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Abstract. We complete a fiberwise isotopy classification of smooth real algebraic

and pseudoholomorphic curves of degree 8 on the quadratic cone, which have a spe-
cially shaped oval crossing a given generating line of the cone in four real points.

We link this classification with an isotopy classification of smoothing of real plane
curve singularity which is the union of four smooth real local branches quadratically

tangent to each other (the singularity X21).

Introduction

Problem and results. Let F2 be the second Hirzebruch surface, i.e. the ruled
surface possessing an exceptional (−2)-curve (which is the same as the quadratic
cone with the singular point blown up) and equipped with the standard real struc-
ture. Denote the (−2)-curve by E, a section disjoint from E by H, and the ruling
by π : F2 → E. We fix some real fiber F0 (throughout the paper, fibers of π are
called just fibers).

In this paper we complete the classification of the pairs (C,C ∩ F0) in (F2, F0),
where C ∈ |4H| is a smooth real curve having an oval, which intersects F0 in
four distinct real points as shown in Figure 1, and the equivalence is defined up
to an almost fiberwise isotopy of (RC,RC ∩ F0) in (RF2,RF0), i.e., a C

∞-isotopy
that keeps RE fixed and satisfies the condition that each real fiber intersects any
curve in the isotopy in at most 4 points counting multiplicities. In particular, an
almost fiberwise isotopy preserves the relative position of free ovals with respect
to the fibers (here and below the ovals of C disjoint from F0 are called free). In a
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similar way one can classify smooth real pseudoholomorphic curves homologous to
4H. It was pointed out in [25] that these classifications differ, i.e. there are real
pseudoholomorphic curves which are not almost fiberwise isotopic to any real alge-
braic curve in the considered class. Both classifications are presented in Theorem
1 below.

An important remark is that by a real pseudo-holomorphic curve on F2 we always
mean a conj-invariant J-holomorphic curve where J is a tame conj-anti-invariant
almost complex structure on F2 such that the (−2)-section is J-holomorphic. Other
settings where some real pseudoholomorphic curves are algebraically unrealizable
are discussed in [4, 8, 20, 23, 33].

We also prove (see Theorem 5 in Section 6) that the almost fiberwise algebraic
classification is equivalent to the almost fiberwise classification of smoothings of the
real plane curve singularity X21 (i.e., four real smooth local branches quadratically
tangent to each other). Notice that smoothings of X21 play an important role in
the classification of smooth real plane curves of degree 8 and 9 [16, 31, 32] – a part
of Hilbert’s 16th problem.

Classification. Suppose that C is a real smooth algebraic or pseudoholomorphic
curve on F2, homologous to 4H, and RC has a connected component intersecting
the fiber F0 in four points as shown in Figure 1, where RF0 is represented by the
vertical sides of the rectangles and E is represented by the horizontal sides. We say
that such a connected component is of type A. By [25; Corollary 2.3] the other ovals
of C are empty, and their almost fiberwise arrangement (up to rotation by 180◦) is
either A′(a, b, c) or A′′(a, b, c), see Figure 1 where the a, b, and c are non-negative
integers which represent the corresponding amounts of empty ovals.

b
c

aa

b

c

A′(a, b, c) A′′(a, b, c)

Figure 1

Theorem 1. (a) Let C ∈ |4H| be a smooth algebraic curve with an oval of type A.
Then the almost fiberwise arrangement of ovals of C is either one of

A′(0, 1, 8),A′(6, 1, 2),A′(0, 5, 4),A′(2, 5, 2), M -curves

A′′(7, 0, 1),A′′(3, 4, 1), (M − 1)-curves

A′(0, 2, 5),A′(3, 2, 2),A′(4, 2, 1),A′(3, 3, 1),A′(0, 6, 1), (M − 2)-curves

A′′(4, 3, 0),A′′(0, 7, 0),A′′(5− b, b, 2), b = 0, 1, 2, 3, (M − 2)-curves

A′(1, 1, 3) (M − 4)-curve

or it is obtained from them by removing some free ovals. All these arrangement are
realizable by algebraic curves.

(b) Let C be a smooth pseudoholomorphic curve homologous to 4H and having
an oval of type A. Then the fiberwise arrangement of ovals of C is either one of
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Part (a) or one of:

A′′(4, 1, 4), M -curves

A′′(4, 0, 4)∗,A′′(5, 0, 3),A′′(6, 0, 2),A′′(4, 1, 3)∗, (M − 1)-curves

A′′(4, 0, 3)∗,A′′(3, 1, 3)∗ (M − 2)-curves

A′′(3, 0, 3)∗ (M − 3)-curve

(the arrangements marked by the asterisk are obtained from the others by removing
free ovals). All these arrangement are realizable by pseudoholomorphic curves.

Let A(a, b, c) be the isotopy type of A′′(a, b, c) where we consider isotopy equiv-
alence in RF2 relative to RF0 ∪RE, which does not respect fibers. So, A(a, b, c) =
A′′(a, b, c) for c 6= 0, and A(a, b, 0) =

⋃
a1+c1=aA′(a1, b, c1).

Corollary 2. An isotopy type A(a, b, c) is realizable by an algebraic (resp. pseu-
doholomorphic) curve if and only if a ≤ a1, b ≤ b1, c ≤ c1 where either (a1, b1, c1)
or (c1, b1, a1) belongs to

S = {(8, 1, 0), (4, 5, 0), (7, 0, 1), (3, 4, 1), (5, 0, 2), (4, 1, 2),
(3, 2, 2), (5, 2, 0), (2, 3, 2), (1, 6, 0), (0, 7, 0)}

(resp. to S ∪ {(4, 1, 4), (5, 0, 3), (6, 0, 2)}).
Corollary 3. If a + b + c ≤ 5, then A′(a, b, c) and A′′(a, b, c) are algebraically
realizable.

Corollary 4. The almost fiberwise arrangements listed in Theorem 1(b) are unre-
alizable by a smooth real analytic deformation of singularity X21 (four quadratically
tangent smooth local branches).

Proof. Combine Theorem 1(a) and Theorem 5 (see Section 6). �

We would like to mention that the spoken classification has been addressed
earlier: in [25; Theorem 1], we have completed the classification of types A(a, b, c)
with a + b + c = 9 (M -types). In [25], we also advanced in the classification of
(M − 1)-types leaving the types A′′(6, 0, 2) and A′′(3, 1, 4) undecided. Later in [26;
Theorem 1.2] we prohibited algebraic curves of type A′′(3, 1, 4).

1. Constructions

Construction of pseudoholomorphic curves. The M - and (M − 1)-curves in
Theorem 1(b) are constructed in [25; §4.2].
Construction of algebraic curves. The four M -arrangements in Theorem 1(a)
are constructed in [32; §4.7] and [25; §4.1]. The construction from [25; §4.1] with
other ways of gluing the charts of cubic polynomials provides the other arrange-
ments of the series A′ listed in Theorem 1(a) except A′(3, 3, 1).

The two (M − 1)-arrangements in Theorem 1(a) are constructed in [25; §2.4,
Corollary 2.12] (earlier they were constructed by the second author [28] and by
Korchagin [15]).

The remaining arrangements in Theorem 1(a), i. e., A′(3, 3, 1) and the six (M −
2)-arrangements of the series A′′, are constructed in Propositions 1.2, 1.5, and 1.8
below. One can easily check that all the constructions admit the erasing of any
collection of empty ovals.
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Lemma 1.1. There exists a real algebraic curve in the linear system |4H| on F2

with singular points of types A4 and D13 arranged as in Figure 2(a) up to isotopy.
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Proof. The construction is shown in Figure 3. We start with a quartic curve in RP 2

with A2 and A4 singularities (it can be constructed, e. g., by a perturbation of a
double conic). We choose coordinates (x : y : z) as in Figure 3(a). In Figure 3(b) we
show the same curve but RP 2 is represented as a disk whose boundary points are
identified. Figure 3(c) is obtained from Figure 3(b) by a birationl transformation
which is written as (X, Y ) 7→ (X, Y + aX2) in the affine coordinates X = x/z,
Y = y/z. Figure 3(d) is the same as Figure 3(c) but RP 2 is cut along another line.
Figure 3(e) is obtained from it by blowing up the point Q (the horizontal sides of
the rectangle represent the (−1)-curve) and Figure 3(f) is obtained from Figure
3(e) by blowing up the point represented by the corners of the rectangle and then
blowing down the fiber through it. Figure 3(f) is the same as Figure 2(a) except
that F2 is cut along another fiber. �
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Proposition 1.2. The arrangements A′′(5 − b, b, 2), 0 ≤ b ≤ 3, are realizable by
real algebraic curves in the linear system |4H| on F2.

Proof. Follows from Lemma 1.1, see Figure 2(b,c). �

Lemma 1.3. There exists a real algebraic curve in the linear system |4H| on F2

with a singular point of type J10 (three tangent branches) arranged as in Figure
4(a) up to isotopy.

(b)(a) (c)

Figure 4

2 22

(a). F4 (b). P1 × P1 (c). P1 × P1 (d). F2

Figure 5

Proof. The construction is shown in Figure 5. We start with anM -curve of bidegree
(2, 8) on F4 and we choose four points on it as in Figure 5(a). Then we blow up these
points and blow down the fibers passing through them (see Remark 1.4). We obtain
a curve of bidegree (2, 4) on P1 × P1 whose fiberwise arrangement with respect to
the pencil induced from F4 is shown in Figure 5(b). The fiberwise arrangement of
this curve with respect to the other pencil is shown in Figure 5(c). Finally, we blow
up twice the point corresponding to the corners of the rectangle in our picture and
we blow down the fiber and the exceptional divisor of the first blowup. We obtain
Figure 5(d) which is the same as Figure 4(a) but F2 is cut along another fiber. �

Remark 1.4. In terms of equations, the passage from Figure 5(a) to Figure 5(b)
means the following. Let y2 + a1(x)y + a0(x) = 0, deg a0 = 8, deg a1 ≤ 4, be
the equation of the curve in Figure 5(a) where a standard coordinate system on
F4 is chosen so that all the four marked points are on the axis y = 0, hence
a0(x) = b(x)c(x), where the x-coordinates of the marked points are the roots of
b(x). Then the equation of the curve in Figure 5(b) is b(x)y2 + a1(x)y + c(x) = 0.

Proposition 1.5. The arrangements A′′(4, 3, 0) and A′′(0, 7, 0) are realizable by
real algebraic curves in the linear system |4H| on F2.

Proof. Follows from Lemma 1.3, see Figure 4(b,c). �

Lemma 1.6. There exists a real algebraic curve in the linear system |4H| on F2

with singular points of types D6, D4, A1 arranged as in Figure 6(a) up to isotopy.
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Proof. By gluing two reducible cubic curves on F1 we obtain a reducible curve on
F2 shown in Figure 7(a). The gluing can be understood either in the sense of [21]
or in the sense of [30]. Then we cut Figure 7(a) along the dashed line and glue
it with another cubic curve as shown in Figure 7(b). We obtain a reducible curve
in F3. The same curve is shown in Figure 7(c) but F3 is cut along another fiber.
It is the union of a curve L of bidegree (1, 3) and a nodal curve C of bidegree
(2, 6). We blow up the points p1, . . . , p5 (see Figure 7(c)) and then we blow down
the fibers passing through them. We obtain a reducible curve on P1 × P1 shown in
Figure 7(d). The same arrangement is shown in Figure 7(e) but the coordinates are
swapped. Finally, we blow up the points p and q and we blow down the (vertical)
fibers passing through them. We obtain a curve in the linear system |4H| on F2

shown in Figure 7(f). It is the same curve as in Figure 6(a) but F2 is cut along
another fiber. �

Remark 1.7 The proof of Lemma 1.6 can be easily modified to obtain the curve
shown in Figure 6(c).

Proposition 1.8. The arrangement A′(3, 3, 1) is realizable by a real algebraic curve
in the linear system |4H| on F2.

Proof. Follows from Lemma 1.6, see Figure 6(b). �

2. Restrictions on pseudoholomorphic curves

2.1. Classification of smooth pseudoholomorphic curves: Proof of The-
orem 1(b). The case of M - and (M − 1)-curves is done in [25]. Since any empty



REAL CURVES ON THE QUADRATIC CONE AND SMOOTHINGS OF X21 7

oval of a real pseudo-holomorphic curve can be removed, it is enough to exclude
the following arrangements:

A′(1, 1, 4), A′(2, 1, 3), A′(1, 2, 3),

A′′(5, 1, 1), A′′(4, 2, 1), A′′(5, 2, 0), A′′(1, 5, 1), A′′(1, 6, 0).

The corresponding braids contradict Murasugi-Tristram inequality (see [19; §3.1])

Nullζ(b) ≥ | Signζ(b)|+ 4− e(b), ζ = exp(2πiθ), (1)

for θ = 1/2, 1/2, 1/2, 1/5, 1/5, 2/7, 1/5, 2/7 respectively.

2.2. Restrictions on singular pseudoholomorphic curves needed for the
proof of Theorem 1(a).

Lemma 2.1. Let C be a nodal pseudoholomorphic curve on F2 homologous to 4H
such that RC is arranged as shown in Figure 8 (a) or (b). Then C is reducible, more
precisely, C = C1∪C2 where C1 and C2 are pseudo-holomorphic curves homologous
to 2H, moreover, C1 (shown by solid line) is irreducible and C2 (shown by dashed
line) may or may not be reducible.

