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HIGHER TODA BRACKETS AND THE ADAMS SPECTRAL SEQUENCE

IN TRIANGULATED CATEGORIES

J. DANIEL CHRISTENSEN AND MARTIN FRANKLAND

Abstract. The Adams spectral sequence is available in any triangulated category equipped
with a projective or injective class. Higher Toda brackets can also be defined in a triangulated
category, as observed by B. Shipley based on J. Cohen’s approach for spectra. We provide
a family of definitions of higher Toda brackets, show that they are equivalent to Shipley’s,
and show that they are self-dual. Our main result is that the Adams differential dr in any
Adams spectral sequence can be expressed as an (r+1)-fold Toda bracket and as an r

th order
cohomology operation. We also show how the result simplifies under a sparseness assumption,
discuss several examples, and give an elementary proof of a result of Heller, which implies
that the three-fold Toda brackets in principle determine the higher Toda brackets.
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1. Introduction

The Adams spectral sequence is an important tool in stable homotopy theory. Given finite
spectra X and Y , the classical Adams spectral sequence is

Es,t2 = Exts,tA (H∗Y,H∗X) ⇒ [Σt−sX,Y ∧
p ],

where H∗X := H∗(X;Fp) denotes mod p cohomology and A = HF
∗
pHFp denotes the mod

p Steenrod algebra. Determining the differentials in the Adams spectral sequence generally
requires a combination of techniques and much ingenuity. The approach that provides a basis
for our work is found in [28], where Maunder showed that the differential dr in this spectral
sequence is determined by rth order cohomology operations, which we now review.
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2 J. DANIEL CHRISTENSEN AND MARTIN FRANKLAND

A primary cohomology operation in this context is simply an element of the Steenrod
algebra, and it is immediate from the construction of the Adams spectral sequence that
the differential d1 is given by primary cohomology operations. A secondary cohomology
operation corresponds to a relation among primary operations, and is partially defined and
multi-valued: it is defined on the kernel of a primary operation and takes values in the cokernel
of another primary operation. Tertiary operations correspond to relations between relations,
and have correspondingly more complicated domains and codomains. The pattern continues
for higher operations. Using that cohomology classes are representable, secondary cohomology
operations can also be expressed using 3-fold Toda brackets involving the cohomology class
and two operations whose composite is null. However, what one obtains in general is a
subset of the Toda bracket with less indeterminacy. This observation will be the key to our
generalization of Maunder’s result to other Adams spectral sequences in other categories.

The starting point of this paper is the following observation. On the one hand, the Adams
spectral sequence can be constructed in any triangulated category equipped with a projec-
tive class or an injective class [13]. For example, the classical Adams spectral sequence is
constructed in the stable homotopy category with the injective class consisting of retracts of
products

∏
i Σ

niHFp. On the other hand, higher Toda brackets can also be defined in an
arbitrary triangulated category. This was done by Shipley in [40], based on Cohen’s construc-
tion for spaces and spectra [15], and was studied further in [36]. The goal of this paper is to
describe precisely how the Adams dr can be described as a particular subset of an (r+1)-fold
Toda bracket which can be viewed as an rth order cohomology operation, all in the context
of a general triangulated category.

Triangulated categories arise throughout mathematics, so our work applies in various sit-
uations. As an example, we give calculations involving the Adams spectral sequence in the
stable module category of a group algebra. Even in stable homotopy theory, there are a
variety of Adams spectral sequences, such as the Adams–Novikov spectral sequence or the
motivic Adams spectral sequence, and our results apply to all of them. Moreover, by working
with minimal structure, our approach gains a certain elegance.

Organization and main results. In Section 2, we review the construction of the Adams
spectral sequence in a triangulated category equipped with a projective class or an injective
class. In Section 3, we review the construction of 3-fold Toda brackets in a triangulated
category and some of their basic properties. Section 4 describes how the Adams d2 is given
by 3-fold Toda brackets. This section serves as a warm-up for Section 6.

