
ALGEBRAIC METHODS FOR VECTOR BUNDLES ON
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Abstract. We survey some parts of the vast literature on holo-
morphic vector bundles on compact complex manifolds, focusing
on the rank-two case vector bundles on non-Kähler elliptic fibra-
tions. It is by no means intended to be a complete overview of this
wide topic, but we rather focus on results obtained by the author
and his collaborators.

1. Introduction

The study of vector bundles over elliptic fibrations has been a very
active area of research in both mathematics and physics over the past
thirty five years; in fact, there is by now a well understood theory for
projective elliptic fibrations (see Donagi [35], [36], Donagi - Pantev [37],
Friedman [41], Friedman - Morgan - Witten [42], Bridgeland [12], [13],
Bridgeland - Maciocia [14], Bartocci, Bruzzo , Hernandez Ruiperez,
Munoz Porras [6], [7], [45], Caldararu [30], [31], et. al.

Not very much is known for non-Kähler elliptic fibrations of complex
dimension greater than two. One of the motivations for the study of
vector bundles on non-Kähler elliptic 3-folds comes from recent devel-
opments in superstring theory, where six-(real)dimensional non-Kähler
manifolds occur in string compactifications with non-vanishing back-
ground H-field (see, for example [8], [44], [33]).

The ”space” of our universe is considered to be of the form R4 ×X,
where R4 is the Minkowski space and X is a complex 3-dimensional
manifold of Calabi-Yau type (i.e. ωX ∼= OX), not neccessarly Kähler.
Thus, the study of moduli spaces of vector bundles over a non-Kähler
Calabi-Yau type 3-fold is interesting also for physicists.

The purpose of this paper is to survey some parts of the theory
of holomorphic vector bundles on non-Kähler elliptic fibrations, with
emphasis on personal contributions.
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The outline of the paper is as follows. In Section 2, we recall first
examples and some general results about holomorphic vector bundles
over non-algebraic surfaces. Section 3 is devoted to results concerning
moduli spaces of rank-two vector bundles on non-Kähler elliptic sur-
faces. In Section 4, we discuss the moduli spaces of vector bundles
on non-Kähler elliptic Calabi-Yau type 3-folds and more generally, on
elliptic fibrations which are principal elliptic bundles.

2. First examples and first results

Let X be a complex manifold. For definitions and the proofs of some
of the results see [15]. A holomorphic vector bundle V of rank r over
the complex manifold X is called filtrable if there exists a filtration

0 = F0 ⊂ F1 ⊂ ... ⊂ Fr = V,

where Fk is a coherent subsheaf of rank k. A holomorphic vector bundle
V of rank r over a complex manifold X is called reducible if it admits
a coherent analytic subsheaf F such that

0 < rank(F) < r,

and irreducible otherwise. Clearly, for rank 2 non-filtrable is equivalent
to irreducible.

Remark 1. Of course, every holomorphic (algebraic) vector bundle V
over a projective manifold X is filtrable (since H0(X, V ⊗Hn) is non-
zero for big n, we obtain a rank one subsheaf of V , and so on; here H
denotes an ample line bundle on X), but on non-algebraic manifolds
there exist holomorphic vector bundles which are non-filtrable.

The first paper on holomorphic vector bundles in the non-algebraic
case was by Elencwajg-Forster (see [40]). In 1982, they constructed in
this paper irreducible vector bundles of rank 2 on a complex 2-torus
X without divisors (curves); i.e. with Neron-Severi group NS(X) =
0. This was done by comparing the versal deformation of a filtrable
rank 2 vector bundle with the space parametrising extensions producing
filtrable rank 2 vector bundles. They proved that, in general, the versal
deformation has a bigger dimension, hence it contains also non-filtrable
vector bundles.

The next example is due to Schuster, see [58] .

Example 1. Let X be a K3-surface with Picard group Pic(X) = 0.
Then the tangent bundle TX is irreducible.

Since H0(X,TX) = 0 it follows easily that the rank 2 vector bundle
TX has no coherent analytic subsheaves (see, for example [40] or [15],
p. 92).
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The next example is due to Coanda, see [15], p. 104.

Example 2. Let X be a K3-surface with Picard group Pic(X) = 0.
We have an exact sequence of holomorphic vector bundles over X

0→ OX → TX ⊕ TX → S2TX → 0.

Then, S2TX is an irreducible holomorphic vector bundle of rank 3.

It is worth to mention here the following results, where holomorphic
vector bundles play a key role.

In 1982, Schuster, in [58], proved that for any compact complex
surface X, every coherent sheaf F on X has global resolutions with
locally free sheaves (vector bundles). One of the main steps in the
proof was to use rank 2 holomorphic vector bundles from the versal
deformation of TX .

A long standing problem for compact complex manifolds was to
decide if every coherent sheaf has global rsolutions with locally free
sheaves (i.e. with vector bundles). A negative answer came only af-
ter 20 years. In 2002, C. Voisin proved that this is false for some
Kähler compact complex manifolds of dimension ≥ 3, see [62]. In
2012, Vuletescu gave some new examples of non-Kähler compact com-
plex manifolds of dimension 3 and coherent sheaves F on X having
no global resolution by vector bundles, see [66]. The proof that these
sheaves do not admit a locally free resolution is very different from
Voisin’s argument. The manifold X is a Calabi-Eckmann manifold
i.e. a principal elliptic bundle over the base P 1(C) × P 1(C), which is
diffeomorphic to the product of two real spheres of dimension 3.

