G) which respectively consist of essentially
square-integrable and essentially tempered representations. Note that we have

Πdisc(G) ⊂ Πtemp(G) ⊂ Πunit(G) and Πess,disc(G) ⊂ Πess,temp(G) ⊂ Π(G).
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We denote by WF the Weil group of F and by Γ the absolute Galois group Gal(F̄ /F ). Let WDF = WF ×
SL2(C) be the Weil-Deligne group. Fixing Γ-invariant splitting data, we define the L-group of G as a semi-

direct product LG := Ĝ ⋊ Γ (see [Bor79, Section 2]). Let Φ(G) denote the set of Ĝ-conjugacy classes of
L-parameters, i.e., admissible homomorphisms

ϕ : WDF −→ LG,

(see [Bor79, Section 8.2]). We denote by Cϕ(Ĝ) the centralizer of the image of ϕ in Ĝ. Note that Cϕ contains

the center of LG that is the Γ-invariant group Z(Ĝ)Γ.We say that ϕ is elliptic if the quotient group Cϕ/Z(Ĝ)Γ

is finite, and ϕ is tempered if ϕ(WF ) is bounded. We denote by Φell(G) and Φtemp(G) the subset of Φ(G)
which respectively consist of elliptic and tempered L-parameters of G. We set Φdisc(G) = Φell(G)∩Φtemp(G).

2.2. Inner forms. Let G and G′ be connected reductive groups over F. We say that G and G′ are F -inner
forms with respect to an F̄ -isomorphism φ : G′ ∼→ G if φ ◦ τ(ϕ)−1 is an inner automorphism (g 7→ xgx−1)
defined over F̄ for all τ ∈ Gal(F̄ /F ) (see [Bor79, 2.4(3)] or [Kot97, p.280]). If there is no confusion, we often
omit the references to F and φ.

When G and G′ are inner forms of each other, we have LG ≃ LG′ [Bor79, Section 2.4(3)]. In particular, if

G′ is an inner form of an F -split group G and the action of Γ on Ĝ is trivial, we write LG = Ĝ ≃ LG′ = Ĝ′.

2.3. General notion of the local Langlands conjecture. For any connected reductive group G over F,
the local Langlands conjecture (LLC) predicts that there is a surjective, finite-to-one map

L : Π(G) −→ Φ(G).

This map is supposed to satisfy a number of natural properties, for instance, it preserves certain γ-facotrs, L-
factors, and ǫ-factors, as long as they can be defined in both sides (cf. [HT01, Hen00]). Moreover, considering
the fibers of the map, one can partition Π(G) into disjoint finite subsets, called L-packets. Each packet is
conjectured to be characterized by component groups in the L-group, which we will discuss in detail in
Section 2.4. It is also expected that Φdisc(G) and Φtemp(G) respectively parameterize Πdisc(G) and Πtemp(G).

The LLC is known for several cases: GLn [HT01, Hen00, Sch13], SLn [GK82], U2 and U3 [Rog90], F -inner
forms of GLn and SLn [HS11], GSp4 [GT11a], Sp4 [GT10], the F -inner form of GSp4 [GT14], quasi-split
classical groups [Art13], unitary groups [Mok15], non quasi-split inner forms of unitary groups [KMSW14],
GSpin4, GSpin6 and their F -inner forms [AC15].

2.4. Conjectrual structure of L-packets. We denote by Ĝsc the simply connected cover of the derived

group Ĝder of Ĝ, and by Ĝad the adjoint group Ĝ/Z(Ĝ). We consider

Sϕ(Ĝ) := Cϕ(Ĝ)/Z(Ĝ)Γ ⊂ Ĝad.

Write Sϕ,sc(Ĝ) for the full pre-image of Sϕ(Ĝ) via the isogeny Ĝsc ։ Ĝad. We then have an exact sequence

(2.1) 1 −→ Z(Ĝsc) −→ Sϕ,sc(Ĝ) −→ Sϕ(Ĝ) −→ 1.

We let:

Sϕ(Ĝ) := π0(Sϕ(Ĝ)),

Sϕ,sc(Ĝ) := π0(Sϕ,sc(Ĝ)),

Ẑϕ,sc(G) := Z(Ĝsc)/(Z(Ĝsc) ∩ Sϕ,sc(Ĝ)◦),

Sϕ,sc(Ĝ) := π0(Sϕ,sc(Ĝ)).

We then have a central extension

(2.2) 1 −→ Ẑϕ,sc(G) −→ Sϕ,sc(Ĝ) −→ Sϕ(Ĝ) −→ 1,

(cf. [Art13, (9.2.2)]). Suppose G is quasi-split and G′ is an F -inner form of G. Let ζG′ be a unique character

on Z(Ĝsc) whose restriction to Z(Ĝsc)
Γ corresponds to the class of the F -inner form G′ of G via the Kottwitz

isomorphism [Kot86, Theorem 1.2]. We denote by Irr(Sϕ,sc(Ĝ), ζG′) the set of irreducible representations of
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Sϕ,sc(Ĝ) with central character ζG′ on Z(Ĝsc). It is expected that, given an L-parameter ϕ for G′, there

is a one-to-one correspondence between the L-packet Πϕ(G
′) associated to ϕ and the set Irr(Sϕ,sc(Ĝ), ζG′)

[Art06, Section 3]. We note that, for the case of G′ = G, the character ζG′ equals the trivial character 1, so
that

Irr(Sϕ,sc(Ĝ),1) = Irr(Sϕ(Ĝ)).
In particular, if ϕ is elliptic, since Cφ(M̂)/Z(M̂)Γ is finite and Z(M̂)Γ contains Sφ(M̂)◦ [Kot84, Lemma

10.3.1], we have Sϕ(Ĝ) = Sϕ(Ĝ) and Ẑϕ,sc(Ĝsc) = Z(Ĝsc). Thus the exact sequence (2.2) is equal to (2.1).

2.5. Further notation. Let m, n, and d be positive integers. For a central division algebraDd of dimension
d2 over F, we let GLm(Dd) denote the group of all invertible elements ofm×mmatrices overDd. Let SLm(Dd)
be the subgroup of elements of reduced norm 1 in GLm(Dd). Note that GLm(Dd) is the group of F -points
of an algebraic group over F which is an F -inner form of GLn (see [PR94, Sections 2.2 & 2.3] for details).
By abuse of notation, we shall write GLm(Dd) for both the F -inner form and the group of its F -points. The
same is applied to SLm(Dd).

For i ∈ N, we denote by Hi(F,G) := Hi(Gal(F̄ /F ), G(F̄ )) the Galois cohomology of G. Given π ∈ Π(G),
we denote by ωπ its central character. The cardinality of a finite set S is denoted by |S|. We denote by ( · )D
the Pontryagin dual, i.e., Hom( · ,C1), where C1 is the unit circle group in C×. We denote by 1 the trivial
character. For any positive integer n, we denote by µn the algebraic group, so that µn(R) := {r ∈ R : rn = 1}
with any F -algebra R. We write A ⊔B for the disjoint union of two sets A and B.

3. Group structures

In this section, we describe the structure of algebraic groups under consideration in the paper and discuss
their mutual relations. We mainly follow notation in [GT11a, GT14]. Of our interest are the F -split groups
GSp4, Sp4, GSO2,2, SO2,2, GSO3,3, SO3,3, and their non quasi-split F -inner forms. We refer the reader to
[Sat71, p.119] for admissible diagrams of those F -inner forms.

3.1. Symplectic cases. We write GSp1,1 and Sp1,1 for the non quasi-split F -inner forms of the symplec-
tic similitude group GSp4 and the symplectic group Sp4, respectively. The group GSp1,1 is isomorphic to
GU(2, D) which is the similitude group of the unique 2-dimensional Hermitian vector space over the quater-
nion division algebraD over F. For more details, we refer the reader to [GT14, Section 2.1]. Note that GSp1,1
is the only (up to F -isomorphism) non quasi-split F -inner form of GSp4, since the set H1(F,PSp4), which
parameterizes F -inner forms of GSp4, is in bijection with µ2(C)D by the Kottwitz isomorphism [Kot86,
Theorem 1.2]. Likewise, the same argument is true for Sp4 . We further note that

Sp4 = (GSp4)der ⊂ GSp4 and Sp1,1 = (GSp1,1)der ⊂ GSp1,1,

where the subscript der stands for the derived group.

3.2. Orthogonal cases. From [GT11a, GT14], we recall the following isomorphisms of algebraic groups:

GSO2,2 ≃ (GL2 ×GL2)/{(z, z−1) : z ∈ GL1},
GSO4,0 ≃ (GL1(D)×GL1(D))/{(z, z−1) : z ∈ GL1},
GSO∗

1,1 ≃ (GL1(D)×GL2)/{(z, z−1) : z ∈ GL1},
GSO3,3 ≃ (GL4 ×GL1)/{(z, z−2) : z ∈ GL1},
GSO∗

3,0 ≃ (GL1(D4)×GL1)/{(z, z−2) : z ∈ GL1},
GSO(VD) ≃ (GL2(D)×GL1)/{(z, z−2) : z ∈ GL1},

where D = D2 is the quaternion division algebra over F, and D4 is a division algebra of dimension 16 over
F. As mentioned in [GT14, Section 1], there are only two (up to isomorphism) division algebras of dimension
16, D4 and its opposite Dop

4 (their Hasse invariants in Q/Z are 1/4 and −1/4, respectively), which have
canonically isomorphic multiplicative groups D×

4 and (Dop
4 )× under the inverse map x 7→ x−1 from D×

4 to
(Dop

4 )×.
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Note that there are only two (up to isomorphism) non quasi-split F -inner forms of the split group GSO2,2,
which are GSO4,0 and GSO∗

1,1. Further, there are also only two (up to isomorphism) non quasi-split F -inner
forms of the split group GSO3,3, which are GSO∗

3,0 and GSO(VD).

Since H1(F,GLm(Dd)) = 1 for any central division algebra Dd of dimension d over F with any positive
integerm (see [PR94, Lemma 2.8]), one can easily verify that the groups of F -points are described as follows:

GSO2,2(F ) ≃ (GL2(F )×GL2(F ))/{(z, z−1) : z ∈ F×},
GSO4,0(F ) ≃ (GL1(D)×GL1(D))/{(z, z−1) : z ∈ F×},
GSO∗

1,1(F ) ≃ (GL1(D)×GL2(F ))/{(z, z−1) : z ∈ F×},
GSO3,3(F ) ≃ (GL4(F )× F×)/{(z, z−2) : z ∈ F×},
GSO∗

3,0(F ) ≃ (GL1(D4)× F×)/{(z, z−2) : z ∈ F×},
GSO(VD)(F ) ≃ (GL2(D)× F×)/{(z, z−2) : z ∈ F×}.

We turn to the split groups SO2,2, SO3,3, and their non quasi-split F -inner forms SO4,0, SO
∗
1,1, SO

∗
3,0,

and SO(VD). We have the following isomorphisms of algebraic groups:

SO2,2 ≃ (SL2 × SL2)/∆µ2,

SO4,0 ≃ (SL1(D) × SL1(D))/∆µ2,

SO∗
1,1 ≃ (SL1(D) × SL2)/∆µ2,

SO3,3 ≃ SL4/µ2,

SO∗
3,0 ≃ SL1(D4)/µ2,

SO(VD) ≃ SL2(D)/µ2,

where ∆µ2 means {(1, 1), (−1,−1)}. We note that

SO2,2 = (GSO2,2)der ⊂ GSO2,2,

and the same is true for all the other groups SO4,0, SO
∗
1,1, SO3,3, SO

∗
3,0, and SO(VD).

Using the fact that H1(F,G) = 1 for any simply connected semi-simple algebraic group G over F [PR94,
Theorem 6.4], we further have the following exact sequences of the groups of F -points:

1 −→ (SL2(F )× SL2(F ))/{(1, 1), (−1,−1)} −→SO2,2(F ) −→ F×/(F×)2 −→ 1,

1 −→ (SL1(D)× SL1(D))/{(1, 1), (−1,−1)} −→SO4,0(F ) −→ F×/(F×)2 −→ 1,

1 −→ (SL1(D)× SL2(F ))/∆µ2(F ) −→SO∗
1,1(F ) −→ F×/(F×)2 −→ 1,

1 −→ SL4(F )/{±1} −→SO3,3(F ) −→ F×/(F×)2 −→ 1,

1 −→ SL1(D4)/{±1} −→SO∗
3,0(F ) −→ F×/(F×)2 −→ 1,

1 −→ SL2(D)/{±1} −→SO(VD)(F ) −→ F×/(F×)2 −→ 1.

Note that F×/(F×)2 comes from the isomorphism H1(F, µ2) ≃ F×/(F×)2 ≃ H1(F,∆µ2). Specially, for the
case of SO∗

1,1, considering the kernel of the similitude character

sim∗
1,1 : GSO∗

1,1 → GL1,

where sim∗
1,1(α, β) = Nrd(αβ) and Nrd is the reduced norm on GL1(D), we have

1 −→ SO∗
1,1(F ) −→ GSO∗

1,1(F )
sim∗

1,1−→ F× −→ H1(F, SO∗
1,1) −→ · · · .

Likewise, we have the following exact sequences:

1 −→ SO2,2(F ) −→GSO2,2(F )
sim2,2−→ F× −→ H1(F, SO2,2) −→ · · · ,

1 −→ SO4,0(F ) −→GSO4,0(F )
sim4,0−→ F× −→ H1(F, SO4,0) −→ · · · ,
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1 −→ SO3,3(F ) −→GSO3,3(F )
sim3,3−→ F× −→ H1(F, SO3,3) −→ · · · ,

1 −→ SO∗
3,0(F ) −→GSO∗

3,0(F )
sim∗

3,0−→ F× −→ H1(F, SO∗
3,0) −→ · · · ,

1 −→ SO(VD)(F ) −→GSO(VD)(F )
simVD−→ F× −→ H1(F, SO(VD)) −→ · · · .

3.3. L-groups. We recall the following descriptions of dual groups from [GT11a, Sections 3 and 4]:

LGSp1,1 = ĜSp1,1 = GSp4(C) ≃ GSpin5(C),

LGSO∗
1,1 = ĜSO∗

1,1 ≃ GSpin4(C)

≃ (GL2(C)×GL2(C))◦ = {(g1, g2) ∈ GL2(C)×GL2(C) : det g1 = det g2}
≃ (Spin4(C)× C×)/{(1, 1), (−1,−1)},

LGSO∗
3,0 = ĜSO∗

3,0 = GSpin6(C) ≃ {(g1, g2) ∈ GL4(C)×GL1(C) : det g1 = (g2)
2}

≃ (Spin6(C)× C×)/{(1, 1), (−1,−1)}.
The argument on L-groups for inner forms in Section 2.2 implies that:

LGSp1,1 = LGSp4,

LGSO∗
1,1 = LGSO2,2 = LGSO4,0,

LGSO∗
3,0 = LGSO(VD) =

LGSO3,3.

We also have the following:

LSp1,1 = LSp4 = Ŝp1,1 = SO5(C) ≃ Spin5(C),

LSO∗
1,1 = LSO2,2 = LSO4,0 = ŜO∗

1,1 = SO4(C) ≃ (SL2(C)× SL2(C))/{(1, 1), (−1,−1)},
LSO∗

3,0 = LSO(VD) =
LSO3,3 = ŜO∗

3,0 = SO6(C) ≃ SL4(C)/µ2(C).

We consider the following maps std1,1 (this was denoted by std in [GT10]), std∗1,1, and std∗3,0 :

std1,1 : ĜSp1,1−→Ŝp1,1 = SO5(C),(3.1)

std∗1,1 : ĜSO∗
1,1−→ŜO∗

1,1 = SO4(C) ≃ (SL2(C)× SL2(C))/{(1, 1), (−1,−1)},(3.2)

std∗3,0 : ĜSO∗
3,0−→ŜO∗

3,0 = SO6(C) ≃ SL4(C)/µ2(C),(3.3)

which are respectively induced from the canonical inclusions:

Sp1,1 →֒ GSp1,1, SO∗
1,1 →֒ GSO∗

1,1, SO∗
3,0 →֒ GSO∗

3,0.

Note that these inclusions come from:

1 −→ Sp1,1 −→GSp1,1
sim1,1−→ GL1 −→ 1,

1 −→ SO∗
1,1 −→GSO∗

1,1

sim∗
1,1−→ GL1 −→ 1,

1 −→ SO∗
3,0 −→GSO∗

3,0

sim∗
3,0−→ GL1 −→ 1.

