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Abstract. We study iterated Pieri rules for representations of classical groups. That is,
we consider tensor products of a general representation with multiple factors of represen-
tations corresponding to one-rowed Young diagrams (or in the case of the general linear
group, also the duals of these). We define iterated Pieri algebras, whose structure encodes
the irreducible decompositions of such tensor products. We show that there is a single
family of algebras, which we call double Pieri algebras, and which can be used to describe
the iterated Pieri algebras for all three families of classical groups. Furthermore, we show
that the double Pieri algebras have flat deformations to Hibi rings on explicitly described
posets.

1. Introduction

1.1. The problem of computing tensor products of representations, motivated in part by the
need to describe interaction of systems in quantum mechanics, has been the subject of a large
literature. For a long time, the main focus was on the general linear group GLn = GLn(C).
For this group, the description of tensor product multiplicities is given by the Littlewood-
Richardson rule ([LR]), which was fully justified only long after its original formulation, and
for which many proofs have been given ([Sch, Th1, Th2, Ma, Stm, Ze, RS, HL2]). Recently,
the techniques of quantum groups ([Kas, Lu]) and Littelmann’s path method ([Li]) have
produced comparable results for a general complex reductive algebraic group/Lie algebra.

A particular case of tensor product decomposition for representations of GLn, when one
of the factors is a symmetric power of the standard representation on Cn, can be described
by the Pieri rule, named after geometer Mario Pieri, which also describes the product of
a Schubert cycle by a special Schubert cycle in the Schubert calculus. It has a simple
description in the language of semistandard tableaux, and it is easy to iterate, producing
descriptions of tensor products of the form

ρ⊗ (
⊗̀
j=1

ρ
(aj)
n ),

where ρ is any irreducible polynomial representation of GLn, and ρ
(a)
n is the representation

of GLn on the a-th symmetric power of Cn.

1.2. Although the Pieri rule is a very special case, it is of particular interest because one
of the reciprocity laws associated to see-saw pairs of dual pairs ([Ku]) connects the Pieri
rule with the branching rule from GLn to GLn−1, and when this is iterated, one arrives
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at a description of a basis for each irreducible representation of GLn. This approach to
describing representations of GLn was explained by Gelfand and Tsetlin in 1950 ([GT]).

An alternative description of the representations of GLn had been given somewhat earlier
by Hodge ([Hd]), who worked in the flag algebra R(GLn/Un) of regular functions on the
homogeneous space GLn/Un, where Un here denotes the group of unipotent upper trian-
gular matrices - the maximal unipotent subgroup of GLn. (Actually, Hodge worked, not
with the full algebra R(GLn/Un), but with the subalgebra R+(GLn/Un) of “polynomial
representations”, whose matrix coefficients restricted to the diagonal torus are polynomial
functions. Gelfand and Tsetlin also worked with polynomial representations.) This descrip-
tion works with a set of generators of R+(GLn/Un), and describes a family of monomials
in these generators that constitutes a basis for R+(GLn/Un). These monomials are called
“standard”, so the description is called standard monomial theory.

For around 50 years, the Gelfand-Tsetlin description and the standard monomial de-
scription led more or less separate existences, but in the 1990s, they were connected by
Gonciulea and Lakshmibai ([GL]), and by Sturmfels in a more restricted context ([Stu]).
This advance was further refined in [KM], [MS] and [Ki1]. Gonciulea and Lakshmibai for-
mulated their result in terms of a flat deformation of GLn/Un to a toric variety. Since their
work, other authors have established that G/U , the“torus bundle over the flag variety”, for
any reductive algebraic group G, and even any multiplicity-free variety for G, has a flat
toric deformation ([AB, Ca, Ch, DY, Kav]).

Although toric deformation gives insight into the nature of a variety, or at least its
coordinate ring, it does not answer all questions about the variety or its coordinate ring.
The coordinate ring of an affine toric variety is the semigroup ring of a lattice cone, by which
we mean the intersection of Zn with a rational polyhedral convex cone in Rn, and there are
many, many lattice cones in every dimension, and many unanswered questions about their
geometry. For example, it was key for solving the Horn conjecture that the lattice cone
attached to the Littlewood-Richardson rule should satisfy the “saturation property”, and
showing this was the main achievement of Knutson and Tao ([KT1]) (see also [Bu, KT2,
Kly]).

1.3. Thus, it is of interest that the toric variety found by Gonciulea-Lakshmibai (and more
explicitly by Kogan-Miller [KM] and Miller-Sturmfels [MS]), is particularly nice: it is the
variety associated to the Gelfand-Tsetlin cone. Also, the associated semigroup ring is very
nice: it is a Hibi ring. Hibi rings were defined by Hibi in the 1980s, in terms of generators
and relations, as part of the effort to understand standard monomial theory in structural
terms ([Hi]). The generators of a Hibi ring are elements of a distributive lattice. It turns out,
however, as was already noted by Hibi, that Hibi rings can be described more directly, as the

semigroup rings of the lattice cone (Z+)
X,≥

of non-negative integer-valued, order-preserving
functions on a partially ordered set X (whose partial order is ≥). The connection between

Hibi’s construction and the description as (Z+)
X,≥

is mediated by Birkhoff’s representation

theorem for distributive lattices. The poset Γ for which the Gelfand-Tsetlin cone is (Z+)
Γ,≥

is the Gelfand-Tsetlin poset, whose elements consist of placeholders for entries in Gelfand-
Tsetlin patterns. To the best of our knowledge, the first explicit formulation of standard

monomial theory in terms of (Z+)
Γ,≥

was given by one of the present authors in his thesis
in 2005 (see [Ki1]).

The (Z+)
X,≥

are very special among lattice cones. In particular, it is evident that there
are only finitely many of them in each dimension, among the infinite zoo of all lattice cones.
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Moreover, these cones have some very pleasant properties. Their semigroup ring has an
explicitly describable set of generators and relations, with the relations being quadratic in

the generators. Moreover, each cone (Z+)
X,≥

has a canonical “triangulation”, a decompo-
sition into congruent integrally simplicial cones. This provides an explicit abstract version
of Hodge’s standard monomial theory for the semigroup rings of these cones.

Thus, it is natural to ask, are there other flag varieties besides GLn/Un that can be

described in terms of Hibi rings, aka the lattice cones (Z+)
X,≥

? The answer is yes. It
is easy to see that the coordinate rings attached to varieties of non-complete flags (non-
minimal parabolics) for GLn can also be described by posets derived from the Gelfand-
Tsetlin poset by fairly straightforward recipes. Also, starting from the other end, one can
see that the branching algebras that describe the restriction of representations from GLn to
GLk × (GL1)n−k likewise have deformations to Hibi rings, and with posets derivable from
the Gelfand-Tsetlin poset.

More interestingly, [Ki1] showed that standard monomial theory for the symplectic group
Sp2n could also be expressed as describing a toric deformation to the semigroup ring of

(Z+)
ΓSp,≥, for an appropriate poset ΓSp ([Kir, Mo, Zh]). Recently, Kim has shown that

the branching algebra from Sp2n to Sp2k is a deformation of a Hibi ring, and in fact,
isomorphic in certain ranges to an associated branching algebra for GL2n. He has also
shown that analogous branching algebras for orthogonal groups, from SOn to SOk, subject
to a suitable stability condition, are deformations of Hibi rings (see [Ki2, Ki4, KY]).

1.4. Returning to the Pieri rule as a decomposition of tensor products for GLn, since there
is so much similarity in the branching rules and flag algebras for all the classical groups, one
can ask about analogs of the Pieri rule for symplectic or orthogonal groups. Is there a simple

description of tensor products τ ⊗ τ (a)
2n , where τ is an irreducible representation of Sp2n and

τ
(a)
2n is the representation on the a-fold symmetric power of the standard representation on

C2n? The analogous question for orthogonal groups would concern tensor products σ⊗σ(a)
n ,

where σ
(a)
n denotes the action of SOn on the spherical harmonics of degree a on Cn.

Although the Pieri rule for GLn is equivalent to the GLn to GLn−1 branching rule, the
analogs for Sp2n and SOn are noticeably more complicated than the corresponding branching
rules. There is a description of such tensor products in terms of tableaux ([Su1, Su2]), but
it involves erasing boxes as well as adding boxes, making descriptions of iterated tensor
products somewhat awkward. However, two of the present authors ([KL]) have found
that an algebra naturally associated to the Pieri-like tensor products for Sp2n and SOn,
is a deformation of a Hibi ring, at least under a certain stability condition. Furthermore,

this description can easily be extended to iterated tensor products τ ⊗ (
⊗`

j=1 τ
(aj)
2n ) and

σ ⊗ (
⊗`

j=1 σ
(aj)
n ), and the resulting ring is again a deformation of a Hibi ring.

For the symplectic and orthogonal groups, the standard representation is self-dual, and
this can be seen as a reason for the extra complexity of computing tensor products with

the τ
(a)
2n or σ

(a)
n . For the general linear group, of course the dual representation on (Cn)∗

is distinct from the standard action on Cn. However, by duality, there are parallels of the
Pieri rule and the iterated Pieri rule also for tensoring with symmetric powers of (Cn)∗.
As far as we know, although iterations of the original Pieri rule have at least implicitly
been used in describing branching, what happens when tensoring by the symmetric powers
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ρ
(a)
n is combined with tensoring by dual symmetric powers (ρ

(b)
n )∗ has not been explicitly

considered before. It was this question that motivated the present paper.

Our first result is that the ring associated to the combined multiple Pieri and dual Pieri
rules is again a deformation of a Hibi ring, and we describe the associated poset explicitly.
But the answer to this question has revealed a deeper unity than the authors suspected when
starting this investigation. It turns out that there is a single (Hibi) ring in terms of which
all the iterated Pieri algebras, for the symplectic and orthogonal groups, and the combined
standard and dual Pieri algebras for the general linear group have a simple description. It is
obtained by applying the iterated Pieri construction simultaneously to a product of general
linear groups. For this reason, we call it the double Pieri algebra. Describing this algebra,
and how it controls all the iterated Pieri algebras, is the main goal of the paper, described
in Section 4.

Finally we remark that not only are Hibi lattice cones special among all lattice cones, the
Hibi lattice cones that appear in representation theory are of a very restricted type. Our
main result goes some distance toward explaining the notable family resemblance between
the semigroups involved in the known representation-theoretic Hibi rings.

1.5. Thus, the role of Hibi rings in describing the representation theory of the classical
groups is extensive. They do not, however, answer all questions. In collaboration with
others, two of the authors showed that the (stable) branching algebras associated to classical
symmetric pairs have toric deformations ([HJL+]). The lattice cones involved in these
deformations include the Littlewood-Richardson (LR) cone studied by Knutson and Tao
([KT1, KT2]) and others (see, for example, [PV] and [DK]), and in fact, they can all be
described in terms of the LR cone. These cones are substantially more complicated than
the cones attached to posets.

On the other hand, there is a sense in which the LR cone is constructed from poset cones.
See [HL2], which shows how the LR rule can be deduced from the Pieri rule by representation
theoretic arguments. Thus, the geometric structure of cones appearing in representation
theory presents some interesting questions, and the results of [HL2] suggest that poset cones
and Hibi rings can play a useful role in understanding more complex cones and rings. In
particular, one can ask if there is a way to understand the tensor product algebras for Sp2n

and SOn in terms of iterated Pieri algebras, analogous to the results of [HL2]. At the same
time, it seems worthwhile to specify which representation theory problems can be described
by Hibi rings. The present paper is a contribution to this project. It seems in fact that
Hibi rings will help to provide a sharp description of the decompositions described in [Ho1]
of polynomial rings as products of harmonics and invariants associated to dual pairs. This
would in some sense provide reasonably complete picture of the classical actions considered
by Weyl. The authors hope to study these questions further.

1.6. This paper is arranged as follows: In Section 2, we introduce notation for the repre-
sentations of GLn, On and Sp2n. In Section 3, we review the construction and the structure
of an algebra, called the polynomial iterated Pieri algebra for GLn. This algebra encodes a
polynomial version of the iterated Pieri rule for GLn. The results in this section are essen-
tially a part of the much-studied standard monomial theory ([GL, Ho2, Ki1, MS]), originally
due to Hodge ([Hd]) with refinements as noted above. In Section 4, we introduce the double
Pieri algebra L(n,p),(k,q) and study its structure. We define the general iterated Pieri algebra
An,k,`,p,q for GLn in Section 5. We call this algebra stable when k + p + ` + q ≤ n. We
show in Section 6 that when the algebra An,k,`,p,q is stable, it can be expressed in terms
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of L(n,p),(k,q) and a variant form L̃(n,q),(`,p). Finally in Section 7, we describe the relation
between the On (mutatis mutandem, Sp2m) stable iterated Pieri algebra An,k,p defined in
[KL] and L(n,p),(k,p), and also between An,k,p and An,k,0,p,p.

2. Preliminaries

In this section, we introduce notation for the irreducible representations of GLn, On and
Sp2n.