The next paper on holomorphic vector bundles over non-algebraic
complex surfaces was by Brinzanescu-Flondor in 1985; see [20]. Let
X be a non-algebraic surface, let V be a rank 2 holomorphic vector
bundle on X and, let c1(V ), c2(V ) be the Chern classes of the vector
bundle V . We have the following result:

Proposition 1. Let X be a non-algebraic surface and let a ∈ NS(X)
be fixed. Then, for every holomorphic rank 2 vector bundle V over X
with c1(V ) = a, we have

c2(V ) ≥ min{a2/4, 2χ(OX) + (c1(X).a+ a2)/2}.

In the same paper, [20], one defined a bound for a holomorphic
rank 2 vector bundle on a non-algebraic surface with fixed Chern class
a ∈ NS(X) to be filtrable. In another paper, see [21], one gives the
range of Chern classes c1, c2 of simple filtrable rank two holomorphic
vector bundles over complex surfaces X without divisors. These results
were extended later by Toma in [60] to the case of complex surfaces of
algebraic dimension zero.
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The results of the paper [20] were extended by Banica - Le Potier
in 1987, see [4], to the case of holomorphic vector bundles of any rank
over a non-algebraic surface.

We need some notations. The Chern classes and the rank can be de-
fined for any analytic coherent sheaf F over X. If F is locally free, then
we have c1(F) = c1(det(F)) ∈ NS(X). Generally, by the quoted re-
sult of Schuster, see [58], any analytic coherent sheaf F over a complex
surface has a resolution

0→ V2 → V1 → F → 0,

with Vi locally free sheaves. Then

c1(F) = Σi(−1)ic1(Vi) ∈ NS(X).

Now, let F be an analytic coherent sheaf over a surface X of rank
r > 0, with Chern classes c1(F) and c2(F). The discriminant ∆(F) is
defined by

∆(F) :=
1

r
(c2(F)− r − 1

2r
c21(F)).

The extension of Proposition 1 is given by the following result in [4]:

Theorem 1. Let X be a non-algebraic surface and F a torsion-free
coherent sheaf over X of rank r, with Chern classes c1(F) and c2(F).
Then ∆(F) ≥ 0.

Other simpler proofs were given later by Brinzanescu in [19] and by
Vultescu in [65] (or [15], p. 95).

The converse of this theorem is true for the case X is a primary
Kodaira surface; see the paper by Aprodu - Brinzanescu - Toma in
2002, [1].

For a non-algebraic surface X, a ∈ NS(X) and r a positive integer
we can define the following rational positive number

m(r, a) := − 1

2r
max{Σr

1(a/r − µi)2, µi ∈ NS(X) with Σr
1µi = a}.

Remark 2. When X is a 2-torus and r = 2 an explicit description of
the invariants m(2, a) is given in [20].

The extension of the results for filtrable bundles in [20] is the follow-
ing result of Banica - Le Potier in [4]:

Theorem 2. A rank r, r ≥ 2 topological complex vector bundle V over
a non-algebraic surface X admits a filtrable holomorphic structure if
and only if
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c1(V ) ∈ NS(X) and ∆(V ) ≥ m(r, c1(V )),

except when X is a K3-surface with a(X) = 0, c1(V ) ∈ rNS(X) and
∆(V ) = 1

r
. In this excepted case V admits no holomorphic structures.

There are some other papers on holomorphic vector bundles over
non-algebraic manifolds: Braam - Hurtubise [11], Teleman [59], Vuletescu
[64], [65], [67].

3. Vector bundles on non-Kähler elliptic surfaces

Let X
π→ B be a minimal non-Kähler elliptic surface with B a

smooth curve of genus g. It is well-known that X
π→ B is a quasi-

bundle over the base B, that is, all the smooth fibres are isomorphic
to a fixed elliptic curve E and the singular fibres (in a finite number)
are multiples of elliptic curves.

Remark 3. For g = 0 X is a Hopf surface, for g = 1 X is a Kodaira
surface and, for g ≥ 2 X is called a properly elliptic surface.

Let E∗ denote the dual of E (we fix a non-canonical identification
E∗ = Pic0(E) by fixing an origin on E). The Jacobian surface associ-

ated to X
π→ B is

J(X) = B × E∗ p1→ B,

and X is obtained from the relative Jacobian J(X) by a finite number
of logarithmic transformations [51]. We have the following result (see
[16], [17], [18]):

Theorem 3. For any minimal non-Kähler elliptic surface we have the
isomorphism:

NS(X)/Tors(NS(X)) ∼= Hom(JB, P ic
0(E)),

where NS(X) is the Neron-Severi group of the surface and JB denotes
the Jacobian variety of the curve B.

This result was extended by Brinzanescu - Ueno for torus quasi-
bundles over curves, see [25].

