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THE SYMPLECTIC PLACTIC MONOID, CRYSTALS, AND MV CYCLES

JACINTA TORRES

ABSTRACT. We study cells in generalised Bott-Samelson varieties for type C,. These cells are
parametrised by certain galleries in the affine building. We define a set of readable galleries -
we show that the closure in the affine Grassmannian associated to a gallery in this set is an MV
cycle. This then defines a map from the set of readable galeries to the set of MV cycles, which
we show to be a morphism of crystals. We further compute the fibres of this map in terms of
the Littelmann path model.

1. INTRODUCTION

This paper is part of a project which was started in [4] by Gaussent and Littelmann, the aim
of which is to establish an explicit relationship between the path model and the set of MV cycles
used by Mirkovié¢ and Vilonen for the Geometric Satake equivalence proven in [16].

1.1. We consider a complex connected reductive algebraic group G and its affine Grassmannian
G = G(C((t)))/G(CI[t]]). We fix a maximal torus T c G. The coweight lattice X¥ = Hom(C*,T)
can be seen as a subset of G. For a coweight A\, which we may assume dominant with respect
to some choice of Borel subgroup containing T, the closure X, of the G(C[[t]])-orbit of A in
G is an algebraic variety which is usually singular. The Geometric Satake equivalence identifies
the complex irreducible highest weight module L()) for the Langlands dual group GY with the
intersection cohomology of Xy, a basis of which is given by the classes of certain subvarieties of
X, called MV cycles. The set of these subvarieties is denoted by Z(\). The Geometric Satake
equivalence implies that the elements of Z(\) are in one to one correspondence with the vertices
of the crystal B(\). In [2], Braverman and Gaitsgory endow the set Z(\) with a crystal structure
and show the existence of a crystal isomorphism ¢ : B(A) = Z(\).

1.2. In [4], Gaussent and Littelmann define a set I'(yx )™ of LS galleries, which are galleries in
the affine building 7/ associated to G, and they endow this set with a crystal structure and an
isomorphism of crystals B(\) > T'(7,)"S. They view the latter as a subset of the T-fixed points
)LS

in a desingularization X, 5 X\ To each of these particular fixed points J € T(yx)™ corresponds

a Biatynicki-Birula cell Cs c ¥.,,. Gaussent and Littelmann show in [4] that the the closure 7(Cs)
is an MV cycle, and Baumann and Gaussent show in [I] that the map

L(7)" — Z())

0+~ w(Cs)

is a crystal isomorphism with respect to the crystal structure on Z(\) described by Braverman

and Gaitsgory in [2]. Tt is natural to ask whether the closures w(Cy) are still MV cycles for a more
general choice of fixed point §.
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1.3. 1In [5] they consider one skeleton galleries, which are piecewise linear paths in XY @z R. Such
galleries can be interpreted in terms of Young tableaux for types A, B and C. For G¥ = SL(n, C),
Gaussent, Littelmann and Nguyen show in [6] that for any fixed point 0 € E%, the closure 7(Cy)
is in fact an MV cycle. They achieve this using combinatorics of Young tableaux such as word
reading and the well known Knuth relations, and by relating them to the Chevalley relations for
root subgroups which hold in the affine Grassmannian G. In [20] it is observed that word reading
is a crystal morphism, and this allows one to prove that in this case, the map from all galleries to
MYV cycles is in fact a morphism of crystals.

It was conjectured in [6] that generalizations of their results hold for arbitrary complex semi-
simple algebraic groups, in terms of the plactic algebra defined by Littelmann in [T5]. It is with
this in mind that we formulate and state our results.

1.4. Results. We work with GV = SP(2n,C). We define a set T'(7x)® o T'(71)™ of readable gal-
leries, which have an explicit formulation in terms of Young tableaux. It is worth mentioning that
these galleries correspond to all galleries in type A, also called keys in [6]. Type C combinatorics
related to LS galleries has been developed by De Concini [3], Proctor [I7], King [9], Kashiwara-
Nakashima [8], Sheats [I8], Lakshmibai [I1] in the context of standard monomial theory, and
Lecouvey [13], among others. We use the description of LS galleries of fundamental type given by
Lakshmibai in [II], [I0]. We use the formulation given by Lecouvey in [I3]. There is a certain
word reading described in [I3] which we show to be a crystal morphism when restricted to readable
galleries.

We obtain results similar to those obtained in [6] concerning the defining relations of the symplec-
tic plactic monoid, described explicitly by Lecouvey in [13], as well as words of readable galleries.
These results together with the work of Gaussent-Littelmann [4], [5], and Baumann-Gaussent [I]
allow us to show in Theorem that given a readable gallery § € T'(7,)® there is an associated
dominant coweight v5 < A such that:

(1) The closure 7(Cs) is an MV cycle in X,;.
(2) The map

)
()= @ Z(us)
Jel'(7)R

0~ w(Cs)
is a morphism of crystals. We compute the fibers of this map in terms of the Littelmann path
model. Moreover, this map induces an isomorphism when restricted to each connected component.
We then provide some examples of galleries 6 € E% ~T'(72)® for which 7(Cjs) is not an MV cycle
in Z(vs).

1.5.  This paper is organized as follows. In Section 2 we introduce our notation and recall several
general facts about affine Grassmannians, MV cycles, galleries in the affine building, generalised
Bott-Samelson varieties, and concrete descriptions of the cells Cs in them. In Section 3 we introduce
crystal structure on combinatorial galleries, motivate our results in terms of the Littemann path
model, and define readable galleries as concatenations of LS galleries of fundamental type and
‘zero lumps.” From Section 4 on we work with G¥Y = SP(2n,C), where we recall some type C
combinatorics and build up to our main result, which we state and prove in Section 6. However,
the main ingredients of the proof, stated in Section 5, are proven in Section 7. In section 8 we
exhibit some examples in special cases where the image of a certain cell cannot be an MV cycle.
In the appendix we show a small technical result that we need.
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2. PRELIMINARIES

2.1. Notation. Throughout this section, we consider G to be a complex connected reductive al-
gebraic group associated to a root datum (X, XY, ®,®"), and we denote its Langlands dual by G".
Let T ¢ G be a maximal torus of G with character group X = Hom(T,C*) and cocharacter group
XY = Hom(C*,T). We identify the Weyl group W with the quotient N (T)/T, and will make
abuse of notation by denoting a representative in Ng(T) of an element w € W in the Weyl group
by the same symbol, “w” that we use to denote the element itself. We fix a choice of positive roots
®* (this determines a set ®V-* of positive coroots), and denote the dominance order on X and XY
determined by this choice by ‘<’. Let A c¢ ®* be the basis or set of simple roots of ® that is deter-
mined by ®*. Then the set A" of all coroots of elements of A forms a basis of the root system ®V.
Let (-, —) be the non-degenerate pairing between X and XV, and denote the half sum of positive
roots (respectively coroots) by p (respectively pY). Note that if A = ¥ canaa is a sum of positive
roots (respectively A =Y veavia@”) then (A, p¥) = ¥ jcana (respectively (p,A) = ¥ oveavia)-

Let B c G be the Borel subgroup of G containing T that is determined by the choice of positive
roots ®*, and let U c B be its unipotent radical. The group U is generated by the elements U, (b)
for be C, a € ®*}, and where for each root a, U, is the one-parameter group it determines. For
each cocharacter A € X" and each non-zero complex number a € C*, denote by a” its image A(a) € T.

The following identities hold in G (See [19], §6):
For any A e X¥,a e C*,beC, and o € P,

M Uq(b) = Ug(a'*Mb)a? (1)
(Chevalley’s commutator formula) Given linearly independent roots a, 8 € ®, there exist
numbers cffﬂ € {£1,+2,+3} such that, for all a,be C:
Ua(a) ' Up(b) 'Ua(@)Us(a) = [T Uiawjs(cy’s(-a)t’) (2)
i,jeN>0
where the product is taken in some fixed order. The cfj ﬂ,s are integers depending on «, 3,
and on the chosen order in the product.

2.2. Affine Grassmannians. Let O = C[[¢]] denote the ring of complex formal power series and
let IC = C((t)) denote its field of fractions; it is the field of complex Laurent power series. For any
C-algebra R, denote by G(R) the set of R-valued points. The set

G =G(K)/G(0)
is called the affine Grassmannian associated to G. We will denote the class in G of an element

g € G(K) by [g]. A coweight A : C* - T c G determines a point t* € G(K) and hence a class
[t)‘] € G. This map is injective, and we may therefore consider XV as a subset of G.

G(O)-orbits in G are determined by the Cartan decomposition:

G= | G(O)[t].
AeX Vi
Each G(O)-orbit has the structure of an algebraic variety induced from the pro-group structure of
G(0O) and it is known that for a coweight A € X¥>*:

GO = [ Go)]

pEXVE g
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We call the closure G(O)[t*] a generalised Schubert variety and we denote it by X,. This
variety is usually singular. In 23] we will review certain resolutions of singularities of it.

The U(K)-orbits in G are given by the Iwasawa decomposition:

G= || U]
AeXV
These orbits are ind-varieties, and their closures can be described as follows (see [16], Proposition

3.1 a.):

U [ ] = U U ) [#]

PN
for any A € X.

2.3. MV Cycles and Crystals. Let A € X¥'* and p € XV be a dominant integral coweight and
any coweight, respectively. Then by Theorem 3.2 a in [I6], the intersection U(KC)[t*]n G(O)[t]
is non-empty if and only if p < A, and in that case its closure is pure dimensional of dimension
{p, A+ 1) and has the same number of irreducible components as the dimension of the irreducible
representation L(A) of GV of highest weight A (Corollary 7.4 in [16]). Note that this makes sense
because XY may be identified with the character group of a maximal torus of GY. Explicitly,
XY 2Hom(TY,C*), where TV is the Langlands dual of T, which is a maximal torus of G¥ (see [16],
Section 7).

We denote the set of all irreducible components of a given topological space Y by Irr(Y).
Consider the sets

Z(N)p =L (U(K)[t*] n G(O)[t*]) and
Z0) = L] Z0),.
pnexv
The elements of these sets are called MV cycles. In [2], Section 3.3, Braverman and Gaitsgory
have endowed the set Z () with a crystal structure and have shown the existence of an isomorphism
of crystals B(A) —> Z(\). We do not use the definition of this crystal structure, but we denote by
fa; (respectively eg,) the corresponding root operators for i € {1,---,n}, where n is the rank of the
root system ®. See 3] below for the definition of a crystal.

2.4. Galleries in the Affine Building. Let 72 be the affine building associated to G and K.
It is a union of simplicial complexes called apartments, each of which is isomorphic to the Coxeter
complex of the same type as the extended Dynkin diagram associated to G. The affine Grassman-
nian G can be G(K) equivariantly embedded into the building J%//, which also carries a G(K)
action. Denote by ®* the set of real affine roots associated to ®; we identify it with the set ® x Z.

Let A = XY ®z R. For each (a,n) € ®*T, consider the associated hyperplane

Hian) ={z €A {a,z)=n}

and the positive, respectively negative half spaces

Hi, ) ={reA:{a,2) 2n}
Heny ={zeA:{a,z) <n}.
Denote by W2 the affine Weyl group generated by all the affine reflections Sq,n With respect to

the affine hyperplanes H, ,. We have an embedding W — W2 given by s, — 5q,0- The dominant
Weyl chamber is the set
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C'={zehA:{a,z) >0 VaecA}

and the fundamental alcove is in turn

Af={zeC":(a,z) <1 Vaed'}.

There is a unique apartment in the affine building J*% that contains the image of the set of
coweights XY c G under the embedding G - J aff " This apartment is isomorphic to the affine
Coxeter complex associated to W2, its faces are given by all possible intersections of the hyper-
planes H, ) and their associated (closed) positivg and negative half—spaces H(*am). It is called thg
standard apartment in the affine building J aff The action of W2 on the affine building J off

coincides, when restricted to the standard apartment, with the one induced by the natural action
of W2 on A; the fundamental alcove is a fundamental domain for the latter.

To each real affine root (a,n) € ®*! is attached the one-parameter additive root subgroup
Ua,n) of G(K) defined by b = U, (bt") for be C. Let A € X¥ and b e C. Then identity (IJ) implies
that:

Ugamy (0)[#1] = [Ua (bt™)1] = [*Ua (bt V)], (3)

and [tAU, (bt~ )] = [¢] if and only if U, (bt"~(**)) c G(0), or, equivalently, (o, \) < n. Hence,
the root subgroup U, ,) stabilises the point [t*] € G = J* if and only if ) € Hzom). For each
face F in the standard apartment, denote by Pr,Ur and Wil its stabilizer in G(K), U(K) and
W respectively. These subgroups are generated by the torus T and the root subgroups Ua,n)
such that F c Hfa )’ the root subgroups U, ) ¢ Pr such that a € ¥, and those affine reflections
S(a,n) € W such that F c H(q,n), respectively. See [4], Section 3.3, Example 3, and [I], Proposi-
tion 5.1 (ii).

Example 2.1. Let G¥ = SP(4,C), then ®* = {a1, a2, a1 + ag,a1 + 2a3}. In the picture below the
shaded region is the upper halfspace HErOQ 0)" Let F be the face in the standard apartment that
joins the vertices —(ay + as) and —ay.

The subgroup Pr is generated by the root subgroups associated to the following real roots

(a1,m) n>-1

(ag,n) n>1

(a1 +ag,n) n>-1
(a1 +2a2,n) n>0
(—a1,n) n>2
(—ag,n) n>0
(-(a1 +az),n) n>1

(-(a1 +2a9,n)) n>1
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The stabiliser Uy is generated by the root subgroups associated to those previously stated roots
(a,n) such that o € ®* is a positive root and W%ﬁ = {S(a1+as,-1), 1}

A gallery is a sequence of faces in the affine building 7

v =(Vo=0,Eo, Vi, Eg, Vis1) (4)
such that:

1. For each i€ {1, k}, V, cE; > V;,;.

2. Each face labelled V; has dimension zero (is a vertex) and each face labelled E; has
dimension one (is an edge). In particular, each face in the sequence ~ is contained in the
one-skeleton of the standard apartment.