2.1. Representations of GLn. Let GLn = GLn(C) denote the complex general linear
group. Let An be the diagonal torus in GLn and let Un be the maximal unipotent subgroup
consisting of all n×n upper triangular matrices with 1’s on the diagonal. Then Bn = AnUn
is the standard Borel subgroup of GLn, and the irreducible rational representations of GLn
are in bijective correspondence with the semigroup Â+

n of dominant weights for GLn with
respect to Bn. For each α = (α1, ..., αn) ∈ Zn, let us define

ψαn : An −→ C× as ψαn(diag(a1, a2, ..., an)) = aα1
1 aα2

2 · · · a
αn
n (2.1)

where diag(a1, ..., an) denotes the diagonal matrix with diagonal entries a1, ..., an. Then

Â+
n = {ψαn : α = (α1, ..., αn) ∈ Zn, α1 ≥ α2 ≥ · · · ≥ αn}.

We shall denote by ραn the irreducible representation of GLn with highest weight ψαn ∈ Â+
n .

We will also use diagram notation. Recall that a Young diagram D is an array of square
boxes arranged in left-justified horizontal rows, with each row no longer than the one above
it ([Fu]). If D has at most r rows, then we shall denote it by

D = (d1, ..., dr)

where for each i, di is the number of boxes in the i-th row of D. The depth of D, denoted
by r(D), is the number of nonzero rows in D. The number of all boxes in D,

∑
i≥1 di, will

be denoted by |D|.
Suppose now ψαn ∈ Â+

n where α = (α1, ..., αn). We shall associate a pair of Young
diagrams (D,E) with α as follows: If αn ≥ 0, then D = α and E = (0). If α1 < 0, then
D = (0) and E = (−αn, ...,−α1). If α is of the form

α = (d1, d2, ..., dr, 0, ..., 0,−es,−es−1, ...,−e1),

where d1 ≥ d2 ≥ · · · ≥ dr > 0 and e1 ≥ e2 ≥ · · · ≥ es > 0, then D = (d1, d2, ..., dr)

and E = (e1, e2, ..., es). We shall write ψαn as ψD,En and write the representation ραn as

ρD,En . In the case when E = (0), we shall write ψ
D,(0)
n and ρ

D,(0)
n simply as ψDn and ρDn ,

respectively. A representation of the form ρDn where D is a Young diagram is called a
polynomial representation of GLn. The contragredient representation of a representation V

of GLn will be denoted by V ∗. It is well known ([Ho2]) that (ρD,En )∗ ' ρE,Dn .

2.2. Representations of On. Let On = On(C) be the subgroup of GLn which preserves
the symmetric bilinear form

〈

u1,
...
un

 ,

v1,
...
vn

〉 =
n∑
j=1

ujvn−j+1
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on Cn. The finite dimensional irreducible representations of On are parameterized by Young
diagrams D such that the sum of the lengths of the first two columns of D does not exceed
n ([Wy, GW, Ho2]). For such a Young diagram D, we shall denote the On representation
associated with D by σDn . Specifically, σDn is the irreducible representation of On generated
by the GLn highest weight vector in ρDn . See Section 3.6 of [Ho2] for more details.

Let SOn denote the subgroup of On containing elements of On with determinant 1, and
let

ASOn = An ∩ SOn and USOn = Un ∩ SOn.

Explicitly,

ASOn =

{
{diag(a1, ..., am, a

−1
m , ..., a−1

1 ) : a1, ..., am ∈ C×} n = 2m
{diag(a1, ..., am, 1, a

−1
m , ..., a−1

1 ) : a1, ..., am ∈ C×} n = 2m+ 1.

If D is a Young diagram with depth r(D) 6= n/2, then the restriction of σDn to SOn is
irreducible. Moreover, if r(D) < n/2 and φDn : ASOn → C× is the restriction of the character
ψDn , given in (2.1), to ASOn , then as a SOn module, σDn has highest weight φDn .

2.3. Representations of Sp2n. Let Sp2n = Sp2n(C) be the subgroup of GL2n which
preserves the symplectic form (., .) on C2n given by

(

 u1
...
u2n

 ,

 v1
...
v2n

) =
n∑
j=1

(ujv2n+1−j − u2n+1−jvj).

The diagonal torus ASp2n
of Sp2n is isomorphic to (C×)n. The finite dimensional irreducible

representations of Sp2n are parametrized by Young diagrams with at most n rows. If D is
such a Young diagram, we shall denote the corresponding Sp2n representation by τD2n. See
Section 3.8 of [Ho2] for more details.

3. Polynomial iterated Pieri algebras for GLn

In this section, we review the construction and the structure of an algebra, called the
polynomial iterated Pieri algebra for GLn. This algebra encodes a polynomial version of
the iterated Pieri rule for GLn, and a description of its structure is essentially a part of
the much-studied standard monomial theory ([GL, Ho2, Ki1, MS]), originally due to Hodge
([Hd]).

3.1. GLn tensor product algebras. We first review an important result in Classical
Invariant Theory which will be used in our later construction. Let n and m be positive
integers, and let Mn,m = Mn,m(C) denote the space of all n × m complex matrices. Let
GLn ×GLm act on Mn,m by

τn,m(g, h)(x) = (g−1)txh−1 (3.1)

where (g, h) ∈ GLn × GLm and x ∈ Mn,m. Here for a matrix u, ut denotes its transpose.
Under the action τn,m,

Mn,m ' Cn∗ ⊗ Cm∗.
Here Cn∗ is the contragredient representation of the standard representation Cn of GLn,
and similarly for Cm∗. The action τn,m induces the following action of GLn ×GLm on the
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algebra P(Mn,m) of polynomial functions on Mn,m (which will again be denoted by τn,m):
for (g, h) ∈ GLn ×GLm, f ∈ P(Mn,m) and x ∈ Mn,m,

[τn,m(g, h)(f)](x) = f(τn,m(g−1, h−1)(x)) = f(gtxh). (3.2)

Theorem 3.1. ((GLn,GLm)-duality, [Ho2, GW]) Under the action (3.2) by GLn × GLm,
P(Mn,m) admits the following decomposition as a GLn ×GLm module:

P(Mn,m) '
∑

r(F )≤min(n,m)

ρFn ⊗ ρFm. (3.3)

Theorem 3.1 allows us to realize the irreducible representations of GLm on a space of
polynomial functions. More precisely, Let P(Mn,m)Un be the algebra of polynomials in
P(Mn,m) which are invariant under the action by Un. It is a module for An ×GLm, and is
decomposed as

P(Mn,m)Un '
∑

r(F )≤min(n,m)

(
ρFn
)Un ⊗ ρFm. (3.4)

For each Young diagram F with r(F ) ≤ min(n,m), the space
(
ρFn
)Un of vectors in ρFn

invariant under Un is one-dimensional, and An acts on it by the character ψFn . So the

subspace
(
ρFn
)Un⊗ρFm of P(Mn,m)Un is the eigenspace of An in P(Mn,m)Un corresponding to

the eigencharacter ψFn and it is also a copy of the GLm module ρFm. It follows from equation

(3.4) that the algebra P(Mn,m)Un is a multiplicity free sum of irreducible representations
of GLm.

Now suppose k and ` are positive integers such that m = k+ `. Then GLk×GL` embeds
in GLm as block diagonal matrices with blocks of size k and `, so it acts on P(Mn,m) by

restriction. By extracting the Uk × U` invariants in P(Mn,m)Un , we obtain

P(Mn,m)Un×Uk×U` =
(
P(Mn,m)Un

)Uk×U`

'
∑

r(F )≤min(n,m)

(
ρFn
)Un ⊗

(
ρFm
)Uk×U` .

The algebra P(Mn,m)Un×Uk×U` is a module for An × Ak × A`. For fixed Young diagrams

D, E and F , the ψFn × ψDk × ψE` eigenspace of An × Ak × A` in P(Mn,m)Un×Uk×U` can be

identified with the space of GLk × GL` highest weight vectors in ρFm of weight ψDk × ψE` ,

so its dimension gives the multiplicity of ρDk ⊗ ρE` in ρFm. Thus the algebra structure of

P(Mn,m)Un×Uk×U` encodes the branching rule from GLm to GLk × GL`. In view of this

property, we call P(Mn,m)Un×Uk×U` a (GLm,GLk ×GL`) branching algebra.

On the other hand, we have an isomorphism of algebras

P(Mn,m) ' P(Mn,k ⊕Mn,`) ' P(Mn,k)⊗ P(Mn,`).
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So (GLn×GLk)× (GLn×GL`) ' (GLn×GLn)×GLk×GL` acts on P(Mn,m) by τn,k×τn,`.
By Theorem 3.1, P(Mn,m) is decomposed as

P(Mn,m) '

 ∑
r(D)≤min(n,k)

ρDn ⊗ ρDk

⊗
 ∑
r(E)≤min(n,`)

ρEn ⊗ ρE`


'

∑
r(D)≤min(n,k)
r(E)≤min(n,`)

(
ρDn ⊗ ρEn

)
⊗ ρDk ⊗ ρE` .

We now restrict the action of (GLn×GLn)×GLk×GL` on P(Mn,m) to ∆(GLn)×GLk×GL`
where ∆(GLn) ∼= GLn embeds diagonally in GLn×GLn with g → (g, g). By extracting the
Uk × U` invariants in P(Mn,m), we obtain

P(Mn,m)Uk×U` '
∑

r(D)≤min(n,k)
r(E)≤min(n,`)

(
ρDn ⊗ ρEn

)
⊗
(
ρDk
)Uk ⊗

(
ρE`
)U` . (3.5)

The algebra P(Mn,m)Uk×U` is a module for GLn ×Ak ×A`. For each pair (D,E) of Young

diagrams, the subspace
(
ρDn ⊗ ρEn

)
⊗
(
ρDk
)Uk ⊗

(
ρE`
)U` of P(Mn,m)Uk×U` is the eigenspace of

Ak × A` corresponding to the eigencharacter ψDk × ψE` , and it is also a copy of the tensor

product ρDn ⊗ ρEn of GLn representations. By equation (3.5),

P(Mn,m)Un×Uk×U` =
(
P(Mn,m)Uk×U`

)Un

'
∑

r(D)≤min(n,k)
r(E)≤min(n,`)

(
ρDn ⊗ ρEn

)Un ⊗
(
ρDk
)Uk ⊗

(
ρE`
)U` . (3.6)

So the algebra P(Mn,m)Un×Uk×U` describes how tensor products of GLn representations

decompose. In view of this property, we also call P(Mn,m)Un×Uk×U` a GLn tensor product

algebra. Since the algebra P(Mn,m)Un×Uk×U` encodes two sets of branching information, it
is a reciprocity algebra in the sense of [HTW1].

This construction can be generalized. If m = k1 +k2 + · · ·+kp where k1, ..., kp are positive
integers, then

∏p
i=1 GLki embeds diagonally in GLm and the algebra

P(Mn,m)Un×(
∏p

i=1 Uki)

describes the branching rule from GLm to
∏p
i=1 GLki as well as the decomposition of tensor

products of p representations of GLn. Readers may refer to [HL1] for more details.

3.2. Polynomial Pieri algebras for GLn. Let m = k + `. We shall write a typical
element of Mn,m as 

x11 x12 · · · x1k y11 y12 · · · y1`

x21 x22 · · · x2k y21 y22 · · · y2`
...

...
...

...
...

...
xn1 xn2 · · · xnk yn1 yn2 · · · yn`


so that P(Mn,m) can be viewed as a polynomial algebra on the variables xab and ycd. In
this subsection, we focus on the case when ` = 1. Since U` = U1 is trivial, by equation
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(3.6), we have

P (Mn,k+1)Un×Uk = P (Mn,k+1)Un×Uk×U1

'
∑

r(D)≤min(n,k)

a∈Z+

(
ρDn ⊗ ρ(a)

n

)Un

⊗
(
ρDk
)Uk ⊗ ρ(a)

1 ,

where Z+ denotes the set of all nonnegative integers. So the algebra P (Mn,k+1)Un×Uk

describes tensor products of the form ρDn ⊗ ρ
(a)
n , where (a) is the Young diagram with only

1 row and a boxes, and ρ
(a)
n ' Sa(Cn) is the a-th symmetric power of Cn. It is shown in

[Ho2] that P (Mn,k+1)Un×Uk is a polynomial algebra on the free generators δj and δ(j−1,1)

where

δi =

∣∣∣∣∣∣∣∣∣
x11 x12 · · · x1i

x21 x22 · · · x2i
...

...
...

xi1 xi2 · · · xii

∣∣∣∣∣∣∣∣∣ , 1 ≤ i ≤ min(n, k),

and

δ(j−1,1) =

∣∣∣∣∣∣∣∣∣
x11 x12 · · · x1,j−1 y11

x21 x22 · · · x2,j−1 y21
...

...
...

...
xj1 xj2 · · · xj,j−1 yj1

∣∣∣∣∣∣∣∣∣ , 1 ≤ j ≤ min(n, k + 1).

It follows that the set of all monomials in the δj and δ(j−1,1) forms a basis for P (Mn,k+1)Un×Uk .
Using this fact, one can deduce the Pieri rule for GLn (see [Ho2]).

Pieri rule for GLn. Let D = (d1, ..., dn) be a Young diagram with at most n rows and let
α be a nonnegative integer. Then

ρDn ⊗ ρ(α)
n =

∑
F

ρFn

where the sum is taken over all Young diagrams F = (f1, ..., fn) with at most n rows such
that D v F and |F | − |D| = α. Here D v F means that

f1 ≥ d1 ≥ f2 ≥ d2 ≥ · · · ≥ fn ≥ dn. (3.7)

The condition (3.7) is called the interlacing condition. Since the algebra P (Mn,k+1)Un×Uk

encodes the Pieri rule, we will call it a (polynomial) Pieri algebra for GLn.