Therefore, we have the following commutative diagram of dual groups

ĜSO∗
1,1

�

�

//

std∗1,1
��

ĜSp1,1
�

�

//

std1,1

��

ĜSO∗
3,0

�

�

//

std∗3,0
��

GL4(C)×GL1(C)

ŜO∗
1,1

�

�

// Ŝp1,1
�

�

// ŜO∗
3,0

�

�

// GSO6(C),
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where all standard maps std∗1,1, std1,1, std
∗
3,0 are surjective. Further, we have the following exact sequences:

(3.4) 1 −→ C× −→ ĜSO∗
1,1

std
∗
1,1−→ ŜO∗

1,1 −→ 1,

(3.5) 1 −→ C× −→ ĜSp1,1
std1,1−→ Ŝp1,1 −→ 1,

(3.6) 1 −→ C× −→ ĜSO∗
3,0

std∗3,0−→ ŜO∗
3,0 −→ 1.

We also use the notation std4 for GSp4, std2,2 for GSO2,2, std4,0 for GSO4,0, and std3,3 for GSO3,3. Again,
the argument on L-groups for inner forms in Section 2.2 implies that:

std1,1 = std4,

std∗1,1 = std2,2 = std4,0,

std∗3,0 = stdVD = std3,3.

4. Restriction

In this section, we will recall and adjust some well-known results about the restriction.

4.1. Results of Gelbart-Knapp, Tadić, and Hiraga-Saito. For a moment, we let G and G̃ denote
connected reductive algebraic groups over F satisfying the property that

Gder = G̃der ⊆ G ⊆ G̃,
where the subscript der stands for the derived group. Given σ ∈ Π(G), by [GK82, Lemma 2.3] and [Tad92,

Proposition 2.2], there exists σ̃ ∈ Π(G̃) such that

σ →֒ ResG̃G(σ̃),

that is, σ is an irreducible constituent in the restriction ResG̃G(σ̃) of σ̃ from G̃(F ) to G(F ). We write both

Πσ(G) and Πσ̃(G) for the set of equivalence classes of all irreducible constituents of Res
G̃
G(σ̃). It follows from

[GK82, Lemma 2.1] and [Tad92, Proposition 2.4 & Corollary 2.5] that Πσ(G) is finite and independent of

the choice of the lifting σ̃ ∈ Π(G̃). Further, for any irreducible constituents σ1 and σ2 in ResG̃G(σ̃), it is clear
that Πσ1

(G) = Πσ2
(G).

Remark 4.1. From [Tad92, Proposition 2.7], we note that any member in Πσ̃(G) is supercuspidal if and only
if σ̃ is. The same is true for essentially square-integrable and essentially tempered representations.

Proposition 4.2. ([GK82, Lemma 2.4]; [Tad92, Corollary 2.5]) Given σ̃1, σ̃2 ∈ Π(G̃), the following state-
ments are equivalent:

1) There exists a character χ ∈ (G̃/G)D such that σ̃1 ≃ σ̃2 ⊗ χ;
2) Πσ̃1

(G) ∩ Πσ̃2
(G) 6= ∅;

3) Πσ̃1
(G) = Πσ̃2

(G).

�

The restriction ResG̃G(σ̃) is completely reducible by [GK82, Lemma 2.1] and [Tad92, Lemma 2.1], we have
the following decomposition

ResG̃G(σ̃) = m
⊕

τ∈Πσ̃(G)

τ.

Here, the positive integer m denotes the common multiplicity over τ ∈ Πσ(G) (see [GK82, Lemma 2.1(b)]).

Given σ̃ ∈ Π(G̃), we define

(4.1) I(σ̃) := {χ ∈ (G̃(F )/G(F ))D : σ̃ ⊗ χ ≃ σ̃}.
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We later use IG(σ̃) to emphasize groups (see Section 7.4). Considering the dimension of the C-vector space

EndG(Res
G̃
G(σ̃)), we have the following equality (cf. [Cho14a, Proposition 3.2])

(4.2) m2 · |Πσ(G)| = |I(σ̃)|.
Let χ ∈ I(σ̃) be given. Based on [HS11, Chapter 2], since σ̃ ≃ σ̃ ⊗ χ, we have a non-zero endomorphism
Iχ ∈ AutC(Vσ̃) such that

Iχ ◦ (σ̃ ⊗ χ) = σ̃ ◦ Iχ.
For each z ∈ C×, we denote by z · idVσ̃

the scalar endomorphism ṽ 7→ z · ṽ for v ∈ Vσ̃. So, we identify C× and
the subgroup of AutC(Vσ̃) consisting of z · idVσ̃

. We now define A(σ̃) as the subgroup of AutC(Vσ̃) generated
by {Iχ : χ ∈ I(σ̃)} and C×. Then the map Iχ 7→ χ induces the following exact sequence

1 −→ C× −→ A(σ̃) −→ I(σ̃) −→ 1.

We equip A(σ̃) with the topology such that the induced topology on C× is the induced topology by the usual
topology on C and such that the projection A(σ̃)→ I(σ̃) is continuous with respect to the discrete topology
on I(σ̃). We denote by Irr(A(σ̃), id) the set of isomorphism classes of irreducible smooth representations of
the group A(σ̃) such that z · idVσ̃

∈ C× acts as the scalar z. By [HS11, Corollary 2.10], we then have an
isomorphism

(4.3) Vσ̃ ≃
⊕

ξ∈Irr(A(σ̃),id)

ξ ⊠ σξ

as representations of the semi-direct product A(σ̃)⋊G(F ). It follows that there is a bijection

(4.4) Irr(A(σ̃), id) ≃−→ Πσ̃(G),

sending ξ 7→ σξ. We denote by ξσ the inverse of σ via the correspondence (4.4).

Remark 4.3. Given σ̃ ∈ Πdisc(G̃), since the multiplicity m is common, the isomorphism (4.3) implies that

m = dimξσ1
= dimξσ2

for any σ1, σ2 ∈ Πσ̃(G).

4.2. Useful arguments. We discuss a few arguments which will be used in Sections 5, 6, and 7. We first
recall a theorem of Labesse in [Lab85] which verifies the existence of a lifting of a given L-parameter in the

following setting. Let G and G̃ be connected reductive algebraic groups over F with an exact sequence of
connected components of L-groups

1 −→ Ŝ −→ ̂̃
G

pr−→ Ĝ −→ 1,

where Ŝ is a central torus in Ĝ, and the surjective homomorphism pr is compatible with Γ-actions on
̂̃
G and

Ĝ.

Theorem 4.4. ([Lab85, Théorèm 8.1]) For any ϕ ∈ Π(G), there exists ϕ̃ ∈ Π(G̃) such that

ϕ = ϕ̃ ◦ pr.
�

We note that this result has been also discussed in [Wei74, Hen80, GT10] for the case of G = SLn and

G̃ = GLn.
Second, we recall a lemma of Chao and Li in [CL14].

Lemma 4.5. ([CL14, Lemma 5.3.4]) With the notation in Section 2.4, given ϕ ∈ Π(G) and ϕ̃ ∈ Π(G̃) with
ϕ = ϕ̃ ◦ pr as in Theorem 4.4, we have an exact sequence of finite groups

Sϕ̃( ̂̃G) −→ Sϕ(Ĝ) −→ X(ϕ̃) −→ 1,

where X(ϕ̃) := {a ∈ H1(WF , Ŝ) : aϕ̃ ≃ ϕ̃ in
̂̃
G}. �
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Along with the definition I(σ̃) in (4.1), given ϕ̃ ∈ Φ(G̃), we let

(4.5) I(ϕ̃) := {χ ∈ (F×)D : ϕ̃χ ≃ ϕ̃ in
̂̃
G},

where χ is considered as a L-parameter in Φ(G̃) via the local class field theory. We later use XG(ϕ̃) and
IG(ϕ̃) to emphasize groups (see Section 7.4).

Lemma 4.6. Suppose that an L-packet for ϕ̃ ∈ Φ(G̃) is constructed as a singleton {σ̃} and further suppose

that Ŝ ≃ C×. Then we have

X(ϕ̃) ≃ I(ϕ̃).

Proof. This is immediate from the LLC for GL1 which asserts (F×)D ≃ H1(WF , Ŝ). �

We end this subsection by making an argument on the group of connected components.

Lemma 4.7. Let A and B be algebraic groups over F such that A is a normal subgroup of B of finite index.
Then the connected components A◦ and B◦ are identical. Further, π0(A) is again a subgroup of π0(B).

Proof. It is well known that A◦ and B◦ are open, closed, normal subgroups of A and B, respectively.
Let b ∈ B be given. Since bA◦b−1 is an open and connected subgroup containing the identity, we have
bA◦b−1 ⊂ B◦. Note that the index [A◦ : B◦] is finite. If bA◦b−1 is a proper subgroup of B◦, then B◦

is disconnected into finite connected open cosets of bA◦b−1, which is impossible. Thus, we must have
bA◦b−1 = B◦, which implies that A◦ = B◦. Further, since the index [A : B] is finite and A◦ = B◦, it follows
that π0(A) is a subgroup of π0(B). �

4.3. Hiraga-Saito’s work on L-packets for inner forms of SLn. We recall a result in [HS11, Chapter
12] about the internal structure of L-packets for an inner form G′ = SLm(Dd) of G = SLn with n = md.

Note that LG = Ĝ = LG′ = Ĝ′ = PGLn(C), since Γ acts trivially. We further have

Z(Ĝsc) = µn(C) and Z(Ĝ)Γ = 1.

Given ϕ ∈ Φ(G′), we have the following exact sequence

1 −→ Ẑϕ,sc(G
′) −→ Sϕ,sc(Ĝ′) −→ Sϕ(Ĝ′) −→ 1.

Note that Ẑϕ,sc(G
′) = µn(C)/(µn(C) ∩ Sϕ,sc(Ĝ′)◦) by definition. We fix a character ζG′ of µn(C) which

corresponds to the inner form G′ of G via the Kottwitz isomorphism [Kot86, Theorem 1.2]. Note that when

d = 1, G′ = G and ζG = 1. Set G̃ = GLn and G̃′ = GLm(Dd). We consider the following exact sequence

1 −→ C× −→ ̂̃
G′ = GLn(C)

pr−→ Ĝ′ = PGLn(C) −→ 1.

By Theorem 4.4, we have an L-parameter ϕ̃ ∈ Φ(G̃′)

ϕ̃ : WDF → GLn(C)

such that pr◦ ϕ̃ = ϕ (see also [Wei74, Hen80, CG15b]). By the local Langlands correspondence for G̃′ [HS11,

Chapter 11], we have a unique irreducible representation σ̃ ∈ Π(G̃′) associated to the L-parameter ϕ̃. The
L-packet Πϕ(G

′) thus equals the set Πσ̃(G
′) (see Section 4.1).

Lemma 4.8. ([HS11, Lemma 12.5]) There is a homomorphism ΛSLn : Sϕ,sc(Ĝ′) → A(σ̃) (unique up to
1-dimensional character of Sϕ(G′)) with the following commutative diagram

(4.6)

1 −−−−→ Ẑϕ,sc(G
′) −−−−→ Sϕ,sc(Ĝ′) −−−−→ Sϕ(Ĝ′) −−−−→ 1

yζG
yΛSLn

y≃

1 −−−−→ C× −−−−→ A(σ̃) −−−−→ I(σ̃) −−−−→ 1.

�
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Combining (4.3) and (4.6), [HS11, Lemma 12.6] states that there is a bijection

(4.7) Πϕ(G
′)

1−1←→ Irr(Sϕ,sc(Ĝ′), ζG′),

such that we have an isomorphism

Vσ̃ ≃
⊕

ρ∈Irr(Sϕ,sc(Ĝ′),ζG′ )

ρ⊠ σρ

as representations of Sϕ,sc(Ĝ′) ⋊ G′(F ), where σρ denotes the image of ρ via the bijection (4.7). It thus
follows from [HS11, p.5] that

(4.8) dim ξσ = dim ρσ,

where ρσ is the image of σ via the bijection (4.7), which implies that dimρσ1
= dimρσ2

for any σ1, σ2 ∈ Πϕ(G
′).

Remark 4.9. From (4.6) and (4.8), the multiplicity in the restriction from GLn(D) to SLn(D) is controlled
by the following two factors: the character ζG, uniquely determined by a given inner form G, and the group
Sϕ, determined by a given L−parameter ϕ.

Remark 4.10. All above arguments can be obviously applicable to the case of G∗ = SLn1
× · · · × SLnr .

4.4. A bijection via theta correspondence. We recall a bijection between two sets of irreducible con-
stituents in two restrictions via the theta correspondence. For a moment, we employ the notation GU(V2n),
U(V2n), GU(Wm), and U(Wm) in [GT14, Section 2], where V2n and Wm respectively denote a quaternionic
Hermitian and skew-Hermitian space over a quaternion F -algebra with some positive integers n and m.
These represent all non qausi-split inner forms described in Section 3, We fix a non-trivial additive character
ψ of F. As in [GT14, Section 3], we consider the Weil representation of U(V2n)×U(Wm) and its extension to
R = GU(V2n) × GU(Wm), which respectively give theta correspondences between U(V2n) and U(Wm) and
between GU(V2n) and GU(Wm).

Proposition 4.11. ([GT14, Proposition 3.3]) Let π ∈ Π(GU(V2n)) be given. Set

Res
GU(V2n)
U(V2n)

(π) = k ·
⊕

i

τi

for some positive integer k (the common multiplicity) and τi ∈ Π(U(V2n)). Suppose the big theta lift Θ(π) of
π is nonzero. Then we have the following.

(i) There is an isomorphism

θ(π) ≃ k ·
⊕

i

θψ(τi)

as representations of U(Wm). Moreover, Θ(π) = θ(π) is semisimple if Θψ(τi) = θψ(τi) is semisimple for all
i.

(ii) There is a (uniquely determined) bijection

Res
GU(V2n)
U(V2n) (π)

f−→ Res
GU(Wm)
U(Wm) (θ(π)),

sending τ 7→ θψ(τ) =: f(τ), which immediately implies the following bijection

Ππ(U(V2n))
f−→ Πθ(π)(U(Wm)).

(iii) The above statements (i) and (ii) are true for GU(Wm) and U(Wm) when GU(V2n) and U(V2n) are
respectively replaced by GU(Wm) and U(Wm). �

5. LLC for SO2,2 and its inner forms

We present the LLC for GSO2,2 and its F -inner forms, and establish the LLC for SO2,2 and its F -inner
forms.
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5.1. The cases of GSO2,2 and its inner forms. From the isomorphism in Section 3.2

GSO2,2(F ) ≃ (GL2(F )×GL2(F ))/{(z, z−1) : z ∈ F×},
one can notice that any irreducible admissible representation of GSO2,2(F ) is of the form τ̃1 ⊠ τ̃2, where τ̃1
and τ̃2 are in Π(GL2) with the same central character (cf. [GT11b, Section 1]). This implies that

Π(GSO2,2) = {τ̃1 ⊠ τ̃2 : τ̃1, τ̃2 ∈ Π(GL2) with ωτ̃1 = ωτ̃2}.

Further, due to the form of L-group ĜSO2,2 in Section 3.2, we note that

Φ(GSO2,2) = {ϕ̃1 ⊕ ϕ̃2 : ϕ̃1, ϕ̃2 ∈ Φ(GL2) with det ϕ̃1 = det ϕ̃2}.
Thus, by the LLC for GLn [HT01, Hen00, Sch13], there is a surjective, one-to-one map

L2,2 : Π(GSO2,2) −→ Φ(GSO2,2).

For non quasi-split F -inner forms of GSO2,2, we again recall the isomorphism in Section 3.2:

GSO4,0(F ) ≃ (GL1(D)×GL1(D))/{(z, z−1) : z ∈ F×},
GSO∗

1,1(F ) ≃ (GL1(D)×GL2(F ))/{(z, z−1) : z ∈ F×}.
Similarly, we have:

Π(GSO4,0) = {τ̃1 ⊠ τ̃2 : τ̃1, τ̃2 ∈ Π(GL1(D)) with ωτ̃1 = ωτ̃2},
Π(GSO∗

1,1) = {τ̃1 ⊠ τ̃2 : τ̃1 ∈ Π(GL1(D)), τ̃2 ∈ Π(GL2) with ωτ̃1 = ωτ̃2}.
Further, due to the form of L-groups in Section 3.2, we note that:

Φ(GSO4,0) = {ϕ̃1 ⊕ ϕ̃2 : ϕ̃1, ϕ̃2 ∈ Φ(GL1(D)) with det ϕ̃1 = det ϕ̃2},
Φ(GSO∗

1,1) = {ϕ̃1 ⊕ ϕ̃2 : ϕ̃1 ∈ Φ(GL1(D)), ϕ̃2 ∈ Φ(GL2) with det ϕ̃1 = det ϕ̃2}.
Thus, by the LLC for GLn [HT01, Hen00, Sch13] and for GLm(D) [HS11], there are surjective, one-to-one
maps:

L4,0 : Π(GSO4,0) −→ Φ(GSO4,0),

L∗
1,1 : Π(GSO∗

1,1) −→ Φ(GSO∗
1,1).