3. The last vertex V.1 is a special vertex: its stabiliser in the affine Weyl group W2 is
isomorphic to the finite Weyl group W associated to G.

Denote all the set of all galleries in the affine building by 3. If in addition each face in the sequence
belongs to the standard apartment, then ~ is called a combinatorial gallery. We will denote
the set of all combinatorial galleries in the affine building by I'. In this case, the third condition is
equivalent to requiring the last vertex Vi,1 to be a coweight. From now on, if = is a combinatorial
gallery we will denote the coweight corresponding to its final vertex by -, in order to distinguish
it from the vertex.

Remark 1. The galleries we defined are actually called one-skeleton galleries in the literature.
The word gallery was originally used to describe a more general class of face sequences but since
we only work with one-skeleton galleries in this paper, we leave the word ‘one-skeleton’ out.

2.5. Bott-Samelson varieties. Let v be a combinatorial gallery (notation as above). The fol-
lowing lemma can be obtained from [5]: Lemma 4.8 and Definition 4.6.

Lemma 1. For each j € {1,---, k} there exist elements w; € W{‘,ff and a unique combinatorial gallery
/Yf = (VgaEguvfu "'7V£+1)
with each one of its faces is contained in the fundamental alcove such that w0~~~wTE{' =E,.

If two galleries have the same associated gallery we say that the two galleries have the same
type. We will denote all the combinatorial galleries that have the same type as a given combina-
torial gallery v by I'(y). The map

WL x o x WT > T(y) (5)
(wo, -+, wi) = (Vo,woEq, wo Vi, wowi Eq, -+, wo - wi, V1) (6)

induces a bijection between I'(y) and the set [T;_, W%,H /W]j“:ﬁ, it is in particular finite. For a proof
see [B], Lemma 4.8.

Definition 2.2. The Bott-Samelson variety of type 77 is the quotient of
G(O) x Py x PV£
by the following left action of PEf X oo X PEf:
0 k

(P, P15 k) - (905 ak) = (G0P0> Py Q11+ Pite QkDE)-
We will denote it by 3.

The pro-group structure of the groups Py s, Py, assures that ¥, is in fact a smooth variety. To

vis
each point (go,-,gr) € G(O) x Py;s x - x Py,s one can associate a gallery
1 k
(V{,90E8, 90V, 9091V, -+, go---gx VL)
This induces a well defined injective map 7 : ¥, s = 3. With respect to this identification, T - fixed
points in s are in natural bijection with the set I'(y/) of combinatorial galleries of type 7.
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Let w € A be a fundamental coweight. We define a particular combinatorial gallery that starts
at 0 and ends at w. Let V{,---,V§ be the vertices in the standard apartment that lie on the open
line segment joining 0 and w, numbered such that Vi, lies on the open line segment joining V¢’
and w. Let further E¥ denote the face contained in A that contains the vertices V¢ and V¥,;. The
gallery

Yw = (0 = VL(’JJv L(’)Jv Lluv lev"'v 7;7 7;+1 :W)
is called a fundamental gallery. Galleries of the same type as a fundamental gallery ~,, will be
called galleries of fundamental type w.

Now let A € X¥'" be a dominant integral coweight and 7, a gallery with endpoint the coweight
A and such that it is a concatenation of fundamental galleries, where concatenation of two com-
binatorial galleries v; * 72 is defined by translating the second one to the endpoint of the first
one. (Note that it follows from the definition of type that if v,v are two galleries of the same
type as d, respectively n, then v % v has the same type as ¢ * 1. Actually, if v = 1 * - % 7,. then
D(y)={01 % *0,:8; €T(vy;)}. ) Then the map

Evf — X\ (7)

(90, 9r] = go---gr [t ]

is a resolution of singularities of the generalised Schubert variety Xj.

Remark 2. That the above map is in fact a resolution of singularities is due to the fact that a
gallery such as the one considered is minimal (see [5], Section 5 and Section 4.3, Proposition 3).
This resembles the condition for usual Bott-Samelson varieties associated to a reduced expression:
see [], Section 9, Proposition 7.

Remark 3. The map ([7l) makes sense for any combinatorial gallery ~ : in this generality one has
a map Eyf o gag()a "'7gT[tu’Y]'

2.6. Cells and positive crossings. Let 7o, : J* — A be the retraction at infinity (see [4],
Definition 8). It extends to a map r.,; : £,; - (7). The cell Cs = T;}((S)((S e I'(7)) is
explicitly described in [], [B] by Gaussent-Littelmann and [I] by Baumann-Gaussent. In this
subsection we recollect their results; we will need them later. These results are formulated in
terms of galleries of the same type as vy; we formulate them for any combinatorial gallery. The
proofs remain the same, and therefore we do not provide them, but refer the reader to [5] and [4].
First consider the subgroup U(K) of G(K). It is generated by the elements of the root subgroups
U(a,n) for a € @ a positive root and n € Z. Let V c E be a vertex and an edge (respectively)
in the standard apartment, the vertex contained in the edge. Consider the subset of affine roots
<I>(+V)E) = {(a,n) € @ : e d*,V ¢ Hiany, Ei ¢ H(’am)} and let Uy gy denote the subgroup of
U(K) generated by U, for all (a,n) € (I)ErV,E)' The following proposition will be very useful in
Section [7l It is stated and proven as Proposition 5.1 (ii) in [IJ.

Proposition 2.3. Let V c E be a vertex and an edge in the standard apartment as above. Then
U(v,g) is a set of representatives for the right cosets of Ug in Ug. For any total order on the set
(I)ZV B)’ the map

(ap)peay, ., = 11 Us(ag)

Be@ZFVYE)

is a bijection from cl®&v.ml onto Uw,g)-

Now let v be a combinatorial gallery with notation as in (). For each i € {1,-+k}, let Uy, :=
U(v,.e,)- For later use we fix the notation ®] := &3, .

Example 2.4. Let G¥ = SP(4,C) as in Example[2dland « = ~,,. Then Uy is generated by the root
subgroups associated to the real roots (aq,0), (g +as,0), (a1 +2a,0). If 4 = ¢ is the gallery with
one edge and endpoint as, then Uy is generated by the groups associated to (aw,0), (a1 + 2as,0).
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s

Nl
(AN AN
|
|

H(al/»o) H(al +a2,0) H(:)zl +2ai2,0)

Now write § = (Vo,Eq,,Ex, Vis1) € T'(97) in terms of Definition and Lemma [ as ¢ =
[00,++,0k]. This means J; € Wi‘}fﬁ and 50-~-5jE§ = E;. A beautiful exposition of the following

description of the cell Cs can be found in [5], Proposition 4.19.
Theorem 2.5. The map
U= Uy, x Uy, x - x Uy, —> 5.

(uo, -+ ug) = [wodo, 0y w1600, (8o -0k_1) " updo-0k ]

is injective and has image Cs.
The following corollary can be found in [6] as Corollary 3 for G¥ = SL(n,C). Note that in

particular it implies that um(Cs) = 7(Cs) for all u € Uy,,.
Corollary 2.6. The following equality holds.

7(Cs) = Uy, Uy, [t*°] = Uy, - Uy, [t7°]
Proof. By Theorem the image of the map

Uy, x - x Uy, = Xy
(ug, -ty ) = [0, 8 u18001, -+, 8o+, 1O+, ]

is contained in the cell Cs and is surjective. The corollary follows since
00 0 by s = M- O

3. CRYSTAL STRUCTURE ON COMBINATORIAL GALLERIES, THE LITTELMANN PATH MODEL, AND
LAKSHMIBAI SESHADRI GALLERIES

Let A € X*V be a dominant integral coweight and let L(\) be the corresponding simple module
of G¥. To L(\) is associated a certain graph B()) that is its “combinatorial model”. It is a
connected highest weight crystal, which means that there exists by € B(\) such that e, by =0 for
all i€ {1,---,n—1}. The crystal B(\) also has the characterising property that

dim(L(\),) = #{b e B(\) : wt(b) = pu}.
See below for the definitions. After recalling the notion of a crystal we review the crystal structure

on the set of all combinatorial galleries T'.

3.1. Crystals. A crystal is a set B together with maps
€a;s fa; :B = Bu{0}(the root operators),
wt B - XV
for i € {1,---,n} such that for every b,0’ e B and i € {1,--,n—1},b" = e, (b) if and only if b = f,, ('),
and, in this case, setting
€i(0") =max{n:e} (b) #0}
and
@i (b") = max{n: fgi(b") +0}
for any b" € B, the following properties are satisfied.
(1) wt(b') = wt(b) + o
(2) ¢(b) = €i(b) + (v, wt(D))
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A crystal is in particular a graph, which we may decompose into the disjoint union of its connected
components. Each element b € B lies in a unique connected component which we will denote by
Conn(b). A crystal morphism is a map F : B — B’ between the underlying sets of two crystals B
and B’ such that wt(F(b)) = wt(b) and such that it commutes with the action of the root operators.
A crystal morphism is an isomorphism if it is bijective.

3.2. Crystal structure on combinatorial galleries.

Definition 3.1. For each i € {1,---,n} and each simple root «;, we recall the definition of the root
operators f,, and e,, on the set of combinatorial galleries I' and endow the set of combinatorial
galleries with a crystal structure. We follow Section 6 in [4] and Section 1 in [2]. We refer the
reader to [7] for a detailed account of the theory of crystals.

Let v = (Vo,Eo,V1,E1, -+, Eg, Vii1) be a combinatorial gallery. Define wt(y) = p,. Let
Mg, =m € Z be minimal such that V.. € H,, n) for 7€ {1,k +1}. Note that m <0.

Definition of f,;: Suppose (i, ) > m +1. Let j be maximal such that V; € H,, ,,) and let
j <r<k+1 be minimal such that V,. € Hi, m+1). Let

E; ifi<y
E} = {S(a,m)(Bi) ifj<i<r
toay (E;) ifizr
and define
fou(’y) = (V67E{)vV,lvE,lv"'vE;vV;Hl)'
If (o, py) <m+1, then fo, () =0.

Definition of e,,;: Suppose that m < -1. Let r be minimal such that the vertex V.. € H,, ) and
let 0 <j <7 maximal such that V; € Hiq, m+1)- Let

E; ifi<y
E; = S(ai,erl)(Ei) ifj<i<r
taiv (Ez) ifi>r

and define
eai('}/):(VaaEé}u 17 17"'7E,r=v;c+l)'
If m =0 then eq, () = 0.

Remark 4. It follows from the definitions that the maps e,,;, fo, and wt define a crystal structure
on I'. Note as well that if v is a combinatorial gallery then fq,(7y) and eq,(7) are combinatorial
galleries of the same type (as long as they are not zero). We say that the root operators are type
preserving. See also [4], Lemma 6.

3.3. The Littelmann path model and Lakshmibai Seshadri galleries. Readable gal-
leries. Let v be a combinatorial gallery that has each one of its faces contained in the fundamental
chamber. We call such galleries dominant. By Theorem 7.1 in [14] the crystal of galleries P(7)
generated by + is isomorphic to the crystal B(u,) associated to the irreducible highest weight
representation L(/,) of GY. In its original context [14] it is known as a Littelmann path model
for the representation L(u.). We say that a combinatorial gallery 7 is a Littelmann gallery if
there exist indices 1,---, %, such that eail---eaw(v) =1 y* is a dominant gallery. If p1\+ = pus+ and
€ai, €y, (V) =75 €0y, " €a,, (0) = 0 for two Littelmann galleries v and J we say that they are
equivalent.
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Let A € XV* be a dominant coweight and ) a gallery that is a concatenation of fundamental
galleries and that has endopoint A (as above). We denote the set of combinatorial LS galleries
(short for Lakshmibai Seshadri galleries) of same type as yx by I'™S(yy). Littelmann galleries
generalise LS galleries enormously. In particular, all LS galleries are ‘Littelmann’ - see [14], Sec-
tion 4. Moreover, this set T'"(«y,) is stable under the root operators and has the structure of a
crystal isomorphic to B(A). It was proven by Gaussent-Littelmann in [4] that the resolution in
([@ induces a bijection T™5(yy) = Z(\) which was shown to be a crystal isomorphism in [I] by
Baumann-Gaussent. We use this heavily in the proof of Theorem[6.2] See Definition 18 in [4] for a
geometric definition of LS galleries, and Definition 23 in [4] for an equivalent combinatorial charac-
terisation that for one skeleton galleries agrees with the original definition by Lakshmibai, Musili,
and Seshadri (see for example [12]) in the context of standard monomial theory. We will give a
combinatorial characterisation of LS galleries of fundamental type in the case GY = SP(2n,C),
omitting therefore the most general definitions.

We finish this section with a question. Let 7 be any combinatorial gallery with each one of its

edges contained in the fundamental chamber. Then the map ¥, - G,[go,, gr] = go~~~gT[t“£] is
still defined.

Question. Does this map induce a crystal isomorphism P () = Z(p+)?

This question was answered positively in [6] and [20] for G = SL(n,C). In the rest of this paper
we do so as well for G¥ = SP(2n,C) and v a readable gallery.

Definition 3.2. A readable gallery is a concatenation of its parts: LS galleries of fundamental
type and galleries of the form (V,Eq, V1,E1, Va) (we call them zero lumps) such that both edges
Eq and E; are contained in the dominant chamber and such that the endpoint V5 = 0 is equal to
zero. We denote the set of all readable galleries by I'"?, and if a combinatorial gallery ~ is fixed,
by I'(7)® the set of all readable galleries of same type as 7.