Remark 4. In the case of elliptic surfaces, from the above theorem we
get: for any Chern class c = c1(L), with L ∈ Pic(X) a line bundle, the
class c ∈ NS(X)/Tors(NS(X)), if it is non-zero, defines a covering
map c : B → Pic0(E), which gives us a section of the Jacobian J(X).
This is exactly the spectral curve associated to the line bundle L, defined
by Hitchin (see [46]).
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Let V be a holomorphic rank-2 vector bundle on X, with fixed
c1(V ) = c1 ∈ NS(X) and c2(V ) = c2 ∈ Z. Now, we fix also the
determinant line bundle of V , denoted by δ = det(V ). It defines an
involution on the relative Jacobian J(X) = B × E∗ of X:

iδ : J(X)→ J(X), (b, λ)→ (b, δb ⊗ λ−1),

where δb denotes the restriction of δ to the fibre Eb = π−1(b), which has
degree zero (see Lemma 2.2 in [22]). Taking the quotient of J(X) by
this involution, each fibre of p1 becomes E∗/iδ ∼= P1 and the quotient
J(X)/iδ is isomorphic to a ruled surface Fδ over B. Let η : J(X)→ Fδ
be the canonical map.

The main existence result of holomorphic rank-2 vector bundles over
non-Kähler elliptic surfaces is the following (see [22]):

Theorem 4. Let X be a minimal non-Kähler elliptic surface over
a smooth curve B of genus g and fix a pair (c1, c2) in NS(X) × Z.
Set mc1 := m(2, c1) and denote c1 the class of c1 in NS(X) modulo
2NS(X); moreover, let ec1 be the invariant of the ruled surface Fc1 de-
termined by c1. Then, there exists a holomorphic rank-2 vector bundle
on X with Chern classes c1 and c2 if and only if

∆(2, c1, c2) ≥ (mc1 − dc1/2),

where dc1 := (ec1 + 4mc1)/2. Note that both dc1 and (mc1 − dc1/2) are
non-negative numbers. Furthermore, if

(mc1 − dc1/2) ≤ ∆(2, c1, c2) < mc1 ,

then the corresponding vector bundles are non-filtrable.

Let us suppose for the moment that the minimal non-Kähler elliptic
surface X

π→ B (which is a quasi-bundle) has no multiple fibres, i.e. it
is a principal elliptic bundle. The set of all holomorphic line bundles
on X with trivial Chern class is given by the zero component Pic0(X)
of the Picard group Pic(X). By Proposition 1.6 in [59], one has

Pic0(X) ∼= Pic0(B)× C∗,

and any fibre of X
π→ B is E ∼= C∗/ < τ >, where < τ > is the

multiplicative cyclic group generated by a fixed complex number τ ,
with |τ | > 1. In particular, there exists a universal Poincaré line bundle
U on X × Pic0(X), whose restriction to

X × C∗ := X × {0} × C∗ ⊂ X × Pic0(X)
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is constructed in terms of constant automorphy factors (for details, see
[53] and [22]).

The main tool to study vector bundles on any elliptic surface X is by
taking restrictions to the smooth fibres. Note that if X is non-Kähler,
then the restriction of any line bundle on X to a smooth fibre of π
always has degree zero; see [22]. For a rank two vector bundle V over
X, its restriction to a generic fibre of π is semistable; more precisely,
its restriction to a fibre π−1(b) is unstable on at most an isolated set
of points b ∈ B and, these isolated points are called the jumps of the
bundle. Furthermore, there exists a divisor SV in the relative Jacobian
J(X) = B × E∗ of X, called the spectral curve or cover of the bundle,
that encodes the isomorphism class of the bundle over each fibre of
π. The spectral curve can be constructed as follows. If the surface X
does not have multiple fibres, then there exists a universal bundle U
on X × Pic0(X), whose restriction to X × C∗ is also denoted U ; we
associate to the rank-2 vector bundle V the sheaf on B × C∗ defined
by

L̃ := R1π∗(S
∗V ⊗ U),

where s : X × C∗ → X is the projection onto the first factor, id is
the identity map, and π also denotes the projection π := π × id :
X × C∗ → B × C∗. This sheaf is supported on a divisor S̃V , defined
with multiplicity, that descends to a divisor SV in J(X) of the form

SV := (Σk
1{xi} × E∗) + C,

where C is a bisection of J(X) and x1, x2, ..., xk are points in B that
correspond to the jumps of V . The spectral curve of V is defined to be
the divisor SV . The line bundle L̃ also descends to a line bundle L on
J(X) (see [22], [23]).

If the fibration π has multiple fibres, then one can associate to X a
principal E-bundle π′ : X ′ → B′ over a m-cyclic covering ε : B′ → B,
where the integer m depends on the multiplicites of the singular fibres.
The map ε induces natural m-cyclic coverings J(X ′) → J(X) and ψ :
X ′ → X. By replacing X with X ′ (which does not have multiple fibres)
in the above construction, we obtain the spectral cover Sψ∗V of the
vector bundle π∗V as a divisor in J(X ′). Then, we define the spectral
cover SV of V to be the projection of Sψ∗V in J(X). This construction
led to a natural definition of a twisted Fourier-Mukai transform Φ for
locally free sheaves on X, in particular, Φ(V ) = L. For more details,
see [23], section 3 and Theorem 3.1.