Since three maps L2,2, L4,0, and L
∗
1,1 are one-to-one, each fiber gives rise to L-packets for GSO2,2, GSO4,0,

and GSO∗
1,1, which are all singletons. For simplicity of notation, we write GSO† for GSO2,2, GSO4,0, and

GSO∗
1,1. Further, recalling the notation in Section 2.4, we note that:

Sϕ̃(ĜSO†) ⊂ (ĜSO†)ad ≃ PSO4(C) ≃ PSL2(C)× PSL2(C),

Sϕ̃,sc(ĜSO†) ⊂ (ĜSO†)sc ≃ Spin4(C) ≃ SL2(C)× SL2(C).

5.2. Construction of L-packets for SO2,2 and its inner forms. Given σ ∈ Π(SO2,2), from the arguments
in Section 4.1, there is a lifting σ̃ ∈ Π(GSO2,2) such that

σ →֒ Res
GSO2,2

SO2,2
(σ̃).

We define a map

L2,2 : Π(SO2,2) −→ Φ(SO2,2)

by L2,2(σ) := std2,2(L(σ̃)). Note that L2,2 is not depending on the choice of the lifting σ̃, since another lifting
must be of the form σ̃⊗χ for some quasi-character χ of F× by Proposition 4.2 and L2,2(σ̃⊗χ) = L2,2(σ̃)⊗χ
for any quasi-character χ of F× [HT01, Hen00]. Thus, the map L2,2 is well-defined. This is an analogue of
the LLC for SLn [GK82].

Furthermore, L2,2 is a surjective, since any ϕ ∈ Φ(SO2,2) can be lifted to some ϕ̃ ∈ Φ(GSO2,2) by (3.4)
and Theorem 4.4. For each ϕ ∈ Φ(SO2,2), the fiber is given by

Πϕ(SO2,2) = Πσ̃(SO2,2),
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where σ̃ is the unique member in Πϕ̃(GSO2,2) and ϕ̃ lies in Φ(GSO2,2) such that std2,2 ◦ϕ̃ = ϕ. Due to
[HT01, Hen00] and Proposition 4.2, the fiber does not depend on the choice of ϕ̃. This forms an L-packet
for SO2,2.

Similarly, given σ4,0 ∈ Π(SO4,0), there is a lifting σ̃4,0 ∈ Π(GSO4,0) such that

σ4,0 →֒ Res
GSO4,0

SO4,0
(σ̃4,0).

We define a map

L4,0 : Π(SO4,0) −→ Φ(SO4,0)

by L4,0(σ4,0) := std4,0(L(σ̃4,0)). In the same way with L2,2, it turns out that L4,0 is a well-defined, surjective,
and finite-to-one map. Likewise, we have a surjective, finite-to-one map

L∗1,1 : Π(SO∗
1,1) −→ Φ(SO∗

1,1)

by L∗1,1(σ∗
1,1) := std∗1,1(L(σ̃

∗
1,1)), where σ

∗
1,1 and σ̃∗

1,1 are corresponding representations for SO∗
1,1 and GSO∗

1,1,
respectively. For each ϕ ∈ Φ(SO4,0), the L-packet is given by

Πϕ(SO4,0) = Πσ̃4,0
(SO4,0).

Likewise, for each ϕ ∈ Φ(SO∗
1,1), we have the L-packet

Πϕ(SO
∗
1,1) = Πσ̃∗

1,1
(SO∗

1,1).

Again, due to [HT01, Hen00, HS11] and Proposition 4.2, each L-packet does not depend on the choice of ϕ̃.

5.3. Internal structure of L-packets for SO2,2 and its inner forms. We continue with the notation in
Section 2.4. For simplicity of notation, we shall write SO† for SO2,2, SO4,0, and SO∗

1,1. Recall from Section
3.3 that

ŜO† ≃ SO4(C) ≃ (SL2(C)× SL2(C))/{(1, 1), (−1,−1)}.
Note that:

(ŜO†)ad = PSO4(C), (ŜO†)sc = Spin4(C), Z((ŜO†)sc) = Z((ŜO†)sc)
Γ ≃ µ2(C)× µ2(C).

Let ϕ ∈ Φ(SO†) be given. We fix a lifting ϕ̃ ∈ Φ(GSO†) via the surjective map ĜSO† ։ ŜO† (see Theorem
4.4). We note that:

Sϕ(ŜO†) ⊂ PSO4(C) ≃ PSL2(C)× PSL2(C),

Sϕ,sc(ŜO†) ⊂ Spin4(C) ≃ SL2(C)× SL2(C).

One can then have a central extension

1 −→ Ẑϕ,sc(SO†) −→ Sϕ,sc(ŜO†) −→ Sϕ(ŜO†) −→ 1.

Let ζ2,2, ζ4,0, and ζ
∗
1,1 be characters on Z((ŜO†)sc) which respectively correspond to SO2,2, SO4,0, and SO∗

1,1

via the Kottwitz isomorphism [Kot86, Theorem 1.2].

Theorem 5.1. Given an L-parameter ϕ ∈ Φ(SO†), we fix a lifting ϕ̃ ∈ Φ(GSO†) of ϕ. Let σ̃ be the unique
member in Πϕ̃(GSO†) via the LLC for GSO† in Section 5.1. Then, there is a one-one bijection

Πϕ(SO†)
1−1←→ Π(Sϕ,sc(ŜO†), ζ†),

sending σ 7→ ρσ, such that we have an isomorphism

Vσ̃ ≃
⊕

σ∈Πϕ(SO†)

ρσ ⊠ σ

as representations of Sϕ,sc(ŜO†)⋊ SO†(F ), where the character ζ† runs through ζ2,2, ζ4,0, ζ
∗
1,1, according to

SO† .
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Remark 5.2. Given ϕ ∈ Φ(SO2,2), by Theorem 5.1, we have a one-to-one correspondence

Πϕ(SO2,2) ∪Πϕ(SO4,0) ∪ Πϕ(SO
∗
1,1

−+
) ∪ Πϕ(SO

∗
1,1

+−
)

1−1←→ Irr(Sϕ,sc(ŜO2,2)),

where SO∗
1,1

−+ ≃ (SL1(D)× SL2)/∆µ2 and SO∗
1,1

+− ≃ (SL2× SL1(D))/∆µ2, both of which are isomorphic

to SO∗
1,1.

5.4. Proof of Theorem 5.1. We follow the idea in [HS11, Lemma 12.6]. We first deal with the case of
SO† = SO∗

1,1 . Then, the proofs for the other two cases of SO2,2 and SO4,0 are the same after replacing
SL1(D)× SL2 by SL2× SL2 and SL1(D)× SL1(D), respectively.

Let an L-parameter ϕ ∈ Φ(SO∗
1,1) be given. As described in Section 5.2, there is an L-parameter ϕ̃ ∈

Φ(GSO∗
1,1) such that std∗1,1 ◦ϕ̃ = ϕ. The description in Section 6.1 implies that ϕ̃ is of the form ϕ̃1 ⊕ ϕ̃2,

where ϕ̃1 ∈ Φ(GL1(D)) and ϕ̃2 ∈ Φ(GL2) with det ϕ̃1 = det ϕ̃2.
Now, we denote by ϕ0 the image in PSL2(C)× PSL2(C) of ϕ̃ via the composite of maps

ĜSO∗
1,1

std∗1,1−→ ŜO∗
1,1 = SO4(C) ≃ (SL2(C)× SL2(C))/{(1, 1), (−1,−1)}

pr∗1,1−→ PSL2(C)× PSL2(C).

It then follows that ϕ0 ∈ Φ(SL1(D)× SL2) and ϕ0 = ϕ1 ⊕ ϕ2 with ϕ1 ∈ Φ(SL1(D)) and ϕ2 ∈ Φ(SL2). Note
that ϕ0 = pr ◦ ϕ̃0, where pr : GL2(C)×GL2(C) ։ PSL2(C)× PSL2(C) is the usual projection map.

Due to Section 5.2, we have σ ∈ Πϕ(SO
∗
1,1) and σ̃ ∈ Πϕ̃(GSO∗

1,1). Note from Section 5.1 that σ̃ is of the
form τ̃1 ⊕ τ̃2 with ωτ̃1 = ωτ̃1 , where τ̃1 ∈ Π(GL1(D)) and τ̃2 ∈ Π(GL2) corresponding to ϕ̃1 and ϕ̃2 via the
LLC for GL2 [Hen00, HT01, Sch13] and for GL1(D) [HS11], respectively.

Lemma 5.3. With the notation above, Sϕ(ŜO
∗
1,1) is a normal subgroup of finite index in Sϕ0

( ̂SL1(D)× SL2).

Proof. The centralizer Cϕ0
( ̂SL1(D)× SL2) is equal to the image of the disjoint union

⊔

ν∈Hom(WF ,{±1})

{h ∈ SO4(C) : hϕ(w)h
−1ϕ(w)−1 = ν(w)}

via the map std∗1,1 . Further, we note that

{h ∈ SO4(C) : hϕ(w)h
−1ϕ(w)−1 = 1} = Cϕ(ŜO

∗
1,1)

and Sϕ(ŜO
∗
1,1) = std∗1,1(Cϕ(ŜO

∗
1,1)). It is elementary to check that

g · std∗1,1(Cϕ(ŜO∗
1,1)) · g−1 = std∗1,1(Cϕ(ŜO

∗
1,1))

for any g ∈ Sϕ0
( ̂SL1(D)× SL2). Since Hom(WF , {±1}) is finite, the lemma is proved. �

Lemma 5.4. With the notation above, we have the following commutative diagram

1 −−−−→ Ẑϕ,sc(SO
∗
1,1) −−−−→ Sϕ,sc(ŜO∗

1,1) −−−−→ Sϕ(ŜO∗
1,1) −−−−→ 1

∥∥∥
y∩

y∩

1 −−−−→ Ẑϕ0,sc(SL1(D)× SL2) −−−−→ Sϕ0,sc(
̂SL1(D)× SL2) −−−−→ Sϕ0

( ̂SL1(D)× SL2) −−−−→ 1.

Proof. From Lemmas 4.7 and 5.3, it follows that Sϕ(ŜO∗
1,1) is a subgroup of Sϕ0

( ̂SL1(D)× SL2). Note that

Sϕ,sc(ŜO
∗
1,1) and Sϕ0,sc(

̂SL1(D)× SL2) are respectively both central extensions of Sϕ(ŜO
∗
1,1) and Sϕ0

( ̂SL1(D)× SL2)

by µ2(C)× µ2(C). Using the same arguments, Sϕ,sc(ŜO
∗
1,1)

◦ and Sϕ0,sc(
̂SL1(D)× SL2)

◦ are identical. It fol-

lows that Ẑϕ,sc(SO
∗
1,1) = Ẑϕ0,sc(SL1(D)× SL2) and Sϕ,sc(ŜO∗

1,1) ⊂ Sϕ0,sc(
̂SL1(D)× SL2). Thus, the proof of

the lemma is complete. �

Lemma 5.5. With the notation above, I(σ̃) is a subgroup of I(σ̃0).
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Proof. Note that Πϕ̃(GSO†) is a singleton from Section 5.1 and the LLC for GLn and GLm(D) is compatible
with twisting by characters [HT01, Hen00, HS11]. So, we have I(ϕ̃) = I(σ̃). Likewise, we have I(ϕ̃0) = I(σ̃0).
From the fact that ϕ̃ is of the form ϕ̃0 ⊕ µ, it then follows that I(σ̃) ⊂ I(ϕ̃0). �

Remark 5.6. From [GK82, Theorem 4.3], one can notice that Sϕ0
( ̂SL1(D)× SL2) ≃ I(ϕ̃0).

Lemma 5.7. With the notation above, we have

Sϕ ≃ I(σ̃).
Proof. From (3.4) and Lemma 4.6, it is enough to show that Sϕ ≃ X(ϕ̃). This is immediate from Lemma

4.5, since the centralizer Cϕ̃(ĜSO†) is connected so that Sϕ̃(GSO†) is trivial. �

Proposition 5.8. There is a homomorphism Λ† : Sϕ,sc(ŜO∗
1,1) → A(σ̃) (unique up to 1-dimensional char-

acter of Sϕ(ŜO∗
1,1)) with the following commutative diagram

1 −−−−→ Ẑϕ,sc(SO
∗
1,1) −−−−→ Sϕ,sc(ŜO∗

1,1) −−−−→ Sϕ(ŜO∗
1,1) −−−−→ 1

yζ†
yΛ∗

1,1

y≃

1 −−−−→ C× −−−−→ A(σ̃) −−−−→ I(σ̃) −−−−→ 1.

Proof. Using Hiraga-Saito’s homomorphism ΛSL2×SL2
in (4.6) (cf. Remark 4.10) and the fact that Sϕ(ŜO∗

1,1)

is a subgroup of Sϕ0
( ̂SL1(D)× SL2) (see Lemma 5.4), we define a map Λ∗

1,1 : Sϕ,sc(ŜO∗
1,1) → A(σ̃) as the

restriction

ΛSL2×SL2
|
Sϕ,sc(ŜO∗

1,1)

of ΛSL2×SL2
to Sϕ,sc(ŜO∗

1,1). Due to Lemmas 5.4, 5.5, and 5.7, and by the definition of ΛSL2 × SL2
in (4.6),

Λ∗
1,1 is well-defined. Since I(σ̃) is contained in I(Π) and Sϕ(ŜO∗

1,1) is a subgroup of Sϕ0
( ̂SL1(D)× SL2), it

follows that the image Λ∗
1,1 is in A(σ̃). Thus, the proof of the proposition is complete. �

We now finish the Proof of Theorem 5.1. Since Πϕ(SO
∗
1,1) is in bijection with Irr(A(σ̃), id) due to (4.3)

and (4.4), and since Irr(A(σ̃), id) is again in bijection with Π(Sϕ,sc(ŜO∗
1,1), ζ

∗
1,1) due to Proposition 5.8, the

proof of Theorem 5.1 is complete.

5.5. Properties of L-maps for SO2,2 and its inner forms. The L-maps defined in Section 5.2 satisfy
the following property. We continue to use SO† for SO2,2, SO4,0, and SO∗

1,1, so that L†, σ†, and so on will
make sense accordingly.

Proposition 5.9. A given σ† ∈ Π(SO†) is an essentially square-integrable representation if and only if its
L-parameter ϕσ†

:= L†(σ†) does not factor through any proper Levi subgroup of SO4(C).

Proof. By the definition of L† in Section 5.2, σ† is an irreducible constituent of the restriction σ̃†|SO†
for some

σ̃† ∈ Π(GSO†). From Remark 4.1 and [HT01, Hen00, Sch13, HS11], σ† is an essentially square-integrable
representation if and only if σ̃† is if and only if ϕ̃σ†

:= L†(σ̃†) does not factor through any proper Levi
subgroup of GSO†(C) if and only if ϕσ†

does not. �

Remark 5.10. In the same way with the proof of Proposition 5.9, we have that a given σ† ∈ Π(SO†) is
tempered if and only if the image of its L-parameter ϕσ†

:= L†(σ†) in SO4(C) is bounded.

6. LLC for SO3,3 and its inner forms

Following the idea in Section 5, we present the LLC for GSO3,3 and its F -inner forms and establish the
LLC for SO3,3 and its F -inner forms.
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6.1. The cases of GSO3,3 and its inner forms. From the isomorphism in Section 3.2

GSO3,3(F ) ≃ (GL4(F )× F×)/{(z, z−2) : z ∈ F×},
one can notice that any irreducible admissible representation of GSO3,3(F ) has the form Π⊠µ for Π ∈ Π(GL4)
and µ ∈ Π(GL1) with ωΠ = µ2 (cf. [GT11b, Section 1]). This implies that

Π(GSO3,3) = {Π⊠ µ : Π ∈ Π(GL4), µ ∈ Π(GL1) with ωΠ = µ2}.
Further, due to the form of L-group ĜSO3,3 in Section 3.2, we note that

(6.1) Φ(GSO3,3) = {ϕ̃0 ⊕ µ : ϕ̃0 ∈ Φ(GL4), µ ∈ Φ(GL1) with det ϕ̃0 = µ2}.
Thus, by the LLC for GLn [HT01, Hen00, Sch13], there is a surjective, one-to-one map

L3,3 : Π(GSO3,3) −→ Φ(GSO3,3).