For G" = SL(n,C) all galleries are readable; this is due to the well known fact that in this case
fundamental coweights are all minuscule. In the next sections we will describe readable galleries
explicitly for G¥ = SP(2n,C) and show that they are Littelmann galleries. They are also more
general than galleries of type v, for a gallery 7, that is a concatenation of fundamental galleries -
this means they belong to a larger class of galleries, but not that they contain I'(yy).

Remark 5. It follows from Lemma 8 in [4] that readable galleries are stable under root operators.

4. “TyPE C” COMBINATORICS

4.1. Symplectic keys and words. A symplectic shape
d=(dy,dys1)

is a sequence of natural numbers d; < n. An arrangement of boxes of shape d is an arrangement
of r columns of boxes such that column s (read from right to left) has d, boxes.

Example 4.1.

An arrangement of boxes of symplectic shape (1,1,2,1).
Consider the ordered alphabet
Ch={1<2<-<n-1l<n<m<- <1}

A symplectic key of shape d is a filling of an arrangement of boxes of symplectic shape d with
letters of the alphabet C,, in such a way that the entries are strictly increasing along each column.
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Example 4.2. A symplectic key, for n > 5, of symplectic shape (1,3,2,1).

|T1 3|

5

|m\m N

We denote the word monoid on C,, by We, . To a word w = wy---wy, in We,, we associate a symplectic
key %, that consists of only one row of length k, and with the boxes filled in from right to left
with the letters of w read in turn from left to right. For example, the word 12 corresponds to the
key . Denote the set of all symplectic keys associated to words by I'(wor).

4.2. Weights and coweights. Consider R™ with canonical basis {e1,---,&,} and standard inner
product (—,—) (in particular (g;,£;) = d;;). From now on we consider the root datum (X, ®,X", d)
that is defined by:

d = {ﬂ:Ei,Ei + Ej}i,jz{l.,u-,n}
2a

(o))
X={veR": (v,a")eZ}

XV ={veR": (a,v) € Z}.

oY ={a":=

Indeed the sets X and XY are free abelian groups which form a root datum together with the
pairing (—, —) between them and the subsets ® ¢ X and ®¥ ¢ XV. We choose a basis A ¢ & given
by
A={a;=¢;—¢jp1;an=¢6p:1€{l,-,n—-1}},
hence the set
A ={a) =¢;—€i11,0,, =2ep i€ {1, ,n—1}}

is a basis for &Y. Then X" has a Z-basis given by {w;}ic(1,.... n}, Where

wi=€1+-+eg 1<i<n.
Then G =SO(2n +1,C) and G" = SP(2n,C).

4.3. Symplectic keys associated to readable galleries. The aim of this section is to assign a
symplectic key to every readable gallery.

4.3.1. Readable blocks. For a subset X ¢ C,,, we denote the corresponding subset of barred elements
by X := {z : x € X}, where, for i unbarred, i = i.

Definition 4.3. Let 7 be a symplectic key. We call .7 an LS block if the arrangement of boxes
associated to its type consists of only one box or if there exist positive integers k,r,s such that
2k +r+ s <n, and disjoint sets of positive integers

A={a;:1<i<r,a1 <<ap}
B={bj:1<i<s,by<--<bs}
Z={z:1<i<k,z1 <<z}
T={t;:1<i<k,t; <<t}
such that 7 consists of two columns: the rightmost one (respectively the leftmost one) is the

column with entries the ordered elements of the set {T,Z,A,B} (respectively {Z, T,A,B}), and
such that the elements of T are uniquely characterised by the properties

tr =max{te€C,:t<zg,t ¢ ZUAUB} (8)
tjfl = Inax{t € Cn 1t < Inin(zj,l,tj),t ¢ ZUA UB} for j <k. (9)
We say that 7 is a zero block if there exists a non-zero integer k such that .7 consists of two

columns, both of k boxes; the right-most one is filled in with the ordered letters 1 < -+ < k and
the left-most one, with k < --- < 1. A symplectic key is called a readable block if it is either an
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LS block or a zero block. A readable key is a concatenation of readable blocks. Now assume
that d = (d1,--,dg+1) is such that dy < - < dg+1. A symplectic key of shape d is called an LS
symplectic key if the entries are weakly increasing in rows and if it is a concatenation of LS
blocks. We denote the set of LS symplectic keys of shape d as T'(d)"S.

Example 4.4. The symplectic key 2

is an LS block, with

2|1

A=B=g,7={2},T={1}.

1.
is a zero block.

-
=1l
= vl

The symplectic key .

is not an LS block. The symplectic key

2

Remark 6. A pair of columns that form an LS block is sometimes called a pair of admissible
columns. The original definition of admissible columns was given by DeConcini in [3], using a
slightly diferent convention than Kashiwara and Nakayima’s (which is the one we use here). The
map, given by Lecouvey, that translates the two can be found in [I3] at the end of Section 2.2.

To a readable block 7 we assign a gallery v as follows. If .7 consists of only one box filled in
with the letter [ € C,,, then we define Vi, V{ =¢;, By = {tV{,t€[0,1]}, and

V7 = {VovaOyvvly}
If not, then its columns are filled with the letters I{ < -+ <1} and I < - < I3 respectively. We then
define

7 1

V7 = S e

VY =ep +tep +ep+ote

> = 1 tEs 2

Elg = line segment joining Vi and V.

and
YT = (VoyaEOyuvlvaly)'

Example 4.5. Let n =2 and v = (Vy, Eo, V1, E1, V3) where Vg =0,V = %(51 +e2), Vo =€1+eo and
the edges are the line segments joining the vertices in order. Below is a picture of the associated
gallery 7. to the symplectic key J£".

'Y(}(:(VO,EO,Vl,El,VQ); '%/

To a readable key we associate the concatenation of the galleries of each of the readable blocks
that it is a concatenation of (from right to left). Given a symplectic shape d, we will denote the
set of all readable keys of shape d by T'(d)®. (This set may be empty.) Let d be a shape such that
T'(d)? # 0. Then it must have the form

d=(d",d™m)

where d' = 1;,1; for [; > 2 and d" =1 if [; = 1. For instance, in Example B4] all symplectic keys
have shape (2,2). To such a shape d we associate the dominant coweight

)‘i =Wy Tt Wy,
For example, to the shape (2,2) is associated the coweight ws. The following proposition follows
from Lemma 2 in [5].
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Proposition 4.6. The map
Ur" () =1
da

T =7

is well defined and is a bijection. Moreover, if dy < --- < di41 then this map induces a bijection

1:1
s (d) < FLS(Flel e X Yo, )-

Remark 7. Zero lumps are not necessarily of fundamental type: this follows from Lemma 2 in
[5] for a zero lump with k& uneven in the above description. This is why readable galleries are not
necessarily of the same type as a concatenation of fundamental galleries. This also means that
there can be two readable keys of the same shape but such that their associated galleries are not of
1)1
the same type! For example, take n > 3. Then the key 7 =| 2|2 |is LS and 4 is of fundamental
313

type Yws. The key J# = is a zero block. Its associated gallery, v, is not of fundamental

S5 I T )
)

type (see Lemma 2 in [5]).

5. THE WORD OF A READABLE GALLERY

The word of a block & = C;C,. (C; is the left column; C, the right) is obtained by reading first
the unbarred entries in C, and then the barred entries in C;. We denote it by w(#) € W, . For
an LS block this is the word of the associated single admissible column defined by Kashiwara and
Nakashima - see [13], Example 2.2.6.

Definition 5.1. Let v be a readable gallery associated to the key £, which we may write as a
concatenation of blocks

H =By By
The word of v (or of &) is w(By)---w(%1). We denote it by w(v.x) (or w(x)).

Example 5.2. Let

M

%1: - —7%2:7

ol
-

and

121|

H =B B =

|
=

Then w(%) = 22,w(%2) =1, and w(%") = 122.

We have the following result about words of readable galleries, which we prove in Section[ll We
will use it in Section [G.2] It is in this sense that such galleries are called readable.

Proposition 5.3. Let v and v be combinatorial galleries and .#" be a readable key. Then

W(CV*’M(%)*V) = F,(C’Y*'Y,%{*V)'

5.1. Word galleries. We associate a (readable!) gallery ~,, of the same type as v, * - * Y,
——
m times

to a word w € We, of length m - it is the gallery ~.,, associated to the readable key J#,. We
denote the set of word galleries in this case by 'y, . Below we recall the crystal structure on
the set W, as described by Kashiwara and Nakashima in [8], Proposition 2.1.1. The set of words
We,,, just like the set W,, is in one-to-one correspondence with the set of vertices of the crystal of
the representation ®;cz20 V;‘fl, where V,, is the natural representation L(w;) and hence inherits its
crystal structure. Proposition [5.5] says that this structure is compatible with the crystal structure
defined on galleries in Section Bl
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Definition 5.4. Let w € C,, be a word and ¢ € {1,---,n}. To apply the root operators e,, and
fa; to w one first obtains a word consisting of letters in the alphabet {+,—-,@}. The word will be
obtained from w by replacing every occurence of i or i + 1 by (+), every occurence of i + 1 or i by
(-) and all other letters by @. This word s(w) is sometimes called the i-signature of w. Erase all
symbols @ and then all subwords of the form +-. Repeat this process until the i-signature s(w)
of w has been reduced to a word of the form

s(w) = (=)"(+)".
To apply fa, (respectively e,,) to w, change the letter whose tag corresponds to the rightmost
(=) (respectively to the leftmost (+)) from i+ 1 to i and from i to i + 1 (repectively from i to 4 + 1
and from i + 1 to i).

Proposition 5.5. The crystal structure on words from Definition (4] coincides with the one
induced from Definition B11

For a proof, see Section 13 of [I5]. It also follows directly from the definitions.

5.2. Word Reading is a Crystal Morphism. This subsection is the ‘symplectic’ version of
Proposition 2.5 in [20]. Since the root operators are type preserving (see [B.I]), the set of words
We, is naturally endowed with a crystal structure. The following proposition will be useful in
Section This result was shown for LS blocks by Kashiwara and Nakashima in [§], Proposition
4.3.2. They show that word reading induces an isomorphism of crystals from B(wg) onto the
subcrystal of ®;ez., B(w1)® generated by the tensor product ® - ® . We show that for
readable galleries the proof is reduced to this case.

Proposition 5.6. The map
FR i) chn
Yoo = Yw(Kx)
is a crystal morphism.
Proof. Let v be a readable gallery and let
Y3 = (VO,%’EO@’V?’E,?,V?)
be one of its parts, associated to the readable block Z#; we write

Hw(B) 1 Hw(B) Ko (28)
VYt ) = (VO an b0t Vi .

If

w(%) = grgshy--hy
for g; and h; unbarred, then V;-%/“’(@) = 5;1 €g;, Where x; = g; for 1 <i < s and x4 = hiforl<i<r.
Let

h(j) = (@, V)
W () = (@ V).
Then there exist dy < 5,5 <ds < s+ 1 such that
h(0) for0<j<d;
h'(5)=4h(1) fordy <j<ds
h(2) fordo<j<r+s+1

From this we conclude that it is enough to consider readable blocks. As mentioned previously, this
was shown in [§] for LS blocks. Hence let .# be a zero lump - it has word w(.%£) = 1---kk---1 - and
let a; be a simple root. Then, since the galleries associated to .Z and w(.¥) are both dominant,

Jar(L) = e, (L) = fa,(W(L)) = ea, (w(.2)) = 0. O
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Example 5.7. Let n = 2 and Z be the readable block ; 2| Then w(AB) = 22. To calculate f., (A),

1

2|2

note that my, =-1,j = 1, r = 2, hence f,, (%) = . Similarly, fa, (w(%)) =21 =w(f1(B)).

T|T

5.3. Readable galleries are Littelmann galleries. We begin with a lemma.
Lemma 2. Let v be a readable gallery. Then v is dominant if and only if () is dominant.

Proof. Since the entries in the columns symplectic keys are strictly increasing, it follows from the
definition of word reading that if v is a dominant readable gallery then w(~) is also dominant.
Now let « be a non-dominant readable gallery. Then there is a readable block 4 = C;C,. such that
v =11 * Yz * N2 with 71 dominant and 7; * 7 not dominant. This block can’t be a zero lump
(they are dominant) - so it must be LS. Let A,;B,Z, T be the sets described in Definition 3] The
entries of C,. are the letters in AUZUBUT and the entries of C; are the letters in AUTUBUZ.
Now, [y, +v, may be dominant or not. If it is, then, since FYsoy svg) = Mg sy the word gallery
Yw(m#ve) 18 Not dominant, and this implies that 7, is not dominant either. Now assume that
Bnyayg = My + Zaa - Zsb
aeA beB
is dominant, but that the gallery 7y * v is not. The last three vertices of this gallery are

Vi1 = Uy € ct (10)
1
Vi=png +=(D ca+ D= Y ep— ) ¢CT (11)
2 acA z€Z beB teT
Vi1 = fiy, + Zaa - Zsb e C*. (12)
acA beB

Let dy <--- < d,41 be the ordered elements of AuZ and let f; < -+ < fsyx be the ordered elements
of BuZ. We have

w(B) = dy-dpi fork 1.
We claim that the weight

r+k
Hny + ngi = My ¥ Zga + ZEZ’
i=1 acA z€Z
which is the endpoint of 7 * v4,...q,,, and therefore a vertex of 1 * v,,(#), is not dominant. To see

this, assume otherwise:

r+k

Ly + D €+ 2 €5 €CF.

acA z€Z

Since the dominant Weyl chamber C* is convex, this means that the line segment that joins g,

and p,, + Y €4+ X €, is contained in C*, in particular the point
acA z€Z

L +%(25a+ Ye.)eCr

acA z€Z
belongs to the dominant Weyl chamber. The dominant Weyl chamber has, in this case, the
following description in the coordinates e1,--,&,:

n
C*={D pici:pi €Rsp & p1 > -2 py}.
iz

Write

n
Ly = D Gi€i
=1
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We will now show that f,, + %( Yea+t Ye— Yep— 2 ep) € Ct. This would contradict our as-
acA z€Z beB teT
sumption and therefore complete the proof.