(b)(a)

A1

(c)

∆2

Figure 8

Proof. It is enough to prove this fact for Figure 8(b). Without loss of generality
we may assume also that all non-real points of C are smooth. We use the notation
similar to that in [19; §4.5]. Let (x, y) be standard coordinates on F2 in the chart
corresponding to Figure 8, such that the projection pr : F → P1 is given by
(x, y) 7→ x. LetH be the half of CP 1\RP 1 given by Imx > 0 and N = C∩pr−1(H).
Let H− be a closed disk in H which contains all the branch points of pr |N and let
S3 be the boundary of a bidisk pr−1(H−)∩{|y| ≤ R}, R≫ 1. We set L = S3 ∩N .
So, the link L in S3 is the closure of the braid b shown in Figure 8(c).

Let µL and µN be the number of components of L and N respectively and let g
be the total genus of N . Since b is quasipositive, we have

1 = 4− e(b) = χ(N) = 2µN − 2g − µL = 2µN − 2g − 3

where e(b) is the exponent sum of b and χ(N) is the Euler characteristic of N . Thus
we have µN = 2 + g ≥ 2.

Let L1 be the sublink of L formed by the two central strands (the bold line in
Figure 8(c)) and L2 = L′

2 ⊔ L′′
2 = L \ L1. The linking numbers are: lk(L1, L

′
2) =

lk(L1, L
′′
2) = 0 and lk(L′

2, L
′′
2) = 2. Combined with the inequality µN ≥ 2, this fact

implies that N has two connected components N1 and N2 and S
3∩Ni = Li, i = 1, 2.
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Hence the closure Ci of Ni ∪ Conj(Ni), i = 1, 2, is a smooth pseudoholomorphic
curve. �

Remark 2.2. The arrangements in Figure 8(a,b) are realizable by real pseudo-
holomorphic curves on F2 homologous to 4H. Indeed, the braid corresponding to
Figure 8(a) is b = σ−4

3 σ−2
2 σ−4

1 ∆2. It is quasipositive: b = (a−1
1 σ2a1)(a

−1
2 σ1a2)

where a1 = σ−1
1 σ−1

3 σ2σ
4
3 , a2 = σ2σ

3
3 .

a1 a2

b
c

...

(a) (b)

Figure 9

Lemma 2.3. If a2 ≥ 1, c ≥ 1, and b + c ≥ 2, then the fiberwise arrangement in
Figure 9(a) is unrealizable by a real pseudoholomorphic curve on F2 homologous to
4H.

Proof. If there exists a real pseudoholomorphic curve as in Figure 9(a), then any two
consecutive ovals in the same region can be joint by a node because this operation
does not change the corresponding braid. Thus a curve which contains a subset
shown in Figure 9(b) is also realizable (here we suppose that c ≥ 2, otherwise
one of the lower ovals should be moved to the central region). This arrangement
contradicts Bezout’s theorem for the auxiliary curve homologous to H and passing
through the three marked points. �

(b)(a)

Figure 10

Lemma 2.4. The fiberwise arrangements in Figure 10(a,b) are unrealizable by real
pseudoholomorphic curves on F2 homologous to 4H.

Proof. Follows from Murasugi-Tristram inequality (1) for θ = 1/2. �

Lemma 2.5. Let C be a smooth pseudo-holomorphic curve on F2 homologous to
3H + 2F and transverse to E. Then a perturbation of C + E cannot provide the
almost fiberwise types listed in Theorem 1(b) but not in Theorem 1(a).

Proof. If C+E can be smoothed out to A′′(a, b, c), then it should be arranged as in
Figure 11(a) up to exchange of a and c. After blowing up C∩E followed by blowing
down the strict transforms of the fibers (see Remark 1.4), such an arrangement
transforms into a curve on F4 homologous to 3H which can be smoothed out into
Figure 11(b). Using the algorithm in [22], [24; §6], one easily checks (even by
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hand) that the corresponding 3-braids are not quasipositive. Since an erasing of
an empty oval preserves pseudo-holomorphic realizability, it is enough to consider
only A′′(6, 0, 2) and A′′(3, 0, 3). �

It is easy to check (see also [2; Chapter 2, Section 15.2]) that all complex singu-
larities of multiplicity 3 with δ-invariant 6 or 7 are those in Table 1 up to homeo-
morphism (g is the genus of the Milnor fiber).

Table 1. Singularities of multiplicity 3 with δ = 6 or 7.

equation g δ equation g δ

J10 y3 + x6 4 6 J12 (y + x2)(y2 + x6) 5 7

J11 (y + x2)(y2 + x5) 5 6 J13 (y + x2)(y2 + x7) 6 7

E12 y3 + x7 6 6 E13 y(y2 + x5) 6 7

E14 y3 + x8 7 7

Let p be an isolated singularity of a plane real analytic curve C. Let B be a
Milnor ball for (C, p), i. e., the topology of (B,C ∩ B) does not change when the
radius of B tends to zero. Let C′ be a smoothing of C at p, that is a member of a
real analytic family of curves Ct, t ∈ [0, ε], such that C0 = C and the topology of
(B,Ct ∩B) is constant on ]0, ε]. Let α = b0(C̄

′)− 1 where C̄′ is obtained from the
union of non-closed arcs of C′ by identification of boundary points coming from a
common real branch of C (here b0 stands for the number of connected components).
Note that b0(C̄

′) = b0(RC
′ ∪ ∂(C′ ∩ B)). Let lloc be the number of ovals (closed

components) of C′. The local analog of Harnack bound (which is an immediate
consequence of Smith-Thom inequality; see also [14, 27] and [13; Proposition 1])
states that

lloc ≤ g − α (2)

where g is the genus of C′, i. e. the genus of the Milnor fiber of (C, p). A similar
bound takes place in the pseudoholomorphic setting.

Lemma 2.6. Let C be a real pseudoholomorphic curve (maybe reducible but without
multiple components) in F2 homologous to 4H with a singular point p of multiplicity
3 and with δ-invariant 6 or 7 (see Table 1). Suppose that E 6⊂ C. Let F0 be a fiber
such that p 6∈ F0. Then C cannot be smoothed out to a curve of almost fiberwise
isotopy type A′′(6, 0, 2) relative to F0.

Proof. Singularities of pseudoholomorhic curves can be always smoothed out in-
dependently, so, we may assume that p is the only singular point of C. Then C
is irreducible because the intersection of any local branch at p with the the other
branches is at most 5 whereas C = C1 + C2 implies C1 · C2 ≥ 6.
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If C admits a perturbation of type A, then the union of the connected compo-
nents of RC \p which cross F0, is necessarily one of those shown in Figure 12 where
F0 is represented by the vertical sides of the rectangles. Let l(C) and l(C′) be the
number of free ovals of C and C′ respectively and let r(C) be the number of real
branches of C which cross F0. So, we have l(C) + r(C) ≤ 10− δ.

For Figure 12 (a)–(d), a smoothing of type A′′(a, b, c) with ac 6= 0 is impossible.
Indeed, the ovals appearing near p cannot contribute to c whereas no oval v of C
can appear in the lower region to the right of p (the region marked by the asterisk)
by Bezout theorem for an auxiliary curve homologous to H, tangent to C at p, and
passing through v (thus we exclude E12 and E14). The same argument shows that

(∗) the order of tangency of the two lower arcs at p is two

(hence E13 is excluded as well).
Suppose that (C, p) is of type J11 or J13. Due to (∗), we have r(C) = 2 (see

Figure 12(f)) whence l(C) ≤ 10−δ−r(C) = 8−δ and we obtain l(C′) ≤ l(C)+lloc ≤
8− δ + g = 7 by (2), thus C′ 6∈ A(6, 0, 2).

Suppose now that (C, p) is of type J10 or J12. Then we have l(C) ≤ 10 − δ −
r(C) ≤ 9−δ. By (2) this imlies l(C′) ≤ l(C)+lloc+1 ≤ (9−δ)+(g−α)+1 = 8−α.
Thus, if C′ ∈ A(6, 0, 2), then we have the equality sign in all these inequalities, i. e.,

l(C′) = l(C) + lloc + 1, r(C) = 1, α = 0. (3)

The condition r(C) = 1 combined with (∗) excludes already Figure 12(e,g). In the
remaining case of Figure 12(f), we should consider:

(i) two ways of attaching the missing arc of C (see Figure 13 on the left);
(ii) four ways to join the arcs of C at p (see Figure 13 on the right).

Figure 13

It is easy to check that (3) is attained only for J12 and only with the rightmost
choices in (i) and (ii). However, in this case we obtain a curve of type A(a, b, c)
with b ≥ 1. �
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3. Explicit equations of some singular algebraic curves

3.1. Curves with singularities A10 + A5 + A1 and A9 + [A5 + A1]. Here we
find explicit equations for all irreducible curves C in the linear system |4H| on F2

with the following sets of singularities:

(i) A10 + A5 + A1,
(ii) A9 + [A5 + A1]

where the brackets in (ii) mean that A5 and A1 are on the same fiber of the
fibration F2 → P1. The related Maple worksheet files are available on the web
page http://www.math.univ-toulouse.fr/~orevkov/hrg3.html (supplied with
detailed comments).

We use the computations from [6] which are based on the Artal-Carmona-
Cogolludo method [3] and on Moody’s formulas for the Bertini involution [18].

Let C ∈ |4H| be a curve with an ordinary node at a point p. Let F and E be
the fiber through p and the exceptional section respectively. If we blow up p and
blow down F and E, then we obtain a sextic curve D on P2.

Let (x, y) be a standard coordinate system on F2 such that p is the point at
infinity of the axis y = 0 and let f(x, y) = 0 be the equation of C. Then we
can choose an affine coordinate chart on P2 so that D is defined by the same
equation f(x, y) = 0. The Newton polygon of f is contained in the quadrangle
Q = [(0, 0), (6, 0), (4, 2), (0, 4)]. We have Q = T1∩T2 where T1 = [(0, 0), (8, 0), (0, 4)]
and T2 = [(0, 0), (6, 0), (0, 6)]. So, C and D are the closures of the affine curve f = 0
in the toric varieties corresponding to T1 and T2 respectively. Informally speaking,
f = 0 is an equation of C (resp. of D) if Q is viewed as a subset of T1 (resp. of T2).

If F transversally cuts C outside p, then D has an A3 singularity. If the fiber
F contains an An singularity, then it transforms into an An+4 singularity of D.
Thus if C satisfies (i) or (ii), then D has a singularity set A10 + A5 + A3 or 2A9

respectively. To find all such curves, we adapt the computation for A10 +A5 +A4

and A10 + A9 which are given in detail in [6].

3.2. Sextic curves on P2 with singularities A10 +A5 +A3. It is shown in [6;
§5.4] that all sextic curves with the set of singularities A10+A4+A3 are contained
in the two-parameter family (the parameters are denoted by µ and ν) given by the
following equation in x1, x2, x3

φ6 − a(w − µw′)2 = 0 (4)

where:

w = x23(a1x1 + a2x2) + x3(b1x
2
1 + b2x1x2 + b3x

2
2) + (c1x1 + c2x2)x1x2,

w′ = x23(a
′
1x1 + a′2x2) + x3(b

′
1x

2
1 + b′2x1x2 + b′3x

2
2) + (c′1x1 + c′2x2)x1x2,

C5 =
A2(B1 + κx1x

2
3)

x2
+

(A1 − κx21x3)(A2x3 +B3x2)

x2x1
+ κB3x1x3, (5)

φ6 = A1C2 + x3C5, κ = a1b
′
1 − a′1b1,

Ai = aiw
′ − a′iw, Bi = biw

′ − b′iw, Ci = ciw
′ − c′iw, i = 1, 2, 3,
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the coefficients of w and w′ are

a1 = β − α, a2 = αβ − 2α+ 1,

b1 = 0, b2 = αβρ− 2αρ+ 1, b3 = α − αρ,

c1 = 0, c2 = αρ− αρ2,

a′1 = αβ − 2β + 1, a′2 = α− β,

b′1 = αβρ − 2βρ+ 1, b′2 = −2βρ+ α+ αρ, b′3 = 0,

c′1 = αρ− βρ2, c′2 = 0,

and the parameters a, α, β, and ρ are expressed via µ and ν by:

β =
µνα + 2µα + 2να − µ− ν + 3α− 2

µν + µα+ να+ 2α− 1
, ρ =

µν + µα+ να + 2α− 1

(µ+ α)(ν + α)
,

a =
α(α− 1)4(µ+ ν + 2)(µ− ν)2

4(µ+ 1)2(ν + 2)(µ+ α)3(ν + α)2
,

α =
(µν − 1)2(ν + 2)

4µν2 + 10µν + µ2 + 5ν2 + 8µ+ 12ν + 8
.

After the variable change

x1 = z − x/ρ, x2 = y +
(αβρ− 2βρ+ 1)x

ρ(βρ− α)
, x3 = x

the curve D defined by (4) has A4 and A10 singularities at (0 : 0 : 1) and (0 : 1 : 0)
with the tangents y = 0 and z = 0 respectively and it has an A3 singularity at

(x1 : x2 : x3) =
( 1

1− βρ
:

1

ρ− 1
:

1

β − 1

)
.