For a non quasi-split F -inner form GSO∗
3,0 of GSO3,3, we again recall the isomorphism in Section 3.2

GSO∗
3,0(F ) ≃ (GL1(D4)× F×)/{(z, z−2) : z ∈ F×}.

Similarly, we have

Π(GSO∗
3,0) = {Π⊠ µ : Π ∈ Π(GL1(D4)), µ ∈ Π(GL1) with ωΠ = µ2.}.

Further, due to the form of L-groups in Section 3.2, we note that

Φ(GSO∗
3,0) = {ϕ̃0 ⊕ µ : ϕ̃0 ∈ Φ(GL1(D4)), µ ∈ Φ(GL1) with det ϕ̃0 = µ2}.

Thus, by the LLC for GLm(D) [HS11], there is a surjective, one-to-one maps

L∗
3,0 : Π(GSO∗

3,0) −→ Φ(GSO∗
3,0).

Since two maps L3,3 and L
∗
3,0 are one-to-one, each fiber gives rise to L-packets for GSO3,3 and GSO∗

3,0, which
are all singletons. Likewise, we define a surjective, one-to-one map

LVD : Π(GSOVD ) −→ Φ(GSOVD )

and construct L-packets for GSOVD . For simplicity of notation, we write GSO♭ for GSO3,3, GSO∗
3,0, and

GSOVD . Further, recalling the notation in Section 2.4, we note that:

Sϕ̃(ĜSO♭) ⊂ (ĜSO♭)ad ≃ PSO6(C) ≃ PSL4(C),

Sϕ̃,sc(ĜSO♭) ⊂ (ĜSO♭)sc ≃ Spin6(C) ≃ SL4(C).

6.2. Construction of L-packets for SO3,3 and its inner forms. Given σ ∈ Π(SO3,3), there is a lifting
σ̃ ∈ Π(GSO3,3) such that

σ →֒ Res
GSO3,3

SO3,3
(σ̃).

We define a map
L3,3 : Π(SO3,3) −→ Φ(SO3,3)

by L3,3(σ) := std3,3(L(σ̃)). Note that L3,3 is not depending on the choice of the lifting σ̃, since another lifting
must be of the form σ̃⊗χ for some quasi-character χ of F× by Proposition 4.2 and L3,3(σ̃⊗χ) = L3,3(σ̃)⊗χ
for any quasi-character χ of F× [HT01, Hen00]. Thus, the map L3,3 is well-defined.

Furthermore, L3,3 is a surjective, since any ϕ ∈ Φ(SO3,3) can be lifted to some ϕ̃ ∈ Φ(GSO3,3) by (3.6)
and Theorem 4.4. For each ϕ ∈ Φ(SO3,3), the fiber is given by

Πϕ(SO3,3) = Πσ̃(SO3,3),

where σ̃ is the unique member in Πϕ̃(GSO3,3) and ϕ̃ lies in Φ(GSO3,3) such that std3,3 ◦ϕ̃ = ϕ. Due to
[HT01, Hen00] and Proposition 4.2, the fiber does not depend on the choice of ϕ̃. This forms an L-packet
for SO3,3.

Similarly, given σ∗
3,0 ∈ Π(SO∗

3,0), there is a lifting σ̃∗
3,0 ∈ Π(GSO∗

3,0) such that

σ∗
3,0 →֒ Res

GSO∗
3,0

SO∗
3,0

(σ̃∗
3,0).
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We define a map

L∗3,0 : Π(SO∗
3,0) −→ Φ(SO∗

3,0)

by L∗3,0(σ∗
3,0) := std∗3,0(L(σ̃

∗
3,0)). In the same way with L3,3, L∗3,0 turns out to be a well-defined, surjective,

and finite-to-one map. For each ϕ ∈ Φ(SO∗
3,0), the L-packet is given by

Πϕ(SO
∗
3,0) = Πσ̃∗

3,0
(SO∗

3,0).

Due to [HS11] and Proposition 4.2, each L-packet does not depend on the choice of ϕ̃.
Likewise, we define a surjective, finite-to-one map

LVD : Π(SO(VD) −→ Φ(SO(VD))

by LVD (σVD ) := stdVD (L(σ̃VD )) For each ϕ ∈ Φ(SO(VD)), the L-packet is given by

Πϕ(SO(VD)) = Πσ̃VD
(SO(VD)).

As in Section 5.2, each L-packet does not depend on the choice of ϕ̃.

6.3. Internal structure of L-packets for SO3,3 and its inner forms. We continue with the notation in
Section 2.4. For simplicity of notation, we shall write SO♭ for SO3,3, SO

∗
3,0, and SO(VD). Recall from Section

3.3 that

ŜO♭ ≃ SO6(C) ≃ SL4(C)/µ2(C).

Note that

(ŜO♭)ad = PSO6(C), (ŜO♭)sc = Spin6(C), Z((ŜO♭)sc) = Z((ŜO♭)sc)
Γ ≃ µ4(C).

Let ϕ ∈ Φ(SO♭) be given. We fix a lifting ϕ̃ ∈ Φ(GSO♭) via the surjective map ĜSO♭ ։ ŜO♭ (see Theorem
4.4). We note that:

Sϕ(ŜO♭) ⊂ PSO6(C) ≃ PSL4(C),

Sϕ,sc(ŜO♭) ⊂ Spin6(C) ≃ SL4(C).

One can then have a central extension

(6.2) 1 −→ Ẑϕ,sc(SO♭) −→ Sϕ,sc(ŜO♭) −→ Sϕ(ŜO♭) −→ 1.

Let ζ3,3, ζ
∗
3,0, and ζVD be characters on Z((ŜO♭)sc) which correspond to SO3,3, SO

∗
3,0, and SO(VD) via the

Kottwitz isomorphism [Kot86, Theorem 1.2]. Note that the inverse (ζ∗3,0)
−1 corresponds to another form

SL1(D
op
4 )/µ2, which is isomorphic to SO∗

3,0, via the canonical isomorphism between two multiplicative groups

D×
4 and (Dop

4 )× (see Section 3.2).

Theorem 6.1. Given an L-parameter ϕ ∈ Φ(SO♭), we fix a lifting ϕ̃ ∈ Φ(GSO♭) of ϕ. Let σ̃ be the unique
member in Πϕ̃(GSO♭) via the LLC for GSO♭ in Section 6.1. Then, there is a one-one bijection

Πϕ(SO♭)
1−1←→ Π(Sϕ,sc(ŜO♭), ζ♭),

sending σ 7→ ρσ, such that we have an isomorphism

Vσ̃ ≃
⊕

σ∈Πϕ(SO♭)

ρσ ⊠ σ

as representations of Sϕ,sc(ŜO♭) ⋊ SO♭(F ), where the character ζ♭ runs through ζ3,3, ζVD , ζ
∗
3,0, according to

SO♭.

Remark 6.2. Given ϕ ∈ Φ(SO3,3), by Theorem 6.1, we have a one-to-one correspondence

Πϕ(SO3,3) ∪Πϕ(SO(VD)) ∪ Π1/4
ϕ (SO∗

3,0) ∪Π3/4
ϕ (SO∗

3,0)
1−1←→ Irr(Sϕ,sc(ŜO3,3)).

Just only for here, we distinguish Π
1/4
ϕ (SO∗

3,0) and Π
3/4
ϕ (SO∗

3,0) in the sense that Π
1/4
ϕ (SO∗

3,0) denotes the

L-packet for SO∗
3,0 with D4 and Π

3/4
ϕ (SO∗

3,0) denotes the L-packet for SO
∗
3,0 with Dop

4 (see Section 3.2).
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6.4. Proof of Theorem 6.1. We follow the idea in [HS11, Lemma 12.6]. We first deal with the case of
SO♭ = SO∗

3,0 . Then, the proofs for the other two cases of SO3,3 and SO(VD) are the same after replacing
SL1(D4) by SL4 and SL2(D), respectively.

Let an L-parameter ϕ ∈ Φ(SO∗
3,0) be given. As described in Section 6.2, there is an L-parameter ϕ̃ ∈

Φ(GSO∗
3,0) such that std∗3,0 ◦ϕ̃ = ϕ. The description (6.1) implies that ϕ̃ is of the form ϕ̃0 ⊕ µ, where

ϕ̃0 ∈ Φ(GL1(D4)) and µ ∈ Φ(GL1).
Now, we denote by ϕ0 the image in PSL4(C) of ϕ̃ via the composite of maps

ĜSO∗
3,0

std∗3,0−→ ŜO∗
3,0 = SO6(C) ≃ SL4(C)/µ2(C)

pr∗3,0−→ PSL4(C).

It then follows that ϕ0 ∈ Φ(SL1(D4)). Note that ϕ0 = pr ◦ ϕ̃0, where pr : GL4(C) ։ PSL4(C) is the usual
projection map.

Due to Section 6.2, we have σ ∈ Πϕ(SO
∗
3,0) and σ̃ ∈ Πϕ̃(GSO∗

3,0). Note from Section 6.1 that σ̃ is of the

form Π ⊠ µ with ωΠ = µ2, where Π ∈ Π(GL1(D4)) corresponding to ϕ̃0 via the LLC for GL1(D4) [HS11]
and µ ∈ Π(GL1).

Lemma 6.3. With the notation above, Sϕ(ŜO
∗
3,0) is a normal subgroup of finite index in Sϕ0

( ̂SL1(D4)).

Proof. The centralizer Cϕ0
( ̂SL1(D4)) is equal to the image of the disjoint union

⊔

ν∈Hom(WF ,{±1})

{h ∈ SO6(C) : hϕ(w)h−1ϕ(w)−1 = ν(w)}

via the map std∗3,0 . Further, we note that:

{h ∈ SO6(C) : hϕ(w)h
−1ϕ(w)−1 = 1} = Cϕ(ŜO

∗
3,0),

Sϕ(ŜO
∗
3,0) = std∗3,0(Cϕ(ŜO

∗
3,0)).

It is elementary to check that

g · std∗3,0(Cϕ(ŜO∗
3,0)) · g−1 = std∗3,0(Cϕ(ŜO

∗
3,0))

for any g ∈ Sϕ0
( ̂SL1(D4)). Since Hom(WF , {±1}) is finite, the lemma is proved. �

Lemma 6.4. With the notation above, we have the following commutative diagram

1 −−−−→ Ẑϕ,sc(SO
∗
3,0) −−−−→ Sϕ,sc(ŜO∗

3,0) −−−−→ Sϕ(ŜO∗
3,0) −−−−→ 1

∥∥∥
y∩

y∩

1 −−−−→ Ẑϕ0,sc(SL1(D4)) −−−−→ Sϕ0,sc(
̂SL1(D4)) −−−−→ Sϕ0

( ̂SL1(D4)) −−−−→ 1.

Proof. From Lemmas 4.7 and 6.3, it follows that Sϕ(ŜO∗
3,0) is a subgroup of Sϕ0

( ̂SL1(D4)). Note that

Sϕ,sc(ŜO
∗
3,0) and Sϕ0,sc(

̂SL1(D4)) are respectively both central extensions of Sϕ(ŜO
∗
3,0) and Sϕ0

( ̂SL1(D4)) by

µ4(C). Using the same arguments, we have Sϕ,sc(ŜO
∗
3,0)

◦ and Sϕ0,sc(
̂SL1(D4))

◦ are identical. It follows that

Ẑϕ,sc(SO
∗
3,0) = Ẑϕ0,sc(SL1(D4)) and Sϕ,sc(ŜO∗

3,0) ⊂ Sϕ0,sc(
̂SL1(D4)). Thus, the proof is complete. �

Lemma 6.5. With the notation above, I(σ̃) is a subgroup of I(σ̃0).

Proof. Note that Πϕ̃(GSO†) is a singleton from Section 5.1 and the LLC for GLn and GLm(D) is compatible
with twisting by characters. So, we have I(ϕ̃) = I(σ̃). Likewise, we have I(ϕ̃0) = I(σ̃0). From the fact that
ϕ̃ is of the form ϕ̃0 ⊕ µ, it then follows that I(σ̃) ⊂ I(ϕ̃0). �

Remark 6.6. From [GK82, Theorem 4.3], we have Sϕ0
( ̂SL1(D)× SL2)≃I(ϕ̃0).

Lemma 6.7. With the notation above, we have

Sϕ ≃ I(σ̃).
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Proof. From (3.6) and Lemma 4.6, it is enough to show that Sϕ ≃ X(ϕ̃). This is immediate from Lemma

4.5, since the centralizer Cϕ̃(ĜSO♭) is connected so that Sϕ̃(GSO♭) is trivial. �

Proposition 6.8. There is a homomorphism Λ♭ : Sϕ,sc(ŜO∗
3,0) → A(σ̃) (unique up to 1-dimensional char-

acter of Sϕ(ŜO∗
3,0)) with the following commutative diagram

1 −−−−→ Ẑϕ,sc(SO
∗
3,0) −−−−→ Sϕ,sc(ŜO∗

3,0) −−−−→ Sϕ(ŜO∗
3,0) −−−−→ 1

yζ♭
yΛ∗

3,0

y≃

1 −−−−→ C× −−−−→ A(σ̃) −−−−→ I(σ̃) −−−−→ 1.

Proof. Using Hiraga and Saito’s homomorphism ΛSL4
in (4.6) and the fact that Sϕ(ŜO∗

3,0) is a subgroup of

Sϕ0
( ̂SL1(D4)) (see Lemma 6.4), we define a map Λ∗

3,0 : Sϕ,sc(ŜO∗
3,0)→ A(σ̃) as the restriction

ΛSL4
|
Sϕ,sc(ŜO∗

3,0)

of ΛSL4
to Sϕ,sc(ŜO∗

3,0). Due to Lemmas 6.4, 6.5, and 6.7, and by the definition of ΛSL4
in (4.6), Λ∗

3,0 is

well-defined. Since I(σ̃) is contained in I(Π) and Sϕ(ŜO∗
3,0) is a subgroup of Sϕ0

( ̂SL1(D4)), it follows that
the image Λ∗

3,0 is in A(σ̃). Thus, the proof is complete. �

We now finish the Proof of Theorem 6.1. Since Πϕ(SO
∗
3,0) is in bijection with Irr(A(σ̃), id) due to (4.3)

and (4.4), and since Irr(A(σ̃), id) is again in bijection with Π(Sϕ,sc(ŜO∗
3,0), ζ

∗
3,0) due to Proposition 6.8, the

proof of Theorem 6.1 is complete.

6.5. Properties of L-maps for SO3,3 and its inner forms. The L-maps defined in Section 6.2 satisfy
the following property. We continue to use SO♭ for SO3,3, SO(VD), and SO∗

3,0, so that L♭, σ♭, and so on will
be used accordingly.

Proposition 6.9. A given σ♭ ∈ Π(SO♭) is an essentially square-integrable representation if and only if its
L-parameter ϕσ♭

:= L♭(σ♭) does not factor through any proper Levi subgroup of SO6(C).

Proof. By the definition of L♭ in Section 6.2, σ♭ is an irreducible constituent of the restriction σ̃♭|SO♭
for some

σ̃♭ ∈ Π(GSO♭). From Remark 4.1 and [HT01, Hen00, Sch13, HS11], σ♭ is an essentially square-integrable
representation if and only if σ̃♭ is if and only if ϕ̃σ♭

:= L♭(σ̃♭) does not factor through any proper Levi
subgroup of GSO♭(C) if and only if ϕσ♭

does not. �

Remark 6.10. In the same way with the proof of Proposition 6.9, we have that a given σ♭ ∈ Π(SO♭) is
tempered if and only if the image of its L-parameter ϕσ♭

:= L♭(σ♭) in SO6(C) is bounded.

7. LLC for Sp1,1

In this section, we state and prove the local Langlands conjecture for Sp1,1 . Furthermore, we classify all
cases of the central extension (2.2) for Sp1,1, describe all sizes of L-packets of Sp1,1, illustrate multiplicities
in restriction from GSp1,1, and give an explicit example in which an interesting phenomenon appears.