3.3. Polynomial iterated Pieri algebra for GLn. The construction in Section 3.2 can
be generalized as follows. Let m = k + `, so that GLk × A` ⊆ GLk × GL` ⊆ GLm. We
consider the action τn,m of GLn ×GLm on P(Mn,m) defined in equation (3.2) and restrict
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it to GLn × (GLk ×A`) ' GLn × (GLk ×GL`1). Then under this action,

P(Mn,m) ' P(Mn,k ⊕
`︷ ︸︸ ︷

Cn ⊕ · · · ⊕ Cn) ' P(Mn,k)⊗
`︷ ︸︸ ︷

P(Cn)⊗ · · · ⊗ P(Cn)

'

 ∑
r(D)≤min(n,k)

ρDn ⊗ ρDk

⊗
∑
α1≥0

ρ(α1)
n ⊗ ρ(α1)

1

⊗ · · · ⊗
∑
α`≥0

ρ(α`)
n ⊗ ρ(α`)

1


'

∑
r(D)≤min(n,k)

α1,...,α`≥0

(
ρDn ⊗ ρ(α1)

n ⊗ · · · ⊗ ρ(α`)
n

)
⊗ ρDk ⊗ ρ

(α1)
1 ⊗ · · · ⊗ ρ(α`)

1

'
∑

r(D)≤min(n,k)

α=(α1,...,α`)∈(Z+)`

(
ρDn ⊗ ρ(α1)

n ⊗ · · · ⊗ ρ(α`)
n

)
⊗ ρDk ⊗ ψα` , (3.8)

where the representation ρ
(α1)
1 ⊗ · · · ⊗ ρ(α`)

1 of GL`1 is identified with the character ψα` of
A`. By extracting the Un × Uk invariants from P(Mn,m), we obtain

P(Mn,m)Un×Uk '
∑

r(D)≤min(n,k)

α=(α1,...,α`)∈(Z+)`

(
ρDn ⊗ ρ(α1)

n ⊗ · · · ⊗ ρ(α`)
n

)Un

⊗
(
ρDk
)Uk ⊗ ψα` .

Thus the algebra P(Mn,m)Un×Uk describes how tensor products of the form

ρDn ⊗ ρ(α1)
n ⊗ · · · ⊗ ρ(α`)

n (3.9)

decompose into irreducibles. In view of this property, we call P(Mn,m)Un×Uk a polynomial
iterated Pieri algebra for GLn. It is a module for An ×Ak ×A`, so it is graded and can be
decomposed as

P(Mn,m)Un×Uk =
∑
F,D,α

WF,D,α, (3.10)

where the sum is taken over all Young diagrams D and F with r(D) ≤ min(n, k) and
r(F ) ≤ min(n,m), and all α ∈ (Z+)`, and WF,D,α is the ψFn × ψDk × ψα` -eigenspace of

An ×Ak ×A`. The dimension of WF,D,α coincides with the multiplicity of ρFn in the tensor
product (3.9), which can be obtained by applying the Pieri rule repeatedly.

Polynomial iterated Pieri rule for GLn. Let D and F be Young diagrams with at
most n rows and α = (α1, ..., α`) ∈ (Z+)`. Then the multiplicity of ρFn in the tensor product

ρDn ⊗ρ
(α1)
n ⊗· · ·⊗ρ(α`)

n is given by the number of sequences of Young diagrams (F0, F1, ..., F`)
such that

D = F0 v F1 v · · · v F`−1 v F` = F, (3.11)

and

|Fj | − |Fj−1| = αj for 1 ≤ j ≤ `. (3.12)

There is another description of this multiplicity. If a Young diagram D sits inside another
Young diagram F , then we write D ⊆ F . In this case, by removing all boxes belonging to
D, we obtain the skew diagram F/D. If we put a positive number in each box of F/D, then
it becomes a skew tableau and we say that the shape of this skew tableau is F/D. If the
entries of this skew tableau are taken from {1, 2, ..., `}, and αj of them are j for 1 ≤ j ≤ `,
then we say the content of this skew tableau is α = (α1, ..., α`). A skew tableau T is called
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semistandard if the numbers in each row of T weakly increase from left-to-right, and the
numbers in each column of T strictly increase from top-to-bottom.

Notation.

(i) Let ST(F,D,α) be the set of semistandard tableaux of shape F/D and with content
α.

(ii) The number of elements in ST(F,D,α) is denoted by KF/D,α and it is called a skew
Kostka number ([Sta]).

(iii) We also let

ST(n,k,`) =
⋃
F,D,α

ST(F,D,α) (3.13)

where the union is taken over all Young diagrams F and D with r(F ) ≤ min(n, k+`)
and r(D) ≤ min(n, k), and all α ∈ (Z+)`.

We now let (F0, F1, ..., F`) be a sequence of Young diagrams which satisfies conditions
(3.11) and (3.12). We regard F/D as a union of the skew diagrams Fi/Fi−1, 1 ≤ i ≤ `. By
filling the boxes in Fi/Fi−1 with i for each 1 ≤ i ≤ `, we obtain a semistandard tableau T
of shape F/D and content α = (α1, ..., α`). In fact,

(F0, F1, ..., F`) −→ T (3.14)

is a bijection between sequences of Young diagrams (F0, F1, ..., F`) which satisfy conditions
(3.11) and (3.12), and semistandard tableaux T in ST(F,D,α). It follows that

ρDn ⊗ ρ(α1)
n ⊗ · · · ⊗ ρ(α`)

n =
∑
F

KF/D,αρ
F
n , (3.15)

and this implies the following lemma.

Lemma 3.2. The dimension of the homogeneous component WF,D,α of P(Mn,m)Un×Uk is
given by

dimWF,D,α = KF/D,α.

The lemma suggests that elements of STF,D,α can be used to label a basis BF,D,α for

WF,D,α and the union of all BF,D,α will be a basis of the algebra P(Mn,m)Un×Uk labeled by
elements of STn,k,`.

3.4. SAGBI theory. In this subsection, we will recall the notion of a monomial order
and some general results in [CHV]. Let C[x1, ..., xn] be a complex polynomial algebra on
the variables x1, ..., xn. A monomial in C[x1, ..., xn] is an element of the form

xα = xα1
1 xα2

2 · · ·x
αn
n

where α = (α1, ..., αn) ∈ (Z+)n. A monomial order is a total ordering < on the set of
monomials in C[x1, ..., xn], or equivalently on (Z+)n, such that

(MO1) (0, 0, ..., 0) is the minimal element in (Z+)n.
(MO2) Any decreasing sequence is finite.
(MO3) If α, β, γ ∈ (Z+)n and α < β, then α+ γ < β + γ.
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There are many examples of monomial orders on (Z+)n (see [CLO]). Here we will describe
one which we will use later. We first choose a total ordering on the variables x1, ..., xn.
Specifically, we choose a permutation σ on {1, 2, ..., n} and declare that

xσ(1) > xσ(2) > · · · > xσ(n). (3.16)

We then extend this ordering to a total ordering on all monomials as follows: Given two
monomials xα and xβ, we have

xα > xβ

if either

(i) the total degree of xα is higher than that of xβ; or
(ii) both xα and xβ have the same total degree, and for the first (i.e. largest) variable

with an exponent in xα that is different from its exponent in xβ, the exponent in
xα is larger.

We call this monomial order the graded lexicographic order with respect to (3.16) ([CLO]).

We now fix a monomial order on (Z+)n. Let f be a polynomial in C[x1, ..., xn]. Since f
is a finite linear combination of the monomials xα, and since the monomial order is a total
ordering, among the monomials appearing in f with non-zero coefficients, there will be a
maximal one. We call this the leading monomial of f , and denote it by LM(f). Then it
follows from (MO3) that for f, g ∈ C[x1, ..., xn],

LM(fg) = LM(f)LM(g). (3.17)

Let R be a subalgebra of C[x1, ..., xn], and let

LM(R) = {LM(f) : f ∈ R}.
Then by (3.17), LM(R) is a semigroup. The initial algebra of R, denoted by C[LM(R)],
is the subalgebra of C[x1, ..., xn] generated by LM(R). If the semigroup LM(R) is finitely
generated, then a general result ([CHV]) says that C[LM(R)] is a good approximation to
R, in the following sense.

Theorem 3.3. Let R be a subalgebra of a polynomial algebra C[x1, ..., xn]. If the semigroup
LM(R) is finitely generated, then there exists a flat one-parameter family of C-algebras with
general fibre R and special fibre C[LM(R)].

We will show later that in the case when R = P(Mn,m)Un×Uk as well as other algebras for
which we are interested in, LM(R) is of a very special type and is indeed finitely generated.
We define these semigroups in the next subsection.

3.5. Hibi cones. For a linear functional λ on Rn, the set

H+
λ = {v ∈ Rn : λ(v) ≥ 0}

is called the closed half-space for λ. If L = {λ1, ..., λr} is a collection of linear functionals
on Rn, then the intersection

C+
L =

r⋂
i=1

H+
λi

is called a convex polyhedral cone. It is called rational if each λi in L takes rational values on
Zn. A lattice cone is the intersection of a rational convex polyhedral cone in Rn with Zn. It
has a structure of an affine semigroup ([BH]), that is, it is a finitely generated subsemigroup
of Zn containing 0.
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We now describe an important class of lattice cones which are called Hibi cones ([Hi, Ho3,
Rei]). Let Γ = {γ1, ..., γN} be a finite poset with a partial ordering �. We call a real-valued
function f on Γ order preserving if

x, y ∈ Γ, x � y =⇒ f(x) ≥ f(y).

Let R+ be the set of nonnegative real numbers and let

(R+)Γ,� =
{
f : Γ→ R+ : f is order preserving

}
.

We shall identify each function f : Γ→ R with the point

(f(γ1), f(γ2), ..., f(γN )) ∈ RN .

With this identification, it is easy to see that the subset of RN corresponding to (R+)Γ,� is
a rational convex polyhedral cone. Let ZΓ be the space of all integer-valued functions on Γ
(which can be identified with the lattice ZN in RN ) and let

(Z+)Γ,� = (R+)Γ,� ∩ ZΓ. (3.18)

Then (Z+)Γ,� is a lattice cone. It provides a natural setting for the affine semigroup rings
studied by Hibi in [Hi]. Therefore, we will call it a Hibi cone. See also [Ho3, Ki1].

We now describe the semigroup structure of (Z+)Γ,�. A subset A of Γ is said to be
increasing if for any a ∈ A,

x ∈ Γ and x � a =⇒ x ∈ A.

Let J∗(Γ) be the collection of increasing subsets of Γ. For each A ∈ J∗(Γ), let χA : Γ→ Z+

be the characteristic function of A, that is,

χA(x) =

{
1 x ∈ A
0 x 6∈ A.

(If A = ∅, then χA(x) = 0 for all x ∈ Γ.)

Theorem 3.4. ([Ho3]) The semigroup (Z+)Γ,� is generated by {χA : A ∈ J∗(Γ)}. More
precisely, each element f of (Z+)Γ,� has a unique expression as a sum

f =

u∑
j=1

cjχAj

where cj are positive integers and ∅ ( A1 ( A2 ( · · · ( Au is a chain in the poset J∗(Γ).

3.6. Standard monomial theory. Let R be a complex algebra and let G be a finite set
of elements of R with a partial ordering. If g1 ≤ g2 ≤ · · · ≤ gs in G (i.e. the gi form a
multichain in G), then we call the product

g1g2 · · · gs

a standard monomial on G. Let B be the set of all standard monomials on G. If B forms
a basis for R, then we call B a standard monomial basis and say that R has a standard
monomial theory with respect to G.
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3.7. The structure of P(Mn,m)Un×Uk . We resume our description of the structure of

the algebra P(Mn,m)Un×Uk . Recall that m = k + `. Fix Young diagrams D and F with

r(D) ≤ min(n, k) and r(F ) ≤ min(n,m), and α ∈ (Z+)`. We shall specify a basis for the

homogeneous component WF,D,α of P(Mn,m)Un×Uk .

A column skew tableau is defined by a certain number p of empty boxes at the top,
followed by boxes labeled by a strictly increasing sequence S = {s1, s2, ..., sq} of positive
integers. Let us label this column skew tableau T(p,S). For every column tableau T(p,S)

with p ≤ min(n, k), p + q ≤ min(n,m) and sq ≤ `, we define an element of the algebra

P(Mn,m)Un×Uk by the determinant

δ(p,S) =

∣∣∣∣∣∣∣∣∣
x11 x12 · · · x1p y1s1 y1s2 · · · y1sq

x21 x22 · · · x2p y2s1 y2s2 · · · y2sq
...

...
...

...
...

...
x(p+q)1 x(p+q)2 · · · x(p+q)p y(p+q)s1 y(p+q)s2 · · · y(p+q)sq

∣∣∣∣∣∣∣∣∣ .
Now consider any semistandard skew tableau T in ST(F,D,α). We will define a polynomial

δT in WF,D,α and a monomial mT as follows. Let the j-th column (counting from left to
right) of T be Tj = T(pj ,Sj). Then δT is defined as

δT =
c∏
j=1

δTj =
c∏
j=1

δ(pj ,Sj), (3.19)

where c is the number of columns in T . To define the monomial mT , let (F0, F1, ..., F`)
be the sequence of Young diagrams which corresponds to T under the bijection defined in
equation (3.14). Since r(F0) = r(D) ≤ min(n, k) and D = F0 v F1 v · · · v F`−1 v F` = F ,
r(Fj) ≤ min(n, k + j) for 0 ≤ j ≤ `. So we can write for each 0 ≤ j ≤ `,

Fj = (λ1j , λ2j , ..., λmin(n,k+j)j). (3.20)

Then

mT =

(∏
i

xλi0ii

)∏
a,b

y
λab−λa(b−1)

ab

 .