For every i € {1,---,r}, we have t; < z; < j for every j € {1,--,n} such that ¢; < j. Since

Ly + %( Yea+ Ye.)eCh, we know therefore that
acA z€Z

1
QjSin‘*ESQtia

which implies, since ¢, € Z, that

—_

1
: < A+ =< Qg — —.
qj < 4z 2 qt; 5

Now let be B, and let j € {1,--,n} such that b < j. Since (cf. [I2)),

[ + Y. €a— »,p€CT,

aeA beB
if j € (ZuT)¢, then this implies
q; = Qb 9

If j e ZU'T then, as before, by the definition of an LS block we may assume that j =t € T. But
this means g; < gy, therefore ¢; — 1 < qp - % All of these arguments imply

1
[y + §(Z€a+ Zaz - Zsb— Zat) eCT,

aeA z€Z beB teT
which contradicts ().

As in Chapter 2 we have the following lemma.
Lemma 3. A readable gallery v is dominant if and only if e,, (v) =0 for all i € {1,---,n}.

Proof. Notice that for a word w € We, and «; a simple root, ey, (#;,) = 0 means that to the right
of each i+ 1 in £, there is at least one ¢ which has not been cancelled out in the tagging and
subword extraction process described in Definition 5.4l This is equivalent to the gallery v, being
dominant. Lemma 2] and Proposition imply the desired result. O

Proposition 5.8. Every readable gallery is a Littelmann gallery.

Proof. Let V,, be the vector representation of SP(2n,C). Then the crystal of words W, is isomor-
phic to the crystal associated to T(V,) = @jez,, V& see for example Section 2.1 in [I3]. Now let y
be any readable gallery. Then there exist indices i1, %, such that eq, --eq,, (Vw(y)) is a highest
weight vertex, hence dominant, by Lemma Since word reading is a morphism of crystals by
Proposition (.6} Vo(ea,, oy, (1)) = Cas, " "Caiy (Yw(y))- It follows from Lemma 2l that eq, --eq,; (7)

is dominant. O

Definition 5.9. The symplectic plactic monoid P¢, is the quotient of the word monoid We
by the ideal generated by the following relations

(R1) For z # T
yrz=yzx forzx<y<z

rzy=zaxy forzx<y<z
R2) Forl1<z<nand z <y <Z:
Y
yrx-lz-l=yzz

r-lx-ly=xxy
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(R3) o o
a1y 2 z bs...bl = Q1A bs...bl
for a;,b; € {1,---,n},i € {1,---,max{s,r}}, such that a; < --- < a,, by <+ < bs, and such that
the left hand side of the above expression is not the word of an LS block.
If two words wy,ws € W, are representatives of the same class in W, we say they are symplectic
plactic equivalent.

Example 5.10.
1221~ 11~ @
112~ 121
Remark 8. Relations (R1) are the Knuth relations in type A, while relation (R3) may be under-
stood as the general relation which specialises to 11 = @. Note that the gallery ~,, associated to
w = 11 is a zero lump. This definition of the symplectic plactic monoid is the same as Definition

3.1.1 in [I3] except for relation (R3). The equivalence between the relation (R3) above and the
one in [I3] is given in the Appendix.

The following Theorem is due to Lecouvey and it is proven in [I3].

Theorem 5.11. Two words wi,ws € W, are symplectic plactic equivalent if and only if their
associated galleries vy,,, and 7, are equivalent.

Together with the results we have recollected in this section, Theorem B.IT] implies the following
proposition.

Proposition 5.12. Two readable galleries v and v are equivalent if and only if the words w(7)
and w(v) are symplectic plactic equivalent.

Proof. Two readable galleries v and v are equivalent if and only if, by definition, there exist
indices 41, i such that the galleries eq, +€qa, (7) and eq, ~€q,;, (v) are both dominant and have
the same endpoint. By Lemma [] this is true if and only if vy (e, en. (7)) @A Ya(en, wea, (v))
iy e, i e,
are also both dominant with the same endpoint. By Proposition [5.6] we have w(eq,, - €q;, (9)) =
€ai, " *Cay, (w(7s)) for any readable gallery . This means that the previous sequence of equivalences

is also equivalent to Yy, (y) ~ Ya(») Which by Theorem [E.ITlis equivalent to w(vy) = w(v). O

The following theorem is originally due to Kashiwara and Nakashima (see [8]). For this particular
formulation, see Proposition 3.1.2 in [I3].

Theorem 5.13. For each word w in W, there exists a unique symplectic LS key 7 such that
w~w(T).

The following proposition will be proven in Section [7l It will play a fundamental role in the
proof of Theorem [6.2]

Proposition 5.14. Let v and v be combinatorial galleries and let w; € W, be two plactic
equivalent words. Then

F(CV*’le*V) = W’(C'y*yw2>¢-1/)
6. READABLE GALLERIES AND MV CYLES

The following result (which holds in higher generality) wa shown by Gaussent-Littelmann (a. is
an instance of Theorem C in [4]) and Baumann-Gaussent (b. is an instance of Theorem 5.8 in [I]).

Theorem 6.1. Let d = (dy,-+,d,) be a symplectic shape such that T'(d)™® # @ and consider the
desingularization 7 : ¥4 — X, .
a. If 6 € T'(d)"™ is a symplectic LS key, the closure 7(Cs) is an MV cycle in Z()\g). This

induces a bijection T'(d)™® ST Z(Aa)-
b. The bijection ¢g4 is an isomorphism of crystals.
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Given a readable gallery 7 and a dominant coweight A € X¥'* | let

nly = #{v e nT(y) = A},
and let

X’\;’; = {)\ e XVt nif + O},

Theorem 6.2. Let § ¢ I'(7/)® be a readable gallery, and (3,,7) the corresponding Bott-
Samelson variety together with its map 7 to the affine Grassmannian as in (B)). Let 6% be the
gallery that is the highest weight vertex in Conn(d). This gallery is dominant and readable by
Lemma [B] and Remark [l respectively. Then

a. m(Cs) is an MV cycle in Z(fs+) -
b. The map

R Pof
PO = @ Z(us)
Sel(y/)R
§ > m(Cs)
is a surjective morphism of crystals. The direct sum on the right-hand side is a direct sum
of abstract crystals.
c. If C is a connected component of I'(y/ )R, then ¢|c is an isomorphism onto its image.

d. The number of connected components C of T®(y7) such that ¢, (C) = Z()) is equal to

A
n_ .
~f

e. Given an MV cycle Z € Z()),, the fibre gp;} (Z) is given by

P (Z) = {0 €T (V) 10,0 (6) =2} = {6 e TR (Y ) sy ~ v 2}
where 7;)2,2 is the unique LS key which exists by Theorem [6.1]

Proof. Let 6 be a readable gallery. Then by Theorem there exists a (unique) LS key v such
that § ~ v. By Proposition B.I12] the words w(d) and w(v) are plactic equivalent. Propositions
B.I4 and (53] together with Theorem [B.11] then imply that

m(Cs) =7(Co),

which, by Theorem implies that 7(Cs) is an MV cycle in Z(ps+),,- The map o, in b. is
surjective by Theorem and Theorem above. Now let r be a root operator, and let 7
be the corresponding root operator that acts on the set of MV cycles. Then by Proposition [5.3]
Proposition (.6, Proposition [5.14] and Theorem we have:

7T(CT('y)) = T‘—(C’Yw(r('y))) = T‘—(C’yw(r(u))) = 7"—(Cr(u)) =7(m(Cy)) = 7ﬁ(w(cv))
This completes the proof of b. Pat c. of Theorem follows immediately, since every connected
component C is crystal isomorphic to the corresponding component consisting of the LS galleries
equivalent to those in C. Parts d. and e. follow from Theorem 7.1 in [I4]. This is also discussed
in Section
O

7. COUNTING POSITIVE CROSSINGS

In this section we provide proofs of Propositions 5.3l and (.14l We begin with analysing the tail
of a gallery in[.Il In[.2] we calculate an example in which it can be seen how to apply it. Then in
we prove Proposition [5.3] and in [[.3] we prove Proposition 5.4l We also wish to establish some
notation that we will use throughout. Recall our convention ¢7:= —¢; for [ € C,, unbarred. We will
write, for I, s,d,m € C,, c;’; 4m for the constant ¢z, . ..~ in Chevalley’s commutator formula (),
and ¢y, ¢l for el io  cZlic, o, respectively. (Each time we use such notation a total order
will be fixed on the set of positive roots.)
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7.1. Truncated Images and Tails. Let v be a combinatorial gallery with notation as in ({]) with
endpoint the coweight y, and let 7 < k+1 such that V., is a special vertex; we denote it by p, € XV.
By Corollary we know that the image m(C,) is stable under Uy.

Proposition 7.1. The r-truncated image of ~
TZ = UJUL, U [t]
is Uy, -stable, i.e. for any ue U, , uT5" =T:".

Proof. By @), we know that t#rUyt™#r = U, . On the other hand, we may also consider the
r-truncated gallery

72T = (V67 EB, T V;c—rJrl)v
which is the combinatorial gallery obtained from the sequence

(V’r‘uE’I‘7V’I‘+17 "'7Ek7Vk+l)

by translating it to the origin. Since V, is a special vertex, we also have t“TUZZTt_““" =U/,,. This

gallery has endpoint f1, -yt and is in turn a T-fixed point of a Bott-Samelson variety (2, 7"). Let
uweU,, and u' =t"# uth € Uy. Then:
uTs" = ulU)U] U [tH]

- u/ngT B Uzj [tuw —Hr ]

(by Corollary m = tHr UgZT . UZi: [tﬂw—ﬂr] _ T,ZYT

For later use let us fix the notation

T5 = Uyy- Uy,
one may then write

m(Cy) = TfYTT,ZYT.

Remark 9. This Proposition is proven for SL(n,C) in [6], Proposition 3. The proof we have
provided is exactly the same, except for the restriction of only being able to truncate at special
vertices.

Example 7.2. Let n =2. Consider the symplectic keys

1

-

1]

212

and their words

Note that
Vi * Ywa ~ Yws * Yy
since both 7., * Y, and Y,, * 7w, are contained in the fundamental chamber and have the same
endpoint wy + we; one checks that

foqfazfal (FYWI *7002) =Yon
and

falfa2fa1(7w2 *’le) =V
Therefore v ~ V. Lemma [ and Proposition then imply that v, () ~ Yw(rs) (or it
can also be checked directly using relation R2 in Theorem .11l with y = = 2). Now consider
combinatorial galleries v and v. The galleries v * v, * v and 7y * v, * v are T-fixed points in the
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Bott-Samelson varieties (E(V*Wlw)f,w) respectively (E(WW%W)MW’). The galleries v,,(.x;) and
Yw(#:) that correspond to their words are T-fixed points in

"
(Z(V*le*wwl*wwl*l’)f’ﬂ- )
We show that

W(Cv*%el*V) = W"(vawu«l)*u) = W'(C'y*'vw<x2)*u)-

We use the same notation as in (@) for v. Since for any combinatorial gallery 7, (a,n) € ®]*7 if

k+1
and only if (o, n - (@, 1y)) € ®J, we may assume that v = @. Since Yo, Yors, Yo () a0 Yo (1a)
have the same endpoint €9, this also implies that T'Zyizl*v = T'Zyi@*v = T,Zyi(%z)ﬂ, = T,Zyi(%)w. By

Proposition 23] for a’,v’,c',d" € C

T(Cryn) = Uler, 1) (@)U ves, 1) () Utey,0) () Uty 12,00 (4) TS, s
By Chevalley’s commutator formula (2] and applying Proposition ZTto U, ., 1)(e) € Ug,,

W”(wa(ygl)w) =
U(el,-1)(a)U(51+52,-1)(b)U(el-sg,-n(€)U(52,o)(C)U(51+52,o)(d)Tii(%)w
= U,y (a+ ey, (=) Uiy ey, 1) (b + €137, (=€) ") Uey.0) (U e 425,00 (DU ey o5, 1) (€) T, 1o
= Uy -y (a+ e, (=) Ueyen,-1) (b + €137, (7)) Uz 00 (U e 4,00 () T 1o
c m(Cr iy #v)
for a,b,c,d,e € C. Choosing a=a’',b=b",c=c',d=d',e=0, we have
m(Cyy) © W,,(C'vw(xl))-

Hence in this case W(CW%) = w"(va(%)). Similarly, for {a”,b”,c",d" "} c C,

T (Copygysv) = U(gz,o)(a")U(eﬁsQ,o)(b")U(sl-ez,-n(6")U(52,o)(C")U(sl+52,o)(d")Tii(%)w =
Uger -0 (@717 (€)W, ey -1y (e1 757 (=€")E ) U ey 0y (0 + €YU e aen 0 (07 +dVT5
c ﬂ-(C'YJ(l*u)'

Hence the open subset of 7(C.,,.,,) given by a # 0,b# 0,c # 0,d # 0 is contained in 7 (C,, . +v)-

7.2. Proof of Proposition 5.3l We want to show that if v and v are combinatorial galleries and
# is a readable block,

T(Couyww) = T (Conyyry o )-

Proof. We assume v = &; we may do so by the argument given at the beginning of Example[7.2] Let
& be an LS block and let A = {ay,-,a,},B={b1,~bs},Z={z1,-,2} and T = {t1,-+-, ¢} be the
subsets of {1,---,n} from Definition that determine J#". We will use the notation d; < -+ < d,1x
to denote the ordered elements of ZU A, and f1 < --- < fg4 the ordered elements of BuZ. We also
write

Y = (Vo,Eo, V1, E1, V2).
The proof is divided into Lemmas [ and Bl below.
Lemma 4. Let v be a combinatorial gallery and JZ" be a readable block. Then
T(Crppyir) ET(Crppinr)-
We first need the following claim.
Claim 1.