7.1. Revisiting the LLC for GSp1,1. We recall the LLC for GSp1,1, which was established by Gan and
Tantono in [GT14], and utilize it to construct the LLC for Sp1,1 in Section 7.2. Consider GSO∗

3,0 and GSO∗
1,1

which participate in L-packets for GSp1,1 . The relations between dual groups in Section 3.3 can be combined
with [GT14, Section 7] to have the following inclusions ι∗3,0, ι

∗
1,1 on L-parameters:

ι∗3,0 : {irreducible 4-dimensional ϕ̃ ∈ Φ(GSp1,1)} →֒ Φ(GL1(D4))× Φ(GL1)

defined by ι∗3,0(ϕ̃) = (ϕ̃, sim ϕ̃), and

ι∗1,1 : {(ϕ̃1, ϕ̃2) ∈ Φ(GSO∗
1,1) : ϕ̃1 6= ϕ̃2, det ϕ̃1 = det ϕ̃2}/Out(SO4) →֒ Φ(GSp1,1)
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defined by ι∗1,1(ϕ̃1, ϕ̃2) = ϕ̃1 ⊕ ϕ̃2 = ϕ̃, where the action of Out(SO4) on Φ(GSO∗
1,1) is given by (ϕ̃1, ϕ̃2) 7→

(ϕ̃2, ϕ̃1).

Remark 7.1. We note from [GT14, Section 7] that ϕ̃ ∈ Φ(GSp1,1) is either an irreducible 4-dimensional
representation or the image of ι∗1,1. Moreover, since ϕ̃1 ∈ Φ(GL1(D)) and ϕ̃2 ∈ Φ(GL2), the action of of
Out(SO4) is non-trivial if and only if both ϕ̃1 and ϕ̃2 are elliptic L-parameters of GL2.

The LLC for GSp1,1 states that there is a surjective, two-to-one map

L1,1 : Π(GSp1,1) −→ Φ(GSp1,1),

satisfying several natural conditions which determine the map uniquely (see [GT14, p.763] for details).

7.2. Construction of L-packets for Sp1,1. We define a map

L1,1 : Π(Sp1,1) −→ Φ(Sp1,1)

by L1,1(σ) = std1,1(L1,1(σ̃)) with σ̃ ∈ Π(GSp1,1) such that

σ →֒ Res
GSp1,1

Sp1,1
(σ̃).

This is an analogue of the local Langlands correspondence for Sp4 which was established by Gan and Takeda
in [GT10]. Note that L1,1(σ̃ ⊗ χ) = L1,1(σ̃) ⊗ χ for any quasi-character χ of F× [GT14, (iv) p.2] and
L1,1 is not depending on the choice of the lifting σ̃ by Proposition 4.2. Thus, the map L1,1 is well-defined.
Furthermore, since any ϕ ∈ Φ(Sp1,1) can be lifted to some ϕ̃ ∈ Φ(GSp1,1) [GT10, Proposition 2.8], L1,1 is a
surjective. For each ϕ ∈ Φ(Sp1,1), the fiber is given by

(7.1) Πϕ(Sp1,1) =
⋃

σ̃∈Πϕ̃(GSp1,1)

Πσ̃(Sp1,1),

where ϕ̃ lies in Φ(GSp1,1) such that std1,1 ◦ϕ̃ = ϕ (see Theorem 4.4). Due to [GT14, (iv) p.2] and Proposition
4.2, the fiber does not depend on the choice of ϕ̃. This forms an L-packet for Sp1,1.

Remark 7.2. Unlike the case of Sp4, it is possible that the union in (7.1) is not disjoint. This occurs only
when ϕ̃ ∈ Φ(GSp1,1) is of the form ι∗1,1(ϕ̃1, ϕ̃2) = ϕ̃1⊕ ϕ̃2 for some (ϕ̃1, ϕ̃2) ∈ Φ(GSO∗

1,1) such that ϕ̃1 ≃ ϕ̃2χ

for some quadratic character χ of F× (see [GT10, Proposition 6.8.(iii)(b)]). Later, we will analyze this case
in Section 7.4 and give its explicit example in Section 7.7).

7.3. Internal structure of L-packets for Sp1,1. We parameterize each L-packet Πϕ(Sp1,1) for Sp1,1 in
terms of so-called S-groups, as described in Section 2.4.

We narrow down notation in Sections 2.4 and 4 to the case of Sp1,1 . Recall from Section 3.3 that

Ŝp1,1 = Ŝp4 = PSp4(C) ≃ SO5(C).

Note that

(Ŝp1,1)ad = PSp4(C), (Ŝp1,1)sc = Sp4(C), Z((Ŝp1,1)sc) = Z((Ŝp1,1)sc)
Γ ≃ µ2(C).

Let ϕ ∈ Φ(Sp1,1) be given. We fix a lifting ϕ̃ ∈ Φ(GSp1,1) via the surjective map ĜSp1,1 −→ Ŝp1,1 (see
Theorem 4.4). With the notation in Section 2.4, we have:

Sϕ(Ŝp4) = Sϕ(Ŝp1,1) ⊂ PSO5(C),

Sϕ̃(ĜSp4) = Sϕ̃(ĜSp1,1) ⊂ PSO5(C),

Sϕ,sc(Ŝp4) = Sϕ,sc(Ŝp1,1) ⊂ Sp4(C),

Sϕ̃,sc(ĜSp4) = Sϕ̃,sc(ĜSp1,1) ⊂ Sp4(C).

We then have a central extension

1 −→ Ẑϕ,sc(Sp1,1) −→ Sϕ,sc(Ŝp1,1) −→ Sϕ(Ŝp1,1) −→ 1.
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We denote by 1 the trivial character and sgn the non-trivial characters on Z/2Z ≃ µ2(C). Considering the
isomorphism Z((Sp1,1)sc) ≃ µ2(C), 1 maps to Sp4 and sgn to Sp1,1, via the Kottwitz isomorphism [Kot86,
Theorem 1.2].

To state Theorem 7.4 below, we need to recall three mutually exclusive possibilities of ϕ̃ ∈ Φ(GSp1,1)
from [GT14, Section 7] as follows.

• Case I: ϕ̃ is of the form ϕ̃1 ⊕ ϕ̃2, where ϕ̃i ∈ Φell(GL2), ϕ̃1 6≃ ϕ̃2, and det ϕ̃1 = det ϕ̃2. Since
Φell(GL2) = Φell(GL1(D)), we thus note that ϕ̃ ∈ Φ(GSO∗

1,1). Based on the classification in [GT10,
Proposition 6.8(iii)], we further subcategorize this case as follows:

– (a) ϕ̃1 6≃ ϕ̃2 ⊗ χ for any character χ on F×,
– (b) ϕ̃1 ≃ ϕ̃2 ⊗ χ with χ necessarily quadratic.

• Case II: ϕ̃ is of the form χ(ϕ̃0⊕(ω0⊕1)), where χ is a quasi-character on F×, ϕ̃0 lies in Φell(GL1(D)),
and ω0 denotes the central character of the essentially square-integrable representation corresponding
to ϕ̃0 via the local Langlands correspondence for GL1(D) [HS11, Chapter 11]. We note that ϕ̃ ∈
Φ(GSO∗

1,1).
• Case III: ϕ̃ sits in Φell(GL1(D4)), which in fact coincides with Φ(GL1(D4)).

Next, we recall the L-packets Πϕ̃(GSp1,1) for each case, which were established in [GT14].
Case I: Πϕ̃(GSp1,1) = {σ̃1 =: θ(JL(τ1)⊠ τ2), σ̃2 := θ(JL(τ2)⊠ τ2)}, where θ stands for theta correspon-

dence from GSO∗
1,1 to GSp1,1, JL denotes the local Jacquet-Langlands lift from GL2(F ) to GL1(D), and

τi ∈ Πess,disc(GL2) is corresponding to ϕ̃i via the local Langlands correspondence for GL2 [HT01, Hen00].
Note that Πϕ̃(GSp1,1) consists of essentially square-integrable representations.

Case II: Πϕ̃(GSp1,1) = {σ̃ := JP (ρ, χ)}, where JP (ρ, χ) denotes the Langlands quotient of the standard
module, P ≃ (GL1(D)×GL1) ·N (see [GT14, Section 5.3]) is an F -parabolic subgroup (which is the Siegel
parabolic subgroup) of GSp1,1, and ρ is the essentially square-integrable representation corresponding to ϕ̃0

via the local Langlands correspondence for GL1(D). Note that JP (ρ, χ) is not essentially square-integrable.
Case III:Πϕ̃(GSp1,1) = {σ̃ := π}, where π is the essentially square-integrable representation of GSp1,1(F )

whose theta lift θ(π) to GSO∗
3,0 is Π⊠ µ ∈ Π(GSO∗

3,0). Note that ωΠ = µ2 and µ = sim(ϕ̃).

Remark 7.3. The L-packets of Case I and Case III exhaust the set Πell,disc(GSp1,1), and the L-packets of
Case II exhaust the set Π(GSp1,1)rΠell,disc(GSp1,1).

Theorem 7.4. With the notation above, given an L-parameter ϕ ∈ Φ(Sp1,1), we fix its lifting ϕ̃ ∈ Φ(GSp1,1).
Then, there is a one-one bijection

(7.2) Πϕ(Sp1,1)
1−1←→ Irr(Sϕ,sc(Ŝp1,1), sgn),

sending σ 7→ ρσ, such that we have isomorphisms:

Vσ̃i
≃

⊕

σ∈Πσ̃i
(Sp1,1)

ρσ ⊠ σ (i = 1, 2), for Case I-(a),

Vσ̃ ≃
⊕

σ∈Πσ̃(Sp1,1)

ρσ ⊠ σ, for Cases II and III,

as representations of the semi-direct product Sϕ,sc(Ŝp1,1)⋊ Sp1,1(F ), and for Case I-(b), we have:

Πσ̃1
(Sp1,1) = Πσ̃2

(Sp1,1),

the multiplicity in Res
GSp1,1

Sp1,1
(σ̃i) =

dim ρσ
2

, (i = 1, 2).

Here, Π♯(Sp1,1) denotes the set of equivalence classes of all irreducible constituents of Res
GSp1,1

Sp1,1
(♯) with

♯ ∈ {σ̃1, σ̃2, σ̃}, as defined in Section 4.1.

Remark 7.5. The bijection in Theorem 7.4 is uniquely determined via the theta correspondence in Proposition
4.11. Nevertheless, since our proof in Section 7.4 relies on that of SL′

n by Hiraga and Saito in [HS11], the
bijection in Theorem 7.4 depends on the choice of a certain homomorphism ΛSLn

described in Section 4.3.
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Moreover, since there is no Whittaker model for the non quasi-split group Sp1,1, each L-packet Πϕ(Sp1,1)
has no base point (cf. [GT10, p.3003]).

7.4. Proof of Theorem 7.4. We follow the idea in [HS11, Lemma 12.6] and utilize the results in Sections
4.4, 5.3, and 6.3. We begin with the following lemma.

Lemma 7.6. With the notation in Section 2.4, we have

Ẑϕ̃,sc(GSp1,1) = Ẑϕ̃,sc(Sp1,1) ≃ µ2(C).

Proof. Since Z(Sp4(C)) ≃ µ2(C), it suffices to show that Ẑϕ̃,sc(GSp1,1) = µ2(C)/(µ2(C) ∩ Sϕ̃(ĜSp1,1)
◦) =

Z(Ŝp1,1). Using the fact that the non quasi-split inner form GSp1,1 corresponds to the unique non-trivial
character sgn via the Kottwitz isomorphism [Kot86, Theorem 1.2], [HS11, Lemma 9.1] yields

µ2(C) ∩ Sϕ̃(ĜSp1,1)
◦ ⊂ ker(sgn) = {1},

which completes the proof of the lemma. �

Lemma 7.6 and the exact sequence (2.2) give the following two exact sequences:

(7.3) 1 −→ µ2(C) −→ Sϕ̃,sc(ĜSp1,1) −→ Sϕ̃(ĜSp1,1) −→ 1,

(7.4) 1 −→ µ2(C) −→ Sϕ,sc(Ŝp1,1) −→ Sϕ(Ŝp1,1) −→ 1.

From [GT14, Section 7], we note that:

Sϕ̃,sc(ĜSp1,1) ≃ Z/2Z if Sϕ̃(ĜSp1,1) ≃ {1},
Sϕ̃,sc(ĜSp1,1) ≃ Z/2Z× Z/2Z if Sϕ̃(ĜSp1,1) ≃ Z/2Z.

From [GT10, Proposition 2.9], we recall an exact sequence

(7.5) 1 −→ Sϕ̃(ĜSp4) −→ Sϕ(Ŝp4) −→ I(ϕ̃) −→ 1.

Combining (7.3), (7.4), and (7.5), we have the following commutative exact sequences

(7.6)

1
y

1 −−−−→ µ2(C) −−−−→ Sϕ̃,sc(ĜSp1,1) −−−−→ Sϕ̃(ĜSp1,1) −−−−→ 1
∥∥∥

y∩

y∩

1 −−−−→ µ2(C) −−−−→ Sϕ,sc(Ŝp1,1) −−−−→ Sϕ(Ŝp1,1) −−−−→ 1
y

I(ϕ̃)
y

1

By the snake Lemma, we obtain an exact sequence (the middle vertical exact sequence)

(7.7) 1 −→ Sϕ̃,sc(ĜSp1,1) −→ Sϕ,sc(Ŝp1,1) −→ I(ϕ̃) −→ 1.

Now, we verify the theorem for each case in Section 7.3.

Case I-(a): Note that ϕ̃ is elliptic (hence, ϕ is elliptic). It then follows that Ẑϕ,sc(SO
∗
1,1) = µ2(C)×µ2(C)

(cf. Section 2.4), the connected component group S equals S itself, and Sϕ̃,sc(ĜSp1,1) ≃ Z/2Z× Z/2Z.
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To emphasize groups in the definitions (4.1) and (4.5), we recall the notation IG with G ∈ {Sp1,1, SO∗
1,1}.

Since ϕ̃1 6≃ ϕ̃2 ⊗ χ for any character χ on F×, we have

(7.8) ISp1,1(σ̃1) ≃ ISp1,1(σ̃2) ≃ ISp1,1(ϕ̃) ≃ ISO∗
1,1(ϕ̃) ≃ ISO∗

1,1(JL(τ1)⊠ τ2) ≃ ISO
∗
1,1(JL(τ2)⊠ τ1).

From Lemma 5.7, (7.5), (7.7), and (7.8), we then have the following exact sequences

(7.9)

Sϕ̃(ĜSp4)y∩

1 −−−−→ µ2(C) −−−−→ Sϕ,sc(Ŝp1,1) −−−−→ Sϕ(Ŝp1,1) −−−−→ 1
y∩

∥∥∥
ysurjective

1 −−−−→ Sϕ̃,sc(ĜSp1,1) −−−−→ Sϕ,sc(Ŝp1,1) −−−−→ ISp1,1(ϕ̃) −−−−→ 1
x≃

x≃

x≃

1 −−−−→ µ2(C)× µ2(C) −−−−→ Sϕ,sc(ŜO
∗
1,1) −−−−→ Sϕ(ŜO

∗
1,1) −−−−→ 1.

Here, we take the embedding µ2(C) →֒ µ2(C) × µ2(C) as a 7→ (a, a). Since the character sgn on µ2(C) is
lifted to the two characters sgn×1(= ζ∗1,1) and 1 × sgn on µ2(C) × µ2(C) via the embedding, we have the
following bijection

(7.10) Irr(Sϕ,sc(Ŝp1,1), sgn)
1−1←→ Irr(Sϕ,sc(ŜO

∗
1,1), ζ

∗
1,1) ⊔ Irr(Sϕ,sc(ŜO

∗
1,1),1× sgn).

We note that, via the Kottwitz isomorphism [Kot86, Theorem 1.2], the characters ζ∗1,1 and 1×sgn respectively
correspond to

(SL1(D)× SL2)/∆µ2 = SO∗
1,1 and (SL2 × SL1(D))/∆µ2 = SO∗

1,1
+−
,

which are non quasi-split F -inner forms of SO4 (see Remark 5.2). Considering the characters ζ∗1,1 and 1×sgn

as characters on Sϕ̃,sc(ĜSp1,1), due to (7.9), we have the following bijections:

Irr(Sϕ,sc(Ŝp1,1), ζ
∗
1,1)

1−1←→ Irr(Sϕ,sc(ŜO
∗
1,1), ζ

∗
1,1)

1−1←→ ΠJL(τ1)⊠τ2(SO
∗
1,1),

Irr(Sϕ,sc(Ŝp1,1),1× sgn)
1−1←→ Irr(Sϕ,sc(ŜO

∗
1,1),1× sgn)

1−1←→ Πτ1⊠JL(τ2)(SO
∗
1,1

+−
)

1−1←→ ΠJL(τ2)⊠τ1(SO
∗
1,1).