The polynomial δT and the monomial mT are related as follows. Let the set of monomials
in P(Mn,m) be given the graded lexicographic order with respect to the following ordering
on the variables:

(a) xab > xcd iff b < d or b = d and a < c.
(b) Similarly, yab > ycd iff b < d or b = d and a < c.
(c) Finally, xab > ycd for all pairs (a, b) and (c, d) of indices.

Then it can be checked that (see [HL2, Ki4]) for each semistandard tableau T ∈ ST(F,D,α),

LM(δT ) = mT . (3.21)

Theorem 3.5. (i) The set BF,D,α = {δT : T ∈ ST(F,D,α)} is a basis for WF,D,α.

(ii) The set B = {δT : T ∈ ST(n,k,`)} is a basis for P(Mn,m)Un×Uk .

(iii) LM
(
P(Mn,m)Un×Uk

)
=
{
mT : T ∈ ST(n,k,`)

}
.
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Figure 1. The set Γ(7,3,4).

Proof. By equation (3.21), the leading monomials LM(δT ) are distinct. So the set BF,D,α is
linearly independent. Moreover, the number of vectors in BF,D,α coincides with dimWF,D,α.
So (i) follows. Part (ii) follows from (i) and the decomposition (3.10). For (iii), we first

note that mT = LM(δT ) ∈ LM
(
P(Mn,m)Un×Uk

)
for each T ∈ ST(n,k,`). Next, we let

p ∈ P(Mn,m)Un×Uk . By (ii),

p = c1δT1 + c2δT2 + · · ·+ crδTr

for some c1, ..., cr ∈ C× and T1, ..., Tr ∈ ST(n,k,`). Since the leading monomials LM(δT1) =
mT1 , ...,LM(δTr) = mTr are distinct, we have LM(p) = mTj for some 1 ≤ j ≤ r. �

3.8. The Hibi cone associated with P(Mn,m)Un×Uk . In this subsection, we shall show

that the semigroup LM
(
P(Mn,m)Un×Uk

)
is a Hibi cone. This cone is closely related to

the Gelfand-Tsetlin cone, and we could describe it in terms of truncated Gelfand-Tsetlin
patterns. However, in preparation for Section 4, it is convenient to embed the associated
poset in Z2, and this is what we will do here.

For 0 ≤ j ≤ ` and 1 ≤ i ≤ min(k + j, n), let

γ
(j)
i =

[
j − i
−i

]
∈ Z2. (3.22)

Consider the set of points

Γ(n,k,`) =
{
γ

(j)
i : 0 ≤ j ≤ `, 1 ≤ i ≤ min(k + j, n)

}
(3.23)

in the plane. The set Γ(7,3,4) is illustrated in Figure 1.

We consider Z2 as a poset with respect to the usual partial order[
a
b

]
�
[
c
d

]
if and only if a ≤ c and b ≤ d, (3.24)

and we consider Γ(n,k,`) as a poset with the induced partial ordering. Consider the lattice

cone (Z+)Γ(n,k,`),� associated with Γ(n,k,`) (see equation (3.18)).
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Lemma 3.6. There is a bijection Ψ : ST(n,k,`) → (Z+)Γ(n,k,`),�.

Proof. Given a semistandard tableau T in ST(n,k,`), we define a function fT on Γ(n,k,`) by

fT (γ
(j)
i ) = λij . (3.25)

where λij is defined in equation (3.20). It is easy to check that fT is an increasing function
on the poset Γ(n,k,`), and conversely, that every increasing function f : Γ(n,k,`) → Z+ is of
the form f = fT for some T ∈ ST(n,k,`). It follows that the map

Ψ(T ) = fT , T ∈ ST(n,k,`),

is a bijection from ST(n,k,`) to (Z+)Γ(n,k,`),�. 2

Corollary 3.7. The map

LM
(
P(Mn,m)Un×Uk

)
−→ (Z+)Γ(n,k,`),�

mT 7−→ fT

is a semigroup isomorphism.

By Theorem 3.4, (Z+)Γ(n,k,`),� is generated by {χA : A ∈ J∗(Γ(n,k,`))}. In particular, it
is finitely generated. It follows from this and Theorem 3.3 that

Theorem 3.8. There exists a flat one-parameter family of C-algebras with general fibre
P(Mn,m)Un×Uk and special fibre C[(Z+)Γ(n,k,`),�].

Next, we shall describe the increasing subsets of the poset Γ(n,k,`). For a nonnegative
integer p and a set S ⊆ {1, 2, ..., `} with p ≤ min(n, k) and |S| ≤ min(n,m) − p, we define
the sequence (a0, a1, ..., a`) as follows:

(i) a0 = p.
(ii) For 1 ≤ t ≤ `− 1,

at+1 =

{
at + 1 t+ 1 ∈ S
at t+ 1 6∈ S. (3.26)

We now let

A(p,S) =
{
γ

(j)
i ; 1 ≤ i ≤ ai, 0 ≤ j ≤ `

}
.

(So A(0,∅) = ∅.) It is easy to show that A(p,S) is increasing. In fact, these sets exhaust all
the increasing subsets of Γ(n,k,`).

Lemma 3.9. We have

J∗ (Γn,k,`) =
{
A(p,S) : 0 ≤ p ≤ min(n, k), S ⊆ {1, 2, ..., `}, |S| ≤ min(n,m)− p

}
.

Proof. Let B be an increasing subset of Γ(n,k,`). Then

B = {γ(j)
i : 1 ≤ i ≤ ai, 0 ≤ j ≤ `}

for some a0, ..., a` ≥ 0.

Let 0 ≤ t ≤ `− 1. Then γ
(t)
at ∈ B and γ

(t)
at+1 6∈ B. Since B is increasing and γ

(t+1)
at ≥ γ(t)

at ,

γ
(t+1)
at ∈ B. Further, since γ

(t+1)
at+2 ≤ γ

(t)
at+1 and γ

(t)
at+1 6∈ B, γ

(t+1)
at+2 6∈ B. So at+1 = at or at + 1.

We now let p = a0 and define the set S by equations (3.26). Then B = A(p,S). �
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It is not difficult to check that under the bijection Ψ defined in Lemma 3.6, the column
tableau T(p,S) is mapped to the function χA(p,S). We now let G(n,k,`) be the set of all
polynomials of the form δ(p,S), and define a partial order on Gn,k,` by

δ(p,S) ≥ δ(p′,S′) ⇐⇒ A(p,S) ⊇ A(p′,S′). (3.27)

This partial order is the opposite of the standard partial order on the set of column tableaux
([HL2, Ki4]). Let T ∈ STn,k,`. Suppose that it has c columns and Tj = T(pj ,Sj) is its j-th

column. Consider the polynomial δT defined in equation (3.19) . Then we observe that

A(p1,S1) ⊇ A(p2,S2) ⊇ · · · ⊇ A(pc,Sc).

This means that δT is a standard monomial on the elements in G(n,k,`) with respect to

the above partial order. Hence the basis B of P(Mn,m)Un×Uk defined in Theorem 3.5 is a
standard monomial basis.

Remark. We would like to highlight the extent to which the logic of this account depends on
the leading monomials. First, using the skew tableau technology, one finds a combinatorial
parametrization of the constituents of the tensor products that counts the multiplicity of
any given representation in the indicated tensor products. Then one encodes the parameters
as a collection of exponents, and observes that these exponents exactly constitute a lattice
cone, isomorphic to the Hibi cone (Z+)Γ(n,k,`),�.

Finally, one defines a monomial order and produces highest weight vectors for GLn whose
leading monomials have the previously described exponents. These highest weight vectors
are monomials in an explicit set G(n,k,`) of elements. The fact that these monomials have
distinct highest terms guarantees that they are linearly independent, and therefore, the
monomials for a given highest weight span a space of the required dimension. These mono-
mials therefore exhaust the highest weight vectors of a given type, and therefore span the
algebra being studied. It is the upper bound given by the combinatorial parameters, to-
gether with the lower bound given by the distinctness of the highest terms, and the matching
of leading monomials with combinatorial parameters, that guarantees everything is found.

In this reasoning, we have paid no direct attention to the algebra structure of P(Mn,m)Un×Uk .
We find at the end that the G(n,k,`) must be generators for the algebra, but we have not given
any consideration to the relations between them. Thanks to general SAGBI theory, we have
exhibited P(Mn,m)Un×Uk as a flat deformation of the Hibi ring on the poset Γ(n,k,`), and
we note that the relations for a Hibi ring are easily described (see Theorem 3.4). Although
this does not determine the relations between the elements in G(n,k,`), it does allow one to
make some conclusions about their qualitative nature. Detailed exploration of this topic is
beyond the scope of this article. See [Ki4].

4. The double Pieri algebras

In this section, we construct a family L(n,p),(k,q) of algebras and study their structure.
The process for constructing it suggests the name double Pieri algebra. Later we will show
that this algebra is closely related to the iterated Pieri algebras for GLn, and also for On

and Sp2n. More precisely, we shall show that under certain conditions on the parameters,
each of the iterated Pieri algebras is essentially made up by either one or two algebras of
the form L(n,p),(k,q) together with a polynomial algebra. Thus, the iterated Pieri algebras
for all three series of classical groups are unified via the double Pieri algebra.
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4.1. The construction of L(n,p),(k,q). In Section 3.3, we were concerned with the GLn
structure of the polynomial iterated Pieri algebra

P(Mn,k+p)
Un×Uk '

P(Mn,k)⊗
p︷ ︸︸ ︷

P(Cn)⊗ · · · ⊗ P(Cn)


Un×Uk

.

However, the starting situation of P(Mn,k) is symmetric in n and k, and we can clearly

tensor P(Mn,k) with copies of P(Ck) and get an analogous decomposition of the resulting
GLk module.

In fact, we can do both at the same time. Let n, k, p, q be integers such that n ≥ k ≥ 1
and p, q ≥ 0, and consider the algebra P(Mn,k ⊕Mn,p ⊕Mq,k) of polynomial functions on
Mn,k ⊕Mn,p ⊕Mq,k. We let GLn ×GLk ×GLp ×GLq act on P(Mn,k ⊕Mn,p ⊕Mq,k) by the
formula:

(σ(g, h, a, b)(f))(X,Y,R) = f(gtXh, gtY a, btRh) (4.1)

where (g, h, a, b) ∈ GLn × GLk × GLp × GLq, f ∈ P(Mn,k ⊕Mn,p ⊕Mq,k) and (X,Y,R) ∈
Mn,k ⊕Mn,p ⊕Mq,k. Also, we restrict the action to the subgroup GLn × GLk × Ap × Aq.
Finally, we let

L(n,p),(k,q) = [P(Mn,k ⊕Mn,p ⊕Mq,k)]
Un×Uk

be the subalgebra of Un×Uk invariants in P(Mn,k ⊕Mn,p⊕Mq,k) and call it a double Pieri
algebra. It is a module for An × Ap × Ak × Aq. It turns out that we can analyze it by an
extension of ideas on the polynomial iterated Pieri algebra P(Mn,k+p)

Un×Uk .

4.2. Multigraded structure of L(n,p),(k,q). The torus An×Ap×Ak×Aq acts on L(n,p),(k,q)

by algebra automorphisms, so L(n,p),(k,q) is a multi-graded algebra. More precisely, we have

L(n,p),(k,q) =
∑

F,α,D,β

W(F,α),(D,β) (4.2)

where the sum is taken over all Young diagrams F and D with r(F ) ≤ min(n, k + p) and
r(D) ≤ k, α ∈ (Z+)p and β ∈ (Z+)q, and the homogeneous component W(F,α),(D,β) is the

ψFn × ψαp × ψDk × ψ
β
q eigenspace of An ×Ap ×Ak ×Aq in L(n,p),(k,q).

Notation.

(i) For Young diagrams F and D, and α ∈ (Z+)p and β ∈ (Z+)q, let ST(F,α),(D,β) be
the set of ordered pairs (T1, T2) of semistandard tableaux satisfying the following
conditions: There is a Young diagram E such that T1 is of shape F/E and content
α, and T2 is of shape D/E and content β. (So T1 and T2 have the same initial
Young diagram E.)

(ii) Let K(F,α),(D,β) denote the number of elements in the set ST(F,α),(D,β). Then

K(F,α),(D,β) =
∑
E

KF/E,αKD/E,β.

(iii) We also let

ST(n,p),(k,q) =
⋃

(F,α),(D,β)

ST(F,α),(D,β) (4.3)

where the union is taken over all pairs (F, α) and (D,β) with r(F ) ≤ min(n, k+ p),
α ∈ (Z+)p, r(D) ≤ k and β ∈ (Z+)q.
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Lemma 4.1. The dimension of W(F,α)(D,β) is given by

dimW(F,α)(D,β) = K(F,α),(D,β).