In Section 5, we recall the construction of higher Toda brackets in a triangulated category
via filtered objects. We provide a family of alternate constructions, and prove that they are
all equivalent. The main result is Theorem 5.11, which says roughly the following.

Theorem. There is an inductive way of computing an n-fold Toda bracket 〈fn, . . . , f1〉 ⊆
T (Σn−2X0,Xn), where the inductive step picks three consecutive maps and reduces the length
by one. The (n− 2)! ways of doing this yield the same subset, up to an explicit sign.

As a byproduct, we obtain Corollary 5.13, which would be tricky to prove directly from the
filtered object definition.

Corollary. Toda brackets are self-dual up to suspension: 〈fn, . . . , f1〉 ⊆ T (Σn−2X0,Xn) cor-
responds to the Toda bracket computed in the opposite category

〈f1, . . . , fn〉 ⊆ T op
(
Σ−(n−2)Xn,X0

)
= T (X0,Σ

−(n−2)Xn).
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Section 6 establishes how the Adams dr is given by (r + 1)-fold Toda brackets. Our main
results are Theorems 6.1 and 6.5, which say roughly the following.

Theorem. Let [x] ∈ Es,tr be a class in the Er term of the Adams spectral sequence. As subsets

of Es+r,t+r−1
1 , we have

dr[x] =
〈
Σr−1d1, . . . ,Σ

2d1,Σd1,Σps+1, δsx
〉

=
〈
Σr−1d1

!, . . . !,Σd1
!, d1, x

〉
.

Here, d1, ps+1, and δs are maps appearing in the Adams resolution of Y , where each d1 is a
primary cohomology operation. The first expression for dr[x] is an (r+1)-fold Toda bracket.
The second expression denotes an appropriate subset of the bracket

〈
Σr−1d1, . . . ,Σd1, d1, x

〉

with some choices dictated by the Adams resolution of Y . This description exhibits dr[x] as
an rth order cohomology operation applied to x.

In Section 7, we show that when certain sparseness assumptions are made, the subset〈
Σr−1d1

!, . . . !,Σd1
!, d1, x

〉
coincides with the full Toda bracket, and give examples of this phe-

nomenon. See Theorem 7.14, Proposition 7.15, and Example 7.17. The main application is
to computing maps in the homotopy category of R-module spectra, for a ring spectrum R
whose coefficient ring π∗R is sufficiently sparse, such as ku. See Example 7.21.

In Appendix A, we compute examples of Toda brackets in stable module categories. In
particular, Proposition A.1 provides an example where the inclusion d2[x] ⊆ 〈Σd1, d1, x〉 is
proper. Appendix B provides for the record a short, simple proof of a theorem due to Heller,
that 3-fold Toda brackets determine the triangulated structure. As a corollary, we note that
the 3-fold Toda brackets indirectly determine the higher Toda brackets.

Related work. Detailed treatments of secondary operations can be found in [1, §3.6], where
Adams used secondary cohomology operations to solve the Hopf invariant one problem, [32,
Chapter 16], and [19, Chapter 4].

There are various approaches to higher order cohomology operations and higher Toda brack-
ets in the literature, many of which use some form of enrichment in spaces, chain complexes,
or groupoids; see for instance [42], [27], [24], and [23]. In this paper, we work solely with
the triangulated structure, without enhancement, and provide no comparison to those other
approaches.

In [5] and [6], Baues and Jibladze express the Adams d2 in terms of secondary cohomology
operations, and this is generalized to higher differentials by Baues and Blanc in [7]. Their
approach starts with an injective resolution as in Diagram (2.3), and witnesses the equations
d1d1 = 0 by providing suitably coherent null-homotopies, described using mapping spaces.
Using this coherence data, the authors express a representative of dr[x] as a specific element
of the Toda bracket

〈
Σr−1d1, . . . ,Σd1, d1, x

〉
. While this approach makes use of an enrichment,

we suspect that by translating the (higher dimensional) null-homotopies into lifts to fibers or
extensions to cofibers, one could relate their expression for dr[x] to ours.