Since the character ζ∗1,1 corresponds to σ̃1 and the other 1× sgn corresponds to σ̃2 (see [GT14, Section 7.2]),
Proposition 4.11 and Theorem 5.1 give rise to the following bijections:

Irr(Sϕ,sc(ŜO
∗
1,1), ζ

∗
1,1)

1−1←→ ΠJL(τ1)⊠τ2(SO
∗
1,1)

1−1←→ Πσ̃1
(Sp1,1),

Irr(Sϕ,sc(ŜO
∗
1,1),1× sgn)

1−1←→ Πτ1⊠JL(τ2)(SO
∗
1,1

+−
)

1−1←→ ΠJL(τ2)⊠τ1(SO
∗
1,1)

1−1←→ Πσ̃2
(Sp1,1).

Using Proposition 4.4, Theorem 5.1, and the isomorphism Sϕ,sc(Ŝp1,1) ≃ Sϕ,sc(ŜO∗
1,1) in (7.9), we thus have

the following isomorphism

Vσ̃i
≃

⊕

σ∈Πσ̃i
(Sp1,1)

ρσ ⊠ σ (i = 1, 2),

as representations of the semi-direct product Sϕ,sc(Ŝp1,1)⋊ Sp1,1(F ). This completes the proof of Theorem
7.4 for Case I-(a).

Case I-(b): Since ϕ̃1 ≃ ϕ̃2 ⊗ χ with χ necessarily quadratic, we have

(7.11) ISp1,1(σ̃1) ≃ ISp1,1(σ̃2) ≃ ISO
∗
1,1(ϕ̃) ≃ ISO∗

1,1(JL(τ1)⊠ τ2) ≃ ISO
∗
1,1(JL(τ2)⊠ τ1)

6≃→֒ ISp1,1(ϕ̃).
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One can notice that (7.11) is slightly different from (7.8). From Lemma 5.7, (7.5), (7.7), and (7.11), we then
have the following exact sequences

(7.12)

Sϕ̃(ĜSp4)y∩

1 −−−−→ µ2(C) −−−−→ Sϕ,sc(Ŝp1,1) −−−−→ Sϕ(Ŝp1,1) −−−−→ 1
y∩

∥∥∥
ysurjective

1 −−−−→ Sϕ̃,sc(ĜSp1,1) −−−−→ Sϕ,sc(Ŝp1,1) −−−−→ ISp1,1(ϕ̃) −−−−→ 1
x≃

x∪

x∪

1 −−−−→ µ2(C)× µ2(C) −−−−→ Sϕ,sc(ŜO
∗
1,1) −−−−→ Sϕ(ŜO

∗
1,1) −−−−→ 1.

To see the bijection (7.2) for Case I-(b), we use [Art13, Lemma 9.2.2] and obtain the following bijection with
the property [Art13, (9.2.15)]

(7.13) Irr(Sϕ,sc(Ŝp1,1), sgn)
1−1←→ Irr(Z(Sϕ,sc(Ŝp1,1)), sgn),

where Z(Sϕ,sc(Ŝp1,1)) denotes the center of the group Sϕ,sc(Ŝp1,1). Note that, in [Art13, Lemma 9.2.2], our

notation Z(Sϕ,sc(Ŝp1,1)) is Zψ and our character sgn is ζ̂ψ. Moreover, the number N therein equals 5, so that
|Io| (see Section 7.6 for the definition) equals 3 or 5 depending on partitions of 5. Using [Art13, (9.2.10)]
and (7.12), we then get:

(7.14) µ2(C) = Z((Ŝp1,1)sc) ≤ Z(Sϕ,sc(Ŝp1,1)) � Z(Sϕ,sc(ŜO
∗
1,1)),

(7.15) µ2(C) = Z((Ŝp1,1)sc) < µ2(C)× µ2(C) = Z((ŜO∗
1,1)sc) � Z(Sϕ,sc(ŜO

∗
1,1)).

Furthermore, we note that

[Z(Sϕ,sc(ŜO
∗
1,1)) : Z(Sϕ,sc(Ŝp1,1))] = 2,

which implies that

[Z(Sϕ,sc(Ŝp1,1)) : Z((Ŝp1,1)sc)] = [Z(Sϕ,sc(ŜO
∗
1,1)) : Z((ŜO

∗
1,1)sc)].

Restricting characters via the inclusions (7.14) and (7.15), by [Art13, Lemma 9.2.2], we have the following
bijections

Irr(Z(Sϕ,sc(Ŝp1,1)), sgn)
1−1←→ Irr(Z(Sϕ,sc(ŜO

∗
1,1)), sgn×1)

1−1←→ Irr(Sϕ,sc(ŜO
∗
1,1), sgn×1).

Then, Proposition 4.11 and Theorem 5.1 yield

(7.16) Irr(Sϕ,sc(ŜO
∗
1,1), sgn×1)

1−1←→ Πσ̃1
(Sp1,1) = Πσ̃2

(Sp1,1).

Proposition 4.2 implies that

(7.17) Res
GSp1,1

Sp1,1
(σ̃1) ≃ Res

GSp1,1

Sp1,1
(σ̃2),

which gives the last equality in (7.16). Let σ ∈ Πϕ(Sp1,1) be given. We write ρ∗1,1(σ) for the image of ρσ via
the composite of the bijections (7.13) – (7.16). From [Art13, Lemma 9.2.2], we then have

(7.18) dim ρσ = 2 · dim ρ∗1,1(σ).

Note from Section 4.1 that dim ρ∗1,1(σ) equals the mutiplicity in the restrictions (7.17). This completes the
proof of Theorem 7.4 for Case I-(b).

Remark 7.7. We make the following remarks on the proof for Case I-(b) above.

1. It follows from the idea in [Art13, Section 9.2] that [Sϕ,sc(Ŝp1,1) : Sϕ,sc(ŜO
∗
1,1)] = 2. This index leads

to the difference (7.18) in dimensions (cf. (4.8) and Remark 4.9).
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2. Unlike Case I-(a), we observe that Z(Sϕ,sc(Ŝp1,1)) no longer contains µ2(C)×µ2(C) ≃ Sϕ̃,sc(ĜSp1,1)

(see Section 7.6 for details). This leads to the fact that only one between Irr(Sϕ,sc(Ŝp1,1), ζ
∗
1,1) and

Irr(Sϕ,sc(Ŝp1,1),1× sgn) is non-empty. Thus, we do not have the bijection (7.10).

Case II: We then have the following commutative exact sequences

(7.19)

1 −−−−→ µ2(C) −−−−→ Sϕ,sc(Ŝp1,1) −−−−→ Sϕ(Ŝp1,1) −−−−→ 1
y

y
y≃

1 −−−−→ Ẑϕ,sc(SO
∗
1,1) −−−−→ Sϕ,sc(ŜO∗

1,1) −−−−→ Sϕ(ŜO∗
1,1) −−−−→ 1.

Here, the very right isomorphism comes from the fact that #Sϕ̃(ĜSp1,1) = 1 and Sϕ(ŜO∗
1,1) ≃ I(ϕ̃) ≃

Sϕ(Ŝp1,1). Further, since the character ζ
∗
1,1 on µ2(C)×µ2(C) equals sgn×1, using the same idea in the proof

of Lemma 7.6, Ẑϕ,sc(SO
∗
1,1) is either µ2(C)× {1} or µ2(C)× µ2(C). We claim that

(7.20) Ẑϕ,sc(SO
∗
1,1) ≃ µ2(C)× {1} ≃ µ2(C).

Indeed, it follows from [Art13, p.535] that

Sϕ,sc(Ĝ)◦ = (Z(M̂sc)
Γ)◦,

where Γ acts trivially, M̂sc is the preimage of M̂ in Ĝsc, andM is a Levi subgroup of G with respect to which ϕ
is elliptic. Due to the proof of [GT14, Proposition 7.1 (iii)] for Case II,M is the Siegel maximal Levi subgroup

of SO∗
1,1, and M̂sc equals GL1(C)× SL2(C), which is a Levi subgroup of Spin4(C) ≃ SL2(C)× SL2(C) = Ĝsc

(see [Sha88, Section 4] and [Kim05, 2.3.1]). It thus follows that

Sϕ,sc(Ĝ)◦ = GL1(C),

which implies

Z(Ĝsc ∩ Sϕ,sc(Ĝ)◦) ≃ {1} × µ2(C).

From the definition
Ẑϕ,sc(SO

∗
1,1) := Z(Ĝsc)/(Z(Ĝsc) ∩ Sϕ,sc(Ĝ)◦),

the claim (7.20) has been verified. We then have

(7.21) Sϕ,sc(ŜO∗
1,1) ≃ Sϕ,sc(Ŝp1,1),

which implies that

Irr(Sϕ,sc(ŜO∗
1,1), ζ

∗
1,1)

1−1←→ Irr(Sϕ,sc(Ŝp1,1), sgn).
From Proposition 4.4 and Theorem 5.1, we thus have

Vσ̃ ≃
⊕

σ∈Πσ̃(Sp1,1)

ρσ ⊠ σ,

as representations of the semi-direct product Sϕ,sc(Ŝp1,1)⋊ Sp1,1(F ). This completes the proof of Theorem
7.4 for Case II.

Case III: Note that ϕ̃ is elliptic (hence, ϕ is). It is clear that Ẑϕ,sc(SO
∗
3,0) = µ4(C). Further, the group

connected component S equals S itself. We have the following commutative exact sequences

(7.22)

1 −−−−→ µ2(C) −−−−→ Sϕ,sc(Ŝp1,1) −−−−→ Sϕ(Ŝp1,1) −−−−→ 1
y∩

y∩

y≃

1 −−−−→ µ4(C) −−−−→ Sϕ,sc(ŜO
∗
3,0) −−−−→ Sϕ(ŜO

∗
3,0) −−−−→ 1.

Indeed, the last isomorphism comes from

(7.23) Sϕ(ŜO
∗
3,0) ≃ I(ϕ̃) ≃ Sϕ(Ŝp1,1),
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since Sϕ̃(ĜSp1,1) is a singleton. Further, since Sϕ(Ŝp1,1) = Sϕ(Ŝp1,1) ⊂ SO5(C) (ϕ being elliptic), it

follows that Sϕ,sc(Ŝp1,1) equals the inverse image pr1,1
−1(Sϕ(Ŝp1,1)), where we recall that pr1,1 is the usual

projection from Sp4(C) onto SO5(C). Likewise, since Sϕ(ŜO
∗
3,0) ⊂ SO6(C), it follows that Sϕ,sc(ŜO

∗
3,0) =

pr∗3,0
−1(Sϕ(ŜO

∗
3,0)), where we recall that pr∗3,0 is the usual projection from SL4(C) onto SO6(C). Using the

commutative diagram

1 −−−−→ µ2(C) −−−−→ Sp4(C)
pr1,1−−−−→ SO5(C) −−−−→ 1

y∩

y∩

y∩

1 −−−−→ µ4(C) −−−−→ SL4(C)
pr∗3,0−−−−→ SO6(C) −−−−→ 1,

we thus have the inclusion Sϕ,sc(Ŝp1,1) ⊂ Sϕ,sc(ŜO∗
3,0).

Remark 7.8. This inclusion can be also obtained from the following commutative diagram

1 −−−−→ µ2(C) −−−−→ Sϕ,sc(Ŝp1,1) −−−−→ Sϕ(Ŝp1,1) −−−−→ 1
∥∥∥

y∩

y∩

1 −−−−→ µ2(C) −−−−→ Sϕ,sc(ŜO
∗
3,0) −−−−→ Cϕ(ŜO

∗
3,0) −−−−→ 1.

To complete the proof of Theorem 7.4 for Case III, from Proposition 4.11 and Theorem 6.1, it remains to
show that

Irr(Sϕ,sc(ŜO
∗
3,0), ζ

∗
3,0)

1−1←→ Irr(Sϕ,sc(Ŝp1,1), sgn).

Equivalently, due to (7.22), we claim that the restriction ρ|
Sϕ,sc(Ŝp1,1)

is irreducible and ρ|µ2(C) = sgn, for

any ρ ∈ Irr(Sϕ,sc(ŜO
∗
3,0), ζ

∗
3,0). To verify this argument, we set Sϕ,sc(Ŝp1,1) = A and Sϕ,sc(ŜO

∗
3,0) = B for

simplicity. Using the Frobenius reciprocity, we have

〈ρ|A, ρ|A〉A = 〈IndBA(ρ|A), ρ〉B ,
where 〈ρ1, ρ2〉H = dimC HomH(ρ1, ρ2) for any representation ρi of a finite group H. Since B/A ≃ Z/2Z ≃
µ4(C)/µ2(C), we have

IndBA(ρ|A) ≃ ρ⊕ (ρ⊗ χ),
where χ is a character on µ4(C) but trivial on µ2(C). But, since (ρ ⊗ χ)|µ4(C) 6= ζ∗3,0, we have ρ 6≃ ρ ⊗ χ.
Thus, it follows that

〈ρ|A, ρ|A〉A = 1,

which implies that ρ|A is irreducible. Lastly, it is immediate that ρ|µ2(C) = ζ∗3,0|µ2(C) = sgn . This completes
the proof of Theorem 7.4 for Case III. Therefore, the proof of Theorem 7.4 is complete.

7.5. Properties of L1,1-map for Sp1,1. The L1,1-map defined in Section 7.2 satisfies the following prop-
erties.

Proposition 7.9. A given σ ∈ Π(Sp1,1) is an essentially square-integrable representation if and only if its
L-parameter ϕσ := L1,1(σ) does not factor through any proper Levi subgroup of SO5(C).

Proof. By the definition of L1,1 in Section 7.2, σ is an irreducible constituent of the restriction σ̃|Sp1,1
for

some σ̃ ∈ Π(GSp1,1). From Remark 4.1 and [GT14, Theorem 9.1(b)], σ is an essentially square-integrable
representation if and only if σ̃ is if and only if ϕ̃σ := L1,1(σ̃) does not factor through any proper Levi
subgroup of GSp4(C) if and only if ϕσ does not. �

Remark 7.10. In the same way with the proof of Proposition 7.9, we have that a given σ1,1 ∈ Irr(Sp1,1) is
tempered if and only if the image of its L-parameter ϕσ1,1 := L1,1(σ1,1) in SO5(C) is bounded.
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Proposition 7.11. Let ϕ ∈ Φdisc(Sp1,1) and σ1, σ2 ∈ Πϕ(Sp1,1) be given. LetM be an F -Levi subgroup of an
F -inner form of Sp2n, which is the product of Sp1,1 and copies of F -inner forms of GLmi with n = 2+

∑
mi.

For any τ ⊠ σ1, τ ⊠ σ2 ∈ Πdisc(M), ν ∈ a
∗
M,C, and w ∈ WM with wM =M, we have

µM (ν, τ ⊠ σ1, w) = µM (ν, τ ⊠ σ2, w).

Proof. This follows from [GT14, Section 8], our construction of L-packets in Section 7.2, and the fact that the
restriction of representations preserves the intertwining operator and the Plancherel measure (cf. [Cho14b,
Section 2.2]). �

7.6. More studies on L-packets for Sp1,1. Based on [GT10, Sections 5 and 6] and [Art13, Section 9.2],
we classify the central extension (2.2) for all ϕ ∈ Φ(Sp1,1) and illuminate all sizes of L-packets of Sp1,1 as
well as all multiplicities in restriction from GSp1,1 . Let ϕ ∈ Φ(Sp1,1) be given. Using Theorem 4.4, we fix a

lifting ϕ̃ ∈ Φ(GSp1,1), such that ϕ = std1,1 ◦ϕ̃, where std1,1 is the surjective map from ĜSp1,1 to Ŝp1,1 as in
(3.1).

From Section 7.3, we recall three mutually exclusive cases: Case I, Case II, Case III. For each case, we will

give a description of Sϕ = Sϕ(Ŝp1,1) and its central lifting Sϕ,sc = Sϕ,sc(Ŝp1,1), which fit into the following
exact sequence in (7.6)

1 −→ µ2(C) −→ Sϕ,sc −→ Sϕ −→ 1.