As it is explained in [6; §5.4], a necessary condition for a further degeneration
of A4 to A5 is the equation [6; (5.4)]. Being expressed via µ and ν, it splits into
four factors. Three of them correspond to the singularity sets A10 +A4 +A3 +A1,
A10+A4+D4, A10+D5 +A3 and the fourth factor which is equal to the left hand
side of

(µ2 + 3µ)ν2 + (4µ2 + 15µ+ 7)ν + 2µ2 + 10µ+ 6 = 0 (6)

corresponds to A10 +A5 + A3.
One can easily check that the equation (6) defines a rational curve in the plane

(µ, ν) which admits a parametrization

µ = −(2t− 1)(t− 4)

t2 − 4t+ 2
, ν = − 3t2 − 10t+ 4

(2t− 1)(t− 2)
.

Being expressed in t, the parameters α, β, ρ, and a take the form

α =
4(2t− 1)(t− 3)

(5t− 3)(t− 2)
, β =

t(t+ 1)

2(t− 3)(2t− 1)
, ρ =

2(5t− 3)(t− 3)

t2
,
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a =
81(t2 − 4t+ 2)2(3t2 − 9t+ 4)(t− 1)2(t− 3)

t5(2t− 1)2(t− 2)2
.

So, we have found a one-parameter family of curves with the singularity set
A10 + A5 + A3. We have done it by solving a certain system of simultaneous
equations on the coefficients. This family contains all sextic curves with the given
set of singularities up to projective equivalence. To see it, one could trace all the
computation and check that no solution is lost. However, this is not necessary
because, due to [1; Theorem 2.5] (proven using the theory of K3 surfaces), the
equisingular family A10+A5+A3 corresponds to an irreducible curve in the moduli
space.

3.3. Sextic curves on P2 with singularities 2A9. Here we use the computations
from [6; §5.2]. Namely, let D be a curve given by (4), (5) where the non-zero
coefficients of w and w′ are

a1 = β − α, a2 = αβ − α+ β, b2 = β − 2α, b3 = c3 = −α,
a′1 = αβ + α− β, a′2 = α− β, b′2 = α− 2β, b′1 = c′1 = −β

and

α = −(µ+ 1)(ν + 1)

(µ+ 2)(ν + 2)
, β = − (µ+ 1)(ν + 1)

µν + µ+ ν + 2
.

Then, after the change of variables x1 = z − x, x2 = y − x, x3 = x, the curve D
has A7 and A9 singularities at (0 : 0 : 1) and (0 : 1 : 0) with the tangents y = 0 and
z = 0 respectively. If

a = −
(ν + 1)2(ν + µ+ 2)

(
(3µ2 +8µ+ 4)ν2 + (8µ2 +22µ+ 12)ν + 4µ2 + 12µ+ 7

)

4(µ+ 1)(µ+ 2)2(ν + 2)3(µν + µ+ ν + 2)2

then the A7 singularity degenerates to A8. If, moreover, µ and ν satisfy the relation

(µ2 + 6µ+ 4)ν2 + (4µ2 + 20µ+ 14)ν + 4µ2 + 16µ+ 11 = 0, (7)

then A8 further degenerates to A9. The equation (7) defines the union of two
rational curves in the plane (µ, ν) which admit a parametrization

µ = −(t+ 2− ε)/t, ν = −(t− 2)/(t− 1), ε = ±
√
5.

One can check that, for a generic t, the curve with ε =
√
5 is not projectively

equivalent to any curve with ε = −
√
5. This can be done, for example, as follows.

The choice of the coordinates ensures that the equation is determined by the curve
up to rescaling of the variables. So, if we set the coefficients of x6, x5y, and x5z to
be equal to 1, then the equation is completely determined. Let ft,ε(x, y, z) = 0 be
the equation normalized in this way and let cij(t, ε) be its coefficients. It is enough
to check that, for a fixed generic t, the simultaneous equations cij(s,−ε) = cij(t, ε)
on the indeterminate s do not have any solution. Note, that the exchange of y
and z transforms a curve with parameters (t, ε) into a curve with the parameters
( 3−ε

2 − t, ε).
Thus, we have found two distinct one-parameter families in the moduli space of

sextic curves. Due to [1; Proposition 2.6], the equisingularity stratum 2A9 has two
irreducible components. Thus we found all sextic curves with 2A9 up to projective
equivalence.
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3.4. Arrangement of the singular curves on RF2.

Lemma 3.1. Let C ∈ |4H| be a real algebraic curve on F2 with singularities as in
Section 3.1. Let F0 be the fiber through A5 and let F1 be the fiber through A9 or
A10. Then C ∪ F0 ∪ F1 cannot be arranged up to isotopy as in Figure 14(a,b).

5A

1F

1A

0F

(a)

10A

0F 1F

9A1A

5A

(b)

1F

9A1A

5A

0F

(c)

Figure 14

Proof. Case (i) in Section 3.1 (corresponds to Figure 14(a)). It is enough to check
that the intersection points of C ∪ E with F0 and F1 cannot be arranged on F0

and F1 as in Figure 14. Indeed, if they are, then we have di := b2i − 4aici > 0 and
aici > 0 where u2(aiu

2 + biu + ci) = 0 is the restriction of C on the fiber Fi (the
coordinate u on Fi is chosen so that the singular point is at u = 0 and the point
C ∩ E is at u = ∞).

After the transformation of F2 into P2 described in Section 3.1, the fiber F0

(resp. F1) corresponds to the line through A3 and A5 (resp. through A3 and A10).
Using the formulas from Section 3.2, we check that d0a1c1 = −11R(t)2 where R(t)
is a rational function with integer coefficients. Thus d0 and a1c1 cannot be positive
simultaneously.

Case (ii) in Section 3.1 (corresponds to Figure 14(b)). Let a1, c1, d1 be as in
Case (i) and let δn, n = 1, 5, be the discriminant of the restriction of the defining
equation to the last exceptional curve of the resolution of the singular point An (in
fact, δ1 is the discriminant of the restriction of (4) to the line z = 0). The local
branches of C at An are real if and only if δn > 0. Thus, if C is as in Figure 14(b),
then d1, a1c1, δ1, and δ5 are all positive. A computation based on the formulas
from Section 3.3 shows that this condition never holds for ε = −

√
5 and it holds

for ε =
√
5 only when t ∈ ]t1, t2[, where

t1 = (3−
√
5)/2 ≈ 0.38196, t2 = (9− 3

√
5)/4 ≈ 0.57294

(it happens that all roots of the polynomials involved belong to Q(
√
5)).

Let f(x, y, z, t) be the left hand side of (4). Thus f = 0 for a fixed t is the equation
of D. We consider the surface in RP

2 × R defined by f = 0. Let x10z8∆(x, z, t)
be the discriminant of f with respect to y, i. e., ∆ = 0 is the equation of the
ramification locus of the projection of the surface f = 0 onto RP

1
(x:z) × R(t).

Let a0(t) be the coefficient of y4z2 in f and let ∆1(t) be the discriminant of
∆ with respect to x. A straightforward computation shows that a0(t), ∆1(t),
∆(0, 1, t), and ∆(1, 0, t) do not have real roots in the interval ]t1, t2[. This means
that the fiberwise isotopy type of C∪F0∪F1∪E does not change when t varies from
t1 to t2. So, it is enough to establish this isotopy type for any value of t belonging
to this interval. A computation shows that it is as in Figure 14(c). �
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4. Background for the Hilbert-Rohn method

To prohibit algebraic curves, we use a version of Hilbert-Rohn-Gudkov method
(cf. [25, 26]). Namely, we argue on the contrary assuming that an algebraic curve
in question exists, showing that it must degenerate into a curve with certain sin-
gularities, and, finally, prohibiting the latter curve either by suitable methods of
algebraic geometry and topology, or by a direct computation. We perform the de-
generation process in several steps. In each step, we consider the stratum S ⊂ |4H|
formed by real curves having certain isotopy type and specific singularities. Then
we introduce a partial order on S and show that, for any curve C ∈ S, there exists
an equisingular family Ct ∈ S, t ∈ [0, ε), C0 = C, which is strongly monotone
with respect to the introduced order. This yields that the extremal elements with
respect to that order belong to S \ S. Then we either go to the next step, consid-
ering the stratum of more degenerate curves, or show that no further degeneration
is possible, hence deriving the desired contradiction to the existence of the initial
curve.

Below we use the following notations: SpanK{∗} denotes a linear space over the
field K with the indicated basis, 〈∗〉 denotes an ideal in the corresponding algebra
with the indicated generators.

4.1. Local geometry of equisingular families of curves. In this section, we
describe the local geometry of equisingular families of curves that are needed for the
proof of Proposition 5.1, which is the final step in the proof of the main Theorem
1. We notice that Lemmas 4.1 and 4.2 below are similar to [26; Propositions 2.1
and 2.4]. However, in the cited statements there is an incompleteness: namely,
the upper bound to the number of real intersections of close singular curves was
implicitly used, but not proved. Here we do prove the required bound (see Lemma
4.1(3)), thereby closing a gap in [26]. Furthermore, we slightly modify the definition
of certain equisingular families in order to get a simpler proof of the bound (16).
We supply a complete argument for the reader’s convenience.

Let Σ be a smooth algebraic surface, (C, p) ⊂ (Σ, p) a curve germ with singularity
of type A2s−1, s ≥ 1, at p ∈ Σ, and let U be its regular neighborhood (i.e. an open
ball centered at p such that (C, p) is locally closed in U , is smooth outside p, and
transversally intersects the boundary of any ball contained in U and centered at p.
Denote by O(U) the ring of continuous functions in U that are holomorphic in U . It
has the maximal ideal m = {g ∈ O(U) | g(p) = 0}, and a norm ‖g‖U = max |g(U)|.
Fix also a closed ball V ⊂ U centered at p.

Fix a local coordinate system S = (x, y) in U so that p = (0, 0) and (C, p) =
{f := y2 − x2s = 0}. Let Λ ⊂ O(U) be a finite-dimensional linear space. Denote
by Mfix

C,p(Λ) ⊂ f + Λ the germ at f of the affine subspace of O(U) defined by the

vanishing of the coefficients of xiyj below the Newton diagram of f . It is easy to see
that Mfix

C,p(Λ) does not depend on the choice of S. Denote by MC,p(S,Λ) ⊂ f + Λ
the family of elements g ∈ f + Λ, representable as

(
(y′)2 − (x′)2s

)(
1 + ϕ2(x

′, y′)
)
, (8)

where
x′ = (x− α)(1 + ϕ3(x, y)), y′ = y − (x′)s−1(β + ϕ1(x

′, y)), (9)

α, β ∈ C, ϕ1 ∈ m, ϕ2, ϕ3 ∈ O(U), and |α|, |β|, ‖ϕ1‖U , ‖ϕ2‖U , ‖ϕ3‖U < ε, (10)
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where 0 < ε ≪ 1 is chosen so that, for any given α, β, ϕ1, ϕ2, ϕ3 satisfying (10),
formulas (9) determine a diffeomorphism such that the image of U contains V and
the image of p belongs to the interior of V .

Since, for any given α, β, ϕ1, ϕ2, ϕ3 satisfying (10), formulas (9) determine a
local diffeomorphism Φ(x, y) = (x′, y′), each element g ∈ MC,p(S,Λ) defines a
curve germ g = 0 with singularity A2s−1 at the point (α, 0) = Φ−1(0, 0). If Q1, Q2

are the components of (C, p), then each curve {g = 0} ⊂ U , g ∈ MC,p(S,Λ), has
also two components Q′

1, Q
′
2 (intersecting with multiplicity s) such that Q′

i is close
to Qi, i = 1, 2. Notice also that MC,p(S,Λ) is a germ of an analytic subspace in
f + Λ. Indeed, MC,p(S,Λ) can be regarded as a germ of the equisingular stratum
in Λ with an additional restriction that the order of elements of MC,p(S,Λ) on
an arc y − β(x + α)s−1 at the point (−α, 0) is ≥ 2s for some α, β ∈ C. The
equisingular stratum is a smooth subvariety of any linear versal deformation base
(see for example, [10, Theorem II.2.38(3)]). Identifying a versal deformation with
a finite-dimensional subspace of O(U) that contains Λ, we obtain an equisingular
stratum in Λ as the intersection of a smooth analytic variety germ with a linear
space. At last, the intersection conditions with arcs specified above, by elimination
theory, are expressed as analytic equations to coordinates in Λ.