Proof. Let GLn × GLk × Ap × Aq act on P(Mn,k ⊕Mn,p ⊕Mq,k) via the action σ given in
equation (4.1). From (3.8), by setting k = 0 and ` = p, we have

P(Mn,p) '
∑

α=(αi)∈(Z+)p

(
p⊗
i=1

ρ(αi)
n

)
⊗ ψαp

Similarly, we also have

P(Mq,k) '
∑

β=(βi)∈(Z+)q

(
ψβq ⊗

q⊗
i=1

ρ
(βi)
k

)

Then, by (GLn,GLk)-duality and the polynomial iterated Pieri rule for GLn given in equa-
tion (3.15), we have

P(Mn,k ⊕Mn,p ⊕Mq,k) ' P(Mn,k)⊗ P(Mn,p)⊗ P(Mq,k)

'

 ∑
r(E)≤k

ρEn ⊗ ρEk

⊗
 ∑
α=(αi)∈(Z+)p

(
p⊗
i=1

ρ(αi)
n

)
⊗ ψαp

⊗
 ∑
β=(βi)∈(Z+)q

(
ψβq ⊗

q⊗
i=1

ρ
(βi)
k

)
'

∑
E,α,β

(
ρEn ⊗

(
p⊗
i=1

ρ(αi)
n

))
⊗

(
ρEk ⊗

(
q⊗
i=1

ρ
(βi)
k

))
⊗ ψαp ⊗ ψβq

'
∑
E,α,β

(∑
F

KF/E,αρ
F
n

)
⊗

(∑
D

KD/E,βρ
D
k

)
⊗ ψαp ⊗ ψβq

'
∑

α,β,D,F

(∑
E

KF/E,αKD/E,β

)
ρFn ⊗ ρDk ⊗ ψαp ⊗ ψβq

'
∑

α,β,D,F

K(F,α),(D,β)ρ
F
n ⊗ ρDk ⊗ ψαp ⊗ ψβq ,

where all the Young diagrams F and D which appear in the sum are such that r(F ) ≤
min(n, k+p) and r(D) ≤ k. The lemma follows by extracting Un×Uk invariants from these
expressions. �

4.3. Generators of L(n,p),(k,q). We denote the standard coordinates on Mn,k, Mn,p and
Mq,k as

(xij) ∈ Mn,k, (yij) ∈ Mn,p, (zij) ∈ Mq,k,

so that P(Mn,k ⊕Mn,p ⊕Mq,k) can be regarded as a polynomial algebra on these variables.
Let the set of monomials in P(Mn,k ⊕Mn,p⊕Mq,k) be given the graded lexicographic order
with respect to following ordering on the variables:

(a) xab > xcd iff b < d or b = d and a < c.
(b) yab > ycd iff b < d or b = d and a < c.
(c) zab > zcd iff a < c or a = c and b < d.
(d) Finally, xab > ycd > zef for all pairs (a, b), (c, d) and (e, f) of indices.
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We want to construct a basis for the double Pieri algebra L(n,p),(k,q). Lemma 4.1 suggests
that we can do so by attaching an element δ(T,T ′) of L(n,p),(k,q) to each pair (T, T ′) of
semistandard tableaux in ST(n,p),(k,q). The most basic case is when both T and T ′ are
column tableaux, that is, T = T(c,J) and T ′ = T(c,I) where 0 ≤ c ≤ k, and

I = {i1 < i2 < · · · < iu} ⊆ {1, ..., q},
J = {j1 < j2 < · · · < jv} ⊆ {1, ..., p}

with u+ c ≤ k and v + c ≤ min(n, k + p). Let δ(c,I,J) be the determinant

δ(c,I,J) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1,1 x1,2 · · · x1,c+u y1,j1 · · · y1,jv

x2,1 x2,2 · · · x2,c+u y2,j1 · · · y2,jv
...

...
...

...
...

xc+v,1 xc+v,2 · · · xc+v,c+u yc+v,j1 · · · yc+v,jv
zi1,1 zi1,2 · · · zi1,c+u 0 · · · 0

...
...

...
...

...
ziu,1 ziu,2 · · · ziu,c+u 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (4.4)

The following lemma suggests that δ(c,I,J) should be attached to (T(c,J), T(c,I)).

Lemma 4.2. The leading monomial of δ(c,I,J) is given by

LM(δ(c,I,J)) =

(
c∏

a=1

xa,a

)(
v∏
a=1

yc+a,ja

)(
u∏
a=1

zia,c+a

)
.

Proof. Every term of the determinant δ(c,I,J) is a product of (c + u + v) elements chosen
from each row and each column. To identify the leading monomial LM(δ(c,I,J)) of δ(c,I,J),
it is enough to choose the largest entry of the matrix at each step in making a product. It
is straightforward to see that the first c choices should be x1,1, . . . , xc,c. After erasing the
first c rows and the first c columns, we obtain the (u+ v)× (u+ v) subdeterminant

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xc+1,c+1 · · · xc+1,c+u yc+1,j1
· · · yc+1,jv

.

.

.
.
.
.

.

.

.
.
.
.

xc+v,c+1 · · · xc+v,c+u yc+v,j1
· · · yc+v,jv

zi1,c+1 · · · zi1,c+u 0 · · · 0

.

.

.
.
.
.

.

.

.
.
.
.

ziu,c+1 · · · ziu,c+u 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ±

∣∣∣∣∣∣∣∣
yc+1,j1

· · · yc+1,jv

.

.

.
.
.
.

yc+v,j1
· · · yc+v,jv

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
zi1,c+1 · · · zi1,c+u

.

.

.
.
.
.

ziu,c+1 · · · ziu,c+u

∣∣∣∣∣∣∣∣ .

Clearly, the diagonal entries of the two determinants on the right hand side constitute the
remaining entries in LM(δ(c,I,J)). �

Later, we will define a partial order on the elements δ(c,I,J) and show that standard
monomials on these elements form a basis for L(n,p),(k,q).

4.4. The Hibi cone associated to L(n,p),(k,q). Let Z2 be given the partial ordering (3.24).
Consider the reflection

τ :

[
a
b

]
→
[
b
a

]
of R2. It clearly preserves Z2, and define an order preserving automorphism of Z2. Consider
the sets of points Γ(n,k,p) and Γ(k,n,q) defined in equation (3.23), and let

Γ(n,p),(k,q) = τ(Γ(k,n,q)) ∪ Γ(n,k,p)
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where τ(Γ(k,n,q)) is the image of Γ(k,n,q) under τ . We consider Γ(n,p),(k,q) as a poset with the
induced partial ordering. Explicitly, for integers i and a, we let

γ(i)
a =



[
−a
−a

]
+

[
i
0

]
i ≥ 0

[
−a
−a

]
−
[

0
i

]
i < 0.

(4.5)

Note that this definition extends that given in equation (3.22). Also, γ
(i)
a = τ

(
γ

(−i)
a

)
for

i < 0. Then

Γ(n,p),(k,q) = {γ(i)
a : −q ≤ i ≤ 0, 1 ≤ a ≤ k} ∪ {γ(i)

a : 1 ≤ i ≤ p, 1 ≤ a ≤ min(n, k + i)}
Two examples of Γ(n,p),(k,q) are illustrated in Figure 2 (with n ≥ k + p) and Figure 3 (with
n < k + p) respectively.

Figure 2. The set Γ(5,2),(3,1).

We now consider the Hibi cone (Z+)
Γ(n,p),(k,q),�.

Lemma 4.3. There is a bijection Φ : ST(n,p),(k,q) −→ (Z+)
Γ(n,p),(k,q),�.

Proof. Let (T, T ′) ∈ ST(n,p),(k,q). Consider the order preserving functions fT and fT ′ defined
in equation (3.25) on Γ(n,k,p) and Γ(k,n,q), respectively. For u ∈ τ(Γ(k,n,q)), let

f τT ′(u) = fT ′(τ(u)).

Then f τT ′ is an order preserving function on τ(Γ(k,n,q)).

Now observe that

τ(Γ(k,n,q)) ∩ Γ(n,k,p) =
{
γ(0)
a : 1 ≤ a ≤ k

}
.

Since T and T ′ have the same initial diagram,

f τT

(
γ(0)
a

)
= fT ′

(
γ(0)
a

)
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Figure 3. The set Γ(6,3),(4,2).

for each 1 ≤ a ≤ k. This allows us to fit fT and f τT ′ together to define a function fT,T ′ on
Γ(n,p),(k,q) by

fT,T ′(γ
(i)
j ) =

{
fT (γ

(i)
j ) i ≥ 0

f τT ′(γ
(i)
j ) i ≤ 0.

We claim that fT,T ′ is order preserving. Suppose that γ
(i)
a ∈ Γ(n,k,p), γ

(−j)
a ∈ τ(Γ(k,n,q)) and

γ(i)
a =

[
−a+ i
−a

]
�
[
−b
−b+ j

]
= γ

(−j)
b .

(For example, γ
(3)
2 � γ

(−1)
4 in the poset Γ(6,3),(4,2). See Figure 3.) Then −a ≥ −b + j, so

that

γ(i)
a =

[
−a+ i
−a

]
�
[
−a
−a

]
= γ(0)

a �
[
−b
−b+ j

]
= γ

(−j)
b .

It follows that

fT,T ′(γ
(i)
a ) = fT (γ(i)

a ) ≥ fT (γ(0)
a ) = f τT ′(γ

(0)
a ) ≥ f τT ′(γ

(−j)
b ) = fT,T ′(γ

(−j)
b ).

Similarly, one can check that if γ
(i)
a � γ

(−j)
b , then fT,T ′(γ

(i)
a ) ≤ fT,T ′(γ

(−j)
b ).

Conversely, each order preserving function f on Γ(n,p),(k,q) is of the form f = fT,T ′ for
some (T, T ′) ∈ ST(n,p),(k,q). This is easy to check. It follows that the map Φ : ST(n,p),(k,q) →
(Z+)

Γ(n,p),(k,q),� given by

Φ(T, T ′) = fT,T ′ .

is a bijection. �
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By Lemma 4.3 and equation (4.3),(
Z+
)Γ(n,p),(k,q),� =

⋃
(F,α),(D,β)

Φ
(
ST(F,α),(D,β)

)
.

If f ∈ Φ
(
ST(F,α),(D,β)

)
, then we can recover (F, α) and (D,β) from f as follows: Let us set

fi =

{
(fi,1, fi,2, . . . , fi,k) if − q ≤ i ≤ 0,(
fi,1, fi,2, . . . , fi,min(n,k+i)

)
if 0 < i ≤ p

where

fi,j = f(γ
(i)
j ), (4.6)

and

w+(f) = (|f1| − |f0|, |f2| − |f1|, ..., |fp| − |fp−1|) ,
w−(f) = (|f−1| − |f0|, |f−2| − |f−1|, ..., |f−q| − |f−q+1|)

where |fi| =
∑

c≥1 fi,c for −q ≤ i ≤ p. Then we have

F = fp, α = w+(f), D = f−q, and β = w−(f).

Moreover, if f = Φ(T, T ′), then fT (u) = f(u) for all u ∈ Γn,k,` and fT ′(v) = f(τ(v)) for all
v ∈ Γk,n,q. This allows us to recover the tableaux T and T ′.

It is also clear that if f ∈ Φ
(
ST(F,α),(D,β)

)
and f ′ ∈ Φ

(
ST(F ′,α′),(D′,β′)

)
, then we have

f + f ′ ∈ Φ
(
ST(F+F ′,α+α′),(D+D′,β+β′)

)
.

4.5. Increasing subsets of Γ(n,p),(k,q). By Theorem 3.4, (Z+)
Γ(n,p),(k,q),� is generated by{

χA : A ∈ J∗(Γ(n,p),(k,q))
}
.

We now specify the increasing subsets of Γ(n,p),(k,q). Our description is designed to make
parallel with the special elements δ(c,I,J) defined in equation (4.4). For c, I = {i1, ..., iu} ⊆
{1, ..., q}, and J = {j1, ..., jv} ⊆ {1, ..., p}, where 0 ≤ c ≤ k, |I| = u ≤ k − c and |J | = v ≤
min(n, k + p)− c, we define a sequence (a−q, ..., a0, ..., ap) as follows:

(i) a0 = c,
(ii) For 0 ≤ s ≤ q − 1 and 0 ≤ t ≤ p− 1,

a−s−1 =

{
a−s + 1 s+ 1 ∈ {i1, ..., iu}
a−s s+ 1 6∈ {i1, ..., iu}

(4.7)

and

at+1 =

{
at + 1 t+ 1 ∈ {j1, ..., jv}
at t+ 1 6∈ {j1, ..., jv}.

(4.8)

Let

A(c,I,J) = {γ(i)
j : 1 ≤ j ≤ ai, −q ≤ i ≤ p}.

(So A(0,∅,∅) = ∅.) Then one verifies that A(c,I,J) is increasing. In fact, the sets A(c,I,J)

exhaust all the increasing subsets of Γ(n,p),(k,q).

Lemma 4.4. We have

J∗(Γ(n,p),(k,q)) = {A(c,I,J) : 0 ≤ c ≤ k, I ⊆ {1, ..., q}, J ⊆ {1, ..., p}, |I| ≤ k−c, |J | ≤ min(n, k+p)−c}.
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Proof. Let B be an increasing subset of Γ(n,p),(k,q). Then B = B1 ∪B2 where

B1 = B ∩ τ (Γk,n,q) and B2 = B ∩ Γn,k,p.