We claim that Sϕ,sc is isomorphic to one of the following groups

Z/2Z× Z/4Z, (Z/2Z)2, D8, the Pauli group, D8 ∗Q8, Z/4Z, Z/2Z.

To this end, we first recall some arguments from [Art13, Section 9.2], which will be applied to the cases of
elliptic parameters: Case I, Case III. Let ϕ be elliptic. Then, we have Sϕ = Sϕ and Sϕ,sc = Sϕ,sc. Following
[Art13, Section 9.2, p.531], we set

ϕ = ϕ1 ⊕ ϕ2 ⊕ · · · ⊕ ϕr,
where ϕi ∈ Φ2(GL(Ni)) and N1 + N2 + · · · + Nr = 5, and we have a decomposition of {1, . . . , 5} into two
disjoint subsets

{1, . . . , 5} = Ie ⊔ Io,
consisting of those indices k whose associate degrees Nk are either even or odd. Applying arguments in
[Art13, pp. 531-534] to the case of Sp1,1, we have

δϕ = 1, εϕ = 0, Sϕ ≃ (Z/2Z)r−1.

Moreover, since Sϕ,sc is abelian if and only if |Io| ≤ 2 (see [Art13, p.533]), Sϕ,sc is non-abelian if and only if
the partition of N is 1 + 1+ 1+ 1+ 1, 2+ 1+ 1+ 1, or 3+ 1+ 1. For these three cases, the derived group of
Sϕ,sc equals {±1} and the center Z(Sϕ,sc) has order 2

|Ie|+1.
Case I: Since ϕ̃ = ϕ̃1⊕ ϕ̃2, we have ϕ = std1,1 ◦ϕ̃ = 1⊕ (ϕ̃∨

1 ⊗ ϕ̃2) (cf. [GT10, p. 3008]), where ϕ̃∨
1 is the

contragredient of ϕ̃1. Further, since Sϕ̃,sc(ĜSp1,1) ≃ Z/2Z× Z/2Z, from (7.6), we have

Z/2Z× Z/2Z →֒ Sϕ,sc.

As in Section 7.3, based on the classification in [GT10, Proposition 6.8(iii)], we proceed with two following
subcases.

Case I-(a): From the proof of [GT10, Proposition 6.8(iii)], the partition of N = 5 is either 1 + 2 + 2 or
1 + 4. Note that Sϕ,sc is abelian for both cases.

When 5 = 1 + 2 + 2, Sϕ,sc is isomorphic to (Z/2Z)3, 2Z × Z/4Z, or Z/8Z, since Sϕ ≃ (Z/2Z)2. Using
arguments in [Art13, (9.2.7) and p. 531] on the order of each element of Sϕ,sc, one can notice that Sϕ,sc
consists of four elements of order 4, three elements of order 2, and the identity. Note that our group Sϕ,sc is
denoted by a subgroup Bψ of B(N) in [Art13, p. 531]. We thus have

1 −→ µ2(C) −→ Sϕ,sc ≃ Z/2Z× Z/4Z −→ Sϕ ≃ (Z/2Z)2 −→ 1

and |Πϕ(Sp1,1)| = 4. By Remark 4.3, (4.8), and Theorem 7.4, the multiplicity in Res
GSp1,1

Sp1,1
(σ̃) is 1.
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When 5 = 1+4, Sϕ,sc is isomorphic to (Z/2Z)2 or Z/4Z, since Sϕ ≃ Z/2Z. As in the case of 5 = 1+2+2
in Case I-(a), one can notice that Sϕ,sc consists of three elements of order 2 and the identity. we thus have

1 −→ µ2(C) −→ Sϕ,sc ≃ (Z/2Z)2 −→ Sϕ ≃ Z/2Z −→ 1

and |Πϕ(Sp1,1)| = 2. By Remark 4.3, (4.8), and Theorem 7.4, the multiplicity in Res
GSp1,1

Sp1,1
(σ̃) is 1.

Case I-(b): From [GT10, Proposition 6.8(iii)(b)], we notice that

ϕ = std1,1 ◦ ϕ̃ = 1⊕ χ⊕Ad(ϕ̃1)χ.

This implies that the partition of N = 5 is 1 + 1 + 3, 1 + 1 + 1 + 2, or 1 + 1 + 1 + 1 + 1. Note that Sϕ,sc is
non-abelian for all three cases.

When 5 = 1 + 1 + 3, we have Sϕ ≃ (Z/2Z)2 and Sϕ,sc is non-abelian of order 8, which is isomorphic
to either the dihedral group D8 of order 8 or the finite quaternion group Q8 of order 8. As in the case of
5 = 1 + 2 + 2 in Case I-(a), one can notice that Sϕ,sc consists of two elements of order 4, five elements of
order 2, and the identity. We thus have

1 −→ µ2(C) −→ Sϕ,sc ≃ D8 −→ Sϕ ≃ (Z/2Z)2 −→ 1.

Further, by [Art13, Lemma 9.2.2] (or directly from the character table of D8), Irr(Sϕ,sc) consists of one
2-dimensional representation and four 1-dimensional characters. Thus, |Πϕ(Sp1,1)| = 1. By Theorem 7.4,

the multiplicity in Res
GSp1,1

Sp1,1
(σ̃) is 1. We will give an explicit example for this case in Section 7.7.

When 5 = 1 + 1 + 1 + 2, we have Sϕ ≃ (Z/2Z)3 and Sϕ,sc is non-abelian of order 16. As in the case of
5 = 1 + 2+ 2 in Case I-(a), one can notice that Sϕ,sc consists of eight elements of order 4, seven elements of
order 2, and the identity. Moreover, from [Art13, (9.2.10)] we note that the center Z(Sϕ,sc) has order 4 and
contains an element of order 4 (denoted by b{4} in [Art13, (9.2.10)]). It follows that Z(Sϕ,sc) ≃ Z/4Z. Thus,
Sϕ,sc has a group presentation

{aαbβcγ : a4 = b2 = c2 = 1, ba = ab, ca = ac, cb = a2bc},
which equalsG10 in [Wil05, Theorem 2]. Another description of Sϕ,sc is {±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ},
where i =

√
−1,

I = I2×2 =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =

(
1 0
0 −1

)
,

which is called the Pauli group (see [NC00]). Therefore, we have

1 −→ µ2(C) −→ Sϕ,sc ≃ the Pauli group ≃ G10 in [Wil05, Theorem 2] −→ Sϕ ≃ (Z/2Z)3 −→ 1.

Further, by [Art13, Lemma 9.2.2], Irr(Sϕ,sc) consists of two 2-dimensional representations and eight 1-

dimensional characters. Thus, |Πϕ(Sp1,1)| = 2. By Theorem 7.4, the multiplicity in Res
GSp1,1

Sp1,1
(σ̃) is 1.

When 5 = 1+1+ 1+ 1+1, we have Sϕ ≃ (Z/2Z)4 and Sϕ,sc is non-abelian of order 32. As in the case of
5 = 1 + 2 + 2 in Case I-(a), one can notice that Sϕ,sc consists of twenty elements of order 4, eleven elements
of order 2, and the identity. Moreover, we note that Z(Sϕ,sc) ≃ µ2(C) by [Art13, (9.2.10)], and Irr(Sϕ,sc)
consists of one 4-dimensional representation and sixteen 1-dimensional characters by [Art13, Lemma 9.2.2].
Thus, Sϕ,sc is isomorphic to the central product D8 ∗Q8 of the diheldral group D8 and the quaternion group
Q8, defined as

D8 ∗Q8 := (D8 ×Q8)/〈(z1, z2)〉,
where 〈z1〉 and 〈z2〉 denote the unique normal subgroups of D8 and Q8, respectively. Note that D8 ∗
Q8 is one of two extra-special groups of order 32 and the other one has twelve elements of order 4 (cf.
[Gor80, Rob96, CT05]). Therefore, we have

1 −→ µ2(C) −→ Sϕ,sc ≃ D8 ∗Q8 −→ Sϕ ≃ (Z/2Z)4 −→ 1,

and |Πϕ(Sp1,1)| = 1. By Theorem 7.4, the multiplicity in Res
GSp1,1

Sp1,1
(σ̃) is 2.
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Case II: Based on [GT10, Proposition 6.10(ii)], we have

(7.24) 1 −→ µ2(C) −→ Sϕ,sc ≃ Z/4Z −→ Sϕ ≃ Z/2Z −→ 1,

if ϕ̃0 is dihedral with respect to a quadratic extension E/F (by definition, ϕ̃0 ≃ ϕ̃0 ⊗ ωE/F , where ωE/F is
the quadratic character corresponding to E via the local class field theory) and det(ϕ̃0) = ωE/F ; otherwise,
we have

1 −→ µ2(C)
≃−→ Sϕ,sc −→ Sϕ = 1 −→ 1.

Accordingly, we have |Πϕ(Sp1,1)| = 2, or 1, respectively. By Remark 4.3, (4.8), and Theorem 7.4, the

multiplicity in Res
GSp1,1

Sp1,1
(σ̃) is 1. We should mention the reason why Sϕ,sc 6≃ (Z/2Z)2 in (7.24). Indeed, since

ϕ̃0 is dihedral with respect to E/F, using [Art13, Section 9.2] with the partition N = 3 = 1+2, we have the
following exact sequence

1 −→ µ2(C) −→ Sϕ0,sc(ŜL2) ≃ Z/4Z −→ Sϕ0
(ŜL2) ≃ Z/2Z −→ 1,

where ϕ0 is the image of ϕ̃0 via the projection GL2(C) ։ PGL2(C) = SO3(C). Since ϕ̃ is of the form
χ(ϕ̃0 ⊕ (ω0 ⊕ 1)), we have

Sϕ,sc = Sϕ0,sc(ŜL2)× {1}
Thus, the exact sequence (7.24) follows.

Case III: Since ϕ is elliptic, we follow the idea of Case I above. From [GT10, Theorem 6.5 and Proposition
6.8 (i)&(ii)], there are only following cases.

• (a): ϕ̃ is premitive. This case is the situation of [GT10, Theorem 6.5(I)]). Simply, the partition of
N = 5 is 5 due to [GT10, Proposition 5.1(I)]. We thus have

1 −→ µ2(C)
≃−→ Sϕ,sc −→ Sϕ = 1 −→ 1

and |Πϕ(Sp1,1)| = 1. By Remark 4.3, (4.8), and Theorem 7.4, the multiplicity in Res
GSp1,1

Sp1,1
(σ̃) is 1.

• (b): ϕ̃ = IndWF

WE
σ, στ ≃ σχ, χ2 6= 1, and sim(ϕ̃)|WE = χ detσ 6= detσ, where E/F is a quadratic

extension with Gal(E/F ) =< τ >, σ is a primitive representation of WE (by definition, ϕ̃0 is not of

the form IndWE

WF
ρ for a finite extension F/E and some irreducible ρ), and χ is a character of WE .

This case is the situation of [GT10, Theorem 6.5(II)]). Simply, the partition of N = 5 is 2+3 due to
[GT10, Proposition 5.1(II)]. As before, we have Sϕ ≃ Z/2Z and the central extension Sϕ,sc by µ2(C)
is abelian of order 4, which is isomorphic to (Z/2Z)2 or Z/4Z. As in the case of 5 = 1+2+2 in Case
I-(a), one can notice that Sϕ,sc consists of two elements of order 4, one elements of order 2, and the
identity. We thus have

1 −→ µ2(C)−→Sϕ,sc ≃ Z/4Z −→ Sϕ ≃ Z/2Z −→ 1

and |Πϕ(Sp1,1)| = 2. By Remark 4.3, (4.8), and Theorem 7.4, the multiplicity in Res
GSp1,1

Sp1,1
(σ̃) is 1.

• (c): ϕ̃ = IndWF

WE
σ and sim(ϕ̃)|WE = detσ, where E/F is a quadratic extension with Gal(E/F ) =<

τ > and σ is an irreducible 2-dimensional representation of WE . This case is the situation of [GT10,
Theorem 6.5(III)]. We divide into the following subcases whose partitions follow from the proofs
of [GT10, Proposition 5.1 and Theorem 6.5(III)]. We first consider the case that στ 6= σχ for any
character χ of WE , which is the situation of [GT10, Theorem 6.5(III)(a)].

– (c1): σ is primitive. Then, the partition of N = 5 is 1 + 4, which is the same as the second
case in Case I-(a) above.

– (c2): σ = IndWK

WE
ρ with Gal(K/F ) ≃ Z/4Z. This is the same as Case III-(c1).

– (c3): σ = IndWK

WE
ρ with Gal(K/F ) ≃ Z/2Z× Z/2Z. The partition of N = 5 is 1 + 2 + 2, which

is the same as the first case in Case I-(a).

– (c4): σ = IndWK

WE
ρ with K/F non-Galois. The partition of N = 5 is either 1 + 4 or 1 + 2 + 2,

which is the same as Case III-(c1) or Case III-(c3), respectively.
We then consider the case that στ = σχ for some character χ of WE (χ is necessarily quadratic),
which is the situation of [GT10, Theorem 6.5(III)(b)].
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– (c5): χτ 6= χ. The partition of N = 5 is 1 + 2 + 2, which is the same as Case III-(c3).
– (c6): χτ = χ. The partition of N = 5 is 1 + 1 + 3, 1 + 1 + 1 + 2, or 1 + 1 + 1 + 1 + 1, which is

the same as Case I-(b) above.
• (d): This is the remaining elliptic parameter which is the situation of [GT10, Proposition 6.8(i)&(ii)].
We divide into the following subcases whose partitions follow from the proofs of[GT10, Proposition
6.8].

– (d1): ϕ̃ = µ⊠ S4 with µ a 1-dimensional character of WF and S4 the 4-dimensional represen-
tation of SL2(C). The partition of N = 5 is 5, which is the same as Case III-(a).

– (d2): ϕ̃ = σ ⊠ S2 with σ an irreducible 2-dimensional dihedral representation of WF and S2

the 2-dimensional representation of SL2(C). The partition of N = 5 is either 1 + 1+ 3 or 2 + 3.
When 5 = 1+1+3, Sϕ,sc is non-abelian of order 8, which is the same as the case of 5 = 1+1+3
in Case I-(b). When 5 = 2 + 3, this is the same as Case III-(b).

Remark 7.12. By Remark 4.3, (4.8), and Theorem 7.4, the multiplicity in Res
GSp1,1

Sp1,1
(σ̃) is 1, except when the

partition is 1 + 1 + 3, 1 + 1 + 1 + 2, 1 + 1 + 1 + 1+ 1. For these three cases, the multiplicity is 2, 2, 4 in the
order given.

Remark 7.13. We note that the two cases (i) and (iii) of [GT10, Proposition 6.10] are not relevant to Sp1,1
[Bor79, Section 3], since Sp1,1 has a unique (up to conjugacy) minimal F -parabolic subgroup, which is the

Siegel maximal parabolic and isomorphic to D×. Further, its dual parabolic subgroup in Ŝp1,1 = SO5(C) is
the image of the Heisenberg (or Klingen) parabolic subgroup (≃ GL2(C) ×GL1(C)) of GSp4(C) under the
projection std1,1 : GSp4(C) ։ SO5(C) (see [Bor79, Section 3], [PTB11, Section 3.1], and [GT14, p.762]).
This is why the two cases (i) and (iii) of [GT10, Proposition 6.10] deos not occur in GSp1,1 (see [GT14,
Section 7]).

7.7. An example. We give an explicit L-packet of Sp1,1, which is considered as a new phenomenon arising
in the non quasi-split inner form Sp1,1 differently than the split group Sp4 . Let ϕ̃ = ϕ̃0 ⊕ ϕ̃0χ ∈ Φ(GSp4)
be given, where χ is a quadratic character, ϕ̃0 ∈ Φ(GL2) is primitive (by definition, ϕ̃0 is not of the form

IndWF

WE
ρ for a finite extension E/F and some irreducible ρ), and ϕ̃0 6≃ ϕ̃0χ. We then have an irreducible

supercuspidal representation π ∈ Π(GL2) corresponding to ϕ0 via the LLC for GL2 (cf. [GT10, Proposition
6.3]). Further, from the LLC for GSp4 [GT11a], we have an L-packet attached to ϕ

Πϕ̃(GSp4) = {σ̃1, σ̃2},
where σ̃1 is the theta correspondence of π⊠ πχ from GSO2,2 and σ̃2 is the theta correspondence of JL(π)⊠
JL(π)χ from GSO4,0 . Here, JL is the local Jacquet-Langlands correspondence between GL2 and D×. The

projection ϕ of ϕ̃ onto Ŝp4 = SO5(C) is

(7.25) ϕ = 1⊕ χ⊕Ad(ϕ̃0)χ ∈ Φ(Sp4),

and [GT10, Proposition 6.8(iii)(b)] yields

(7.26) Πϕ(Sp4) = {σ+
1 , σ

−
1 , σ

+
2 , σ

−
2 },

where

(7.27) Res
GSp4

Sp4
(σ̃1) = {σ+

1 , σ
−
1 }, and Res

GSp4

Sp4
(σ̃2) = {σ+

2 , σ
−
2 }.