The determinant line bundle δ = det(V ) defines the following invo-
lution on J(X):
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iδ : B × E∗ → B × E∗, iδ(b, λ) = (b, δb ⊗ λ−1),

where δb denotes the restriction of δ to the fibre Eb = π−1(b). The
spectral curve SV of V is invariant with respect to this involution.
The quotient of J(X) = B × E∗ by the involution is a ruled surface
Fδ := J(X)/iδ over B. Let η : J(X) → Fδ be the canonical map. By
construction, the spectral curve SV of the bundle V descends to the
quotient Fδ; in fact, it is a pullback via η of a divisor on Fδ of the form

GV := Σk
1fi + A,

where fi is the fibre of the ruled surface over the point xi and A is a
section of the ruling such that η∗A = C. The divisor GV is called the
graph of V .

The degree of a vector bundle can be defined on any compact complex
manifold M and let d = dimCM . A theorem of Gauduchon’s [43]
states that any hermitian metric on M is conformally equivalent to a
metric (called now a Gauduchon metric), whose associated (1, 1)-form
ω satisfies ∂∂ωd−1 = 0. Suppose that M is endowed with such a metric
and let L be a holomorphic line bundle on M . The degree of L with
respect to ω is defined (see [28]), up to a constant factor, by

deg(L) :=

∫
M

F ∧ ωd−1,

where F is the curvature of a hermitian connection on L, compatible
with ∂L. Any two such forms differ by an exact ∂∂- exact form. Since
∂∂ωd−1 = 0, the degree is independent of the choice of connection and
is therefore well-defined. This degree is an extension of that in the
Kähler case, where we get the usual topological degree. In general,
this degree is not a topological invariant, for it can take values in a
continuum.

Having defined the degree of holomorphic line bundles, we define
the degree of a torsion-free coherent sheaf V by deg(V) := deg(detV),
where detV is the determinant line bundle of V , and the slope of V by

µ(V) := deg(V)/rank(V).

Now, we define the notion of stability: A torsion-free coherent sheaf V
on M is stable if and only if for every coherent subsheaf S ⊂ V with
0 < rk(S) < rk(V), we have µ(S) < µ(V).

Fix a rank-2 vector bundle V on a minimal non-Kähler elliptic surface
X and let δ be its determinant line bundle; there exists a sufficient
condition on the spectral cover of V that ensures its stability (see [24]):
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Proposition 2. Suppose that the spectral cover of V includes an irre-
ducible bisection C of J(X). Then V is stable.

Remark 5. In fact, in this case, the vector bundle V is irreducible.

Let X be a minimal non-Kähler elliptic surface and consider a pair
(c1, c2) in NS(X) × Z. For a fixed line bundle δ on X with c1(δ) =
c1, let Mδ,c2 be the moduli space of stable holomorphic rank-2 vector
bundles with invariants det(V ) = δ and c2(V ) = c2. Note that, for any
c1 ∈ NS(X), one can choose a line bundle δ on X such that

c1(δ) ∈ c1 + 2NS(X) and m(2, c1) = −1

2
(c1(δ)/2)2;

moreover, if there exist line bundles a and δ′ such that δ = a2δ′, then
there is a natural isomorphism between the moduli spacesMδ,c2 Mδ′,c2 ,
defined by V → a⊗ V .

This moduli space can be identified, via the Kobayashi-Hitchin cor-
respondence, with the moduli space of gauge-equivalence classes of
Hermitian-Einstein connections in the fixed differentiable rank-2 vector
bundle determined by δ and c2 (see, for example, [28], [52]). In partic-
ular, if the determinant δ is the trivial line bundle OX , then there is
a one-to-one correspondence between MOX ,c2 and the moduli space of
SU(2)-instantons, that is, anti-selfdual connections. We can define the
map

G :Mδ,c2 → Div(Fδ)

that associate to each stable vector bundle its graph in Div(Fδ), called
the graph map. In [11], [53], the stability properties of vector bundles
on Hopf surfaces were studied by analysing the image and the fibres
of this map. In particular, it was shown [53] that the moduli space
admits a natural Poisson structure with respect to which the graph
map is a Lagrangian fibration whose generic fibre is an abelian variety,
i.e. the map G admits an algebraically completely integrable system
structure. For general case, the moduli spaces Mδ,c2 are studied by
Brinzanescu-Moraru in [24].