Lemma 4.1. In the above notations, suppose that Λ surjectively projects onto
J2s
Σ,p := O(U)/m2s+1. Then:

(1) The germ of Mfix
C,p(Λ) at f is the germ of an affine subvariety of f + Λ of

codimension 3s, which can be described in the above coordinate system S = (x, y)
as

Mfix
C,p(Λ) = {g ∈ f +Λ | ordQi

(g) ≥ 2s, i = 1, 2} = 〈y2, yxs, x2s〉. (11)

(2) The germ of MC,p(S,Λ) at f is a smooth subvariety of f +Λ of codimension
3s− 2 with tangent space

TfMC,p(S,Λ) = {g ∈ Λ | ordQi
(g) ≥ 2s− 1, i = 1, 2} = 〈y2, yxs−1, x2s−1〉. (12)

(3) Let (C, p) = {f := y2 − x2s = 0} be real, M ⊂ MC,p(S,Λ) be the germ
at f of a smooth real one-dimensional analytic variety with TM = SpanR{f∗},
where f∗ = 2sα0x

2s−1 − 2β0x
s−1y + ϕ(x, y) with ϕ(x, y) ∈ 〈y2, yxs, x2s〉, and let

(R, 0) →M , t 7→ C(t), be a regular parametrization with C(0) = C and |t| < ε1 ≪ 1.
Suppose that

(C∗ · C)p = 4s− 2 where C∗ = {f + f∗ = 0} (13)

and

(C(t) · C)U = 4s− 2, t 6= 0. (14)

Then there exists ε2 < ε1 such that for any t, 0 < |t| < ε2, first,

(Q
(t)
1 ·Q1)RU ≡ (Q

(t)
2 ·Q2)RU ≡ s− 1 mod 2, (15)

where Q
(t)
i , i = 1, 2, are the local branches of C(t) at its singular point in U ; second,

under additional assumptions α0 6= 0 and s2α2
0 6= β2

0 , we have

#
[(
(Q

(t)
1 ∩Q1) ∪ (Q

(t)
2 ∩Q2)

)
∩ RU

]
≤ 2. (16)
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Proof. The first statement easily follows from the observation that Mfix
C,p(Λ) is the

germ at f of the linear subspace in O(U) defined by the vanishing of the coefficients
of xiyj below the Newton diagram of f .

For the second statement, we, first, notice that, in the case of singularity A1,
MC,p(S,Λ) is just a germ of an equisingular stratum, which is well-known to be
smooth of codimension one. Suppose that s > 1 and introduce the projection
MC,p(S,Λ) → (C2, 0), g 7→ (α, β). It is well-defined, since, for different α’s we
get different positions of the singular point, and, for different β’s, we get different
positions of of the (s − 1)-th infinitely near point to the singularity. Observe that
the projection represents MC,p(S,Λ) as a locally trivial (topological) fibration over
(C2, 0) with fibers isomorphic to Mfix

C,p(Λ), since,

(i) for fixed α and β, and for variable ϕ1, ϕ2, ϕ3, formula (9) gives all function

germs close to f̃(x′, y′) = f(x′ + α, y′ − β(x′)s−1) that define curve germs
with a singularity A2s−1 at (−α, 0) and its (s − 1) infinitely near points in

a position, fixed by f̃ ,
(ii) the space Λ surjectively projects onto J2s

Σ,p′ for each point p′ ∈ Σ close to p.

This yields the dimension statement, particularly,

dimMC,p(S,Λ) = dimMfix
C,p(Λ) + 2.

On the other hand,MC,p(S,Λ) is a germ of an analytic space, and its Zariski tangent
space, consisting of all first order infinitezimal deformations, can be identified with
Λ ∩ 〈y2, yxs−1, x2s−1〉 when writing formula (9) in the form

y2 − x2s(1 + 2sϕ3(x, y)) + ϕ2(x, y)(y
2 − x2s) + 2sαx2s−1 + 2(β + ϕ1(x, y))yx

s−1

+O(|α|2 + |β|2 + ‖ϕ1‖2U + ‖ϕ2‖2U + ‖ϕ3‖2U ).

Thus, the smoothnes of MC,p(S,Λ) follows from the preceding dimension formula
and the relation

dim
Λ ∩ 〈y2, yxs−1, x2s−1〉

Λ ∩ 〈y2, yxs, x2s〉 = dim
〈y2, yxs−1, x2s−1〉

〈y2, yxs, x2s〉 = 2.

At last, we show that TfMC,p(S,Λ) = 〈y2, yxs−1, x2s−1〉 ∩ Λ can equivalently be
expressed by (12). Indeed, the generators g of the ideal 〈y2, yxs−1, x2s−1〉 sat-
isfy relations ordQi

(g) ≥ 2s − 1, i = 1, 2, indicated in (12). On the other hand,
these relations mean that g(x, y)

∣∣
y=xs = g(x, xs) = O(x2s−1) and g(x, y)

∣∣
y=−xs =

g(x,−xs) = O(x2s−1), which excludes germs outside the ideal 〈y2, yxs−1, x2s−1〉.
To prove formula (15), we, first, notice that (13) combined with (12) yields

(C∗ ·Qi)p = 2s− 1, i = 1, 2. This implies by [12; Theorem 2] (see also [10; Lemma

II.2.18]) that (C(t) · Qi)U ≥ 2s − 1, i = 1, 2, which together with (14) gives

(C(t) ·Qi)U = 2s − 1, t 6= 0, i = 1, 2. Now, in view of (Q
(t)
i ·Q3−i)U = s, i = 1, 2,

we derive that (Q
(t)
i ·Qi)U = s− 1, t 6= 0, i = 1, 2, and hence relation (15).

Comparing formulas (9) with the expression for f∗, we can represent C(t) as
(y′)2 − (x′)2s = 0, where

x′ = (x− tα0)(1 + tψ3(t, x, y)),

y′ = y − (x′)s−1(β1t(1 +O(t)) + x′ψ1(t, x
′, y) + yψ2(t, x

′, y))
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with some fixed analytic functions ψ1, ψ2, ψ3, and with β1 = β0−(s−1)ψ3(0). Thus,

we can represent the intersections Q
(t)
1 ∩Q1 and Q

(t)
2 ∩Q2 in U as the solutions of

the equations

xs = tβ0(x− tα0)
s−1 + (x− tα0)

s + t(x− tα0)
sO(1),

xs = −tβ0(x− tα0)
s−1 + (x− tα0)

s + t(x− tα0)
sO(1),

respectively, where O(1) is bounded from above by a positive function of U , V ,
ε, ε1, α0, β0, ψ1, ψ2, ψ3, and, furthermore, we look for solutions that appear in
a small neighborhood of zero. Note that such roots cannot have an asymptotics
x ∼ γta, t → 0, with a < 1, since otherwise, in the above equations we would
encounter the terms (β0− sα0)t

1+(s−1)a, (β0+ sα0)t
1+(s−1)a, respectively, with the

minimal exponent of t and which do not cancel out with any other term. So, in
view of α0 6= 0 we rescale these equations by x 7→ tα0x and restrict attention to
the only roots which stay in a finite interval as t → 0, and thus, we end up with
the two claims, which ensure the desired relation (16). If γ ≥ 0, then

(i) for s > 0 even, each of the equations

xs = γ(x− 1)s−1 + (x− 1)s, xs = −γ(x− 1)s−1 + (x− 1)s (17)

has one simple real solution and the others s− 2 roots imaginary;
(ii) for s > 0 odd, each of the equations (17) either has no real solutions, or two

simple real solutions, or one double real solution, so that both equations
have in total at most two real solutions (counting multiplicities).

Indeed, in the case of an even s, the claim (i) is evident for γ = 0. The number of
real roots might change in variation of γ only when a multiple root occurs, i.e., the
system {

xs = δ(x− 1)s−1 + (x− 1)s

sxs−1 = δ(s− 1)(x− 1)s−2 + s(x− 1)s−1
(18)

has a solution for some δ ∈ R. This system yields

δ =
s(x− 1)

x− s
, (x− s)xs = x(x− 1)s . (19)

The solution x = 0, δ = 1 is irrelevant, since the root x = 0 of the corresponding
equation

xs = (x− 1)s−1 + (x− 1)s ⇐⇒ xs = x(x− 1)s−1

is simple. Another option, coming from the second equation in (19), is

(x− s)xs−1 = (x− 1)s . (21)

It, however, has no real solutions: the left-hand side is negative as x ∈ ]0, s[, whereas
the right-hand side is non-negative, and one has

|x− s| · |x|s−1 < |x− 1|s as x ≤ 0 or x ≥ s , (20)

due to the inequality between the arithmetic and geometric mean for the numbers
|x− s|, |x|, . . . , |x|.
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Statement (ii) is evident for s = 1. So, suppose that s ≥ 3 is odd. Then, for
γ = 0, both equations (17) coincide and they have no real roots. Thus, we prove
statement (ii) by showing that a multiple root of an equation xs = δ(x − 1)s−1 +
(x− 1)s occurs for a unique value of δ ∈ R, and this root is double. The search for
a multiple root similarly reduces to system (18) and then to equations (19). Again
the solution x = 0, δ = 1 is irrelevant, and we similarly come up with the equation
(21). Inequality (20) and the sign comparison restrict the search of a root to the
interval ]0, 1[. Since the derivative sxs−2(x− s + 1) of the left-hand side of (21) is
negative in ]0, 1[, and the derivative s(x − 1)s−1 of the right-hand side of (21) is
positive in ]0, 1[, we obtain a unique simple root. This completes the proof of claim
(ii). �

Lemma 4.2. Let Σ be a smooth algebraic surface, D an effective divisor class such
that −DKΣ ≥ 2 and H1(Σ,OΣ) = 0. Let C ∈ |D| be a reduced, irreducible curve
having r singular points p = {p1, . . . , pr} of types A2ki−1, ki ≥ 1, i = 1, . . . , r,
and s singular points q = {q1, . . . , qs} of types A2lj−1, j = 1, . . . , s, respectively,
where r, s ≥ 0, r + s > 0. Denote by Mp,q(C) the germ at C of the family of
curves C′ ∈ |D|, which, in a neighborhood U(pi) of any point pi, 1 ≤ i ≤ r,
are represented by fi ∈ Mfix

C,pi
(Λ) and, in a neighborhood U(qj) of any point qj,

1 ≤ j ≤ s, are represented by gj ∈ MC,qj (Λ), where Λ = H0(Σ,O(mD)) with a
sufficiently large m.

If

2
r∑

i=1

ki + 2
s∑

j=1

(lj − 1) ≤ −DKΣ − 1, (22)

then Mp,q(C) is smooth of dimension

d = g +
(
−DKΣ − 1− 2

r∑

i=1

ki − 2

s∑

j=1

(lj − 1)
)
, (23)

g being the genus of C. Furthermore, if d = 1 and g = 0, and given a parametriza-
tion (C, 0) → Mp,q(C), t 7→ C(t), C(0) = C, and C∗ ∈ TCMp,q(C) \ {C}, we
have

{
(C∗ · C)pi

= 4ki, pi ∈ p, (C∗ · C)qj = 4lj − 2, qj ∈ q,

(C(t) · C)pi
= 4ki, pi ∈ p, (C(t) · C)U(qj) = 4lj − 2, qj ∈ q, t 6= 0.

(24)

Proof. Due to Lemma 4.1, the smoothness and the dimension statement will follow
from the transversality of the intersection of

∏
pi∈p

MC,pi
(Λ) ×∏

qj∈q
Mfix

C,qj
(Λ) ⊂

Λr+s with the image of H0(Σ,OΣ(D)) in Λr+s. This transversality is equivalent to
the relation

h0(Σ,JZ/Σ(D)) = h0(Σ,OΣ(D))− degZ ,

where JZ/Σ is the ideal sheaf of the zero-dimensional scheme Z ⊂ Σ defined in the
points pi ∈ p and qj ∈ q by relations (12) and (11), respectively (each time s is the
δ-invariant of the corresponding singularity). Since h0(Z,OZ) = degZ and in view
of the exact cohomology sequence

0 → H0(Σ,JZ/Σ(D)) → H0(Σ,OΣ(D)) → H0(Z,OZ) → H1(Σ,JZ/Σ(D))
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associated to the exact sheaf sequence 0 → JZ/Σ(D) → OΣ(D) → OZ → 0, we
have to show that

H1(Σ,JZ/Σ(D)) = 0. (25)

From the exact sheaf sequence 0 → OΣ
×C−→ JZ/Σ(D) → JZ/C(D) → 0 and the

assumption H1(Σ,OΣ) = 0, we derive an exact sequence

0 = H1(Σ,OΣ) → H1(Σ,JZ/Σ(D)) → H1(C,JZ/C(D)) ,

which says that relation (25) follows from

H1(C,JZ/C(D)) = 0. (26)

To derive (26), we lift the sheaf JZ/C(D) to the normalization ν : Ĉ → C. It is
well-known (see, for example, [5; Section 2.4] or [7; Section 4.2.4]) that

ν∗(OĈ(−∆)) = J cond
C := Ann(ν∗OĈ/OC),

where ∆ ⊂ Ĉ is the so-called double point divisor of degree deg∆ = 2
∑

z∈Sing(C) δ(C, z).

In our situation, the conductor ideal J cond
C is defined at the points of p ∪ q by the

ideals (cf. [7; Section 4.2.4])

J cond
C,pi

= {g ∈ OC,pi
| ordPi,s

g ≥ ki − 1, s = 1, 2}, pi ∈ p ,

J cond
C,qj = {g ∈ OC,qj | ordQj,s

g ≥ lj − 1, s = 1, 2}, qj ∈ q ,

where Pi,1, Pi,2 are the branches of the germ (C, pi), and Qj,1, Qj,2 are the branches
of the germ (C, qj). Comparing with formulas (12) and (11) applied to each point
pi ∈ p and qj ∈ q, respectively, we obtain that

JZ/C(D) = ν∗OĈ(d−∆−w) ,

where divisors d,w ⊂ Ĉ have degrees

degd = D2, degw = 2
∑

pi∈p

ki + 2
∑

qj∈q

(lj − 1) .