/ 111 /1 >2k+1+8
n (C%W)*V) c Uopfk+s"'Pf1T’Yw<%>*V
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where

P;;” = H U(slfsb,O)(klE) H U(ﬁt*Eb,O)(ktB) H U(safsb,l)(kag) forbeB

1¢ZUAUBUT; teT<b acA<b
I<b
P = [ Utrenykiz) [T Ugee. 1y (kez) [T Ugepoe. -1y (Kpz) for 2 € Z
1¢ZUAUBUT; teT<= beB<#
I<z

Proof of Claim 1. The points of ©'(C,, ,,«v) are of the form

]P)dl .. .]Pdr+k ]P)kars .. ]P)fl T22k+’r‘+s

Yw(x)*V
where
1
Pq = U(Ed,o)(gd) H U(Ed—sz,o)(gdl_) H U(€d+€z;0)(9dl) H U(€d+€z»1)(9dl)
d<l<n 1¢(ZUA)<d le(ZUA)<d

_piv
=P%

PE = SB H U(srsb,())(gll;) H U(st—sb,O)(gtB) H U(Ea*5b,1)(gal_7)

1¢ZUAUBUT; teT<b aeA<b
I<b
1
Sl; = H U(sblfsb,())(gb’l;) H U(gz—gb,l)(ng)) € UO
b’eB<b 2e7<b
P:=J: J] Ugeey(92) T Ueoer-1)(962) T Uteyoe.,m1)(g02)
1¢ZUAUBUT; teT<z beB<#
l<z
=piv
Jz = H Uep-c,,0)(gaz) H U(ez/—sz,())(gz’i) € Up.
acA<z 2leZ<z

21

(20)

for de AuZ, z €Z, and b € B. All the terms in J; commute with P% for 2z’ € Z>* and with ]P’%”
for b e B>*. All the terms in S; commute with ]P’}:,’ for b’ € B>®. For 2’ > b it commutes with all
terms of P except for the term U(ey-c.,,-1)(gvzr). However, commuting Sy with this term (using
Chevalley’s commutator formula[2]) produces terms U(.__. , 0)(*) and U(,,,_., _1)(*). Out of these
terms, U.__. , 0)(*) commutes with P% for _z’ € 7Z>% and with IE”%” for be B>*, and U,,, ., —1)(*)
is a term of the form of those appearing in PY’. Therefore (and since the the terms that appear in

]P’l%” and PY are the same as Pg and IE”; respectively) concludes the proof of Claim [

Claim 2. There is a dense subset of ]P’}f; ]P’}fl’ Tii’f;ffy that is contained in the subset

_ _ m>2k+r+s
PPy 7P 7. 15, oyrr © T(Cripnn);

where

Pre= [ Ue-eoni) I Ugeeo0(vs) €Uy,
1¢ZUAUBUT, 1¢ZUAUBUT,
teTl<t beB,l<b
Pri= T1 Uren0)(¥5) T1 Utcazy1)(vap) € Uvy
beB; aeA<b
teT<b
]P)%,Z = H U(stfsz,fl)(vti) H U(sbfsz,fl)(vbi) € UV17
teT<z beB<#

for v;; e C,beB and z € Z. (It is indeed a subset by Corollary 2.0])
Note that T22k+r+s = T2, ., and that

Y () *V RV
u= H U(El—Et;O) (vlf) € U:U“Y% :
1¢ZUAUBUT,
teTl<t

O
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We have the following equalities

>2k+r+s  _

Pr P s “'P%/JST’M(,%)*V -
74 >2 _
]P P T,YY*U =
2
]P) P” T>;{/>¢-V

where, for z € Z and b € B:

]P’f;' = H U(sl—sb,O)(glE) I_I U(srsb,o) (5155) H U(sa—sb,l)(gaﬁ) c.f (IH)

1¢ZUAUBUT; teT<b aeA<b
I<b
]P),z’, = H U(al—az,—l)(gli) H U(at—az,—l)(gti) H U(ab—az,—l)(gbi) c.f (M)
1¢ZUAUBUT; teT<# beB<z
I<z
§p = v + Z Cst s (—uip) v
I<t<b
teT
&z=piz + Z Cllzl,l)zli(—/)lz’)vz'z + Z lb b ( flb)vbz
z'e€Z I<b<z,
beB
plz = Z cllf’ltz(—vlg)vtg (for z € Z)
I<t<z, ’
teT
Stz = vtz
§bz = Vpz
& = Vg

To prove Claim [2] we must set open conditions on the parameters k;; such that the system of
equations defined by v;; = §;; has a solution in the variables v;;. Setting v:z := ktz and vpz = kpz
this is reduced to setting conditions on the k;; so that the following system can be solved:

1,1 N\ -
kg = v + Z Clgytg(_vlt)ktb (21)
I<t<b,teT
1,1 ~ 1,1
kiz = piz - Z Clgﬁbg(”lef Z G, tb( o) kg ) (22)
I<b<z,beB I<t<b,
teT
piz= Y, llt o5 (~vip) ks (23)
I<t<z,teT

Lines (1)) and 22)) above define a linear system of as many equations as variables: the variables are
{3 }igauBuT et U HieAuBUZUT >t there is one equation for each 1b,] ¢ AUBUT; b € B>, for each
12,1 ¢ AUBUT; z € Z°!, and note that by definition of an LS block the sets {Iz,l ¢ AUBUT;zeZ!}
and {lt,s ¢ AUBUT;b e B} have the same cardinality (¢; is the maximal element of the set
{l¢ AUBUT,s < tjs1,8 < 2;}). Therefore the system has a solution as long as the matrix of
coefficients has non-zero determinant, which imposes open conditions on the k' s. Hence Claim
is proven. Now, to finish the proof of Lemma [ note that if the k] ;s satisty the open conditions
established by Claim 2] then

111 11 >2k+1+8
]P)fms ]P)flT’Yw(K)*” < W(C’Y%*V)’

and therefore Proposition [l implies that

k
UO]P/// ]P,/// T’>Y2 (I‘Z:’f c 7T(Cry‘,g H,),
which implies Lemma [4l Now we show the second contention towards Proposition [5.3]
Lemma 5. Let v be a combinatorial gallery and # be an LS block. Then

T(Crper) € W,(CWw(%)*V)




THE SYMPLECTIC PLACTIC MONOID, CRYSTALS, AND MV CYCLES 23

Recall that
7(Coyn) = UG VU7V T22

Vow#v*

Notice that Uj”* ™ c Uy and that all generators of U]**" also belong to Uy except for those of the
form U, e, —1)(viz) or Uie,se, —1)(veer) for t,t" € T,z € Z7t, and vz, vy € C. Hence, since, again,

T2, = T;mf;;fu all elements of 7(C,,, «,) belong to
Up H U(stfsz,fl)(vtf) H U(5t+st/,fl)(vtt’)T'Zyi]:Z;Sw (24)
teT t,t’eT
zeZ>t

Now consider

>2k+r+s
H U(az+at170)(kzt’) H U(at—az,—l)(ktZ)T»Yw(%)*y
t'eT,zeZ teT,zeZ>t

which is a subset of W'(C%(%)w) (by Proposition [T]) because
H U(52+5t70)(kzt) € Up and

teT zeZ
>2k+r+s
tI_’II‘ U(st—sz,—l)(ktz)T;m;;V c W,(C’Ywnm*”)'
zeZ>t
We have
H U(az +at170)(kzt’) H U(at—az,—l)(ktZ)T?yi]:Z;su = (25)
t'eT,zeZ teT,zeZ>t
H U(5t+st/,fl)(§tt’) H U(stfsz,fl)(ktf) H U(sz+st/,0)(th’)T'Zyi]:Z;—Su (26)
t,t’eT teT,zeZ>t t'eT,zeZ
et/
H U(5t+st/,fl)(§tt’) H U(Etfizﬁl)(ktZ)T’Zyile;*SV (27)
t,t’eT teT,zeZ>t
t+t!
where
Cr= ), Czt e (he)kes+ ) Czt’ tz( Kt )Kiz- (28)
27>t zeZ>t

The equality between ([25]) and (28) is due to Chevalley’s commutator formula (2)) and the equality
between (20) and (27)) is obtained by using Proposition [(.Iland U(._4c,, 0)(kzt) € Uy, . Now fix
an element in (24]). Setting kiz = vz defines the linear equations

Ut = Z Czt vz (k) vps + Z Czt’ tz( Kz )vez
zeZ>t’ zeZ>t
in the variables k., for z € Z and ¢t € T. There are more variables than equations: for each equation
indexed by a non ordered pair (;,t;) there are the variables v.;, and v, for z >t and 2" > ¢ (which
always exist by definition of an LS block); hence the system has solutions as long as the matrix
of coefficients has non-zero determinants. This imposes an open condition on the parameters v;s.
Hence for such vz, v, kez = v4z, and solutions k;;, for the latter equations we have

H U(at az,—l)(vtz) H U(8t+8tr —1)(Utt )T;i]z;r;jy =

teT t,t’eT
zeZ>t

>2k+r+s ! .
H U(az+at/ 0) kzt’) H U(at —£2, —1)(ktz)T’yw(l,g)*v cm (C’Yw(%)*”)7
t'eT, teT
z€Z z5Z>'

Proposition [Z.1] then implies

Uo [T Uge-e. -y (iz) TT Ugeriey -1y (o) T2, € 7 (Coppy iy o)
teT t,t’eT
zeZ>t

this completes the proof of Lemma [ and hence of Proposition 5.3l



24 JACINTA TORRES

Now let % be a zero lump. This means there exists k > 1 such that the right (respectively left)
column of .# has as entries the integers 1 < --- < k (respectively k < --- < 1); its word is therefore
w(#) = 1---kk---1. This means, in particular, that the truncated images Tii’f%)w = Tfﬁwy are
stabilised by Ug, by Proposition [Z.1l We have

w *U w * 2 k
71J(C’Yw(%)*”) :Ug “0 "'U;kgg) VT?Yi(x)*V
by Theorem Clearly all the subgroups U?w(mw cUgfor1<l<k For0<j<k-1,the
generators of UZL‘.’”W are all of the form U ¢, o, ;) for I < k-j. In particular the gallery

V1o T has crossed the hyperplanes H. ., . ) once positively at m = 0 and once negatively
at m = 1, which means that ny; =0, U ¢, . n,_y(a) = U, _c,_. 0)(a) € U, for all a € C. Hence

/ _ 1w Yy Yw() *Y 22k
™ (C’Yw(yg)*v) = UO UQk—l T’Yw(,;m*l’

_ m>2k
- T’Yw(,;()*l’

— TZQ

Yoo}V

In

T(Copnn) = U7 "UT TS,
we have U]**” = {Id} and UJ*" c Uy, therefore
> >2k
7"'(C’mww) = T;i«*u = T;i(x)*'/
SINCE [l = fly, s -
7.3. Proof of Proposition [5.14l
Proof of Proposition [5.14 Let v be a combinatorial gallery.

Relation R1. For z + :
a)yxz=yzx for x<y<z

b)rzy=zxzy for xz<y<z

Lemma 6. Let wy =y x zand we =y z x, ws=x 2y, and wy = z x y for z #+ . Then

a)ﬂ(cvwl ) = W(C%QW)
b)W(C'ywSW) = W(C’yw4*V)

Proof. For the proof we recall the notation e; = -, and7 =i for any i € {1,---,n}. Also note that
Tiiﬂ, all coincide for i € {1,2,3,4}; we will denote them by T%. We divide the proof of Lemma
in three cases.