We have the following results (see [24]):

Theorem 5. Let X
π→ B be a non-Kähler elliptic surface and letMδ,c2

be defined as above. Then:
(i) There are necessary and sufficient conditions such that Mδ,c2 is
nonempty (see Theorem 4).
(ii) If c2 − c21/2 > g − 1 (g is the genus of B), the moduli space Mδ,c2

is smooth on the open dense subset of regular bundles (a regular bundle
is a vector bundle for which its restriction to any fibre has its automor-
phism group of the smallest dimension).
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(iii) If g ≤ 1, the moduli spaceMδ,c2 is smooth of dimension 8∆(2, c1, c2)
and G : Mδ,c2 → Div(Fδ) is an algebraically completely integrable
Hamiltonian system.
(iv) The generic fibre of the graph map G :Mδ,c2 → Div(Fδ) is a Prym
variety.
(v) Let Pδ,c2 be the set of divisors in Fδ of the form Σk

1fi + A, where
A is a section of the ruling and the fi’s are fibres of the ruled surface,
that are numerically equivalent to η∗(B0) + c2f . For c2 ≥ 2, the graph
map is surjective on Pδ,c2. For c2 < 2, see [24].
(vi) Explicit descriptions of the the singular fibres of G are given, see
[24].

Special results on the moduli space Mδ,c2 in the case of primary
Kodaira surfaces are given in [2].

4. Vector bundles on non-Kähler elliptic fibrations

Let M be an n-dimensional compact complex manifold, T = V/Λ

an m-dimensional complex torus and X
π−→M a principal bundle with

fiber T . The theory of principal torus bundles is developed in great
detail in [47]; see also [25]. It is well known that such bundles are
described by elements of H1(M,OM(T )), where OM(T ) denotes the
sheaf of local holomorphic maps from M to T . Considering the exact
sequence of groups

0→ Λ→ V → T → 0

and taking local sections we obtain the following exact sequence

0→ Λ→ OM ⊗ V → OM(T )→ 0.

Passing to the cohomology we have the long exact sequence

· · · → H1(M,Λ)→ H0,1
M ⊗ V → H1(M,OM(T ))

cZ−→
cZ−→ H2(M,Λ)→ H0,2

M ⊗ V → · · ·
By taking the image of the co-cycle defining the bundle via the map
cZ we obtain a characteristic class cZ(X) ∈ H2(M,Λ) = H2(M,Z)⊗Λ
and also a characteristic class c(X) ∈ H2(M,C)⊗ V .

Concerning some important sheaves on X we have (see [47]):

(1) KX = π∗KM , Riπ∗OX = OM ⊗C H
0,i(T )

and the exact sequence

(2) 0→ Ω1
M → π∗Ω

1
X → OM ⊗C H

1,0(T )→ 0.

All the informations concerning the topology of the bundle X → M
are given by the following invariants

a) The exact sequence (2) gives rise to an element γ ∈ Ext1(OM ⊗
H1,0(T ),Ω1

M) = H1(Ω1
M)⊗H1,0(T )∗. Thus γ is a map H1,0(T )

→ H1,1(M).
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b) The first non-trivial d2− differential in the Leray spectral se-
quence (d2 : E0,1

2 → E2,0
2 ) of the sheaf CX . We obtain in this

way a map δ : H1(T,C)→ H2(M,C). In the same way we may
define the maps δZ : H1(T,Z)→ H2(M,Z).

c) The first non-trivial d2−differential in the Leray spectral se-
quence of OX , where d2 : H0(R1π∗OX) → H2(π∗OX). Via the
identifications (1) we get a map ε : H0,1(T )→ H0,2(M).

d) The characteristic classes cZ(X) and c(X) defined above.

These invariants are related by the following theorem of Höfer (see
[47]):

Theorem 6. Let X
π−→M be a holomorphic principal T -bundle. Then:

(1) The Borel spectral sequence ([10]) p,qEs,t
2 =

∑
H i,s−i(M) ⊗

Hp−i,t−p+i(T ) degenerates on E3− level and the d2−differential
is given by ε and γ.

(2) The Leray spectral sequence Es,t
2 = Hs(M,C)⊗H t(T,C) degen-

erates on E3− level and the d2− differential is given by δ.
(3) Via the identification H1(T,Z) = Hom(Λ,Z) the characteristic

class cZ and the map δZ coincide.
(4) δ is determined by δZ via scalar extension.
(5) If H2(M) has Hodge decomposition then δ determines ε and γ

and conversely.

Firstly, in this section, we shall be concerned with the study of the
(coarse) moduli space of line bundles over a principal elliptic bundle
X → S , where S is a compact complex manifold, with fiber E :=
Eτ := C/Λ (Λ = Z ⊕ τZ). Also we make the assumption that δ 6= 0.
In particular, X → S does not have the topology of a product. We
should note here that if S is Kähler, then X is non-Kähler if and only
if δ 6= 0, see [47].

We shall need in the sequel the following result of Deligne, [34], in
the formulation of [47], Proposition 5.2.

Theorem 7. Let X → S be a principal elliptic bundle. Then the
following statements are equivalent:

a) The Leray spectral sequence for CX degenerates at the E2−level;
b) δ : H1(E,C)→ H2(X,C) is the zero map;
c) The restriction map H2(X,C) → H2(E,C) takes a non-zero

value in H1,1
E .