Acknowledgments. We thank Robert Bruner, Dan Isaksen, Peter Jorgensen, Fernando
Muro, Irakli Patchkoria, Steffen Sagave, and Dylan Wilson for helpful conversations, as well as
the referee for their useful comments. The second author also thanks the Max-Planck-Institut
für Mathematik for its hospitality. The second author was partially funded by a grant of the
DFG SPP 1786: Homotopy Theory and Algebraic Geometry.
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2. The Adams spectral sequence

In this section, we recall the construction of the Adams spectral sequence in a triangulated
category, along with some of its features. We follow [13, §4], or rather its dual. Some
references for the classical Adams spectral sequence are [2, §III.15], [26, Chapter 16], and [10].
Background material on triangulated categories can be found in [33, Chapter 1], [26, Appendix
2], and [44, Chapter 10]. We assume that the suspension functor Σ is an equivalence, with
chosen inverse Σ−1. Moreover, we assume we have chosen natural isomorphisms ΣΣ−1 ∼=
id and Σ−1Σ ∼= id making Σ and Σ−1 into an adjoint equivalence. We silently use these
isomorphisms when needed, e.g., when we say that a triangle of the form Σ−1Z → X → Y →
Z is distinguished.

Definition 2.1 ([13, Proposition 2.6]). A projective class in a triangulated category T is
a pair (P,N ) where P is a class of objects and N is a class of maps satisfying the following
properties.

(1) A map f : X → Y is in N if and only if the induced map

f∗ : T (P,X) → T (P, Y )

is zero for all P in P. In other words, N consists of the P-null maps.
(2) An object P is in P if and only if the induced map

f∗ : T (P,X) → T (P, Y )

is zero for all f in N .

(3) For every object X, there is a distinguished triangle P → X
f
−→ Y → ΣP , where P is

in P and f is in N .

In particular, the class P is closed under arbitrary coproducts and retracts. The objects in
P are called projective.

Definition 2.2. A projective class is stable if it is closed under shifts, i.e., P ∈ P implies
ΣnP ∈ P for all n ∈ Z.

We will assume for convenience that our projective class is stable. We suspect that many
of the results can be adapted to unstable projective classes, with a careful treatment of shifts.

Definition 2.3. Let P be a projective class. A map f : X → Y is called

(1) P-epic if the map
f∗ : T (P,X) → T (P, Y )

is surjective for all P ∈ P. Equivalently, the map to the cofiber Y → Cf is P-null.
(2) P-monic if the map

f∗ : T (P,X) → T (P, Y )

is injective for all P ∈ P. Equivalently, the map from the fiber Σ−1Cf → X is P-null.

Example 2.4. Let T be the stable homotopy category and P the projective class consisting
of retracts of wedges of spheres

∨
i S

ni . This is called the ghost projective class, studied for
instance in [13, §7].

Now we dualize everything.

Definition 2.5. An injective class in a triangulated category T is a projective class in the
opposite category T op. Explicitly, it is a pair (I,N ) where I is a class of objects and N is a
class of maps satisfying the following properties.
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(1) A map f : X → Y is in N if and only if the induced map

f∗ : T (Y, I) → T (X, I)

is zero for all I in I.
(2) An object I is in I if and only if the induced map

f∗ : T (Y, I) → T (X, I)

is zero for all f in N .

(3) For every object X, there is a distinguished triangle Σ−1I → W
f
−→ X → I, where I

is in I and f is in N .

In particular, the class I is closed under arbitrary products and retracts. The objects in I
are called injective. Just as for projective classes, we will assume for convenience that our
injective class is stable.