Case 1: z<y<z

Claim 3. If z#gyand y#2:
1. W(wal *v) = UOU(aw—ay,—l)(vmg)Tw
ii. 7T(C'yw2 *y) = UOU(Ezfsy,fl) (’UI’Q)U(Ezfsz,fl) (’Umg)Tw
iii. W(vas >H,) = UOU(Eyfsz,fl)('Uyg)Tw
iv. W(C%% *V) = UOU(szfsz,fl) (’Umi)U(syfsz,fl) (in)Tw-



THE SYMPLECTIC PLACTIC MONOID, CRYSTALS, AND MV CYCLES 25

Proof of Claim[3. We first remark that, regardless whether x,y, and z are barred or unbarred, the
roots €, — €,,€y — €2, and e, — €, are always positive. Now we recall the notation from Theorem
2.9
7(Coy ) = U VU UV
Assume that z # § and y # .
i. We have U, _c, —1)(vay) € U™ for any v,y € C, hence
UOU(szfsy,fl) (’U@)Tw c W(wal *v)-

Out of all generators of Uzwlw for ¢ € {0,1,2}, the only one that does not belong to Uy is of
the form U(Em_gy)_l)(vwg) € [U’lywlw, and the ones from U;wlw that do not commute with it are
those of the form U(5y+5271)(a), but in that case Chevalley’s commutator formula produces a term
U(8m+az)0)(c315’;7yz(—vxy)a) € Up. This implies the other inclusion, together with Proposition 2.3]
which allows us to write down the generators of each Uzwl " in any order.

ii. The only generators of UZ”Q ™ for i € {0,1,2} that do not belong to Uy are those of the form
Ue,—c,,-1)(vag) € U;ﬁ”w and U, o 1)(vaz) € IU;Y“QW. The equality follows by Proposition 2.3
Theorem 2.5 and Proposition [T.1]

iii. All the generators of Ugwf*w and UY“’?**U belong to Uy, and the only generators of U;wg ™ that
do not are U, _._ _1y. Thus Claim [3| follows by Proposition [(.T] and Theorem 2.5

iv. As in the previous cases, we have

W(C’yw4*,,) — Ugw4*VU’lyw4*uU;w4*uTw7
Yy ¥V Vap 4 *V . Yo, *V
and Uy”*" c Ug. All generators of U;"* " and respectively U,”* "~ belong to Uy except for
U(ep-e.,-1)(a) € U]+ and Ue,-e.,-1)(D) € U;w“w, respectively, for {a,b} ¢ C. To prove this

part of Claim B we observe that U, _.  _1)(a) commutes with all generators of U;w“w except
for U, 4c,,1)(d), with d € C. However, commuting the latter two terms produces elements

U(EI+5y70)(cglc’z}7zy(—a)d) € Ug. Therefore
7T(C.Yw4 *l’) S UOU(sxfsz,fl) (UIE)U(syfsz,fl) (vyf)Twa
and the other inclusion is clear by Proposition[Z.Iland the above discussion. This finishes the proof

of Claim Bl
O

Now we make use of Claim [Bto prove Lemma[f]in this case, assuming z # § and y # Z. For both
a) and b) Claim Bl immediately implies

7T(C’le *V) c Tr(c'ywz*u) and
7-‘-(C’)’wg’”’) S 7.r((j'yu,4>e1/)-

Next we will show

m(Cy,y ) ET(Crpyy )

For this, let v,z € C and v,y € C with v,y # 0. Then since U, _._ 0)(vyz) € Uy, nUp for any vy € C,
Lemma[6], Chevalley’s commutator formula, and Proposition [Tl imply

m(Cry ) 2 Ue,—e.,0)(vy2) Ue, e, -1) (V2) T =
Ue,—e. 1) (€0 (=0y2)02p) Ute, e —1) (0g) Ue =z 0y (vy2) TV =
Uteooer o) (€)% 05 (~0y2)025) Ue, e, -1) (02g) T
Therefore
Ule-ey,-1) (V2g) U e, —c.,-1) (022) T € 7(Cyy, 40)

. . 1.1 . . ..
as long as v,y # 0, since in that case cy’gﬁvg(—vyg)vmg = vz has a solution in v,z. Hence Proposition
[1] implies
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UOU(sxfsy,fl) (Umj)U(sIfsz,fl) (Umi)Tw c W(C’le *V)'

Claim[3] (i. and ii.) then implies that a dense subset of 7(C,,,, «.) is contained in 7(C,,, +»), which
implies Lemma 6], a) in this case. To finish the proof of Lemma @ b), let v,5 € C and v,z € C with
vyz # 0. Then, just as for a)

7T(C'yw3 *v) 2 U(szfsy,o) (vmg)U(5y7527*1)(vyE)Tw = (29)
U(sxfsz,fl)(Calc)y’l,yi(_vmy)vyi)U(syfsz,71)(UyE)U(Ezfsy,O)(in)Tw = (30)
U(sxfsz,fl)(C;)y’l,yi(_Umy)vyi)U(syﬂsz,fl)(UyZ)Tw' (31)

Therefore the elements of the set

U(az—az,—l)(UmZ)U(ay—az,—l)(in)Tw
such that v,z # 0 are contained in ([3I). By Claim [B] (iii. and iv) and Proposition [[] there is a
dense subset of

W(Cyw4*u) = UOU(szfsz,fl)(UmZ)U(syfsz,fl)(vyZ)Tw
that is contained in 7(C,,,, +v)-

The cases z = § and y = T are missing so far. (Note that z # T is not allowed. Also note that
and that if y = Z then 2 must be unbarred and if z = § then y must be unbarred.)

Case 1.1 z=g

a. We first show that

m(Cry ) ET(Crppy i) (32)

All of the generators of [U’lywlw belong to Uy except for U(Em_&.y)_l)(vwg), for vyz € C. The
generators of U]**™" are U(e)—e, 1) (viy) for [ # x and vy € C, and U, _c, 0y(vzy) for v, € C. This
last term commutes with U, ., _1)(vzy). Therefore, by parallel arguments to those given in the
proof of Claim [3]

m(Cy, wv) = UOU(az—ay,—l)(vzy)ﬂU(al—ay,—l)(vly)Tw
<y
l+x

All terms in the product U, —1)(vsy) [TU(c-c, —1)(v15) are at the same time generators of
I<y

l#+x

[U’lywz as well, therefore, by Proposition [T.1]

W(val ) € W(C'yw2*u)a
as wanted. Next we would like to show

m(Cy,, ) ET(Crpy ) (33)
To do so we will make use of Proposition Let

Plnnn
1=—1=
|y
and
PRBTE
2 = —
y |v-1
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Then we have wy =y = § = w(J#) and we =y § © = w(#2). By Proposition B3] it then suffices to
show

W,,(C’YJQ) S W,(C’Yxl )
First assume y — 1 # 2. Note that in this case U]”*2"" is generated by terms U, 1-¢,.-1)(a) with
a € C, and all generators of [Ug‘%z " and U;‘Yz ™ belong to Uy. Out of these, the only ones in U;% v
that do not commute with with U, _,_. _1)(a) are U, e, 0y(b) and U, ., 0)(d). Then for
every element in 7(C,,, «,) there is a u € Uy such that it belongs to

’
=u

UU(syflfsy,fl) (CL) U(sz+5y,0) (b)U(szfsyq,O) (d) T =
uu,U(sy71+sz,fl)(Cglj_llg,ggy(_a)b)U(szfsy,71)(C;Lllgymﬁ(_a)d)U(syqfsy,71)(a)Tw'
Fix such u,a,b, and d such that abd # 0. Such elements form a dense subset of 7”(C, . «,). We
will show

U(syfl +e5,—1) (C;Lllg’zy(—a)b)U(sx,sy ,—1) (C;Lllyymﬁ(_a)d)U(syflfsy ,—1) (a)Tw
c 7r'(Cw{,,1 )
If this is true, then (B3] is then implied by Proposition [[]] applied to
uU(c,+e,,0)(0)U(c,-c,1,0)(d) € Up.

First note that for all {a.,a,-15,ayy-1} € C, U(c, ¢, -1)(azy) and
Ue, 1-¢,,-1)(ay-14) belong to U'lyxlw, and v := Uz 4o 1 0)(ayy-1) € Ue, N Up stabilises the trun-
cated image T as well as the whole image 7'(C,,, +). Therefore all elements of

U_lU(Ew_ny_l) (GIQ)U(‘Ey—l_ay:_l) (a’y_lf‘j)’UTw =
1,1 w
Ute,+ey1,-1) (Czy,yyfl (_amﬂ)ayyfl)U(am—ayrl) (azg)U(Ey—1_€y7_1) (ay-15)T

belong to ©'(C,,,, +,) and since abd # 0 we may find a5, a,-15, and ay,-1 such that

_ bl _

G5 =€, L1 e (-
bt (—azgz)a =t (-a)b, and
wgyy-1\" 02y Cyy=1 = Cyo1g,ay '

Qy-15 = Q.

This concludes the proof if y # £ — 1. Now assume that y = x — 1. In this case all generators of
U3*2™ commute with Uc,1-¢,.-1)(ay-15), and therefore all elements in 7"/(C,, ,, +) belong to

UU(ay-1—ay,—l)(a)Tw
for some u € Ug and a € C - but U, _, ., _1)(a) € U?‘%W, which implies B3] by applying Propo-
sition [.1] to u € Up.

b. We now have

wy=x§y=w(H)and wy =7 x y=w(H),

where
PR EIEIE
Y|y
and
A=
Y|y

We want to show
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T (Coyyrr) = 7" (Cr )

First [Ug‘%e‘w and UY‘YSW are both contained in Uy. The generators of U;%W that do not belong
to Uy are U(sy,—l)(ay)aU(sy+sl,—1)(ﬂyl)v and U(Ey,ssﬁ,l)(”yyg) for {ay,ﬂyl,'yyg} cCandl<n,l+
z,y < s <n. All of these are also generators of U?‘%“W, hence by Proposition [Tl and Theorem
we have

T (Cryrr) €77 (Crpa0r)-

The discussion above also implies that
7"(Cry i) = UoUge, -1y () HU(sy+sz 0 Byt) TT Uge,-es -1y (ys) T (34)

y<s<n
l#—w

. Hy FV . . . .
There is one more generator of U’lm“ , not mentioned above, which is U, .. ,-1)(dey). Since
x Y

all generators of U;X“W( which are U(., .., 0)(d") € Ug for d’ € C) commute with those of U;Y%W,
we have by Proposition [T}

T (Cy) =

UOU(sersy,fl) (dmy)U(sy,fl) (a‘y)HU(sersl ,—1) (byl) HU(syfss,fl) (Cy§)Tw
l<n s<n
l#x s>y

We now would like to show

T"(Copyar) €T (Coy )

To do this we will see that for complex numbers ay, by, cys, and dgy, with a, # 0,

U(strsy 71)(dmy)U(sy 71)(a‘y)HU(sy+sl 71) yl)HU(syfss 71)(CyS)T (35)
s<n
l#m s>y

c W,,,(C’Y,%S*V)' (36)

By (34)) we conclude that for any complex numbers ay,, By1,Vys, and ¢ the following set is contained
in 7"(Cy p, 40)

v U(am—ay,l)(é)U(ay,—l) au)HU(ay+al,—1) ﬁul HU(ay—a ,—1)(’7ys)T

sl =y
00U 4y -1) (Pay) Ue, -1y ( aU)HU(ay+€L,—1) Bu) [TU(e,-ev -1y (rs) T
sl &
where
V=
U, 0y (Caiy 5)%)IUU(5$+EZ 0y (i (- 5)ﬂyl)gU(sfss 0y (czyys(=6)7ys)
[ s>y

and where the latter equahty is obtained by applying Chevalley’s commutator formula and Propo-
sition [T applied to U(.,_., 1)(0), which stabilises the truncated image T*. We will have shown
our claim in (B3)) if we find complex numbers oy, By, 7ys, and ¢ such that

wyy( 6)(1 - my
Qy = ay
Byl:byla

which we may obtain since a, # 0. This concludes the proof in case z = 3.
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Case 1.2 y = Z. This means that z is necessarily unbarred and therefore z = b for some b < z.

a. As before, we will use Proposition 5.3l We have

where |
i = b|b
and |
S =15
First we show
T'(Cr g 20) €T (Cop iy 50)- (37)
To do this, we claim that
7",(07%1*’/) =UoU¢,,-1)(az) H Ue,+e.,-1)(as)TY. (38)
seCp#b
ept+es€dt

Indeed, U, _1y(az) and U, ;e —1)(azs) for s €C, and s # b are the generators of U™ that do
not belong to Uy, and Ugﬂl ™ is the identity, because ¢, — €p is not a positive root. Therefore (3]
follows by Proposition[Z.Il The aforementioned terms are also generators (but not all!) of U;‘YZW,
therefore (B1) follows. Now we show

77"(07,;{2 ) € 71"(07%1 wv)- (39)
To do this, let us first analyse the image

" _ YA RV Y oy RV Y o *Y
T (Copynv) = Up™? Uy U, " Tv.

In this case Ug%ﬂ/ c Up and UY%W is the identity, because —(&, +€3) is not a positive root. The

generators of Uy”2"" are Ue,,-1)(@2), U(c,pve, -1y (@zs) and Ue,4e, —2y(up) for s € C,, such that
s # b and complex numbers oy, s, and ag,. Therefore

F(C’Y‘%’/Q*U) = UOU(sx,fl) (am) H U(sz+ss,fl)(ams)U(strsb,fZ)(amb)Tw- (40)
s+b
sx+:se<1>+
Let us fix complex numbers «, s, and ayp, such that a, # 0. We will show that (cf. (B8)
U(sz,fl)(am) H U(sz+55,71)(ams)U(sz+5b,72)(O‘mb)Tw c W,(nyl *u) (41)
s#b
extesedt

To do this we will use Corollary 2.6] which says, in particular, that, if we write
Yo = (Vo,Eo, Vi, E1, Vo, E2, V3),
then
W,(C’Y,;el ) > UVO UVl UV2 .