Now B1 is an increasing subset of τ (Γk,n,q), and since τ preserves the partial order of
Z2, by Lemma 3.9, B1 = τ

(
A(c,I)

)
for some 0 ≤ c ≤ min(k, n) and I ⊆ {1, 2, ..., q} with

|I| ≤ k − c. Similarly, B2 = A(d,J) for some 0 ≤ d ≤ min(n, k) and J ⊆ {1, 2, ..., p} with
|J | ≤ min(n, k + p)− d. Note that

{γ(0)
a : 1 ≤ a ≤ c} = B1∩Γn,k,p = B∩τ (Γk,n,q)∩Γn,k,p = B2∩τ (Γk,n,q) = {γ(0)

a : 1 ≤ a ≤ d}.

So c = d, and B = A(c,I,J). �

4.6. Standard monomial basis for L(n,p),(k,q). For each f ∈ (Z+)
Γ(n,p),(k,q),�, we define

the polynomial δf ∈ L(n,p),(k,q) as follows: If f = χA(c,I,J)
, then

δf := δ(c,I,J),

where δ(c,I,J) is defined in equation (4.4). In general, by Theorem 3.4, each element f of

(Z+)
Γ(n,p),(k,q),� has a unique expression as a sum

f =

s∑
j=1

cjχAj (4.9)

where cj are positive integers and ∅ ( A1 ( A2 ( · · · ( As is a chain in the poset
J∗(Γ(n,p),(k,q)). We define

δf :=
s∏
j=1

δ
cj
χAj

. (4.10)

Let

G(n,p),(k,q) =
{
δχA : A ∈ J∗(Γ(n,p),(k,q))

}
,

and let it be given the partial ordering induced from that of J∗(Γ(n,p),(k,q)). Then δf is a
standard monomial on G(n,p),(k,q). We will show that the set

B =
{
δf : f ∈

(
Z+
)Γ(n,p),(k,q),�

}
(4.11)

forms a basis for L(n,p),(k,q). To do this, we let for each f ∈ (Z+)
Γ(n,p),(k,q),�,

mf =

(
k∏

u=1

x
f0,i
u,u

) ∏
1≤a≤min(n,k+b)

1≤b≤p

y
fb,a−fb−1,a

a,b


 ∏

1≤i≤q
1≤j≤k

z
f−i,j−f−i+1,j

i,j


where fij is defined in equation (4.6).

Proposition 4.5. (i) For each f ∈ (Z+)
Γ(n,p),(k,q),�, LM(δf ) = mf .

(ii) The set B is linearly independent.
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Proof. For (i), define m : (Z+)
Γ(n,p),(k,q),� −→ P(Mn,k ⊕Mn,p ⊕Mq,k) by

m(f) = mf . (4.12)

Then it is easy to check that m is a semigroup isomorphism onto its image. Moreover, by
Lemma 4.2,

m(χA) = LM(δχA)

for all A ∈ J∗(Γ(n,p),(k,q)).

We now let f be an arbitrary element of (Z+)
Γ(n,p),(k,q),�. Then f can expressed uniquely

as a sum

f =
s∑
j=1

cjχAj

where cj are positive integers and ∅ ( A1 ( A2 ( · · · ( As is a chain in the poset
J∗(Γ(n,p),(k,q)). Then δf is given in equation (4.10). Since m is a semigroup homomorphism,

LM(δf ) =
s∏
j=1

LM(δχAj
)cj =

s∏
j=1

m
(
χAj

)cj = m

 s∑
j=1

cjχAj

 = m(f).

This proves (i). Part (ii) now follows from the fact that the elements in B have distinct
leading monomials. �

Theorem 4.6. (i) The set

B(F,α),(D,β) =
{
δf : f ∈ Φ

(
ST(F,α),(D,β)

)}
is a basis for the homogeneous component W(F,α),(D,β) of L(n,p),(k,q).

(ii) The set B defined in equation (4.11) is a standard monomial basis for the algebra
L(n,p),(k,q).

(iii) LM(L(n,p),(k,q)) ' (Z+)
Γ(n,p),(k,q),�.

(iv) There exists a flat one-parameter family of complex algebras with general fibre L(n,p),(k,q)

and special fibre C[(Z+)
Γ(n,p),(k,q),�].

Proof. We claim that if f ∈ Φ
(
ST(F,α),(D,β)

)
, then δf ∈ W(F,α),(D,β). This is true if

f ∈ G(n,p),(k,q). The general case follows from this and equation (4.3). It follows that
B(F,α),(D,β) ⊆W(F,α),(D,β). Moreover, B(F,α),(D,β) is linearly independent and the number of
vectors it contains coincides with the dimension of W(F,α),(D,β). So B(F,α),(D,β) is a basis for
W(F,α),(D,β) and this proves (i). Part (ii) follows from equation (4.2) and (i).

We can prove that

LM(L(n,p),(k,q)) = {mf : f ∈
(
Z+
)Γ(n,p),(k,q),�}

using a similar argument as in the proof of part (iii) of Theorem 3.5. Hence LM(L(n,p),(k,q)) is
the range of the semigroup isomorphism m defined in equation (4.12). This proves (iii). Part
(iv) follows from Theorem 3.3 and the fact that LM(L(n,p),(k,q)) is finitely generated. �
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4.7. The algebra L̂(n,p),(k,q). In this subsection, we will construct the algebra L̂(n,p),(k,q),
which is a variant form of the algebra L(n,p),(k,q). Recall that the construction of the algebra
L(n,p),(k,q) makes use of an action σ by GLn×GLk ×GLp×GLq on P(Mn,k ⊕Mn,p⊕Mq,k)
given in equation (4.1). We now replace σ by the action σ′ defined by the formula

(σ′(g, h, a, b)(f))(X,Y,R) = f(g−1Xh, g−1Y a, btRh)

where (g, h, a, b) ∈ GLn × GLk × GLp × GLq, f ∈ P(Mn,k ⊕Mn,p ⊕Mq,k) and (X,Y,R) ∈
Mn,k ⊕Mn,p ⊕Mq,k, and restrict σ′ to the subgroup GLn ×GLk ×Ap ×Aq. Let L̂(n,p),(k,q)

be the algebra of all Un ×Uk invariants in P(Mn,k ⊕Mn,p ⊕Mq,k) relative to the action σ′.
It is again a module for An ×Ak ×Ap ×Aq.

There is an alternative description of the algebra L̂(n,p),(k,q). Let GLn × GLk act on
P(Mn,k) via the action τ ′n,k defined in equation (5.3), so that, in the notation of Section 5.2,

the resulting GLn × GLk module on P(Mn,k) is P(Cn ⊗ Ck∗). Similarly, we consider the
GLn×GLp module P(Cn⊗Cp∗). We also let GLq×GLk act on P(Mq,k) via the action τq,k
defined in equation (3.1), so the resulting module is again denoted by P(Mq,k). We now
form the tensor product

P(Cn ⊗ Ck∗)⊗ P(Cn ⊗ Cp∗)⊗ P(Mq,k),

which is a module for

(GLn ×GLk)× (GLn ×GLp)× (GLq ×GLk)

' (GLn ×GLn)× (GLk ×GLk)×GLp ×GLq,

and it becomes a ∆(GLn)×∆(GLk)×Ap×Aq module by restriction, where ∆(GLn) ∼= GLn
and ∆(GLk) ∼= GLk embed diagonally in GLn ×GLn and GLk ×GLk, respectively. Then

L̂(n,p),(k,q) '
[
P(Cn ⊗ Ck∗)⊗ P(Cn ⊗ Cp∗)⊗ P(Mq,k)

]Un×Uk

.

Lemma 4.7. There is an algebra isomorphism

ϕ : L(n,p),(k,q) −→ L̂(n,p),(k,q)

such that

ϕ(σ(t, s, u, v)(f)) = σ′((t−1)w, s, u, v)(ϕ(f))

for all (t, s, u, v) ∈ An ×Ak ×Ap ×Aq and f ∈ L(n,p),(k,q). Here, for t = diag(t1, ..., tn),

(t−1)w = w(t−1)w = diag(t−1
n , ..., t−1

1 )

where

w =



1

0 1
·

·

· 0
1


∈ GLn.

In particular, ϕ intertwines the action by Ak ×Ap ×Aq on L(n,p),(k,q) and L̂(n,p),(k,q)
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Proof. Define ϕ : P(Mn,k ⊕Mn,p ⊕Mq,k) −→ P(Mn,k ⊕Mn,p ⊕Mq,k) by

(ϕ(f))(X,Y,R) = f(wX,wY,R),

where f ∈ P and (X,Y,R) ∈ Mn,k⊕Mn,p⊕Mq,k. Then one can check that the restriction of

ϕ to L(n,p),(k,q) is an algebra isomorphism for L(n,p),(k,q) → L̂(n,p),(k,q) and it has the desired
properties. �

Remark. It would be possible to describe the Hibi cone attached to L(n,p)(k,q) in terms of
a pair of Gelfand-Tsetlin patterns whose top rows are equal. An analog expressed in the
language of Young tableaux was introduced in [DRS], and was used there, and in [DeP] and
[DKR] to give characteristic-free proofs of the First and Second Fundamental Theorems of
invariant theory in the sense of [Wy]. More recently, one of the present authors studied
the Hibi cone attached to the space of m by n matrices using a combinatorial operation on
Gelfand-Tsetlin patterns in [Ki3].

5. The construction of the general iterated Pieri algebra for GLn

The polynomial iterated Pieri rule for GLn given in formula (3.15) describes the decom-
position of the tensor product of a polynomial representation with ` representations, all
of which are indexed by one-rowed Young diagrams. In this section, we shall consider the
problem of decomposing the tensor product of GLn representations of a more general form:

ρD,En ⊗

(
p⊗
i=1

ρ(αi)
n

)
⊗

 q⊗
j=1

(
ρ

(βj)
n

)∗ . (5.1)

We replace the polynomial representation ρDn in (3.15) by any rational representation ρD,En ,
and we tensor it with p representations, each of which is indexed by one-rowed Young
diagram, followed by q representations, each of which is dual to a representation indexed by
one-rowed Young diagram. We call a description of how (5.1) decomposes a general iterated
Pieri rule for GLn.

If we wish to limit the depth of D and E, as well as to specify the number of factors in
the tensor product (5.1), we will call the description a ((k, `), p, q)-Pieri rule for GLn, where
r(D) ≤ k, r(E) ≤ ` and k+ ` ≤ n. Thus the polynomial iterated Pieri rule given in formula
(3.15) is the ((k, 0), `, 0)-Pieri rule. Note that we have assigned the index ` different roles in
the two cases. It is an upper bound of the depth of the diagram E in the ((k, `), p, q)-Pieri
rule, and it is the number of representations labeled by one-row Young diagrams in the
tensor product in the ((k, 0), `, 0)-Pieri rule.

In this section, we shall construct an algebra which encodes the general iterated Pieri
rule for GLn. Later we will see that there is a close relation between the general iterated
Pieri rule for GLn and the iterated Pieri rule for On and for Sp2n discussed in [KL].

5.1. Realization of
⊗p

i=1 ρ
(αi)
n . Let n and p be positive integers, and let P(Mn,p) be the

algebra of polynomial functions on Mn,p. We let GLn ×GLp act on P(Mn,p) by the action
τn,p defined in equation (3.2), and we restrict this action to GLn×Ap. This setting coincides
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with that of Section 3.3, with k = 0 and ` = p. So by equation (3.8), P(Mn,p) decomposes
as a GLn ×Ap module as

P(Mn,p) '
∑

α=(α1,...,αp)∈(Z+)p

(
p⊗
i=1

ρ(αi)
n

)
⊗ ψαp . (5.2)

We can now realize the tensor product
⊗p

i=1 ρ
(αi)
n of GLn representations as the subspace

of P(Mn,p) which contains functions f such that f(xa) = ψαp (a)f(x) for all x ∈ Mn,p and all

a ∈ Ap. In other words,
⊗p

i=1 ρ
(αi)
n can be identified with the eigenspace of Ap in P(Mn,p)

corresponding to the character ψαp .

5.2. Realization of
⊗q

j=1

(
ρ

(βj)
n

)∗
. For (g, h) ∈ GLn ×GLq and x ∈ Mn,q, let

τ ′n,q(g, h)(x) = gxh−1. (5.3)

Under the action τ ′n,q,

Mn,q ' Cn ⊗ Cq∗,

and τ ′n,q induces an action by GLn ×GLq on P(Mn,q) (we again denote it by τ ′n,q) given by

[τ ′n,q(g, h)(f)](x) = f(g−1xh)

where f ∈ P(Mn,q), (g, h) ∈ GLn × GLq and x ∈ Mn,q. On the other hand, GLn × GLq
also acts on P(Mn,q) via the action τn,q defined in (3.1). In order to distinguish these two
actions on P(Mn,q), we shall adopt the following conventions on notation:

(i) If GLn × GLq acts on P(Mn,q) by τn,q, we shall denote the corresponding module
either by P(Mn,q) or by P(Cn∗ ⊗ Cq∗).

(ii) If GLn × GLq acts on P(Mn,q) by τ ′n,q, we shall denote the corresponding module
only by P(Cn ⊗ Cq∗).