Since

deg(d−∆−w) = D2 − 2
∑

z∈p∪q

δ(C, z)− 2
∑

pi∈p

ki − 2
∑

qj∈q

(lj − 1)

= D2 − (D2 +DKΣ + 2− 2g)− 2
∑

pi∈p

ki − 2
∑

qj∈q

(lj − 1)

= 2g − 2 +
(
−DKΣ − 2

∑

pi∈p

ki − 2
∑

qj∈q

(lj − 1)
) (22)
> 2g − 2 ,

we, finally, obtain (26).
Relation (24) for the intersection of C∗ and C immediately follows from (12)

and Bézout theorem. In turn, relation (24) for intersection of C(t), t 6= 0, with C
follows again from Bézout theorem and inequalities

(C(t) · C)U(pi) ≥ (C∗ · C)pi
, pi ∈ p, (C(t) · C)U(qj) ≥ (C∗ · C)qj , qj ∈ q

(see [12; Theorem 2] or [10; Lemma II.2.18]). �
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4.2. General position arguments for curves on F2. The following is the F2

analog of Brusotti’s theorem on smoothing of real algebraic curves on RP
2.

Lemma 4.3. Let C ⊂ F2 be a real nodal curve not containing the (−2)-curve E
(but possibly reducible). Then there exists a small real deformation of C in the
same linear system, which preserves prescribed conjugation-invariant set of nodes
of C (possibly moving them) and which smoothes out the remaining nodes so that,
for any real smoothed node, one can prescribe one of the two possible smoothings.

Proof. This immediately follows from [9; Corollary 6.3], where the sufficient condi-
tions for the linear system |C| to be a joint versal deformation of all the nodes of C
are −C′KF2

> 0, where C′ runs over all components of C. This inequality always
holds as C′ 6= E. �

Lemma 4.4. (1) No curve in the linear system |H| can pass through 4 points in
general position.

(2) No reduced curve in the linear system |2H| can have r singular points and
pass through s given points, all in general position, if 3r + s > 8.

(3) No curve in the linear system |3H|, which does not contain E as component,
can have 6 singular points so that 5 of them are in general position.

(4) The total δ-invariant of a reduced curve in the linear system |D| on F2

not containing neither E, nor any fiber as component does not exceed 6, 8, or 10
according as D = 3H, 3H + F , or 4H −E.

(5) There are only finitely many curves in |4H| splitting into 4 distinct compo-
nents from the linear system |H| and having 6 singular points in general position.
Furthermore, each of these curves has 12 nodes as its only singularities.

Here “in general position” means that there exists a Zariski open dense subset
in the space of considered tuples such that each tuple in it possesses the required
property.

Proof. (1) Follows from the relation dim |H| = 3.
(2) The family of reduced curves in |2H| having r singularities has codimension

r in |2H|. Indeed, without loss of generality, we can suppose that the singularities
are simple nodes and then use, for instance, [9, Corollary 6.3]. The condition
to pass thorugh additional s generic points raises the codimension by s. Now,
assuming that the projection of that family to (F2)

r, sending a curve to its singular
points, is dominant (and this is just another way to say that the singular points
are in general position), we obtain that dim |2H| − (r + s) = 8 − r − s ≥ 2r or,
equivalently, 3r + s ≤ 8.

(3) We can rule out non-reduced curves, since then one deals with curves of
type C′ + 2C′′, C′, C′′ ∈ |H|, and the latter curves can pass through at most three
prescribed generic points. Next, we note that the reduced curves in |3H| having 6
singularities outside E must split into three distinct components C′, C′′, C′′′ ∈ |H|
but such a curve may have ≤ 4 singularities in general position by statement (1).

(4) The arithmetic genera of the divisors 3H, 3H +F , and 4H−E are 4, 6, and
8, respectively. The hypotheses of the statement yield that the considered curves
can split into at most three components, which implies the required bounds.

(5) All the components are smooth and they must provide at least 12 local
branches at six singular points. On the other hand, since dim |H| = 3 and the six
singular points are in general position, each of the four component hits at most 3 of
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them. Thus, each component passes through three of the six given singular points,
and is uniquely defined by such a condition. This yields the required finiteness.
Finally, the general position of the given singular points implies that all 12 pairwise
intersection points of the components are distinct and transversal. �

5. Restrictions on algebraic curves

Proposition 5.1. There are no smooth real algebraic curves on F2 belonging to the
linear system |4H| and having almost fiberwise isotopy types A′′(6, 0, 2), A′′(4, 0, 3),
A′′(3, 1, 3), A′′(3, 0, 3).

The proof follows the lines of [25, 26] and uses a version of the Hilbert-Rohn-
Gudkov method based on the statements proved in Section 4.

5.1. Prohibition of curves of type A′′(6, 0, 2). By [25; Lemma 3.3], the exis-
tence of a smooth curve of type A′′(2, 0, 6) yields the existence of a real rational
curve with 9 ordinary nodes of the almost fiberwise isotopy type shown in Figure
15(a). Denote this type by A′′

9(6, 0, 2).

0F

1A

A 5

(b)

9A

A 5

(a) (c)

Figure 15

By [9; Theorem 6.1(ii,iii)], the family R of real rational nodal curves in the
real part of |4H| is a smooth quasi-projective variety of codimension 9. Denote by
R(A′′

9(6, 0, 2)) the subfamily in R formed by curves of type A′′
9(6, 0, 2).

We start with the following auxiliary statement, and then proceed with the
Hilbert-Rohn-Gudkov method.

Lemma 5.2. A reduced, reducible real curve C ∈ |4H|, not containing fibers as
components and having only simple (i.e., A − D − E) singularities, cannot be a
limit of a family of real rational curves from R(A′′

9(6, 0, 2)), whose singular points
lie outside some fixed neighborhood of E.

Proof. Assume on the contrary that such a family does exist. We regard it as a
deformation of a given reducible curve C. Clearly all components of C are rational.
It follows that irreducible simple singularities of C, i. e., A2k, k ≥ 1, E6, E8, are
deformed equigenerically (i. e., with the maximal possible number of nodes), since
otherwise one would get a curve of a positive genus.

If a real singularity of C has two complex conjugate local branches, then these
branches belong to the same irreducible component of C, since otherwise one would
have two complex conjugate components of C non-trivially intersecting all fibers,
and hence C would not deform into a curve, intersecting infinitely many fibers at
four real points. It then follows, that singularities of C with a couple complex
conjugate branches are deformed equigenerically.

Remaining singularities of C may be of types A2k−1, k ≥ 1, D2k, k ≥ 2, or E7,
and their local branches all are real. We claim that, for these singularities, any
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local deformation with non-isolated real nodes as its only singularities factors (up
to equivariant isotopy in a regular neighborhood) through a nodal equigeneric one,
which then turns into the given nodal deformation by smoothing out certain nodes.
Indeed, for singularities A2k−1, k ≥ 1, and D2k, k ≥ 2, this easily follows from
classification of real nodal hyperelliptic curves. For singularity E7 this follows from
the known fact that any real rational nodal plane quartic curve with real nodes
only can be obtained (up to isotopy) by smoothing out an intersection point of
a real nodal cubic and a line (see, for instance, [11]). We also point out that, if
C ⊃ E, then non-nodal singularities cannot lie on E, since otherwise one would
get, in the considered deformation, some nodes in a neighborhood of E contrary to
the hypotheses of Lemma.

The given deformation of C is nodal. On the other hand, by Lemma 6.2 in
Section 6, any local deformations of singular points of C can independently be
realized by variation in the linear system |4H|. In view of the above observation on
deformations of simple singularities we derive that there exists a nodal reducible
curve, which is a limit of real rational curves belonging to R(A′′

9(6, 0, 2)) and having
singular points outside some fixed neighborhood of E. So, we may suppose that C
is nodal.

If C 6⊃ E, the required statement follows from Lemma 2.3. Indeed, otherwise,
we would have a family of rational nodal pseudoholomorphic curves of type shown
in Figure 15(a) that converges to a pseudoholomorphic curve with an additional
node, and hence splitting into two rational components. Since an irreducible pseu-
doholomorphic curve homologous to kH, k ≤ 3, has at most 4 nodes, the newly
appearing node in the considered degeneration must join one of the discs d′i with
the domain d0 (see Figure 16(a)). Furthermore, here i > 1, since otherwise, one
would get only one real global one-dimensional branch contrary to the reducibility
of the curve. However, this contradicts Lemma 2.3.

If C ⊃ E, then the required statement follows from Lemma 2.5. �

Lemma 5.3. Suppose that R(A′′
9(6, 0, 2)) 6= ∅. Then ∂R(A′′

9(6, 0, 2)) contains a
real rational curve that has singularities A1, A5, and A9 and the almost fiberwise
isotopy type shown in Figure 15(b).

Proof. We proceed in two steps: first, show that a general curve in R(A′′
9(6, 0, 2))

can be degenerated into a curve shown in Figure 15(c), and, second, degenerate the
obtained curve into the curve asserted in Lemma.

d’6 d’1

d"1 A3

. . .

(a)

d"2

d0

...

(d)(b)

...

(c)

q

Figure 16

Step 1. For a curve C ∈ R(A9(6, 0, 2)), denote by d0(C), d
′
i(C), i = 1, . . . , 6,

and d′′i (C), i = 1, 2, the closed disks bounded by loops in RC and joined by sin-
gular points as marked by shadow in Figure 16(a). Introduce the partial order on
R(A9(6, 0, 2)) setting C ≺ C′ if d0(C), d

′
1(C), . . . , d

′
6(C), d

′′
1(C) are proper subsets
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of d0(C
′), d′1(C

′), . . . , d′6(C
′), d′′1(C

′), respectively, and d′′2(C
′) is a proper subset of

d′′2(C). For example, if C (resp. C′) is the curve shown by the solid line (resp.
dashed line) in Figure 16(b), then we have C ≺ C′.

By [26; Proposition 2.4(b)] we can choose a curve C ∈ R(A9(6, 0, 2)) so that all
its nodes, except for the two in ∂d′′2(C), are in general position (here the required
condition (6) from [26] reads 2 · 7 < −CKF2

= 16). Denote p = Sing(C) \ d′′2(C)
and q = Sing(C) ∩ d′′2(C). Let Sp ⊂ R(A9(6, 0, 2)) be the stratum formed by
curves whose 7 nodes are fixed at p and let us consider the germ of the family
Mp,q(C) ⊂ Sp (see Lemma 4.2). Condition (22) of Lemma 4.2 is fulfilled, and hence
Mp,q(C) is a smooth one-dimensional real variety (cf. relation (23)). Furthermore,
we derive from Lemma 4.1(3) that the curves C′ 6= C in Mp,q(C) intersect C with
multiplicity 4 at each node z ∈ p and intersect C in a neighborhood of each node
z ∈ q at two real points. It follows that there exists a connected component M
of Mp,q(C) \ {C} such that the real part of curves C′ ∈ M looks as shown by the
dashed line in Figure 16(b), in particular, C ≺ C′.

This means that, for any curve C ∈ Sp, the closed set σ(C) = {C′ ∈ Sp | C ≺ C′}
⊂ Sp is non-empty. Let us choose a continuous function f : σ(C) → R which
is strictly monotone for the partial order ≺. For example, we can set f(C) =
Area(d′i(C)) for some i = 1, . . . , 6, or f(C) = −Area(d′′2(C)) where the area is
defined by an arbitrary Riemannian metric on RF2. Let C0 be the element of σ(C)
where the maximum of f is attained. It is clear that C0 ∈ Sp \ Sp.