Example 2.6. Let T be the stable homotopy category. Take N to be the class of maps in-
ducing zero on mod p cohomology and I to be the retracts of (arbitrary) products

∏
iΣ

niHFp

with ni ∈ Z. One can generalize this example to any cohomology theory (spectrum) E instead
of HFp, letting IE denote the injective class consisting of retracts of products

∏
i Σ

niE.

Definition 2.7. Let I be an injective class. A map f : X → Y is called

(1) I-monic if the map
f∗ : T (Y, I) → T (X, I)

is surjective for all I ∈ I. Equivalently, the map from the fiber Σ−1Cf → X is I-null.
(2) I-epic if the map

f∗ : T (Y, I) → T (X, I)

is injective for all I ∈ I. Equivalently, the map to the cofiber Y → Cf is I-null.

Remark 2.8. The projectives and P-epic maps determine each other via the lifting property

X

f
����

P

>>⑦
⑦

⑦
⑦

// Y.

Dually, the injectives and I-monic maps determine each other via the extension property

X //
��

f
��

I

Y.

??⑧
⑧

⑧
⑧

This is part of the equivalent definition of a projective (resp. injective) class described in
[13, Proposition 2.4].

Convention 2.9. We will implicitly use the natural isomorphism T (A,B) ∼= T (ΣkA,ΣkB)
sending a map f to Σkf .

Definition 2.10. An Adams resolution of an object X in T with respect to a projective
class (P,N ) is a diagram