In our case the preceding theorem has a very important consequence

Corollary 1. Let X → S be a principal elliptic bundle with S a com-
pact complex manifold and δ 6= 0. Then for any vector bundle F over
X and any s ∈ S the bundle F|Xs has degree 0.
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Let X
π−→ S be an elliptic principal bundle with typical fibre an

elliptic curve Eτ and base S a smooth manifold. Let F : (An/S)op →
(Sets) be the functor from the category of analytic spaces over S to
the category of sets, given, for any commutative diagram

(3) XT

π

��

// X

π

��
T // S,

where XT := X ×S T , by

F (T ) := {L invertible on XT | deg(L|XT,t
) = 0, for all t ∈ T}/ ∼,

where L1 ∼ L2 if there is a line bundle L on T such that L1 ' L2⊗π∗L.
A variety J over S will be called the relative Jacobian of X if
(i) it corepresents the functor F , see [49] Definition 2.2.1, i.e. there

is a natural transformation F
σ−→ HomS(−, J) and for any other variety

N/S with a natural transformation F
σ′−→ HomS(−, N) there is a unique

S-morphism J
ν−→ N such that ν∗ ◦ σ = σ′.

(ii) for any point s ∈ S the map F ({s}) → HomS({s}, J) ' Js is
bijective. Then each fibre Js is the Jacobian of the fibre Xs ' E.

IfX is projective, the existence of the relative Jacobian is well known,
because it can be identified with the coarse relative moduli space of
stable locally free sheaves of rank 1 and degree 0 on the fibres of X,
see [49], [30]. The relative Jacobian exists also in our non-Kähler case.
It is just the product S × E∗ and has the following special properties
(see [26]):

Theorem 8. (i) The functor F is corepresented by J := S × E∗.
(ii) For any point s ∈ S the map F ({s})→ HomS({s}, J) ' Js ' E∗

is bijective.
(iii) The map σ(T ) is injective for any complex space T .
(iv) The functor F is locally representable by J = S × E∗, i.e. if

U ⊂ S is a trivializing open subset, σ(U) is bijective.

It will follow from Theorem 9 that the relative Jacobian J = S×E∗
is only a coarse moduli space under our assumption on X. However,
by property (iv) of the theorem one can find a system of local universal
sheaves which will form a twisted sheaf as in [30], Chapter 4.

In the following we replace the relative Jacobian J by S × E via
the canonical isomorphism between E and E∗. Then the local trivilal-

izations Xi
θi−→ Si × E are at the same time isomorphisms between

Xi and Ji := Si × E. The local universal sheaves Ui on XiJ =
J ×S Xi = Ji ×Si

Xi are then given as pull backs of the universal
sheaf OE×E(∆) ⊗ p∗2OE(−p0) for the classical Jacobian of the elliptic
curve E, after fixing an origin p0 ∈ E and where ∆ is the diagonal.
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Denoting by ρi the composition of maps

XiJ
id×θi−−−→ J ×S (Si × E) ' Si × E × E → E × E,

and by pX the projection from XiJ to Xi, the local universal sheaf
becomes

Ui = ρ∗i (OE×E(∆)⊗ p∗2OE(−p0)) ' OXiJ(Γi)⊗ p∗XOXi
(−si),

where Γi is the inverse of the diagonal (or the graph of the map θi) and
si is the section of Xi corresponding to the reference point p0 under
the isomorphism θi, see [30], Proposition 4.2.3.

To measure the failure of these bundles to glue to a global universal
one let us consider the line bundles Mij := Ui ⊗ U−1j over J ×S Xij.

Then the restriction ofMij to a fibre Xs of the projection J×sXi
qi−→ J

is trivial because both Uj and Ui restrict to isomorphic sheaves. It
follows that there are invertible sheaves Fij on Jij = Sij ×E such that
Mij = q∗iFij.

This collection of line bundles satisfies the following properties:

1. Fii = OJi ;
2. Fji = F−1ij ;
3. Fij ⊗Fjk ⊗Fki =: Fijk is trivial, with trivialization induced by

the canonical one of Mij ⊗Mjk ⊗Mki;
4. Fijk ⊗F−1jkl ⊗Fkli ⊗F

−1
lij is canonically trivial.

These conditions tell us that the collection {Fij} represents a gerb
(see [37])and gives rise to an element α ∈ H2(J,O∗J). More explicitly, α
is defined as follows. We may assume that the sheaves Fij are already
trivial with trivializations aij : OJ ' Fij over Jij.

If cijk : OJ ' Fijk is the isomorphism which is induced by the
canonical trivialization of Mij ⊗Mjk ⊗Mki, then

(4) aij ⊗ ajk ⊗ aki = αijkcijk

with scalar functions αijk which then define a cocycle for the sheaf
O∗J , thus defining the class α ∈ H2(J,O∗J), see [30], section 4.3. It is
straightforward to prove:

Lemma 1. The sheaves Ui can be glued to a global universal sheaf if
and only if the class α = 0.

The element α is related to the element ξ ∈ H1(S,OS(E)) which
is defined by the cocycle of the elliptic bundle X → S, using the
Ogg-Shafarevich group XS(J) of J , see [30], section 4.4. There is an

exact sequence 0 → Br(S) → Br(J)
π−→ XS(J) → 0, where Br(S) '

H2(J,O∗J) is the analytic Brauer group of S and XS(J) is isomorphic
to H1(S,OS(E)) in our setting. We have the following result (see [30],
Theorem 4.4.1):

Theorem 9. ξ = π(α).
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Because ξ 6= 0 in our case, α 6= 0, and thus the local universal sheaves
cannot be glued to a global universal sheaf by preserving the bundle
structure on the elliptic fibres.