We claim that C0 is irreducible. This would yield that the disk d′′2(C0) shrinks
to a point, thus, C0 has 7 nodes and a tacnode A3 and the almost fiberwise isotopy
type shown in Figure 16(c) by fat line. To prove the irreducibility of C0, first, show
that C0 cannot contain a multiple component C′

0 belonging to |H|, |2H|, |H + F |,
or |H + 2F |. Indeed, the intersection points of a current curve C′ ∈ Sp (tending
to C0) with any fiber crossing disks d′i(C

′), i = 1, . . . , 6, all are real and they move
so that only two points are closing to each other, whereas the two other points run
away towards E from different sides. Hence the spoken component C′

0 may belong
only to |H|, |H+F |, or |H+2F |, and its is smooth. The latter fact combined with
the observation that the intersection point C′

0 ∩ F ′ with any real fiber F ′ crossing
the disc d′i(C

′), 1 ≤ i ≤ 6, lies below the interval d′i(C
′) ∩ F ′ (see Figure 16(b))

yields that C′
0 does not hit the six points of p lying on the boundary of the discs

d′(C′), 1 ≤ i ≤ 6. Hence the remaining part of C0, which belongs to |2H|, |H+E|,
or |2E|, respectively, must have singularities at the aforementioned six points of p
lying in general position. However, this is impossible (cf. Lemma 4.4). Suppose
now that C0 contains a double component E. Then the upper arcs of the disks
d′i(C

′), i = 1, . . . , 6, of the current curve C′ ∈ Sp tending to C0 must approach
the divisor E (see Figure 16(b)), but then C0 must contain double fibers passing
through the six nodes in p, which is a contradiction. Suppose that C0 contains a
simple component E and a double fiber F ′. Then the complementary trigonal curve
C′

0 ∈ |3H| does not contain E and has at least 6 singularities, among them at least
5 (namely, those in p \ F ′) in general position in contradiction to Lemma 4.4(3).
The case of a reduced, reducible C0 is excluded by Lemma 5.2, since C0 may have
only ADE singularities. Indeed, the total δ-invariant of singular points in F2 \ E
of a reduced curve from |4H| is at most 12. Since C0 has at least 8 singularities
in F2 \ E, the δ-invariant of each of them is at most 5, hence they all are simple.
A singular point on E can appear only when C0 = C′

0 ∪ E. Since C′
0 · E = 2, we
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conclude that such a singular point is of type A or D.
Next we set p = Sing(C0) \ d′′1(C0), q = Sing(C0) ∩ d′′1(C0), and introduce

the stratum Sp(A3) ⊂ R(A9(6, 0, 2)) of real rational curves with 7 nodes, one
tacnode A3, and almost fiberwise isotopic to C0. Introduce the partial order
on Sp(A3) by setting C′ ≺ C′′ if d0(C

′), d′1(C
′), . . . , d′6(C

′) are proper subsets of
d0(C

′′), d′1(C
′′), . . . , d′6(C

′′), respectively, and d′′1(C
′′) is a proper subset of d′′1(C

′).
Consider the germ of the family Mp,q(C0) ⊂ Sp(A3). Lemmas 4.1(1,2) and 4.2
yield that Mp,q(C0) is smooth and one-dimensional, and that any curve C′ ∈
Mp,q(C0) \ {C0} intersects C0 with multiplicity 4 at each node z ∈ p, intersects
C0 in a neighborhood of the node in q at two points and in a neighborhood of the
tacnode q ∈ q at 6 points. This, in particular, gives conditions (13) and (14) in
Lemma 4.1(3). Hence, we obtain congruences (15) and inequality (16), provided

that we verify the assumptions α0 6= 0 and β2
0 6= 4α2

0. Denote by T̃C0
Mp,q(C0) the

tangent line to Mp,q(C0) in the linear system |4H|. In the local coordinates (x, y)
in a neighborhood of the point q chosen as in Lemma 4.1(3), we have C0 = {f = 0},
f = y2 − x4, and C∗ = {f + λf∗ = 0} for C∗ ∈ T̃C0

Mp,q(C0).
Now, if α0 = β0 = 0, then the monomials of f∗ under the Newton diagram of f

vanish, and we get (C∗ · C0)q ≥ 8 contrary to (13). If α0 = 0, β0 6= 0, we get that

a generic curve C∗ ∈ T̃C0
Mp,q(C0) has two local branches at q: y = ξx + O(x2)

and y = ηx3 +O(x4). The first one passes outside the domain −x2 ≤ y ≤ x2, and
the second one within (see Figure 16(d), where C∗ is depicted by the dashed line).
Notice that C∗ intersects C0 only in Sing(C0): with multiplicity 4 at each node
in p, with multiplicity 2 and 6 at the node and tacnode on ∂d′′1 , respectively. It
follows that both the lower half-branch of y = ξx+O(x2) and the left half-branch
of y = ηx3+O(x4) extend so that both must pass through the node z of C0 on ∂d′′1
that contradicts the aforementioned equality (C0 · C∗)z = 2.

At last, if α0β0 6= 0, β0 = ±2α0, then f
∗(x, y) = ±4α0x(y−x2+O(x3)) and thus

f∗
∣∣
Q1

= f∗(x, x2) = xk(γ+O(x)), γ 6= 0, k ≥ 4, which yields (Q′
1 ·Q1)U ≥ k−2 ≥ 2

contrary to the equality in (14). Hence, it follows that there exists a connected
component M of Mp,q(C0) \ {C0} such that the real part of curves C′ ∈ M looks
as shown by the dashed line in Figure 16(c), in particular, C0 ≺ C′.

Now, having congruences (15) and inequality (16), as in the preceding case we

obtain a limit curve C1 ∈ Sp(A3) \ Sp(A3), and moreover, we claim that it is
irreducible and is attained as the disk d′′1 shrinks to a point. The proof of the
irreducibility of C1 literally coincides with that for C0, presented above, except
for the last step: the prohibition of a reduced, reducible C1 not containing E as
component. On the last step we argue as follows. The total δ-invariant of singular
points in F2 \ E of a reduced curve from |4H| disjoint from E does not exceed 12.
Since C1 has a least 7 singular points in F2 \E, their δ-invariants do not exceed 6.
Furthermore a singularity of multiplicity 4 cannot appear, since there is no real fiber
whose intersection points with a current curve C′ ∈ Sp(A3), C

′ → C1, converge to
one limit point (see Figure 16(c)). Then Lemmas 2.6 and 5.2 apply and prohibit
such a possibility.

Thus, C1 is irreducible, having 6 nodes, a singularity A5, and the almost fiberwise
type shown in Figure 15(c).

Step 2. Given 1 ≤ s ≤ 4, denote by Sps
(A5, A2s−1) ⊂ R(A9(6, 0, 2)) the stratum

formed by rational curves with singularities A5, A2s−1 and 6−s nodes of the almost
fiberwise isotopy type shown in Figure 17(a) and whose singular points outside the
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disk d′2 are in a fixed position ps. For example, the curve C1 obtained in Step
1 belongs to Sp1

(A5, A1). By [26; Proposition 2.4(b)] we can suppose that the
singularities ps are in general position (including the two points infinitely near
to singularity A5). We introduce the partial order in Sps

(A5, A2s−1) by setting
C′ ≺ C′′ if d0(C

′) and d′i(C
′), 1 ≤ i ≤ 7 − s, i 6= 2, are proper subsets of d0(C

′′)
and d′i(C

′′), 1 ≤ i ≤ 7 − s, i 6= 2, respectively, and d′2(C
′′) is a proper subset of

d′2(C
′). Using Lemma 4.2 as we did in Step 1, we derive that the familyMps,q(Cs) ⊂

Sps
(A5, A2s−1) is smooth and one-dimensional, and then applying Lemma 4.1, we

deduce that there exists a componentM ofMps,q(Cs)\{Cs} such that Cs ≺ C′ ∈M
(see C′ ∈M shown in Figure 17(a) by the dashed line).

As in Step 1, we obtain a curve Cs+1 ∈ Sps
(A5, A2s−1)\Sps

(A5, A2s−1), approx-
imated by a sequence of curves from {C′ ∈ Sps

(A5, A2s−1) | Cs ≺ C′}. We claim
that Cs+1 is irreducible and is attained as the disk d′2 shrinks to a point. We prove
this only for s = 4, since for s = 1, 2, 3 the same reasoning works well.

The set p4 consists of two points: of type A1 and A5 (for C4) which we denote
by p and q respectively (see Figure 17(b)). We denote a current curve approaching
to C5 along the family Sp4

(A5, A7) by C′, and we set d′i(C5) = limC′→C5
d′i(C

′),
i = 1, 2, 3. For a curve D and a subset Ω ⊂ F2, we define δ(D,Ω) as the sum of
δ-invariants of those singular points of D which belong to Ω.

We list below all possibilities of a non-reduced, or reducible curve C5 and bring
this to contradiction.

Case 1. C5 contains a multiple component T1 belonging to |H|, |H + F |, or
|H + 2F |. Then the intersection points of a current curve C′ with a generic real
fiber crossing the disc d′1 or d′3 move so that two points are approaching each other
and the other two run away towards E as C′ → C5 (see Figure 17(a)). Hence,
C5 contains T1 with multiplicity 2, and the real branch RT1 goes below the discs
d′1, d

′
3. Since T1 is smooth, and the lower arcs incident to p are approaching T1, we

derive, first, that p 6∈ T1 and, second, that these lower arcs, in the limit, doubly
cover a segment of the fiber Fp, passing through p. Hence, C5 splits off 2Fp, which
particularly excludes the option of T1 ∈ |H + 2F | and also yields that E ⊂ C5.

Case 1.1. C5 splits off 2E. Then the lower arcs of C′ incident to q are moving
towards E and also, in the limit, they doubly cover the fiber Fq through q (see
Figure 17(a)). Hence, C5 splits off 2Fq that leaves the only possibility T1 ∈ |H|.
In a neighborhood of q, choose local coordinates so that C4 = {y2 − x6 = 0}.
By construction, all curves in Sp4

(A5, A7) are locally given by g = 0 with g ∈
〈x6, x3y, y2〉 and the double fiber 2Fq is given by x2 = 0. Then T1 is given by
h(x, y) = 0 such that x2h2 ∈ 〈x6, x3y, y2〉, which yields that h ∈ 〈x2, y〉. Since
the singular points on ∂d′2 must take the limit position on T1, we derive that T1
intersects the disc d′2(C

′) for all C′. This fact together with T1 · C′ = 8 yields
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that T1 is quadratically tangent to the branches of C4 at the point q and the real
part RT1 is located as shown in Figure 17(b) by the dashed line. However, such a
shape of RT1 is impossible: moving T1 upward in the pencil of curves in |H| that
are quadratically tangent to the branches of C4 at q, we monotonically extend the
arc which is cut out of ∂d′2, and hence necessarily obtain more than 8 = T1 · C4

intersection points.

Case 1.2. C5 splits off E with multiplicity one (recall that C5 contains also the
double fiber 2Fp). Then C5 splits off the double curve 2T1, T1 ∈ |H|, and a curve
T ′
1 ∈ |H|, T ′

1 6= T1. Since T ′
1 is smooth, T1 must pass through q and cross the

disc d′2. Furthermore, T1 must be tangent to C4 at q. Indeed, otherwise, T1 is
locally given by h = 0 with h = x + λy + O(x2, y2), and T ′

1 is given by h′ = 0
with h′ = y+O(x, y2), but then h′h2 = x2y+ ... 6∈ 〈x6, x3y, y2〉. Then as above we
decide that RT1 must be located as shown in Figure 17(b), which is impossible.

Case 2. C5 contains the double component E and no double components from
|H|, |H+F |, or |H+2F |. Then the lower arcs of C′ incident to q are moving towards
E and as above, in the limit, doubly cover the fiber Fq through q (see Figure
17(a)). Similarly, the upper arcs incident to p approach E and simultaneously
doubly cover the fiber Fp through p. Thus, C5 splits off 2E, 2Fp, and 2Fq. The
remaining part T2 ∈ |2H| is reduced. Then we have δ(T2, d

′
2(C5)) = δ(C5, d

′
2(C5)) ≥

δ(C′, d′2(C
′)) = δ(A7) + δ(A1) = 5 which is impossible for a reduced curve in |2H|.

Case 3. C5 contains E with multiplicity one, a double fiber 2F , and a reduced
curve T3 ∈ |3H| disjoint from E. If the double fiber 2F intersects the disc d′2(C5),
the the upper arcs of the discs d′1 and d′3 must converge to E ∪ F (see Figure
17(a)). Since the left endpoint p ∈ p4 of the upper arc of d′3 is fixed, this arc
also approaches the fiber Fp, which means that C5 contains the fiber Fp as well
contrary to the assumption made. Hence, F does not intersect the disc d′2. Thus,
δ(T3, d

′
2(C5)) ≥ 5 and in addition T3 has either singularity A5 at q, if q 6∈ F , or

singularities at p and q if p 6∈ F , which finally yields δ(T3) ≥ 7 which is impossible
for a reduced curve T3 ∈ |3H| disjoint from E.

Case 4. C5 is reduced, reducible.

Case 4.1. C5 contains E and a reduced curve T3 ∈ |3H + 2F |, T3 6⊃ E. Note
that ET3 = 2. The situation when T3 transversally intersects E at two points
is forbidden by Lemma 2.5. Otherwise, C5 has at E ∩ T3 a simple singularity.
A deformation of C5 into C′ induces a nodal deformation of that singular point.
However, any nodal deformation of a simple singularity factors through a nodal
equigeneric deformation (cf. the proof of Lemma 5.2), and hence the deformation
C5 → C′ factors through a deformation C5 → E ∪ T ′

3, where T ′
3 ∈ |3H + 2F |

transversally intersects E at two points, which was forbidden above.

Case 4.2. C5 is reduced, C5 6⊃ E. We claim that C5 must have only ADE
singularities or singularities of multiplicity 3 with δ ≤ 7, and hence a contradiction
due to Lemmas 2.6 and 5.2.

Note that there is no real fiber such that all its intersection points with C′

converge to one limit as C′ → C5. Hence C5 cannot have singularities of multiplicity
4.

If C5 splits into two or three components, then δ(C5) ≤ 11, which together with
relations δ(C5, p) ≥ 1, δ(C5, q) ≥ 3, and δ(C5, d

′
2(C5)) ≥ 5, yields that δ-invariant

of singularities of C5 do not exceed 7 whence the required claim.
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If C5 splits into four components T
(i)
1 ∈ |H|, i = 1, 2, 3, 4, then in view of

T
(i)
1 · T (j)

1 = 2, the only non-simple singularity of multiplicity 3, which may occur
on C5 is J10.

Thus, C5 is irreducible, and hence is as asserted in Lemma. �

Lemma 5.4. There is no real rational algebraic curve C ∈ |4H| with singularities
A1, A5, A9 and the almost fiberwise isotopy type shown in Figure 15(b).