Now, as a GLn ×GLq module,

P(Cn ⊗ Cq∗) '
∑

r(D)≤min(n,q)

(
ρDn
)∗ ⊗ ρDq . (5.4)

If we restrict the action by GLn ×GLq to GLn ×Aq, then, as in (5.2), we obtain

P(Cn ⊗ Cq∗) '
∑

β=(β1,...,βq)∈(Z+)q

 q⊗
j=1

(
ρ

(βj)
n

)∗⊗ ψβq . (5.5)

It follows that for each β = (β1, ..., βq) ∈ (Z+)q, the tensor product
⊗q

j=1

(
ρ

(βi)
n

)∗
of GLn

representations can be realized as the eigenspace of Aq in P(Cn⊗Cq∗) corresponding to the

character ψβq .
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5.3. The algebra P (Vn,k,`) and realization of ρD,En . For n, k, ` ∈ Z+, we let

Vn,k,` = Mn,k ⊕Mn,` = {(x, y) : x ∈ Mn,k, y ∈ Mn,`}.
Let the group (GLn ×GLn)×GLk ×GL` act on Vn,k,` by

((g1, g2), h1, h2).(x, y) = ((g−1
1 )txh−1

1 , g2yh
−1
2 ), (5.6)

where (x, y) ∈ Vn,k,`, (g1, g2) ∈ GLn ×GLn, h1 ∈ GLk and h2 ∈ GL`. Under this action,

Vn,k,` '
(
Cn∗ ⊗ Ck∗

)
⊕
(
Cn ⊗ C`∗

)
.

Let P (Vn,k,`) be the algebra of polynomial functions on Vn,k,`. Then the action (5.6)
induces an action of (GLn×GLn)×GLk ×GL` on P (Vn,k,`) in the usual way, and we have

P (Vn,k,`) ' P
(
Cn∗ ⊗ Ck∗

)
⊗ P

(
Cn ⊗ C`∗

)
'

∑
r(D)≤min(n,k)
r(E)≤min(n,`)

(
ρDn ⊗

(
ρEn
)∗)⊗ ρDk ⊗ ρE` (5.7)

by equations (3.3) and (5.4). By extracting the Un × Un invariants in equation (5.7), we
obtain

P (Vn,k,`)
Un×Un '

∑
r(D)≤min(n,k)
r(E)≤min(n,`)

(
ρDn
)Un ⊗

(
ρE∗n
)Un ⊗ ρDk ⊗ ρE` .

Since An normalizes Un, the algebra P (Vn,k,`)
Un×Un is a module for (An×An)×GLk×GL`.

It becomes an ∆(An)×GLk×GL` module by restriction, where ∆(An) ∼= An is the diagonal
subgroup of An×An. In the case when k+` ≤ n, An acts diagonally on the one-dimensional

space
(
ρDn
)Un ⊗

(
ρE∗n
)Un by the character ψD,En , so that we have

P (Vn,k,`)
Un×Un '

∑
r(D)≤k
r(E)≤`

ψD,En ⊗ ρDk ⊗ ρE` (5.8)

as a An ×GLk ×GL` module. This fact will be used in the proof of Proposition 5.1 below.

Next, we restrict the action of (GLn × GLn) × GLk × GL` on P (Vn,k,`) to ∆(GLn) ×
GLk×GL`, where ∆(GLn) ∼= GLn is the diagonal subgroup of GLn×GLn. Then P (Vn,k,`)
can be decomposed as a GLn × GLk × GL` module as in equation (5.7) except that each

ρDn ⊗
(
ρEn
)∗

is now an internal tensor product of GLn.

In the rest of this subsection, we shall assume that k + ` ≤ n (this is called the stable
range condition). Under this condition, there is another description of the GLn×GLk×GL`
module structure of P (Vn,k,`) which we now detail. Denote the standard coordinates on
Mn,k and Mn,` by

x = (xij) ∈ Mn,k and y = (yij) ∈ Mn,`,

and for 1 ≤ a ≤ k and 1 ≤ b ≤ `, let

rab =

n∑
i=1

xiayib and ∆ab =

n∑
i=1

∂2

∂xia∂yib
. (5.9)

By the First Fundamental Theorem of Invariant Theory for GLn ([Ho2],[GW]), the algebra

P (Vn,k,`)
GLn of polynomials in P (Vn,k,`) invariant under the action by GLn is generated by

the rab’s, and it is stable under the action of GLk × GL`. Moreover, since k + ` ≤ n, the
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rab’s are algebraically independent and P (Vn,k,`)
GLn can be decomposed as a GLk × GL`

module as
P (Vn,k,`)

GLn ' P(Mk,`) '
∑

r(F )≤min(k,`)

ρFk ⊗ ρF` .

Next, we let

H(Vn,k,`) = {f ∈ P (Vn,k,`) : ∆ab(f) = 0, 1 ≤ a ≤ k, 1 ≤ b ≤ `} .
The space H(Vn,k,`) is stable under GLn × GLk × GL`, and under this action we have the
following decomposition ([Ho1]):

H(Vn,k,`) '
∑

r(D)≤k
r(E)≤`

ρD,En ⊗ ρDk ⊗ ρE` . (5.10)

Let In,k,` be the ideal of P (Vn,k,`) generated by {rab : 1 ≤ a ≤ k, 1 ≤ b ≤ `} and form the
quotient algebra P (Vn,k,`)/In,k,`. Then the natural map

H(Vn,k,`) −→ P (Vn,k,`)/In,k,` (5.11)

is a GLn ×GLk ×GL` module isomorphism ([Ho1]), so P (Vn,k,`)/In,k,` can be decomposed
as in equation (5.10).

Let (P (Vn,k,`)/In,k,`)
Uk×U` be the algebra of Uk × U` invariants in P (Vn,k,`)/In,k,`. It is

a module for GLn ×Ak ×A`, and it follows from (5.10) that it can be decomposed as

(P (Vn,k,`)/In,k,`)
Uk×U` '

∑
r(D)≤k
r(E)≤`

ρD,En ⊗
(
ρDk
)Uk ⊗

(
ρE`
)U`

'
∑

r(D)≤k
r(E)≤`

ρD,En ⊗ ψDk ⊗ ψE` . (5.12)

Equation (5.12) shows that for Young diagrams D and E such that r(D) ≤ k and r(E) ≤ `,
we can realize the representation ρD,En as the eigenspace forAk×A` in (P (Vn,k,`)/In,k,`)

Uk×U`

corresponding to the character ψDk × ψE` .

For later use, we record the following structural results on P (Vn,k,`).

Proposition 5.1. Assume that k + ` ≤ n.

(a) There is an isomorphism of GLn ×GLk ×GL` modules:

P (Vn,k,`) ' H(Vn,k,`)⊗ P (Vn,k,`)
GLn .

(b) The space H(Vn,k,`)
Un of Un invariants in H(Vn,k,`) is a subalgebra of P (Vn,k,`), and

it coincides with the algebra of Un × Un invariants in P (Vn,k,`), that is,

H(Vn,k,`)
Un = P (Vn,k,`)

Un×Un .

Proof. For (a), see [Ho1]. We now prove (b). By equation (5.10), we have

H(Vn,k,`)
Un '

∑
r(D)≤k
r(E)≤`

(ρD,En )Un ⊗ ρDk ⊗ ρE` '
∑

r(D)≤k
r(E)≤`

ψD,En ⊗ ρDk ⊗ ρE` .

Thus by equation (5.8), H(Vn,k,`)
Un and P (Vn,k,`)

Un×Un are isomorphic An × GLk × GL`
modules. Part (b) now follows from the fact that the GLn × GLk × GL` highest weight
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vector in the submodule ρD,En ⊗ ρDk ⊗ ρE` of H(Vn,k,`) is also the (GLn×GLn)×GLk ×GL`
highest weight vector in the submodule

(
ρDn ⊗

(
ρEn
)∗)⊗ ρDk ⊗ ρE` of P (Vn,k,`). �

Remark. If one writes explicitly the joint GLn × GLk × GL` highest weight vectors in
H(Vn,k,`), one can see by inspection that product of two of them is again harmonic. Since
the space of harmonics is invariant under GLk ×GL` and graded by the characters of An,
this is another way of showing that H(Vn,k,`)

Un is an algebra.

5.4. The iterated Pieri algebra for GLn. Let n, k, `, p, q be positive integers such that
k + ` ≤ n, and let (P (Vn,k,`)/In,k,`)

Uk×U` , P(Cn∗ ⊗ Cp∗) and P(Cn ⊗ Cq∗) respectively be
given the actions by GLn × Ak × A`, GLn × Ap and GLn × Aq defined in Sections 5.3, 5.1
and 5.2.

We form the tensor product

Pn,k,`,p,q := (P (Vn,k,`)/In,k,`)
Uk×U` ⊗ P(Cn∗ ⊗ Cp∗)⊗ P(Cn ⊗ Cq∗). (5.13)

It is a module for

(GLn ×Ak ×A`)× (GLn ×Ap)× (GLn ×Aq) ' GL3
n ×Ak ×A` ×Ap ×Aq.

We restrict this action to ∆(GLn) × Ak × A` × Ap × Aq, where ∆(GLn) ∼= GLn is the
diagonal subgroup of GL3

n. Then using equations (5.12), (5.2) and (5.5), Pn,k,`,p,q can be
decomposed as

Pn,k,`,p,q

'


∑

r(D)≤k
r(E)≤`

ρD,En ⊗ ψDk ⊗ ψE`

⊗
 ∑
α∈(Z+)p

(
p⊗
i=1

ρ(αi)
n

)
⊗ ψαp

⊗
 ∑
β∈(Z+)q

 q⊗
j=1

ρ(βj)∗
n

⊗ ψβq


'
∑

r(D)≤k,r(E)≤`
α=(αi)∈(Z+)p,β=(βj)∈(Z+)q

ρD,En ⊗

(
p⊗
i=1

ρ(αi)
n

)
⊗

 q⊗
j=1

ρ(βj)∗
n

⊗ ψDk ⊗ ψE` ⊗ ψαp ⊗ ψβq .
For fixed D, E, α and β, we can realize the tensor product given in equation (5.1) as the

eigenspace of Ak×A`×Ap×Aq in Pn,k,`,p,q corresponding to the character ψDk ×ψE` ×ψαp×ψ
β
q .

To determine how this tensor product decomposes into a sum of irreducible representa-
tions, we need to extract the ∆(GLn) highest weight vectors in this space. We will abuse
notation and denote the standard maximal unipotent subgroup of ∆(GLn) also by Un. Thus
we consider the subalgebra of Un invariants in Pn,k,`,p,q:

An,k,`,p,q := PUn
n,k,`,p,q. (5.14)

The algebra An,k,`,p,q is a module for An,k,`,p,q = An×Ak×A`×Ap×Aq. In particular, it is
a multi-graded algebra with grading given by the characters of An,k,`,p,q. Let E(G,F ),(D,E),α,β

be the eigenspace of An,k,`,p,q corresponding to the eigencharacter

ψG,Fn × ψDk × ψE` × ψαp × ψβq .
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Then E(G,F ),(D,E),α,β can be identified with the space of GLn highest weight vectors of weight

ψG,Fn in the tensor product given in equation (5.1), so that

dim E(G,F ),(D,E),α,β = dim HomGLn

ρG,Fn , ρD,En ⊗

(
p⊗
i=1

ρ(αi)
n

)
⊗

 q⊗
j=1

ρ
(βj)∗
n

 ,

which is the multiplicity of ρG,Fn in the tensor product (5.1). Therefore, the algebra structure
of An,k,`,p,q encodes information on the decomposition of tensor products of the form (5.1).
In view of this property, we call An,k,`,p,q a general iterated Pieri algebra for GLn. When it
may be helpful, we refine our terminology according to the comments at the beginning of
this section, and may call this algebra the ((k, `), p, q)-iterated Pieri algebra for GLn.

6. Relation between double Pieri algebras and stable GLn iterated Pieri
algebras

In Section 5.4 we defined the general iterated Pieri algebra An,k,`,p,q for GLn for positive
integers n, k, `, p, q. In this section, we shall focus on the case when n ≥ k + p + ` + q,
and we call the corresponding general iterated Pieri algebra stable. We shall prove that the
stable GLn iterated Pieri algebras An,k,`,p,q is isomorphic to the tensor product of L(n,p),(k,q),

L̂(n,q),(`,p) and a polynomial algebra. Using this and the results in Section 4, we deduce that
An,k,`,p,q has a standard monomial basis.

6.1. Stable GLn iterated Pieri algebras. We shall show that the stable GLn iterated
Pieri algebras An,k,`,p,q can be identified with a subalgebra of a polynomial algebra, and
from which we deduce the following theorem.

Theorem 6.1. (Relation with the GLn iterated Pieri algebras) If n ≥ k+p+`+q,
then there is an isomorphism

An,k,`,p,q ' L(n,p),(k,q) ⊗ L̂(n,q),(`,p) ⊗ P(Mp,q)

of algebras and An ×Ak ×A` ×Ap ×Aq modules.

Proof. For (X,Y ) ∈ Vn,k+p,`+q = Mn,k+p ⊕ Mn,`+q, let π(X,Y ) = (X0, Y0) ∈ Vn,k,` =
Mn,k ⊕ Mn,` where X0 (resp. Y0) is obtained from X (resp. Y ) by removing its last p
columns (resp. q columns). The map π : Vn,k+p,`+q → Vn,k,` is a projection, and it induces
an injection π∗ : P (Vn,k,`) ↪→ P(Vn,k+p,`+q) in the usual way. We shall identify P (Vn,k,`)
with its image under π∗ in P(Vn,k+p,`+q).