The collection of local universal sheaves above can be considered as
an α-twisted sheaf with which one can define a Fourier-Mukai trans-
form. Recall the definition of an α−twisted sheaf on a complex space
or on an appropriate scheme X. Let α ∈ C2(U,O∗X) be a Čech 2-
cocycle, given by an open cover U = {Ui}i∈I and sections αijk ∈
Γ(Ui ∩ Uj ∩ Uk,O∗X). An α-twisted sheaf on X will be a pair of fam-
ilies ({Fi}i∈I , {ϕij}i,j,∈I) with Fi a sheaf of OX−modules on Ui and
ϕij : Fj|Ui∩Uj

→ Fi|Ui∩Uj
isomorphisms such that

• ϕii is the identity for all i ∈ I.
• ϕij = ϕ−1ji , for all i, j ∈ I.
• ϕij ◦ ϕjk ◦ ϕkl is multiplication by αijk on Fi|Ui∩Uj∩Uk

for all
i, j, k ∈ I.

It is easy to see that the coherent α-twisted sheaves on X make up an
abelian category and thus give rise to a derived category D[(X,α). For
further properties of α-twisted sheaves, see [30].

With the notation above, the family (Ui) becomes a twisted sheaf U
w.r.t. the cocycle p∗Jα of the sheafO∗J×SX

as follows. The trivializations
aij of the Fij induce isomorphisms φij : Uj ' Ui which satisfy the
definition of a twisted sheaf because of identity 4. We also need the
dual V of U on J ×S X which locally over Si is given by

Vi = ρ∗i (OE×E(−∆)⊗ p∗2OE(p0)) ' OXiJ(−Γi)⊗ p∗XOXi
(si).

It follows that Vi is α−1-twisted. We let V0 and U0 denote the exten-
sions of V and U to J ×X by zero.

The following theorem (see [26]) supplies us with the main tool for
the treatment of the moduli spaces MX(n, 0) of relatively semistable
vector bundles on X of rank n and degree 0 on the fibres Xs (for vector
bundles on elliptic curves see [3], [61]). It is an analog of the Theorem
6.5.4 [30] (see also [31]):

Theorem 10. Let X
π−→ S be an elliptic principal fiber bundle. Let

α ∈ Br(J) be the obstruction to the existence of the universal sheaf on
J ×S X and let U be the associated p∗J(α)-twisted universal sheaf on
J ×S X with its dual V as above.
Then the twisted Fourier-Mukai transform Ψ : D[(J, α) → D[(X),
given by Ψ(F) := RpX∗(V0 ⊗L LpJ∗F) is an equivalence of categories,
where pJ and pX are the product projections

(5) J J ×XpJoo pX // X

Note here that V0⊗LLpJ∗F) is an object in the category of untwisted
sheaves.
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Remark 6. Similar results were obtain in different settings by Ben-
Bassat [9] and Burban - Kreussler [29]. Related results were obtain in
[32].

In the sequel we shall work with the adjoint transform Φ(−) =
RpJ∗(U0⊗LLp∗X(−)) of Ψ with kernel U0. It is the reverse equivalence,
see [14], 8.4, [48], [6] for the untwisted situation.

Now, we shall apply the twisted Fourier-Mukai transform to the mod-
uli problem for rank-n relatively semi-stable vector bundles on the prin-
cipal elliptic bundle X. By Deligne’s theorem (Theorem 7), the degree
of the restriction Fs of any vector bundle F on X is 0 for any s ∈ S.
Therefore we consider the set MSX(n, 0) of rank-n vector bundles on
X which are fibrewise semistable (see [3], [42]) and of degree zero,
together with its quotient

MX(n, 0) := MSX(n, 0)/ ∼

of equivalence classes, where two bundles are defined to be equivalent
if they are fibrewise S-equivalent (for S-equivalence see [49].

We denote by Φi(F) the i-th term of the complex Φ(F). We say that
the sheaf F is Φ−WITi (the weak index theorem holds) if Φi(F) 6= 0
and Φj(F) = 0 for any j 6= i. Moreover if F is WITi and Φi(F) is
locally free we say that F is ITi, see [54].

Let F be a WIT1 sheaf on X. The spectral cover C(F) of F is the
0−th Fitting subscheme (see [54], [39]) of J given by the Fitting ideal
sheaf Fitt0(Φ

1(F)) of Φ1(F). For details see [26].
In this way we obtain a map from MX(n, 0) to S × SymnE, where

SymnE := En/Sn is the n-th symmetric power of E as the quotient
of En by the symmetric group Sn. Then S × SymnE is a complex
manifold of dimension n + 2 and can be thought of as the relative
space of cycles of degree n in E. We will show that this map is part of a
transformation of functors with target HomS(−, S×SymnE) and that
S × SymnE corepresents the moduli functor MX(n, 0) for MX(n, 0)
defined as follows.