Proof. We argue on the contrary. Assume that there exists a curve C as described
in lemma. Using the Hilbert-Rohn-Gudkov method in the version of Section 4 (cf.
the proof of Lemma 5.3), we will prove that this assumption leads to the existence
one of the real rational curves of almost fiberwise isotopy types shown in Figure
14(a,b) that are prohibited by Lemma 3.1. Let p be the A5 singular point of C, and
q the remaining pair of singular points of C. In the notation of Step 2 in the proof of
Lemma 5.3, C belongs to the stratum Sp(A5, A9), in which we define the following
partial order: C′ ≺ C′′ if d0(C

′′), d′1(C
′′), and d′2(C

′) are proper subsets of d0(C
′),

d′1(C
′), and d′2(C

′′), respectively. By Lemma 4.2, the germ Mp,q(C) ⊂ Sp(A5, A9)
is smooth and one-dimensional. Furthermore, Lemma 4.1 applies (for example,
the verification of hypotheses of part (3) is similar to that performed in the proof
of Lemma 5.3). From relations (14), (15), and (16), we derive that there exists a
componentM ofMp,q(C)\{C} such that C ≺ C′ for all curves C′ ∈M (see Figure
17(c)).

As in the proof of Lemma 5.3 we obtain a curve Ĉ ∈ Sp(A5, A9) \ Sp(A5, A9),
approximated by a sequence of curves from {C′ ∈ Sp(A5, A9) | C ≺ C′}. We claim

that Ĉ is irreducible, and hence it takes one of the forms shown in Figure 14(a,b)
when either the disk d′1 shrinks to a point, or the nodal singular point arrives to
the fiber F0.

First, we note that Ĉ cannot contain E as component. Indeed, consider real
fibers F ′ which are close the fiber Fq, passing through the point q of type A5. Then

the intersection points of F ′ with the current curve C′ ∈ Sp(A5, A9), C
′ → Ĉ, do

not tend to E (see Figure 17(c)).

Second, Ĉ cannot contain a multiple component. Indeed, the movement of the
intersection points of C′ with the fibers F ′ discussed above shows that the multiplic-
ity of a multiple component must be 2. Furthermore, one of the intersection points
of C′ with a fiber crossing d′3(C

′) runs away towards E and does not approach other

three points; hence Ĉ may contain only one double component 2T1, T1 ∈ |H|. If
T1 does not pass through q (singular point of type A5), then the remaining part

T2 of Ĉ, which is a reduced curve from |2H|, must have singularity at least A5 at
q, what is impossible. Hence, T1 passes through q. Moreover, the movement of the
intersection points of C′ with the fibers F ′ shows that T1 must intersect each local
branch of C′ at q with multiplicity ≥ 3 being placed between them, and hence, in
view of (T1 · C′)q ≥ 6 and T1C

′ = 8, the curve T1 cannot intersect any of the discs

d′i(C
′), i = 1, 2. Hence, the singular point of Ĉ, which is the limit of the singularity

A9 of C′, is a singular point of T2, what is impossible, since a reduced curve from
|2H| cannot have singularity with δ-invariant ≥ δ(A9) = 5.

Finally, we have to exclude the case of a reduced, reducible curve Ĉ having
components from |kH|, 1 ≤ k ≤ 3, and this can be done in the same manner as we
did in Case 4.2 in the proof of the irreducibility of the curve C5 (end of the proof
of Lemma 5.3). �
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5.2. Prohibition of curves of types A′′(4, 0, 3), A′′(3, 1, 3), and A′′(3, 0, 3).

Suppose that there exists a smooth algebraic curve C ∈ |4H| of type A′′(4, 0, 3),
A′′(3, 1, 3), orA′′(3, 0, 3). Denote the arcs of the real branch of typeA by ρ1, ρ2, ρ3, ρ4,
numbering them from the top left to the bottom right in Figure 1. Let τa, τb, τc
be the components of the complement to this branch in RF2 \ (F0 ∪ E) which are
labeled by the respective letters a, b, c in Figure 1(right). Denote the disks bounded
by the ovals in the domains τa, τc by O

a
i , O

c
j respectively, numbering them from the

middle to the sides (i.e., towards F0).

Since dim |2H| = 8, through any 8 points of F2 \ E one can draw a curve,
belonging to |2H|. Using this observation, we can degenerate C into a curve with
≥ 8 nodes as follows. Put C0 = C. Given a degeneration Ck = {fk = 0} of
C with 0 ≤ k ≤ 7 nodes, we consider the pencil {fk + tg2k = 0}, t ≥ 0, where
{gk = 0} ∈ |2H| passes through the nodes of Ck, and the sign is chosen so that
the domain τb and the disks Oa

i , O
c
j grow, and the disk bounded by an oval in the

domain τb contracts when t grows in [0,∞[. Observe that, in this deformation, the
intersection points with F0 remain real until we encounter the first degeneration
Ck+1 (which necessarily occurs due to the strongly monotone changes of the real
geometry of the curve).

Let us analyze the geometry of Ck+1. Suppose that k ≤ 6 and Ck is irreducible
with k real nodes as its only singularities. By [25; Lemma 3.4] we can slightly
deform Ck bringing the nodes into a general position and making Ck general in the
linear subsystem of |4H| of curves having k fixed nodes. Then by [25; Lemmas 3.5
and 3.6], Ck+1 is either an irreducible real curve with k+1 real nodes or splits into
E ∪C′, where C′ ∈ |4H−E| is an irreducible curve transversally crossing E in two
points. We, however, can exclude the latter option by choosing the auxiliary curve
{gk = 0} ∈ |2H| passing through the k ≤ 6 nodes and the two intersection point
Ck ∩F0, which are close to E. Suppose now that k = 7, the curve C7 is irreducible
with 7 real nodes in general position, and C7 is generic among curves with 7 fixed
nodes. Again by [25; Lemmas 3.5 and 3.6], C8 is either an irreducible curve with
8 real nodes, or C8 = E ∪ C′, where C′ ∈ |4H − E| is an irreducible curve having
7 real nodes in general position and intersecting E transversally in two points, or

C8 = C
(1)
8 ∪C(2)

8 , where C
(1)
8 , C

(2)
8 ∈ |2H| are irreducible real curves intersecting in

8 real points. The second option is forbidden by Lemma 2.5.

(b)(a)

Figure 18

Suppose now that C is of type A′′(4, 0, 3), and C8 is an 8-nodal curve constructed
along the above algorithm. By Bézout bound to intersection with real fibers no two
disks Oa

i , O
a
i+1 or the disk Oa

4 and the arc ρ1 (resp. two disks Oc
i , O

c
i+1 or the disk

Oc
3 and the arc ρ4) can join via two nodes. Furthermore, no isolated node can

pop up in the domains τa and τc, and no loop on arcs ρ2, ρ3 can appear, since
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an appropriate smoothing of nodes (see Lemma 4.3) would lead to an (M − 1)-
curve of type A′′(5, 0, 3), A′′(4, 0, 4), or A′′(4, 1, 3) forbidden in [25, 26]. Hence, by
Lemmas 2.3 and 2.4, the only possible shape of the curve C8 constructed from C is

depicted in Figure 18(a,b). This curve C8 does not admit a splitting C
(1)
8 ∪C(2)

8 with

C
(1)
8 , C

(2)
8 ∈ |2H|, since it has a global real branch intersecting F0 in three points.

Thus, C8 is an irreducible elliptic curve. Consider the pencil {f8 + tg28 = 0} with
{g8 = 0} ∈ |2H| passing through the nodes of C8 and the signs chosen so that the
disks Oa

i , O
c
j grow as t grows in [0,∞[. It follows that we arrive to a contradiction,

since the geometry of the current curve changes in a strongly monotone way, and,
on the other side, no degeneration C9 is possible:

(i) A curve C9 containing the double curve E cannot occur, since the presence
of 8 nodes in F2 \E, among which seven are in general position, leaves the
only possibility C9 = 2E ∪ 2C′, C′ ∈ |H + 2F |. However then the pencil
f8+tg

2 will consists of only reducible curves (indeed, C9 = {h2 = 0} implies
f8+ tg

2
8 = (ag8)

2− (bh)2 = (ag8+ bh)(ag8− bh) for some a, b ∈ C) contrary
to the irreducibility of C8.

(ii) A curve C9 = E ∪C′, where C′ ∈ |4H −E| a reduced curve not containing
E, is forbidden by Lemma 2.5. A curve C9 = E ∪ C′ with a non-reduced
curve C′ ∈ |4H − E| not containing E is not possible either. Indeed, then
one would have C′ = C′

1 ∪ 2C′
2, where either C′

1 ∈ |H|, C′
2| ∈ |H + F |, or

C′
1 ∈ |H + 2F |, C′

2 ∈ |H|. However, in the former case, C′
1 is smooth, and

C′
2 passes through at most 6 nodes of C8 (by Bézout), and in the latter case,

C′
2 passes through at most 4 nodes of C8 (again by Bézout), while C′

1 may
have at most two singular points. It then follows that C9 cannot contain
E, and hence it cannot contain any fiber either. Thus, all components of
C9 belong to |kH|, k = 1, 2, 3, 4.

(iii) An irreducible curve C9 with ≥ 9 nodes is forbidden by Lemmas 2.3 and
2.4.

(iv) A curve C9 = C′ ∪ C′′, where C′, C′′ ∈ |2H|, cannot occur. Indeed, if C′

passes through all 8 nodes of C8, then by Bézout so does C′′, and hence all
curves in the pencil f8+tg

2
8 lie in the linear system spanned by F 2

1 , F1F2, and
F 2
2 , where F1, F2 span the pencil in |2H| of curves passing through Sing(C),

but this contradicts the irreducibility of C8. If C
′ has a singularity at some

node of C8, then by Bézout it passes through at most 4 additional nodes of
C8, and hence C′′ must be singular at 3 nodes of C8 and either pass through
two more nodes of C8, or be singular in one more node of C8, what is not
possible, since all but one nodes of C8 are in general position.

(v) At last, a curve C9 cannot split as C′ ∪ C′′, where C′ ∈ |H|, C′′ ∈ |3H|.
Indeed, then C′′ must have singularities at 4 nodes of C8 and pass through
the other 4 nodes of C8. If C′

8, C
′′
8 generate the pencil of curves in |2H|

passing through Sing(C), then by Noether’s (AF+BG)-theorem, C′′ belong
to the pencil spanned by C′

8G1, C
′′
8G2, G1, G2 ∈ |H|. It then follows that

C8 belongs to the linear subsystem in |4H| spanned by F 2
1 , F1F2, and F

2
2

as in the preceding case in contradiction to the irreducibility of C8.

Suppose that C is of type A′′(3, 0, 3) or A′′(3, 1, 3). We similarly construct
an 8-nodal curve C8. Notice, first, that the Bézout type restriction mentioned
in the preceding paragraph equally applies, and no isolated node can pop up in
the domains τa and τc, since otherwise we would get (via smoothing all nodes)
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either a curve of type A′′(4, 0, 3) prohibited above. However, if we encounter a
loop on arcs ρ2, ρ3 in the domain τb, say, as in Figure 19(a), we continue to move
along the corresponding pencil, turning the loop into an oval inside the domain τb.
Furthermore, if this oval apparently contracts to an isolated node, we also continue
to move along the pencil (so that the node disappears). Thus, by Lemmas 2.3,
2.4, and 2.5, we arrive to a curve C8 with the shape shown in Figure 8(a), maybe,
with an oval in the domain τb. By Lemma 2.1, this curve is reducible. Denote its
components by C1 and C2 as in Lemma 2.1.

(b)(a)

...

...

Figure 19

Consider the pencil C8 + tC2
2 = C

(t)
1 C2, oriented so that the domain τb and

the disks Oa
i , O

c
j grow as t increases in [0,∞[ (see Figure 19(b), where the moving

component C
(t)
1 , t > 0, is represented by the dashed line). The same arguments as

above show that further degeneration is impossible which completes the proof of
Theorem 1(a).

6. Smoothings of singularity X21 vs. curves on F2

A plane curve singularity X21 is a center of four smooth branches quadratically
tangent to each other. Up to a local (equivariant in the real case) diffeomorphism,
such a singular point is given by a function f(x, y) =

∑
i+2j≥8 aijx

iyj, analytic in

a neighborhood of the origin, where the lower (1, 2)-homogeneous form f8(x, y) =∑
i+2j=8 aijx

iyj is non-degenerate (i.e., has singularity only at the origin). Notice

that a04 6= 0, and the polynomial f̂8(x) := f8(x, 1) has no multiple roots.
Suppose that f (and f8) is real. Put Bδ = Dδ,x × Dδ,y ⊂ C2, where Dδ,x and

Dδ,y are closed disks of radius δ > 0, centered at the origin and located in the
axes x and y respectively. We can define an equivariant surjection Φδ : Bδ → F2,
which commutes with the rulings π : F2 → E and πδ : Bδ → Dδ,x, takes IntBδ

diffeomorphically onto F2 \ (F0∪E), takes each disk {τ}×Dδ,y onto a fiber F ⊂ F2

contracting {τ}× ∂Dδ,y to the point F ∩E, and takes the solid torus ∂Dδ,x ×Dδ,y

onto F0 by contracting each circle ∂Dδ,x×{x}, z ∈ Dδ,y, to a point and contracting
∂Dδ,x × ∂Dδ,y to the point F0 ∩ E.