X = X0
i0 // X1

��������⑤⑤
⑤⑤

δ0~~⑤⑤
⑤⑤

i1 // X2

��������⑤⑤
⑤⑤

δ1~~⑤⑤
⑤⑤

i2 // X3

��������⑤⑤
⑤⑤

δ2~~⑤⑤
⑤⑤

// · · ·

P0

p0

````❇❇❇❇❇❇❇❇

P1

p1

````❇❇❇❇❇❇❇❇

P2

p2

````❇❇❇❇❇❇❇❇
(2.1)
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where every Ps is projective, every map is is in N , and every triangle Ps
ps
−→ Xs

is−→ Xs+1
δs−→

ΣPs is distinguished. Here the arrows δs : Xs+1−→◦ Ps denote degree-shifting maps, namely,
maps δs : Xs+1 → ΣPs.

Dually, an Adams resolution of an object Y in T with respect to an injective class (I,N )
is a diagram

Y = Y0
��

p0 ��❅
❅❅

❅❅
❅❅

Y1
��

p1 ��❅
❅❅

❅❅
❅❅

i0oo Y2
��

p2 ��❅
❅❅

❅❅
❅❅

i1oo Y3
i2oo · · ·oo

I0

��������

⑦⑦⑦⑦ δ0

??⑦⑦⑦⑦

I1

��������

⑦⑦⑦⑦ δ1

??⑦⑦⑦⑦

I2

��������

⑦⑦⑦⑦ δ2

??⑦⑦⑦⑦ (2.2)

where every Is is injective, every map is is in N , and every triangle Σ−1Is
Σ−1δs−−−−→ Ys+1

is−→

Ys
ps
−→ Is is distinguished.

From now on, fix a triangulated category T and a (stable) injective class (I,N ) in T .
By repeatedly using condition (3) in the definition of an injective class, we get the following
lemma.

Lemma 2.11. Every object Y of T admits an Adams resolution.

Given an object X and an Adams resolution of Y , applying T (X,−) yields an exact couple

⊕
s,t T (Σt−sX,Ys)

i=⊕(is)∗ //
⊕

s,t T (Σt−sX,Ys)

p=⊕(ps)∗uu❦❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦

⊕
s,t T (Σt−sX, Is)

δ=⊕(δs)∗

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙

and thus a spectral sequence with E1 term

Es,t1 = T
(
Σt−sX, Is

)
∼= T

(
ΣtX,ΣsIs

)

and differentials

dr : E
s,t
r → Es+r,t+r−1

r

given by dr = p ◦ i−(r−1) ◦ δ, where i−1 means choosing an i-preimage. This is called the
Adams spectral sequence with respect to the injective class I abutting to T (Σt−sX,Y ).

Lemma 2.12. The E2 term is given by

Es,t2 = Exts,tI (X,Y ) := ExtsI(Σ
tX,Y )

where ExtsI(X,Y ) denotes the sth derived functor of T (X,−) (relative to the injective class
I) applied to the object Y .

Proof. The Adams resolution of Y yields an I-injective resolution of Y

0 // Y
p0 // I0

(Σp1)δ0 // ΣI1
(Σ2p2)(Σδ1)// Σ2I2 // · · · (2.3)

�

Remark 2.13. We do not assume that the injective class I generates, i.e., that every non-zero
object X admits a non-zero map X → I to an injective. Hence, we do not expect the Adams
spectral sequence to be conditionally convergent in general; c.f. [13, Proposition 4.4].
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Example 2.14. Let E be a commutative (homotopy) ring spectrum. A spectrum is called
E-injective if it is a retract of E ∧W for some W [22, Definition 2.22]. A map of spectra
f : X → Y is called E-monic if the map E ∧ f : E ∧X → E ∧ Y is a split monomorphism.
The E-injective objects and E-monic maps form an injective class in the stable homotopy
category. The Adams spectral sequence associated to this injective class is the Adams spectral
sequence based on E-homology, as described in [35, Definition 2.2.4], also called the unmodified
Adams spectral sequence in [22, §2.2]. Further assumptions are needed in order to identify the
E2 term as Ext groups in E∗E-comodules.

Definition 2.15. The I-cohomology of an object X is the family of abelian groups
HI(X) := T (X, I) indexed by the injective objects I ∈ I.

A primary operation in I-cohomology is a natural transformation HI(X) → HJ(X) of
functors T op → Ab. Equivalently, by the (additive) Yoneda lemma, a primary operation is a
map I → J in T .

Example 2.16. The differential d1 is given by primary operations. More precisely, let x ∈ Es,t1

be a map x : Σt−sX → Is. Then d1(x) ∈ Es+1,t
1 is the composite

Σt−sX
x // Is

δs // ΣYs+1
Σps+1 // ΣIs+1.

In other words, d1(x) is obtained by applying the primary operation d1 := (Σps+1)δs : Is →