For any complex space T over S let the setMX(n, 0)(T ) be defined
by

MX(n, 0)(T ) :=MSX(n, 0)(T )/ ∼,
whereMSX(n, 0)(T ) is the set of vector bundles on XT of rank n and
fibre degree 0, and where the equivalence relation F ∼ G is defined by
S−equivalence of the restricted sheaves Ft and Gt on the fibres XTt .
The functor property is then defined via pull backs.

We are going to describe the spectral cover as a functor below. For
that let T → S be a complex space over S and let ΦT be the Fourier-
Mukai transform for the product JT × XT with the pull back UT of
U as kernel. By [7], Proposion 2.7 and Corollary 2.12, any bundle
FT in MSX(n, 0)(T ) is also ΦT −WIT1 and admits a spectral cover
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C(FT ) ⊂ T × E defined by the Fitting ideal Fitt0Φ
1
T (FT ) (see also

[45]).

Lemma 2. If T is reduced, then C(FT ) is flat over T .

For the proof, one uses the Douady’s flatness criterion [38]; see [26].

Lemma 3. The spectral cover is compatible with base change: For any
morhism
h : T

′ → T over S and any bundle FT in MSX(n, 0)(T ),

h∗C(FT ) ' C(h∗FT )

For the proof, see [26].
The spectral covers C(FT ) lead us to consider the relative Douady

functors

Dn : (An/S)op → (Sets),

where (An/S) denotes the category of complex analytic spaces over
S and where a set Dn(T ) for a morphism T → S is defined as the
set of analytic subspaces Z ⊂ T × E which are flat over T and have
0-dimensional fibres of constant lenght n. The Douady functor Dn is
represented by a complex space Dn(S × E/S) over S, see [57]. For a
point s ∈ S, Dn({s}) is the set of 0-dimensional subspaces of length n
and can be identified with the symmetric product Symn(E) because it is
well known that the Hilbert-Chow morphism, in our case the Douady-
Barlet morphism, Dn({s}) → {s} × Symn(E) is an isomorphism for
the smooth curve E, see [5] Ch.V. It is then easy to show that also the
relative Douady-Barlet morphism Dn(S ×E/S)→ S × Symn(E) is an
isomorphism. This implies that for any complex space T over S there
is bijection

(6) Dn(T )
∼−→ HomS(T, S × Symn(E)).

One should note here that the behavior of families of cycles is more
difficult to describe than of those for the Douady space.

Let now Dnr resp.MX(n, 0)r be the restriction of the functors Dn and
MX(n, 0) to the category (Anr/S) of reduced complex analytic spaces.
By the Lemmas 2 and 3 the spectral covers give rise to a transformation
of functors

(7) MX(n, 0)r
γ−→ Dnr ' HomS(−, S × Symn(E)),

where for a reduced space T over S and for a class [FT ] inMX(n, 0)(T )
we have γ(T )(FT ) = C(FT ). Note that by flatness and compatibility
with restriction to fibres, C(FT ) depends only on the equivalence class
of FT . We are now able to present the theorem which generalises
Theorem 8, see [26].
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Theorem 11. The spectral cover induces a transformation of functors
γ :MX(n, 0)r → HomS(−, S×Symn(E)) with the following properties.

(i) The functor MX(n, 0)r is corepresented by S × Symn(E) via the
transformation γ,

(ii) For any point s ∈ S the induced map MXs(n, 0) → Symn(E) is
bijective.

(iii) The map γ(T ) is injective for any reduced complex space T over
S.

(iv)MX(n, 0)r is locally representable by S×Symn(E), i.e. if U ⊂ S
is a trivializing open subset for X and T is a complex space over U ,
then γ(T ) is bijective.

The proof of the next result is based also on the spectral cover; see
[27].

Theorem 12. Consider an elliptic principal bundle X
π−→ S over a

surface S, with at least one non-zero characteristic (Chern) class and
with invariant ε = 0. If S has no curves, then every rank-2 irreducible
vector bundle V on X is a pull-back from S up to a twist by a line
bundle.

When S is a projective manifold, a similar result was obtained by
Verbitsky; see [63].

References

[1] M. Aprodu, V. Brinzanescu, M. Toma, Holomorphic vector bundles on
primary Kodaira surfaces, Math. Z. 242 (2002), 63-73.

[2] M. Aprodu, R. Moraru, M. Toma, Two-dimensional moduli spaces of vec-
tor bundles over Kodaira surfaces, Advances in Math. 231 (3-4) (2012),
1202-1215.

[3] M.F. Atiyah, Vector bundles over an elliptic curve, Proc.London
Math.Soc. (3) 7, (1957), 414-452.

[4] C. Banica, J. Le Potier, Sur l’existence des fibrés vectoriels holomorphes
sur les surfaces non-algebriques, J. Reine Angew. Math. 378 (1987), 1-31.

[5] D.Barlet, espaces analytique reduit des cycles analytiques complexes com-
pact d’un espace analytique complexe de dimension finie, in Seminaire
Norguet 1974-1975, Springer LNM 482, 1975.

[6] C. Bartocci, U. Bruzzo, D. Hernandez Ruiperez, Fourier-Mukai and Nahm
transforms in geometry and mathematical physics, Progress in Math. 276,
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