Choose δ so that {f = 0} ∩ (Dδ,x × ∂Dδ,y) = ∅, and each open fiber of the
ruling πδ : Bδ → Dδ,x intersects each branch of the curve {f = 0} at one point
(we call Bδ a regular neighborhood of the singularity f = 0). By a smoothing of
a singularity f = 0 we understand a one-parameter real analytic family ψt = 0,
t ∈ [0, ε], ε > 0, such that ψ0 = f and for t 6= 0 the analytic sets ψt = 0 are smooth,
disjoint from Dδ,x×∂Dδ,y, and intersecting each open fiber {τ}×IntDδ,y, τ ∈ Dδ,x,
with multiplicity 4.

Two smoothings ϕ
(1)
t , t ∈ [0, ε], and ϕ

(2)
t , t ∈ [0, ε], of the singularity f = 0 are

called equivariant almost fiberwise isotopy (EAFI) equivalent, if {ϕ(1)
ε = 0} ∩ Bδ
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can be connected with {ϕ(2)
ε = 0} ∩Bδ by an equivariant C∞ isotopy of Bδ, which

keeps Dδ,x×∂Dδ,y and ∂Dδ,x×Dδ,y invariant and is such that the intersection with
each fiber of the ruling πδ : Bδ → Dδ,x consists of 4 points (counting multiplicities).

Theorem 5. Given a real curve singularity f = 0 of type X21 and a regular neigh-
borhood Bδ, for any its smoothing ψt = 0, t ∈ [0, ε], there exist a smooth real
algebraic curve C ∈ |4H| and an equivariant C∞ automorphism of F2, which com-
mutes with π : F2 → E and preserves F0 and E, and such that C is almost fiberwise
isotopic to Φδ({ψε = 0} ∩Bδ).

Remark 6.1. A similar result has been obtained for ordinary multiple singular
points of order ≤ 5 [29] and of order 6 [17]. We think that, in general, such a
statement is not true.

Proof. (1) The strategy of the proof is as follows.
The Viro patchworking construction [31; Section 1.7] (see also [32]) associates

with a real smooth curve C ∈ |4H| on F2 a smoothing of some real singular point
of type X21 related to the original curve C as asserted in Theorem.

So, we need to prove the existence of a real smooth curve C ∈ |4H|, which via
patchworking gives a smoothing which is EAFI-equivalent to the given one. To
this end, we invert the patchworking construction. Namely, given a smoothing
ψt = 0, t ∈ [0, ε], of the considered singular point, we, first, obtain a singular curve
C′ ∈ |4H|, whose singularities can be locally smoothed out so that the resulting
C∞ curve is almost fiberwise isotopy equivalent to Φδ({ψε = 0}∩Bδ), and, second,
prove that all possible local singularity smoothings are independently realizable by
variation of C′ in the linear system |4H|.

(2) Observe that there exists α ∈ R such that after the coordinate change
(x, y) 7→ (x, y + αx2) the coefficients of f8(x, y) satisfy the relation

32a04a80 − 2a23a61 6= 0. (29)

Indeed, the above coordinate change turns the left-hand side in (29) into

(16a04a42 − 6a223)α
2 + (24a04a61 − 4a23a42)α+ (32a04a80 − 2a23a61),

which vanishes identically only if f8 is the fourth power of a binomial. Since the
spoken coordinate change does not affect the statement of Theorem, we may assume
that (29) holds.

(3) Let

gt(x, y) =
∑

i,j≥0

bij(t)x
iyj , bij(0) =

{
aij, i+ 2j ≥ 8,

0, i+ 2j < 8,

be an analytic smoothing family. There are analytic functions α(t), β(t), γ(t), van-
ishing at 0 and such that gt(x + γ(t), y + α(t) + β(t)x) has zero coefficients of y3,
xy3, and x7. Indeed, the Jacobian at t = 0 of the corresponding system of equations
on α, β, γ equals 4a04(32a04a80 − 2a23a61) which is nonzero in view of (29). So, we
can assume that b03 = b13 = b70 ≡ 0.

(4) Fix some c0 > 0 and define τ(t) > 0 so that
∑

i+2j<8

|bij(t)|τ(t)8−i−2j = c0, t > 0. (30)
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Since
∑

i+2j<8 |bij(t)| > 0 and bij(0) = 0 as long as i+ 2j < 8, the function τ(t) is

well-defined and satisfies limt→0 τ(t) = ∞. In the family

τ(t)8gt(xτ(t)
−1, yτ(t)−2) =

∑

i+2j>8

bij(t)τ(t)
−(i+2j−8)xiyj

+
∑

i+2j=8

bij(t)x
iyj +

∑

i+2j<8

bij(t)τ(t)
8−i−2jxiyj ,

the first sum converges to zero and the second sum converges to f8(x, y) as t→ 0.
Moreover, in view of (30), there exists a sequence tn → 0, n = 1, 2, ..., such that
the third sum converges as well so that

lim
n→∞

τ(tn)
8gtn(xτ(tn)

−1, yτ(tn)
−2) = f8(x, y) +

∑

i+2j<8

aijx
iyj =: G(x, y) ,

where ∑

i+2j<8

|aij | = c0 > 0 and a03 = a13 = a70 = 0. (31)

(5) If G(x, y) = 0 is non-singular in C2, then it defines in F2 a smooth real curve
belonging to the linear system |4H| and EAFI equivalent to Φ({gt(x, y) = 0}) for
t 6= 0. Suppose that G(x, y) = 0 is singular in C2. Then

(i) G(x, y) = 0 has no singularity of type X21 in C2 in view of (31).
(ii) By construction, there is a (small) real deformation ofG(x, y), which smooths

out all singular points of G = 0 in C2 and, up to coordinate change, coin-
cides with the given smoothing family.

Denote by P(k) ⊂ C[x, y] the linear subspace spanned by the monomials xiyj with
i+ 2j = k, and put

P(k) =
⊕

i≤k

P(i), P(k) =
⊕

i≥k

P(i).

It follows from Lemma 6.2 below that P(8) induces a joint versal deformation of

all the singular points of G = 0 in C2, i.e., by a small variation of coefficients of the
monomials xiyj , i + 2j ≤ 8, one can independently realize prescribed (up to local
diffeomorphism) smoothing families for all singular points of G = 0 in C2. Thus, we

can obtain a polynomial G̃(x, y) =
∑

i+2j≤8 ãijx
iyj close to G(x, y), which defines

in F2 a real curve EAFI equivalent to Φ({gt(x, y) = 0}), t 6= 0. �

Lemma 6.2. Let G = 0 where

G(x, y) = f8(x, y) +
∑

i+2j<8

aijx
iyj and f8(x, y) =

∑

i+2j=8

aijx
iyj

be a reduced curve in C2 that has no singularity X21, and the quasi-homogeneous
polynomial f8 is non-degenerate (i.e. splits into the product of four distinct bi-
nomoials). Then the linear space P(8) ⊂ C[x, y] spanned by the monomials xiyj,
0 ≤ i + 2j ≤ 8, induces a joint versal deformation of all singularities of the curve
G = 0.



34 S. YU. OREVKOV AND E. I. SHUSTIN

Proof. As shown in Part (2) of the proof of Theorem 5, we can suppose that the
coefficients of f8 satisfy relation (29). Then we proceed in several steps.

(1) It is well-known that a versal deformation of each singular point (x0, y0) ∈
Sing(G = 0) is generated by any basis of the quotient C{x−x0, y−y0}/〈G,Gx, Gy〉,
where C{∗, ∗} denotes the ring of convergent power series, and 〈G,Gx, Gy〉 is the
ideal generated by G,Gx, Gy (Tjurina ideal). Thus, it is enough to prove the
surjectivity of the following two projections:

pr1 : C[x, y]/〈G,Gx, Gy〉 →
⊕

(x0,y0)∈Sing(G=0)

C{x− x0, y − y0}/〈G,Gx, Gy〉, (32)

pr2 : P(8) → C[x, y]/〈G,Gx, Gy〉.

(2) To prove the surjectivity of pr1, introduce the zero-dimensional subscheme
Z ⊂ F2, concentrated at Sing(G = 0) and defined by the local Tjurina ideal at each
point. Then we have an exact sequence of sheaves

0 → JZ/F2
(nD) → OF2

(nD) → OZ → 0,

D any ample divisor. Since for n≫ 0, H1(JZ/F2
(nD)) = 0, we get

H0(OF2
(nD))/H0(JZ/F2

(nD)) ≃ H0(OZ)

=
⊕

(x0,y0)∈Sing(G=0)

C{x− x0, y − y0}/〈G,Gx, Gy〉,

which, in fact, yields that pr1 is an isomorphism.

(3) Now we prove the surjectivity of pr2.
Performing a real coordinate change (x, y) 7→ (x, y+αx2) (which does not affect

the considered statement) we can set the coefficient a23 of x2y3 to zero, while
keeping a03 = a13 = 0 and the properties (i), (ii) of step (5) of the proof of Theorem
5.

Write G = f8 +
∑

k<8 fk, fk ∈ P(k), k ≥ 0, and put k0 = max{k < 8 | fk 6= 0}
(notice that k0 is well-defined, since G 6= f8).

Since f8 is non-degenerate, the derivatives f8,x, f8,y are coprime, which im-

mediately yields that the ideal 〈f8,x, f8,y〉 ⊂ C[x, y] contains the ideal P(11) =

〈xiyj, i+2j ≥ 11〉, and hence any polynomial in P(11) equals AGx +BGy modulo
P(10) with appropriate A,B ∈ C[x, y]. Thus, we complete the proof when showing
that any polynomial in P(s), s = 9, 10, can be represented as AG + BGx + CGy

modulo P(s−1) with some A,B,C ∈ C[x, y].

(3i) Suppose that either k0 < 7, or k0 = 7 and f7 6∈ SpanC{f8,x, xf8,y}. We
claim that in such a case

fk0
P(s− k0) + f8,xP(s− 7) + f8,yP(s− 6) = P(s) for s = 9, 10. (33)

Indeed, a violation of one of the two relations (33) enforces

fk0
∈ 〈f8,x, f8,y〉. (34)
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We demonstrate this in the case of k0 = 7 and s = 10; the other cases are treated in
the same manner. In view of dimP(10)/(f8,xP(3) + f8,yP(4)) = 1, the considered
situation reduces to equalities

xyf7 = A3f8,x + A4f8,y, x3f7 = B3f8,x +B4f8,y, Ai, Bi ∈ P(i), i ≥ 0.

Since f8,x, f8,y are coprime, we get

A3 = yA1, B3 = x2A1, A4 = x2B2, B4 = yB2,

and hence xf7 = αxf8,x + (βx2 + γy)f8,y, where γ = 0 due to a04 6= 0, and (34)
follows.

Now we show that (34) cannot hold. For k0 = 7, (34) would contradict the
assumption f7 6∈ SpanC{f8,x, xf8,y} made in the beginning of step (3i). For k0 = 6,
(34) would yield f6 = cf8,y, c 6= 0, contrary to the fact that a04 6= 0 and the
coefficient of y3 in f6 vanishes by construction. Finally, for k0 < 6, (34) is excluded
for the degree reason.

Having (33) proven, we proceed as follows. Pick an arbitrary polynomial Ps ∈
P(s), 9 ≤ s ≤ 10, and represent it as Ps = As−k0

fk0
+ Bs−7f8,x + Bs−6f8,y.

Then by Euler formula, the leading (1, 2)-homogeneous form of the polynomial
8G− xGx − 2yGy is (8− k0)fk0

, and hence

Ps =
8As−k0

8− k0
G+

(
Bs−7 −

xAs−k0

8− k0

)
Gx +

(
Bs−6 −

2yAs−k0

8− k0

)
Gy mod P(s−1),

and we are done.

(3ii) Suppose that k0 = 7 and f7 ∈ 〈f8,x, f8,y〉. Since a13 = a23 = 3, we have
f7 = αf8,x for some α ∈ C.

Assume now that there exists 0 ≤ m ≤ 6 such that

(8− k)fk = αfk+1,x for all m < k < 7, and f ′
m = (8−m)fm − αfm+1,x 6= 0.

The argument of Step (3i) shows that

f ′
mP(s−m) + f8,xP(s− 7) + f8,yP(s− 6) = P(s), s = 9, 10.

So, represent any polynomial Ps ∈ P(s) as Ps = As−mf
′
m + Bs−7f8,x + Bs−6f8,y,

and notice that the leading (1, 2)-homogeneous form of the polynomial 8G−xGx−
2yGy − αGx is f ′

m. Hence

Ps = As−m(8G− xGx − 2yGy − αGx) +Bs−7Gx +Bs−6Gy mod P(s−1).

It remains to consider the case when (8−k)fk = αfk+1,x for all k < 7. However,
then

G(x, y) = f8(x, y) +
∑

k<8

fk(x, y) = f8(x, y) +
∑

i>0

αi

i!

∂i

∂xi
f8(x, y) = f8(x+ α, y),

which contradicts the assumption that G(x, y) = 0 has no singularityX21 in C2. �
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Birkhäuser Verlag, Boston, Basel, Stuttgart, 1985.

3. E. Artal Bartolo, J. Carmona Ruber, J. I. Cogolludo Augustin, On sextic curves with big

Milnor number, Trend in Singularities, Trends Math., Birkhäuser, Basel, 2002, pp. 1–29.
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