From Proposition 4.11, we further note that σ+
1 and σ−

1 are the theta correspondences of the restriction

Res
GSO2,2

SO2,2
(π ⊠ πχ) = {τ+1 , τ−1 }

to Sp4, and σ
+
2 and σ−

2 are the theta correspondences of the restriction

Res
GSO4,0

SO4,0
(JL(π)⊠ JL(π)χ) = {τ+2 , τ−2 }

to Sp4 . On the other hand, from [GT14], the given L-parameter ϕ̃ provides an L-packet for GSp1,1

Πϕ̃(GSp1,1) = {σ̃′
1, σ̃

′
2},
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where σ̃′
1 and σ̃′

2 are respectively the theta correspondences of JL(π) ⊠ πχ and JL(πχ) ⊠ π from GSO∗
1,1 .

We note from Proposition 4.2 that Res
GSO∗

1,1

SO∗
1,1

(JL(π) ⊠ πχ) and Res
GSO∗

1,1

SO∗
1,1

(JL(πχ) ⊠ π) are identical. Since

ϕ̃0 is primitive (see [GT10, Proposition 6.3]), the set of the irreducible constituents is a singleton. From
Proposition 4.11, we have

(7.28) Res
GSp1,1

Sp1,1
(σ̃′

1) = Res
GSp1,1

Sp1,1
(σ̃′

2) = {σ′},
and σ̃′

2 ≃ σ̃′
1χ. Moreover, from the fact that I(ϕ̃) ≃ {1, χ} (see [GT10, Proposition 6.3(iii)(b)]), it follows

that

(7.29) I(σ̃′
1) = I(σ̃′

2) = {1}.
Thus, the L-packet of Sp1,1 attached to the L-parameter ϕ in (7.25) is

(7.30) Πϕ(Sp1,1) = {σ′},
as constructed in Section 7.2. Proposition 4.11 implies that σ′ is the theta correspondence of the restriction

Res
GSO∗

1,1

SO∗
1,1

(π ⊠ πχ) = {τ ′}

to Sp1,1 . We recall Case I-(b) in Section 7.6 and compute the centralizer Cϕ(Ŝp1,1) with ϕ in (7.25). We
then have following commutative exact sequence

(7.31)

1 −−−−→ µ2(C) −−−−→ Sp4(C) −−−−→ SO5(C) −−−−→ 1
∥∥∥

x∪

x∪

1 −−−−→ µ2(C) −−−−→ Sϕ,sc(Ŝp1,1) −−−−→ Sϕ(Ŝp1,1) −−−−→ 1
∥∥∥

y≃

y≃

1 −−−−→ µ2(C) −−−−→ D8 −−−−→ Z/2Z× Z/2Z −−−−→ 1.

Combining (7.26), (7.30), and (7.31), we have the following bijections

Πϕ(Sp4) = {σ+
1 , σ

−
1 , σ

+
2 , σ

−
2 }

1−1←→ Irr(Sϕ,sc(Ŝp4),1) ≃ Irr(Z/2Z× Z/2Z),

Πϕ(Sp1,1) = {σ′} 1−1←→ Irr(Sϕ,sc(Ŝp1,1), sgn) = Irr(D8, sgn),

with the decompositions (7.27) and (7.28). Therefore, this example satisfies all properties in Theorem 7.4.
In what follows, we discuss a new phenomenon arising in the LLC for Sp1,1 which has never occurred in

any previous LLC. The map σ 7→ ρσ from Πϕ(Sp4) to Irr(Sϕ,sc(Ŝp4),1) provides an equality

dim ρσ = 1,

which equals the multiplicity in

Res
GSp4

Sp4
(σ̃i)

for i = 1, 2. Further, since Irr(D8) consists of four 1-dimensional characters and one 1-dimensional irreducible

representation, the map σ′ 7→ ρσ′ from Πϕ(Sp1,1) to Irr(Sϕ,sc(Ŝp1,1), sgn) provides an equality

(7.32) dim ρσ′ = 2.

However, from (4.2) and (7.29), the multiplicity in Res
GSp1,1

Sp1,1
(σ̃′
i) is 1 for i = 1, 2. Thus, we need to consider

the following quantity m(σ′) in the restriction

Res
GSp1,1

Sp1,1
(σ̃′

1 + σ̃′
2) = m(σ′) · σ′

as the multiplicity of σ̃′
i in the restriction, which is 2 and equals dim ρσ′ in (7.32). Further, this fulfills the

following character identity

(7.33) Θσ+

1

(γ) + Θσ−
1

(γ) + Θσ+

2

(γ) + Θσ−
2

(γ) = (−1) · dim ρσ′ ·Θσ′(γ′)
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for any elliptic regular semi-simple γ ∈ Sp4(F ) and γ
′ ∈ Sp1,1(F ) having the same Sp4(F̄ )-conjugacy class.

Here, Θ♯ is the (Harish-Chandra) character function attached to the irreducible smooth representation ♯ over
the regular semi-simple set. The character identity (7.33) between Sp4 and Sp1,1 is obtained by restricting
the character identity between GSp4 and GSp1,1 established in [CG15a, Proposition 11.1(i)].

Remark 7.14. We make the following remarks.

1. Unlike the above example of this section, none of two members in the same L-packet of GSp4(F )
share the same restriction to Sp4(F ) (see [AP06] and [GT10, Proposition 2.2]).

2. Although the multiplicity in the restriction is one, the dimension of the corresponding irreducible
representation of Sϕ,sc is two, since the restrictions of two members in the same L-packet of GSp1,1
are the same.

3. The dimension of the corresponding irreducible representation of Sϕ,sc may not completely govern
the multiplicity of an individual irreducible representation of a p-adic group in the restriction (cf.
Remark 4.9).

Appendix A. Internal structure of L-packets for Sp4

The purpose of this appendix is to establish an analogue of Theorem 7.4 for the case of Sp4 . Note that
the L-packets for Sp4 was constructed by Gan and Takeda in [GT10] and their parameterization was also
discussed in [GT10, pp.3002-3003] in another way. We apply the same method discussed in Sections 7.3 and
7.4 to the study on Sp4.

From [GT11a] and [GT10], we recall the LLC for GSp4 and Sp4 . Consider GSO3,3, GSO2,2, and GSO4,0

which participate in L-packets for GSp4 via the theta correspondence. The relations in Section 3.3 between
dual groups can be combined with [GT11a, Section 6] to have two inclusions ι3,3 and ι2,2 as follows:

ι3,3 : {irreducible 4-dimensional ϕ̃ ∈ Φ(GSp4)} →֒ Φ(GSO3,3) = Φ(GL4)× Φ(GL1)

defined by ι3,3(ϕ̃) = (ϕ̃, sim ϕ̃), and

ι2,2 : {(ϕ̃1, ϕ̃2) ∈ Φ(GSO2,2) : det ϕ̃1 = det ϕ̃2}/Out(SO4) →֒ Φ(GSp4)

defined by ι2,2(ϕ̃1, ϕ̃2) = ϕ̃1 ⊕ ϕ̃2 = ϕ̃, where the action of Out(SO4) on Φ(GSO2,2) is given by (ϕ̃1, ϕ̃2) 7→
(ϕ̃2, ϕ̃1). Since Φ(GSO4,0) is the subset of Φ(GSO2,2) consisting of (ϕ̃1, ϕ̃2) with elliptic L-parameters ϕ̃1 and
ϕ̃2, the restriction of ι2,2 to Φ(GSO4,0) is denoted by ι4,0.We note from [GT11a, Section 7] that ϕ̃ ∈ Φ(GSp4)
is either an irreducible 4-dimensional representation or the image of ι2,2. The LLC for GSp4 states that there
is a surjective, two-to-one map

L4 : Π(GSp4) −→ Φ(GSp4).

satisfying several natural conditions which determine the map uniquely (see [GT11a, p.1842] for details).
The LLC for Sp4 [GT10] states that there is a surjective, finite-to-one map

L4 : Π(Sp4) −→ Φ(Sp4)

defined by L4(σ) = std4(L4(σ̃)) with σ̃ ∈ Π(GSp4) such that

σ →֒ Res
GSp4

Sp4
(σ̃).

Note that L4 is not depending on the choice of the lifting σ̃, since another lifting must be of the form σ̃ ⊗ χ
for some quasi-character χ of F× by Proposition 4.2 and L4(σ̃ ⊗ χ) = L4(σ̃) ⊗ χ for any quasi-character χ
of F× [GT10, Proposition 2.2]. For each ϕ ∈ Φ(Sp4), the L-packet Πϕ(Sp4) is given by

(A.1) Πϕ(Sp4) =
⋃

σ̃∈Πϕ̃(GSp4)

Πσ̃(Sp4),

where ϕ̃ lies in Φ(GSp4) such that std4 ◦ϕ̃ = ϕ (see Theorem 4.4). Note that the union in (A.1) turns out
to be disjoint and the L-packet does not depend on the choice of ϕ̃ [GT10, Theorem 2.3].

To state an analogue of Theorem 7.4 for Sp4 (Theorem A.1) below, we need three mutually exclusive
possibilities of ϕ̃ ∈ Φ(GSp4) from [GT11a, Section 7]) as follows.
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• Case i: ϕ̃ is of the form ϕ̃1 ⊕ ϕ̃2, where ϕ̃i ∈ Φell(GL2) and det ϕ̃1 = det ϕ̃2. Since Φell(GL2) =
Φell(GL1(D)), we thus note that ϕ̃ ∈ Φ(GSO4,0).
• Case ii: ϕ̃ is of the form ϕ̃1 ⊕ ϕ̃2, where ϕ̃i ∈ Φ(GL2) with at least one of ϕ̃1 and ϕ̃2 in Φ(GL2)r
Φell(GL2), and det ϕ̃1 = det ϕ̃2. We thus note that ϕ̃ ∈ Φ(GSO2,2), but not in Φ(GSO4,0).
• Case iii: ϕ̃ is irreducible 4-dimensional, and its image via the map ι3,3 lies in Φ(GSO3,3).

Next, we recall the L-packets Πϕ̃(GSp4) for GSp4 which were constructed in [GT14, Section 7].
Case i: Πϕ̃(GSp4) = {σ̃1 := θ(τ1 ⊠ τ2), σ̃2 := θ(JL(τ1) ⊠ JL(τ2))}, where τi ∈ Πess,disc(GL2) is corre-

sponding to ϕ̃i via the local Langlands correspondence for GL2 [HT01, Hen00, Sch13], the first θ stands
for theta correspondence from GSO2,2 to GSp4, the second θ does for that from GSO4,0 to GSp4, and JL
denotes the local Jacquet-Langlands lift from GL2(F ) to GL1(D). Note that Πϕ̃(GSp4) consists of essentially
square-integrable representations.

Case ii: Πϕ̃(GSp4) = {σ̃ := θ(τ1⊠τ2)}, where τi ∈ Π(GL2) is corresponding to ϕ̃i via the local Langlands
correspondence for GL2 [HT01, Hen00, Sch13] and θ stands for theta correspondence from GSO2,2 to GSp4 .
Note that θ(τ1 ⊠ τ2) is not an essentially square-integrable representation.

Case iii: Πϕ̃(GSp4) = {σ̃ := π}, where π is an irreducible admissible representation of GSp4(F ) whose
theta lift θ(π) to GSO3,3 is Π ⊠ µ ∈ Π(GSO3,3). Note that µ = sim(ϕ̃) via the local class field theory and
ωΠ = µ2.

Theorem A.1. With the notation above, given an L-parameter ϕ ∈ Φ(Sp4), we fix its lifting ϕ̃ ∈ Φ(GSp4).
Then, there is a one-one bijection

Πϕ(Sp4)
1−1←→ Irr(Sϕ(Ŝp4)),

sending σ 7→ ρσ, such that we have isomorphisms:

Vσ̃i
≃

⊕

σ∈Πσ̃i
(Sp4)

ρσ ⊠ σ (i = 1, 2), for Case i,

Vσ̃ ≃
⊕

σ∈Πσ̃(Sp4)

ρσ ⊠ σ, for Cases ii and iii,

as representations of the semi-direct product Sϕ(Ŝp4)⋊Sp4(F ). Here, Π♯̃(Sp4) denotes the set of equivalence

classes of all irreducible constituents of Res
GSp4

Sp4
(̃♯) with ♯ ∈ {σ̃1, σ̃2, σ̃}.

Proof. We follow the proof of the case of Sp1,1 in Section 7.4.

Case i: Since Sϕ̃(ĜSp4) = Sϕ̃(ĜSp4) ≃ Z/2Z, we note that the trivial character 1 on Sϕ̃(ĜSp4) corre-
sponds to σ̃1 and the other sgn corresponds to σ̃2 (see from [GT11a, Section 7]). Since the trivial character
1 on µ2(C) is lifted to the two characters 1 × 1 = ζ2,2 and sgn× sgn = ζ4,0 on µ2(C) × µ2(C) under the
embedding a 7→ (a, a) from µ2(C) to µ2(C)× µ2(C), we have the following bijection

Irr(Sϕ,sc(Ŝp1,1),1) = Irr(Sϕ(Ŝp4))
1−1←→ Irr(Sϕ,sc(ŜO

∗
1,1), ζ2,2) ⊔ Irr(Sϕ,sc(ŜO

∗
1,1), ζ4,0).

Note that, via the Kottwitz isomorphism [Kot86, Theorem 1.2], the characters ζ2,2 and ζ4,0 respectively
correspond to SO2,2 and SO4,0, which are non quasi-split F -inner forms of SO4 . Considering the characters

ζ2,2 and ζ4,0 as characters on Sϕ̃,sc(ĜSp1,1), due to (7.9), we have the following bijections:

Irr(Sϕ,sc(Ŝp1,1), ζ2,2)
1−1←→ Irr(Sϕ,sc(ŜO

∗
1,1), ζ2,2) = Irr(Sϕ(ŜO2,2)

1−1←→ Πτ1⊠τ2(SO2,2),

Irr(Sϕ,sc(Ŝp1,1), sgn× sgn)
1−1←→ Irr(Sϕ,sc(ŜO

∗
1,1), ζ4,0)

1−1←→ ΠJL(τ1)⊠JL(τ2)(SO4,0).

Since the character ζ2,2 corresponds to σ̃1 and the other ζ4,0 corresponds to σ̃2 from [GT14, Section 7.2],
Proposition 4.11 and Theorem 5.1 yield:

Irr(Sϕ,sc(ŜO
∗
1,1), ζ2,2)

1−1←→ Πτ1⊠τ2(SO2,2)
1−1←→ Πσ̃1

(Sp4),

Irr(Sϕ,sc(ŜO
∗
1,1), ζ4,0)

1−1←→ ΠJL(τ1)⊠JL(τ2)(SO4,0)
1−1←→ Πσ̃2

(Sp4).
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Using Proposition 4.4, Theorem 5.1, and the isomorphism Sϕ,sc(Ŝp1,1) ≃ Sϕ,sc(ŜO∗
1,1) in (7.9), we thus have

the following isomorphism

Vσ̃i
≃

⊕

σ∈Πσ̃i
(Sp4)

ρσ ⊠ σ (i = 1, 2),

as representations of the semi-direct product Sϕ(Ŝp4) ⋊ Sp4 . This completes the proof of Theorem A.1 for
Case i.

Case ii: From (7.19) and (7.21), we have

Irr(Sϕ,sc(ŜO∗
1,1), ζ2,2) = Irr(Sϕ(ŜO2,2))

1−1←→ Irr(Sϕ,sc(Ŝp1,1),1) = Irr(Sϕ(Ŝp4).
From Proposition 4.4 and Theorem 5.1, we thus proved Theorem A.1 for Case ii.

Case iii: From the isomorphism (7.23), we have

Sϕ(ŜO
∗
3,0) ≃ Sϕ(Ŝp4).

From Proposition 4.4 and Theorem 6.1, Theorem A.1 for Case iii follows. Therefore, the proof of Theorem
A.1 is complete. �
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