Therefore, since u := U¢,, _, 0)(a) € Uy,nUg for all a € C, and since U, _1)(az) and U, 1o, —1)(azs),
for s € C,, and s # b are the generators of UY%W c Uy, for any complex numbers a;s and a, we
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have (using, again, Proposition [[I] applied to u € Uy and v € Uy, (V3 stabilises the truncated
image T"; see below for a definition of v)):

W,(C'yxl*u) >

U‘_lU(Ew,—l)(aw) H U(€w+as,—1)(ams)UTw =

s#b
eqxtesedt
“_1“U(az+ab7—2)(Ciiif(ai)b)U(aw,—n(%) [T Uien-1)(azs)0T =
sIJrS‘:sbe<I>+
Ulepren-2) (2@ U, —1y(az) [T Ugepren-1)(aas) T
szf:sbab‘f

where

v= U(Ebﬁl)(ciz})i(_a’m)b) [1 U(€b+€s;_l)(Cilﬂﬁ)s(_azs)b) € Uv,.
s#b
az+ate<1>+

In order to show ([I)) it suffices to find complex numbers a,, a5, and b such that

2.1 [ 2N; _
oz (@)l = Qb
Ay = Oy
Qrs = Qgs,

and we may do this, since a, # 0.

b. We will again use Proposition We have
wy=2bZ=w( ) and wy =b x T =w(H),

where |
A= 1%
and _
Ji/4 _ x_li b |
X [x-1
By Proposition it is enough to show
T (Crpy ) = 7" (Crgy 20)- (42)

We analyse both images 7"'(C,,, «,) and 7"(C,,, +,) separately and then show @2). First ,
since [Ug‘%e‘w c Ug and UY‘YSW is the identity (this is because €, — €3 is not a positive root), we
have

W,,,(Cvx?,*u) = UOHU(srszﬁl)(alf)U(sbfszﬁZ)(abi)Tw' (43)

<z

l#b
Now, U;‘%“W is generated by elements U(sz,l—sx,—l)(az—lz)a for ap_1, € C, and U?‘%“W is generated
by Ue—c,1,-1)(yz=7) for ayz— € C, by U, 0y(@yy=1) for [ <2 -1 and «a;,=; € C (this last
element stabilises the truncated image T") , and by other elements of Uy. Therefore

77,,,,(079«4*11) (44)
=Uo[[U(e-e01.0) (0zm1) Ueymeuor 1) (=) Ute, e -1y (12 T (45)
<z
lib
=Up H U(slfsz,fl) (gli)U(szflfsx,fl) (am—li)U(sbfsz,fm (gbi)Twa where (46)
<z

1#b,l+x—1
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1,1
gbj = cbﬁ,m—li(_abmam—li)
1,1
gli - Clﬁ,m—li(_almam—li)
and where the equality between [@5]) and ({6]) arises by using ([2)) and Proposition [l applied to
Uer—c0-1,0) (3 7)Ucp—cuy,-1) (37) € qu%' The sets displayed in [@3]) and ([0) are equal as
long as all the parameters are non-zero.

Case 2: t=y<z,2+7T

In this case we have w1 =y y z and ws =y z y. We want to look at
m(Cyy o) = Uyt U T
W(Cwa*v) = Ung *VU’IYwQ *VU;’wQ *¥ pw

In this case all generators of U;**™" and of U]*2™" belong to Uy for i € {1,2,3}. Therefore
Proposition [ZI] implies in this case that

W(C'ywlw) =UpT" = W(C'yw2*u)a

which concludes the proof.

Case 3: z<y=2,2%2
For this case it will be convenient to use Proposition 0.3l Let

=l

and

=

y

It is then enough to show (by Proposition [(.3)) that

71"(07%1 sv) = 77"(07,%2 )

since

wy =x yy=w(s) and

we =y xy=w(r2).
However, this case is now the same as the previous one: all generators of UZXIW and UZ%W
belong to Uy, therefore, as before,
W'(C,Ml*,,) =UT" = 77”(0,,%2*,,).

With this case we conclude the proof of Lemma O
Relation R2. For 1<x<nand x <y <Z:

a.yr—-lax-1l=yx x and
b.z-1lz-1ly=z2zy.

Lemma 7. Let

for z # z. Then
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G)W(val ) = W(C%QW)
b)ﬂ'(C%%*,,) = 71'(0'71,,4>+1/)

Proof. As usual, the proof is divided in some cases: we first consider the case where y ¢ {x,Z} and
then we analyse y = x and y = ¥ separately.

Case 1 y ¢ {z,7}
a) We will use Proposition 5.3l Note that

w=yzr-lao-1l=w el s y)

and

x-1 y |

wgzy:v:v:w( —

x
z [x-1

Hence by Proposition 53] to show Lemma [ a) it is enough to show that
71"(07%1 sv) = 77"(07,%2 )

where

N and o =l

X
1 x-1{x-1

T =

%l

First we check

7""(0%{2*1/) S W’(ngl wv)-
Clearly Ug%*u c Up; the only generators of U?‘YZW that do not belong to Uy are those of the form
U(cp-e,,-1)(a),a € C, and those in U™ are Ue,1-c.,-1)(b), for b € C. This means that every
element in 7/(C,,, «,) belongs to
uUe, e, -1) (@VU(e, 1 e, -1) ()T

for some u € Up. Both U, ., _1y(a) and U, ., 1)(b) belong to U. ., ,, and this implies the
contention by Proposition [T1] and Corollary 2.6l Now we want to show

ﬂ-,(c’yxl *V) < 77”(0’)’%2 *V)'

By Theorem 23] all elements of 7'(C,,, +,) belong to

—€y,

UU(sx—l’Ey =2) (vzflg)U(Ezflﬁl) (’0171)HU(5271,E[ ,-1) (Uz—ll_) HU(52—1+53 ,-1) ('szls )Tw (47)
1>z S#Y
l#y

. . o XV ZRa4 . o .
for u € Uy and v,_1; € C. This is because both Ug‘%ﬁ and UI‘YI are contained in Uy. Fix

such an element such that v, 1z # 0. We know that U, ., _1)(vz-1z) € U;%W and that for any
azy € C, U, —c, —1)(azy) € Uc ; this means that these elements stabilise both the truncated images

>3 >1 .
TWZW and T3 S Hence the elements in

U(szflfsz,fl) (vzflf)U(szfsy —1) (’Umﬂ)Tw = (48)

Uterey 1) (02U, 1oy -2) (€37015 2 (~V2-12)80) U e,y —ey 1) (Vam12) T (49)

all belong to 7"'(C,,,, «); more precisely to Uy ™' c T?Y}%l v, hence by Proposition[7.1] we may

multiply by U, ¢, -1)(~vzy) on the left of line (AJ) and the product still belongs to 7 (C, . +v),
hence

U(szflfsyﬁQ) (Ciy—llg’c,mg(_vmflf)QIQ)U(sxflfsz,fl) (vzflf)Tw c ﬂ-”(c’m«z *l’)'
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Now consider the product
u= U(sy+sz 1)(aum)U(sI O)(aw HU(EI—EZ 0)(aml HU(serss 0)(‘115) € U, N Up.

z¢y sy
Proposition [Z.1] then implies that
T(Crpyrv) 2
“_IU(szflfsyﬂ)(Calalllf,mg(—vm—lf)amg)U(sz,ﬁsI,fl)(Uz—li)UTw =
Uteyorren-1) (P2-12) U,y ,-1) (P2-1) U,y —¢, —2) (Pz-1y)
[TUr-er-1) (pe-1) T TUeusven -1y (Po-18)Uge,y—en -1) (U212) T

I>x s#y
l#y

_ 1,2 (_ 7) 2 11 1,1 ( 7) B
Pz—1x _szli,m Vg-1z )y Cm—ly,yzcm—li,mg Vz-1z )Azydyx

Pz-1j = ci’}m’zj(—vm_li)awjj zy,je{l:l>a}u{sie, g +e,€®7}
1,1
Pz-1 = Cmfli,m(_vzflf)a’m
The system of equations defined by vy_1 = py-1,V4-1; = pz-1,; has indeed solutions (the variables
are Gz, Qyz, a,7, and agzg) since vg_1 4 # 0! This means that for such solutions (cf. [{T)
U(am—1_8y7_2)(vw_l'g)U(Ez—I)_l)(’Uw_l)HU(Ez—l_al)_1)(’Uifflli)I_IU(E;E—I"'ES)_l)(’Uw_lS)Tw =

>z S*Y
l#+y

Ue,r4en-1) (P2-12)Ue,y -1) (Pe-1)Ue,_y 2, —2) (Pu-14)
HU(am_l—al,—l) (pmfll) HU(aw_1+as,—1) (pmfls)U(aw_l—am,—l) (szla’c)Tw c W(C'YJ((2 ﬂ/)

I>x s*Y
l#y

and so by Proposition[Z.T] we get that all elements in (@) belong to 7"'(C,,, «). All such elements
of 7'(C,,, «») form a dense open subset. This finishes the proof in this case.
b) Let

A = x-1[x-1 ﬁ|
Y|y
and
A :| =E
X [x-1

Then wg =x-1z-1y=w(A3) and wy =2 T y = w(H#;). As in a), by Proposition 53] it is
enough to show

T"(Coyrr) = 7" (Co )

To show

T (Crpyrv) € T(Cop gy wv),
note first that the only generator of UZ‘%/“W that does not belong to Uy is
Uge, s e, -1y(@) e U], for a e C.

Of UJ**™" | the only generators that do not commute with U, . 4 (a) are Ui, 4o 0y(b), with
2 ( z-1"E€x, ) ( ytex, )

beC. Then Chevalley’s commutator formula (2]) implies that all elements of 7""/(C,,,, +») belong

to the set

UOU(EI 1+€y, 71)( T— 11 my( a)b)U(sz 1=€x, 71)(a)T (50)

Since both U, e, . ,1)( S ay(—a)b) and U, . 1)(a) belong to U]”*™ the desired con-
tention follows by Proposition 711 Now we show

T7(Cropy) € T7(C ). (51)
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The proof is similar to that of a), but there are some subtle differences. First we look at the image
7"(Cyy ). Out of all the generators of szf*w, the only ones that do not belong to Uy belong
to U;Y‘%S*V: U(am_l,—l)(vz)uU(aw_l—as,—l)(vm—ls)a and U(am_1+al,—1)(vm—ll) forl+#az-1,s>z,5% Y,
and complex numbers v,_1,v;_15, and v,_1;. The group U;%*V has as generators (only) the terms
U(c,_,+¢,,0)(a), and these commute with all the latter terms. Therefore all elements of 7"'(C.,,, )
belong to

uUc, 1 1) (0e) ] Ugerr—eom1)(Wa-15) [] Ugensverm1) (0o-1) T (52)
s>xr—1 l+x—-1
sty

for some u € Up. Fix such a u, and assume v,_1z # 0 and v,_1, # 0. Such elements as (G2
form a dense open subset of ”,,,(Cvxg*v)' Now, for all complex numbers a, ay,, and a,z we have
Ute, ey (@) € U7 U ie, 0y (aay) € U7, and U, ., 0y(asy) € Up, which stabilises the
truncated image T?Yiﬁﬂ,. Therefore, setting ¢ = U(c, 4c,,0)(@zy)Uc, ¢, 0)(azg) € Uop, all elements
in

cilU(Ez_l_ez,_l)(a)cTw =
U, yvea 1) (00-10) U, yazy, 1) (02-10) Utey i ey 1) (61005 (—@)a0p) Ute, Ly -2 -1y (@) T =
U, yoenr1) (00-10) Uy ytey 1) (00-10)Ute, e 1) (@)U, ey 1) (610 0g (—0)aag) T =
Utepyven 1) (0o-12)Ufe, s ey 1) (02-19) Ute, e, -1y (@) T

belong to ""'(C,,, «), where

1,1 1,1
Oz—1z = Cp 1y 25C2-17,0yPaylday

Oz-1y = ci’—lli,wy(_a)amlﬁ
and where the last equality holds because U(Exfl,sy),l)(cgla’_llm@g(—a)awg) € U,,, and all elements of
the latter stabilise the truncated image T* by Proposition [[Il Now let
" = U, 00 (@) [ 1Uc, .0y (az5) [T Ute,ve,0)(aa) € Ue, nUg

s> l#x—-1
sy l+y

for a,,a.s, and a, complex numbers; by Proposition [.]] this element stabilises the truncated
image T* and the image 7""(C,, +,). Therefore

W,,,,(C’YJQ) D (53)
c,_lU(Ez-ﬁEz,—l)(Qw—lw)U(aw_ﬁay,—l)(Q:E—ly)U(am_l—aw,—l)(a)C,Tw = (54)
U(Ezq,fl)(gw) H U(szflfss,fl)(Qm—ls)U(szflfsz,fl)(a)U(szflJrsx,fl)(Q;—lm) (55)
SZi;1
S+XT
H U(5171+sl,71)(9x71l)Tw (56)
l¢{z-1,2}

where

1,1
Oz-1 = Cm—lm,w(_a’)alﬂ
' 1,2 2
Qxflz = Qz-1z + cm—lm,m(_a)a’z
11
02-11 = €, 15 4 (@) Azl
1,1
0015 = C; 17 25(~Q) 5.
We want to show that U, _1)(ve-1) TT U, —c.-1)(ve-1s) TT U, yver,-1) (v2-1) T is equal
s>x—1 l+x-1

sy
to the product in the last lines (B5) and (G6) above (cf. (B2)), for some ay,ay, azs. This determines
a system of equations



THE SYMPLECTIC PLACTIC MONOID, CRYSTALS, AND MV CYCLES 35

VUg-1z = Q
_ 11 1,1 1,2 2
Vz-1z = Cm—ly,mjcm—li,mya’a’mya’wg + cw—lm,m(_a)a’z
1,1
V-1 = Cm—lm,w(_a’)alﬂ
1,1
Ug-15 = Cx—li,xg(_a)a1§
1,1
Uz-11 = Cm—li,ml(_a)azl

11
Vg-1y = Cm—li,my(_a)a’wy'

which can always be solved since v,—14 # 0 and v,;— # 0. This completes the proof of b) in this case!
Case 2 y==x

a) As in Case 1, we will make use of Proposition 5.3l Let

-1 x| x
A4 =k
! x-1{x-1
and |
-1 x| x
My = ——
2 X [x-1
Then

wp=xx-1zr-1=w() and
we =2 ¢ T =w(H).
By Proposition B3] it is enough to show

71"(07%1 sv) = 77"(07,%2 wv)-

First we show

77"(07,;{2*1/) S 71"(07%1 wv)- (57)

Since U;%W is generated by elements of the form U _,_. _5)(a),a € C and the generators of
U2 belong to Uy for i € {1,2}, all elements of 7"(C, 4, +v) are of the form

UU(am—1_5m7_2) (a)Tw

for some u € Ug. Since U, ., —2)(a) € U;XIW, (7)) follows by applying Proposition [l Ilto u. To
finish the proof in this case it remains to show

T (Cry ) €T (Crppgy o) (58)