Let Ĩn,k,` be the ideal in P(Vn,k+p,`+q) generated by In,k,` (cf. (5.11)). Then by equations
(5.13) and (5.14), we have

An,k,`,p,q = PUn
n,k,`,p,q '

(
(P (Vn,k,`)/In,k,`)

Uk×U` ⊗ P(Cn∗ ⊗ Cp∗)⊗ P(Cn ⊗ Cq∗)
)Un

'
(
P(Vn,k+p,`+q)/Ĩn,k,`

)Un×Uk×U`

.

Now the algebra of GLn invariants in P(Vn,k+p,`+q) is generated by

{rij : 1 ≤ i ≤ k + p, 1 ≤ j ≤ `+ q}
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where rij are the basic invariants given in equation (5.9). As a block matrix we write

(rij)(k+p)×(`+q) = (xci)
t
n×(k+p) (ycj)n×(`+q)

=

[
R0 R1

R2 R3

]
(k+p)×(`+q)

and let Wi be the space spanned by the entries of Ri

W0 = Span{rij : 1 ≤ i ≤ k, 1 ≤ j ≤ `},
W1 = Span{rij : 1 ≤ i ≤ k, `+ 1 ≤ j ≤ `+ q},
W2 = Span{rij : k + 1 ≤ i ≤ k + p, 1 ≤ j ≤ `},
W3 = Span{rij : k + 1 ≤ i ≤ k + p, `+ 1 ≤ j ≤ `+ q}.

Now we let C[W0], C[W1], C[W2] and C[W3] be the algebras generated by W0,W1,W2 and
W3, respectively. The algebras C[W0], C[W1], C[W2] and C[W3] are modules for GLk×GL`,
GLq ×GLk, GLp ×GL`, and GLp ×GLq respectively, and under these actions,

C[W0] ' P(Mk,`), C[W1] ' P(Mq,k),

C[W2] ' P(Mp,`), C[W3] ' P(Mp,q).

See Section 5.2 for notations. Recall from equation (5.10) that the space H(Vn,k+p,`+q) of
GLn harmonic polynomials in P(Vn,k+p,`+q) carries an action by GLn × GLk+p × GL`+q,
so it becomes a GLn × GLk × GLp × GL` × GLq module by restriction. We now form the
tensor product

H(Vn,k+p,`+q)⊗ C[W1]⊗ C[W2]⊗ C[W3].

which is a module for GLn ×GLk ×GL` ×GLp ×GLq.
Since n ≥ (k + p) + (`+ q), by part (a) of Proposition 5.1,

P(Vn,k+p,`+q) ' H(Vn,k+p,`+q)⊗ P(Vn,k+p,`+q)
GLn (6.1)

as GLn × GLk+p × GL`+q modules. For h ∈ H(Vn,k+p,`+q), f1 ∈ C[W1], f2 ∈ C[W2] and
f3 ∈ C[W3], we define

φ : H(Vn,k+p,`+q)⊗ C[W1]⊗ C[W2]⊗ C[W3] → P(Vn,k+p,`+q)/Ĩn,k,`

φ(h⊗ f1 ⊗ f2 ⊗ f3) = hf1f2f3 + Ĩn,k,`

Then by equation (6.1), φ can be extended to a GLn × GLk × GL` × GLp × GLq module
isomorphism for

H(Vn,k+p,`+q)⊗ C[W1]⊗ C[W2]⊗ C[W3] ' P(Vn,k+p,`+q)/Ĩn,k,`.
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It follows from this and part (b) of Proposition 5.1 (in the fourth equivalence below) that

An,k,`,p,q

'
(
P(Vn,k+p,`+q)/Ĩn,k,`

)Un×Uk×U`

' [H(Vn,k+p,`+q)⊗ C[W1]⊗ C[W2]⊗ C[W3]]
Un×Uk×U`

'
[
H(Vn,k+p,`+q)

Un ⊗ P(Mq,k)⊗ P(Mp,`)
]Uk×U` ⊗ P(Mp,q)

'
[
P(Vn,k+p,`+q)

Un×Un ⊗ P(Mq,k)⊗ P(Mp,`)
]Uk×U` ⊗ P(Mp,q) (by Prop. 5.1(b))

'
[
P(Mn,k+p)

Un ⊗ P(Cn ⊗ C(`+q)∗)Un ⊗ P(Mq,k)⊗ P(Mp,`)
]Uk×U`

⊗ P(Mp,q)

'
[
P(Mn,k+p)⊗ P(Cn ⊗ C(`+q)∗)⊗ P(Mq,k)⊗ P(Mp,`)

]Un×Un×Uk×U`

⊗ P(Mp,q)

'
[
P(Mn,k)⊗ P(Mn,p)⊗ P(Cn ⊗ C`∗)⊗ P(Cn ⊗ Cq∗)

⊗P(Mq,k)⊗ P(Mp,`)]
Un×Un×Uk×U` ⊗ P(Mp,q)

' {[P(Mn,k)⊗ P(Mn,p)⊗ P(Mq,k)]

⊗
[
P(Cn ⊗ C`∗)⊗ P(Cn ⊗ Cq∗)⊗ P(Mp,`)

]}Un×Un×Uk×U` ⊗ P(Mp,q)

' [P(Mn,k)⊗ P(Mn,p)⊗ P(Mq,k)]
Un×Uk

⊗
[
P(Cn ⊗ C`∗)⊗ P(Cn ⊗ Cq∗)⊗ P(Mp,`)

]Un×U` ⊗ P(Mp,q)

' L(n,p),(k,q) ⊗ L̂(n,q),(`,p) ⊗ P(Mp,q).

�

6.2. Standard monomial basis for An,k,`,p,q. Assume that n ≥ k + p + ` + q. By
Proposition 6.1 and Lemma 4.7, we have an algebra isomorphism

An,k,`,p,q ' L(n,p),(k,q) ⊗ L̂(n,q),(`,p) ⊗ P(Mp,q)

' L(n,p),(k,q) ⊗ L(n,q),(`,p) ⊗ P(Mp,q).

Thus a choice of a basis in each of L(n,p),(k,q), L(n,q),(`,p) and P(Mp,q) will determine a basis

for An,k,`,p,q. Now by Theorem 4.6, B(n,p),(k,q) = {δf : f ∈ (Z+)
Γ(n,p),(k,q),�} is a basis for

L(n,p),(k,q) and B(n,q),(`,p) = {δg : g ∈ (Z+)Γ(n,q),(`,p),�} is a basis for L(n,q),(`,p). On the other
hand, let (uij) be the standard coordinates on Mp,q, so that P(Mp,q) can be regarded as a
polynomial algebra on the uij . So a basis for P(Mp,q) is given by the set of all monomials

in uij , that is, {uα : α ∈ (Z+)pq}, where for each α = (αij) ∈ (Z+)pq, uα =
∏
i,j u

αij

ij . We
now let

Ω̃ =
(
Z+
)Γ(n,p),(k,q),� × (Z+)Γ(n,q),(`,p),� × (Z+)pq

and

B̃ =
{
δf ⊗ δg ⊗ uα : (f, g, α) ∈ Ω̃

}
.

Then B̃ is a basis for An,k,`,p,q. In fact, Ω̃ is a Hibi cone and B̃ is the associated standard
monomial basis. Moreover, the algebra An,k,`,p,q can be flatly deformed to the semigroup

algebra C[Ω̃], where

C[Ω̃] ' C[
(
Z+
)Γ(n,p),(k,q),�]⊗ C[(Z+)Γ(n,q),(`,p),�]⊗ P(Mp,q).
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The poset Γ̃ associated with Ω̃ is constructed as follows: Recall that for posets P and
Q on disjoint sets, the disjoint union P ∪̇Q is the poset on their union such that x ≤ y in
P ∪̇Q if either x, y ∈ P and x ≤ y in P , or x, y ∈ Q and x ≤ y in Q. Then

Γ̃ = Γ(n,p),(k,q) ∪̇ Γ(n,q),(`,p) ∪̇ Γp,q

where Γp,q is the disjoint union of pq singleton sets, and it is straightforward to see that

Ω̃ = (Z+)Γ̃,�.

(see [DaP, Sections 1.32 and 5.15].)

7. On and Sp2n stable iterated Pieri algebras

The stable iterated Pieri algebras for On and Sp2n were first introduced in the paper
[KL]. It was pointed out there that the stable iterated Pieri algebras for O2n and for Sp2n

are isomorphic, so we only need to consider the iterated Pieri algebra for On. Such an
algebra is specified by 3 parameters n, k and p, and is denoted by An,k,p. In this section, we
shall show that An,k,p can also be described in terms of the double Pieri algebra L(n,p),(k,p).
Precisely, An,k,p is isomorphic to the tensor product of L(n,p),(k,p) and the polynomial algebra

on Λ2(Cp), the second exterior power of Cp. We shall also describe a relationship between
An,k,p and the stable GLn iterated algebra An,k,0,p,p.

We first briefly recall the construction of An,k,p given in [KL]. Let k and p be positive
integers such that 2(k + p) < n. Let On ×GLk act on P(Mn,k) by the formula

((g, h)f) (X) = f(g−1Xh). (7.1)

where (g, h) ∈ On ×GLk, f ∈ P(Mn,k) and X ∈ Mn,k, and let Ink be the ideal of P(Mn,k)
generated by all the On invariants in P(Mn,k) with positive degree. Then the action (7.1)
induces an action by On×GLk on the quotient algebra P(Mn,k)/Ink, and under this action,
we have ([Ho2])

P(Mn,k)/Ink '
∑

r(D)≤k

σDn ⊗ ρDk . (7.2)

Here σDn is the irreducible representation of On associated with the Young diagram D (cf.
Section 2.2). By extracting Uk invariants in (7.2), we obtain

(P(Mn,k)/Ink)
Uk '

∑
r(D)≤k

σDn ⊗
(
ρDk
)Uk .

Next, we repeat this construction with k = 1. For each 1 ≤ j ≤ p, let Cnj be a copy of Cn,

and let I
(j)
n1 be the ideal of P(Cnj ) generated by all the On invariants in P(Cnj ) with positive

degree. Then under the action of On ×GL1, we have

P(Cnj )/I
(j)
n1 '

∑
αj≥0

σ
(αj)
n ⊗ ρ(αj)

1 .

We now form the tensor product of algebras

Tn,k,p := (P(Mn,k)/Ink)
Uk ⊗


p⊗
j=1

(
P(Cnj )/I

(j)
n1

) .
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It is a module for On×Ak×GLp1 ' On×Ak×Ap, where we identify GLp1 with the diagonal
torus Ap of GLp. Then as a On ×Ak ×Ap module,

Tn,k,p '

 ∑
r(D)≤k

σDn ⊗
(
ρDk
)Uk

⊗


p⊗
j=1

∑
αj≥0

σ
(αj)
n ⊗ ρ(αj)

1


'

∑
r(D)≤k

α=(α1,...,αp)∈(Z+)p

σDn ⊗
 p⊗
j=1

σ
(αj)
n

⊗ ψDk ⊗ ψαp .
For a fixed Young diagram D with r(D) ≤ k and a fixed α = (α1, ..., αp) ∈ (Z+)p, the
ψDk × ψαp -eigenspace of Ak ×Ap in Tn,k,p is a copy of the tensor product

σDn ⊗

 p⊗
j=1

σ
(αj)
n

 . (7.3)

We now let
An,k,p := Tn,k,p

USOn

be the algebra of USOn invariants in Tn,k,p, which is a module for An ×Ak ×Ap. It carries
a multigrading, and each of its homogeneous components can be identified with the space
of SOn highest weight vectors of a certain weight in a tensor product of the form (7.3). See
[KL] for a detailed explanation.

Since 2(k + p) < n, the On irreducible constituents in the tensor product (7.3) are
determined by the SOn highest weight vectors they contain. Thus, the multiplicity of an
irreducible representation of On in this tensor product coincides with the dimension of the
corresponding homogeneous component of An,k,p. In this sense, the algebra structure of
An,k,p encodes the iterated Pieri rule for On . In view of this property, we call the algebra
An,k,p a stable iterated Pieri algebra for On.

Proposition 7.1. [KL, Proposition 4.1] For 2(k+ p) < n, the iterated Pieri algebra An,k,p
for On is isomorphic as an algebra and An ×Ak ×Ap module to

(P(Mn,k)⊗ P(Mn,p)⊗ P(Mk,p))
Un×Uk ⊗ P(∧2(Cp)),

where ∧2(Cp) is the second exterior power of Cp.

Then, it follows at once from Proposition 7.1 that:

Theorem 7.2. (Relation with the On iterated Pieri algebras) If 2(k+p) < n, then
we have the isomorphism

An,k,p ' L(n,p),(k,p) ⊗ P(∧2(Cp))
of algebras and An ×Ak ×Ap modules.

Corollary 7.3. (Relationship between GLn and On iterated Pieri algebras) If
2(k + p) < n, then we have the isomorphism

An,k,0,p,p ' An,k,p ⊗ P(S2(Cp))
of algebras and An × Ak × Ap modules, where S2(Cp) is the symmetric square of Cp. So
An,k,p can be identified as a subalgebra and a quotient of An,k,0,p,p.
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Proof. If ` = 0 and p = q, then by Proposition 6.1,

An,k,0,p,p ' L(n,p),(k,p) ⊗ P(Mp,p)

' L(n,p),(k,p) ⊗ P(∧2(Cp))⊗ P(S2(Cp))
' An,k,p ⊗ P(S2(Cp)).

�
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