ΣIs+1 to x.

Proposition 2.17. A primary operation θ : I → J appears as d1 : Is−→◦ Is+1 in some Adams
resolution if and only if θ admits an I-epi – I-mono factorization.

Proof. The condition is necessary by construction. In the factorization d1 = (Σps+1)δs, the
map δs is I-epic while ps+1 is I-monic.

To prove sufficiency, assume given a factorization θ = iq : I →W → J , where q : I ։W is
I-epic and i : W →֒ J is I-monic. Taking the fiber of q twice yields the distinguished triangle

Σ−1W // Y0 // // I
q // // W

which we relabel

Y1
i0 // Y0 // p0 // I

δ0 // // ΣY1.

Relabeling the given map i : W →֒ J as Σp1 : ΣY1 →֒ ΣI1, we can continue the usual construc-
tion of an Adams resolution of Y0 as illustrated in Diagram (2.2), in which θ = iq appears
as the composite (Σp1)δ0. Note that by the same argument, for any s ≥ 0, θ appears as
d1 : Is−→◦ Is+1 in some (other) Adams resolution. �

Example 2.18. Not every primary operation appears as d1 in an Adams resolution. For
example, consider the stable homotopy category with the projective class P generated by the
sphere spectrum S = S0, that is, P consists of retracts of wedges of spheres. The P-epis (resp.
P-monos) consist of the maps which are surjective (resp. injective) on homotopy groups. The
primary operation 2: S → S does not admit a P-epi – P-mono factorization.

Indeed, assume that 2 = iq : S ։ W →֒ S is such a factorization. We will show that this
implies π2(S/2) = Z/2⊕Z/2, contradicting the known fact π2(S/2) = Z/4. Here S/2 denotes

the mod 2 Moore spectrum, sitting in the cofiber sequence S
2
−→ S → S/2.
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By the octahedral axiom applied to the factorization 2 = iq, there is a diagram

S
q // // W

��

i

��

// Cq

α

��

// δ
′

// S1

S
2 // S

j
����

// S/2

β

��

δ // S1

Ci Ci

with distinguished rows and columns. The long exact sequence in homotopy yields πnCq =

2πn−1S, where the induced map πn(δ
′) : πnCq → πnS

1 corresponds to the inclusion 2πn−1S →֒
πn−1S. Likewise, we have πnCi = (πnS) /2, where the induced map πn(j) : πnS → πnCi

corresponds to the quotient map πnS ։ (πnS) /2. The defining cofiber sequence S
2
−→ S →

S/2 yields the exact sequence

πnS
2 // πnS // πn(S/2)

πnδ // πn−1S
2 // πn−1S

which in turn yields the short exact sequence

0 // (πnS) /2 // πn(S/2)
πnδ //

2πn−1S // 0.

The map πn(α) : 2πn−1S → πn(S/2) is a splitting of this sequence, because of the equality
πn(δ)πn(α) = πn(δα) = πn(δ

′). However, the short exact sequence does not split in the case
n = 2, by the isomorphism π2(S/2) = Z/4. For references, see [39, Proposition II.6.48],
[38, Proposition 4], and [31].

3. 3-fold Toda brackets

In this section, we review different constructions of 3-fold Toda brackets and some of their
properties.

Definition 3.1. Let X0
f1
−→ X1

f2
−→ X2

f3
−→ X3 be a diagram in a triangulated category T .

We define subsets of T (ΣX0,X3) as follows.

• The iterated cofiber Toda bracket 〈f3, f2, f1〉cc ⊆ T (ΣX0,X3) consists of all maps
ψ : ΣX0 → X3 that appear in a commutative diagram

X0
f1 // X1

// Cf1

ϕ

��

// ΣX0

ψ

��
X0

f1 // X1
f2 // X2

f3 // X3

(3.1)

where the top row is distinguished.
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• The fiber-cofiber Toda bracket 〈f3, f2, f1〉fc ⊆ T (ΣX0,X3) consists of all compos-
ites β ◦ Σα : ΣX0 → X3, where α and β appear in a commutative diagram

X0

α

��

f1 // X1

Σ−1Cf2
// X1

f2 // X2
// Cf2

β

��
X2

f3 // X3

(3.2)

where the middle row is distinguished.
• The iterated fiber Toda bracket 〈f3, f2, f1〉ff ⊆ T (ΣX0,X3) consists of all maps
Σδ : ΣX0 → X3 where δ appears in a commutative diagram

X0

δ
��

f1 // X1

γ

��

f2 // X2
f3 // X3

Σ−1X3
// Σ−1Cf3

// X2
f3 // X3

(3.3)