The generators of UZXIW belong to Uy for i € {0,1}, and the generators of U;%W that do not are
U(am_l,—l) ('Um)v U(am_l—al,—l) (vzflf)a U(aw_l-hss,—l) ('Umfls)v and

Ulepr-e0,-2) (Vzo1z), for n 2 1> 2,5 ¢ {x,2 -1}, and complex numbers vy, v, 17, Vz-15, and vz 1z.
Therefore all elements of 7'(C, ., ) belong to

U, 1,-1)(02)Ue, y-c1,-1) (Vam1D) Ue, s ve,,-1) (Va-15) Ue, e, -2) (V0-12) T
Fix such w € Ug and vy, v, 17, Vg-1s, Vz—1z complex numbers such that v,_1z # 0. We know that for
any a € C, U, ., 2y(a) €U, . let

4=U(e, 1)(a:) [ [U(c,—c..1)(@28) [ [U (e, 4e1,1) (a21) € Uge,y n U

s>T l¥z

for any complex numbers a,, .z, az;. Then by Proposition [T.1]
q_lU(Ezflfsx,*Q) (a’)qu c ﬂ-"(c'}’gﬁ*u)- (59)

As in the previous cases, we want to find a, ay, a5, az; such that

tUcu1,-1) (V) Utey i —ey -1y (Vem1D) Uey e 1) (Va-16) U, ey —2) (Vom12) T
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equals (B9), for some t € Uy. But
qilU(aw_l—am,—2)(a)qu =
T U1 (00U, e, 1) (01D Uteyyven, 1) (00-16) Uge, e, -2y (@) T

where
t_l = U(az+am_1,0)(cif1i,m)(_a)ai €Uy
0r = Cy 1z 0 (—0)an
0p-17 = Ci’,lmmz(—a)%z
Oz-1s Clei,ms(_a’)a%S'
The system
Vg-1z = QA
Vg1l = Og-11

Vg-1s = Oz-1s

always has a solution since v,_1z # 0. This concludes the proof.

b) Let
% x-1[{x-1 ;|
3 =
and |
x |x-1f x
Jﬁ - X [x-1
Then

wy=x-1lax-1z=w( ) and wy =2 T v =w( 7).
By Proposition 5.3l it is enough to show
T (Cry i) = T (Cy sy 500)-

To do this we will describe a common dense subset of 7"'(C,,,, ) and 7""(C,,, ).

Consider first W,,,(C’YWS*V) — U’QY%g *VU'lvx3 *ngy@*va' We have U'Omgg*u c Uy and also U;xg*u c
Uy, since it is generated by the terms U, .., 0)(d),d € C. These commute with all generators of
U™ out of which Uepr,-1) (02-1), Uge, ey -1) (Va1s), and Ue, ¢, —1)(v,17), (for s <m, s #
x-1,1 >z, and v,_1,v;-15 and v,_;7 complex numbers) do not belong to Ug. Therefore w”’(CW% o)
coincides with

UoUe,oy 1) (va-1) [T Ueorren-1)(Wo18) TT Uge,oimerm1) (0pmi) T (60)
s<n x<l<n
s+x—1

for complex numbers v;_1,v;-15 and v, ;. Now we look at elements of
W,,,,(C’Y)Q >,_l,) - Ug‘%@ *UU}/Q{@ *VU;Q;Q *VTw -
Both Uy ™" and U, ™™ are contained in Uy, and U} ™" is generated by the elements U, , —c, -1y(d),

which belong to U., and therefore stabilise the truncated image T" by Proposition [[JIl Now, by
Proposition [Z3] we may write any element k of [U’QM“W as

k= U(€z70)(k1) H U(EI—EL,O)(sz) H U(€z+5370)(kms) e Ug

x<l<n s<ns*x
for some complex numbers k,, k,;, and k5. Theorem and Proposition [Z.I] imply that
77""(0“{,;64 ) = UOU(Ezfrszrl)(d)kTw (61)
=UokU(c,_;,-1)(02-1)Ue,_y4ep.-1) (0a-12) T] Uepr—er-1)(0417) (62)
z<l<n
H U(Ezfﬁss,0)(Uwfls)U(Ezfrsxﬁl)(d)Tw (63)

S<ns*x
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for k e U;”*™" and d e C, where

Og-1= Ci)—lli,m(_d)km
Ogx—1z = Cifli,m(_d)ki

1,1
Og-11 = Cm_lj)ml’(_d)kmf

Ozx-1s = Ciflj)ms(_d)kms
This set (&) is clearly contained in (60). Moreover, the system
VUg—1 =0z-1
VUg-12 = Oz-1x
Vg1l = Og-11

VUg-1s = Oz-1s
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has solutions for d, k., k7, and ks as long as {vz-1,Vs-12, Uy 17, Vz-1s y € C*. Proposition [[I] then
implies that a dense subset of 7"'(C,,,, +) is contained in 7""(C,,, « ), which finishes the proof

in this case.

Case 3 y==2
a) Let
EEBEE
t%/l - x-1|x-1
and |
x-1| x | X
o = X |x-1
Then

w=Tx-1lax-1=w() and we =7 = T =w(H)

By Proposition 53] it is enough to show

(Cooy ) = 7" (Crg )

In this case we have Uj™* ™ =1 =1U]"""; Proposition 223 and Theorem 2H then say

T (Copp ) =
U(szflfsx,o)(’Um—lm)U(szfl,fl)('Uac—l)U(sz,lJrsx,fQ)(Um—lm)
[T Uerrrmer,-1y(0e11) TT Uteryven)(va1s) T

z<l<n s<n
s*x—1
S*T

for complex numbers v, 14,Vz-1,Ve—12,Vz-11, and v,_15. Fix such complex numbers.

(64)
(65)
(66)

Now we

look at 7"'(C,,,, ). We have that Ug"gzw and U)”2"" are both contained in Uy, and the latter is

generated by elements U, _,_. oy(a),a € C. Out of the generators of U¥K2w, the ones that do not

belong to Ug are U(., _1y(az), U(c,+e,,-1)(azs), and U, o, _1y(a,7). Therefore, if
A= U(sz,—l)(az)U(sz+ss,—1)(azs)U(sx—sl,fl) (am[) e U,
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we conclude that

7T”(C%e2 ) = (67)
UpAU(,_,—c, 0)(a)T" = (68)
UOU(szflfsx ,0) (a)U(5271 —1) (gm—l )U(sx,1+5z,72) (gw—lm) (69)

[] Ucorer1y(G-1) TT Ue,oyien) (Eomrs) AT = (70)
vetsn siif—ll

S*x
UOU(5271171)(§m_1)U(5171+52172)(§1—1;@) H U(sz,l—sl,fl)(gm—ll) H U(sz,1+ss)(§m—ls)Tw (71)
S*FX
where

1,1
51_1 = cw,m—li(_alﬂ)a
_ 21 2
§a-1z = ng,m—lj(am)a
_ 11 _
51—1[ - le”z,lf(_awl)a
11
é.m—ls - Czs,m—li(_ams)a'
Therefore it follows directly that in fact
" !
m (C'yy@*V) e (C’yxl*V)-
Now, the system of equations
Vgp-1 = §m—1
VUg—1z = gm—lm
Vp11 = gm—li
Vg-1s = gm—ls
has solutions as long as {vz-1, Vz-1z, Uy_17, Vz-1s } € C*. For such a set of solutions we conclude

U(szfl,fl)(Um—l)U(sI,1+sz,72)('Uac—lm) H U(EI,175L171)(’Um_1l) H U(sz,1+ss)(vm—ls) =

z<l<n s<n
s*x—1
EE

U(aw_l,—l)(gmfl)U(am_1+€w,—2)(fzflx) H U(am_l—al,—l)(gmfll) H U(aw_1+as)(§rfls)

z<l<n s<n
s#x—1
S*T

and therefore we conclude by Proposition [Z1] (applied to U, ¢, 0)(vz-12) in (65])) that a dense
subset of 7'(C,,, «») is contained in 7'(C,,, ) (cf. (63), ([71)).

b) Let
% x-1|x-1 ;|
3T ==
and |
X [x-1]| x
Hi = % x|
Then

wg=x—-12-17T=w(A3)
wy=xTT=w(H)

By Proposition it is enough to show

7T///(CV‘%/3 ) — THW(CV&@ )
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First we claim
T Co i) €T (Co i)

This is easy. Note that the terms U, .. _1)(b),b € C generate both UY‘%“W and are contained
in UI‘WBW. Also, the terms U, _., o), which generate U;‘%’/‘*W, commute with U, _. _1)(b).
Therefore

Tr””(c’)'%él) = UOU(am—1_€z7_1)(b)Tw g ﬂ-”/(c’)'%:; )’
where the last contention follows by Proposition [[.Jl Now we will show

T"(Coyyrr) €T (Cry )

We claim that
77",(07,;63*1/) = (72)
UOU(szfl,fl)(Um—l)U(sxflfsz,fl)(vm—li) H U(5171+55,71)(’Um—ls)Tw (73)

S*ErEs+EL_1€PT

for complex numbers v;_1,v,-1z, and v;_15. Let us fix such complex numbers. Let
D=Uq,0(az) T  Ugcee.-1y(az-15) € Uo.

S+TEs+EL-1€DT
Then by the usual arguments (note that Ug stabilises both the image 7""(C,, ) and the

truncated image T?é@,{,).

DU, e, -1)(B)DTY c " (C,,.)
and
DU, -c,.-1)(b) DT" =
U, s ) (Pe-1)U(ep—er 1)) TT Uteyoiies-1) (P218) Uepae, s -1) (Pra1)

S*trEs+EL_1€DPT
where
o = M (D)
Pr-1z = Ci)_lli)w(_b)ai
Pz-1s = cifli,ws(_b)aiﬂs'

As usual by requiring that vz_1, V417, Vz-12, and pz_1s be non-zero we may find suitable complex
numbers b, a;, a;s such that

U(szfl,fl) (Um—l)U(sxflfsz,fl)(vm—li) H U(5171+55,71)(Um—15) =
S*ETEs+EL_1€DPT
DU, e, -1(0)DT".
Therefore Proposition [T1] (cf. (73)) implies that a dense open subset of 7"/(C,,, +.) is contained

in 7"(Cy . 40)-

O
Claim 4. (R3) Let w e We, be a word and w; that is not the word of an LS block, and such that

it has the form w; = almarzib_su-a, and let wy = ay--a;bgby with a1 < --ap < 2 > by >+ > by.
Then W(walw) = W’(vazw).
Proof of Claim[fl Let A ={a1,-,a,}. We have

T(Cryy) = Pay o Pa, P PP PT2 542

Yy w
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where

P, :U(sz,O) (UZ)HU(szfsl ,0) (Uz[) HU(52+51 ,0) (Uzl ) H U(Ez+5ai ,1) ('Uzai )7
>z I1¢A

a;eA
Pz = H U(sai 75270)(’0&1'5)

a;eA

and note that p., = py,, = X €a, = X €p;- The terms that appear in P, all stabilise ., —and
1€l gelg
commute with PE’ while the terms in Pz all appear in P,, and commute with P,, for [ > ¢. This

concludes the proof of the claim with the usual arguments. ([
O
O

8. NON-EXAMPLES FOR NON-READABLE GALLERIES

Let n =2 and A =€ +¢2, and (X, ,7) the corresponding Bott-Samelson as in (7). Let v be the
gallery corresponding to the block

=1 ol

Then points in 7(C,) are of the form

U(€1+82,—1) (b) [to]

for b € C, hence form an affine set of dimension 1. We claim that the set Z = 7(C,) cannot be
an MV cycle in Z(u) for any dominant coweight u. First note that for any w € U(K) a necessary
condition for ut® to lie in the closure U(K)t” n G(O)t# is that 0 < v, since it would in particular
imply that ut® € U(K)t”. Also note that it is necesary for v < p in order for the set Z(u), not to
be empty. Any MV cycle in Z(u), has dimension (p, u+ v), and the only possibility for the latter
to be equal to 1 (since p + v is a sum of positive coroots) is for either ;=0 and v = @, or v =0
and u = «, for some 7 € I, and both options are impossible: the first contradicts v < p, and the
second contradicts the dominance of . Note that 7 is not a Littelmann gallery.

9. APPENDIX

Here we show that relation (R3) in Theorem 511l is equivalent to relation Rg in [I3], Definition
3.1. For aword w € We, and m < n define N(w,m) = |{z € w: 2 < m or m < z}|. Lecouvey’s relation
Rgs is: “Let w be a word that is not the word of an LS block and such that each strict subword is.
Let z be the lowest unbarred letter such that the pair (z,%) occurs in w and N(w, z) = z+ 1. Then
w 2 w', where w’ is the subword obtained by erasing the pair (z,%) in w.” The following Lemma
is a translation between Rz and (R3).

Lemma 8. Let w be an WOid that is not the word of an LS block and such that each strict subword
is. Then w = ay---a,2zbs---by for a;.b; unbarred and a; < ---a,, by < -+, bs.

Proof. By Remark 2.2.2 in [13], w is the word of an LS block if and only if N(w,m) < m for all
m < n. Let w be as in the statement of Lemma Bl Then there exists in w a pair (z,%) such that
N(w,z) > z. Let 2z be minimal with this property. In particular N(w,2) = z + 1 since if w" is the
word obtained from w by erasing z, then z > N(w”, z) = N(w, z) - 1. We claim that z is the largest
unbarred letter to appear in w. If there was a larger letter y then N(w', z) = N(w, z) = z+1 where
w'"” denotes the word obtained from w by deleting y. This is impossible since by assumption w'’
is the word of an LS block. Likewise Z is the smallest unbarred letter to appear in w. The a}s and
bis are then those from Definition for the word obtained from w by deleting z,%z from it. [
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