where the bottom row is distinguished.

Remark 3.2. In the literature, there are variations of these definitions, which sometimes
differ by a sign. With the notion of cofiber sequence implicitly used in [43], our definitions
agree with Toda’s. The Toda bracket also depends on the choice of triangulation. Given
a triangulation, there is an associated negative triangulation whose distinguished triangles
are those triangles whose negatives are distinguished in the original triangulation (see [3]).
Negating a triangulation negates the 3-fold Toda brackets. Dan Isaksen has pointed out to
us that in the stable homotopy category there are 3-fold Toda brackets which are not equal
to their own negatives. For example, Toda showed in [43, Section VI.v, and Theorems 7.4
and 14.1] that the Toda bracket 〈2σ, 8, ν〉 has no indeterminacy and contains an element ζ of
order 8. We give another example in Example A.4.

The following proposition can be found in [36, Remark 4.5 and Figure 2] and was kindly
pointed out by Fernando Muro. It is also proved in [30, §4.6]. We provide a different proof
more in the spirit of this article. In the case of spaces, it was originally proved by Toda
[43, Proposition 1.7].

Proposition 3.3. The iterated cofiber, fiber-cofiber, and iterated fiber definitions of Toda

brackets coincide. More precisely, for any diagram X0
f1
−→ X1

f2
−→ X2

f3
−→ X3 in T , the

following subsets of T (ΣX0,X3) are equal:

〈f3, f2, f1〉cc = 〈f3, f2, f1〉fc = 〈f3, f2, f1〉ff .

Proof. We will prove the first equality; the second equality is dual.
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(⊇) Let β(Σα) ∈ 〈f3, f2, f1〉fc be obtained from maps α and β as in Diagram (3.2). Now
consider the diagram with distinguished rows

X0

α

��

f1 // X1
// Cf1

ϕ

��✤
✤

✤
// ΣX0

Σα

��
Σ−1Cf2

// X1
f2 // X2

// Cf2

β

��
X2

f3 // X3

where there exists a filler ϕ : Cf1 → X2. The commutativity of the tall rectangle on the right
exhibits the membership β(Σα) ∈ 〈f3, f2, f1〉cc .

(⊆) Let ψ ∈ 〈f3, f2, f1〉cc be as in Diagram (3.1). The octahedral axiom comparing the
cofibers of q1, ϕ, and ϕ ◦ q1 = f2 yields a commutative diagram

Σ−1Cϕ

−Σ−1ι

��

Σ−1Cϕ

−Σ−1η

��
X0

α

��

f1 // X1
q1 // Cf1

ϕ

��

ι1 // ΣX0

Σα

��

ψ

��

−Σf1 // ΣX1

Σ−1Cf2
−Σ−1ι2 // X1

f2 // X2

q

��

f3 %%❏❏
❏❏

❏❏

q2 // Cf2

ξ

��

βyyt
t
t

ι2 // ΣX1

X3

Cϕ

θ
99s

s
s

Cϕ,

where the rows and columns are distinguished. By exactness of the sequence

T (Cf2 ,X3)
(Σα)∗ // T (ΣX0,X3)

(−Σ−1η)∗ // T (Σ−1Cϕ,X3)

there exists a map β : Cf2 → X3 satisfying ψ = β(Σα) if and only if the restriction of ψ to
the fiber Σ−1Cϕ of Σα is zero. That condition does hold: one readily checks the equality
ψ(−Σ−1η) = 0. The chosen map β : Cf2 → X3 might not satisfy the equation βq2 = f3, but
we will correct it to another map β′ which does. The error term f3−βq2 is killed by restriction
along ϕ, and therefore factors through the cofiber of ϕ, i.e., there exists a factorization

f3 − βq2 = θι

for some θ : Cϕ → X3. The corrected map β′ := β + θξ : Cf2 → X3 satisfies β′q2 = f3.
Moreover, this corrected map β′ still satisfies β′(Σα) = ψ = β(Σα), since the correction term
satisfies θξ(Σα) = 0. �

Thanks to the proposition, we can write 〈f3, f2, f1〉 if we do not need to specify a particular
definition of the Toda bracket.

We also recall this well-known fact, and leave the proof as an exercise:
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Lemma 3.4. For any diagram X0
f1
−→ X1

f2
−→ X2

f3
−→ X3 in T , the subset 〈f3, f2, f1〉 of

T (ΣX0,X3) is a coset of the subgroup

(f3)∗ T (ΣX0,X2) + (Σf1)
∗ T (ΣX1,X3). �

The displayed subgroup is called the indeterminacy, and when it is trivial, we say that
the Toda bracket has no indeterminacy.

Lemma 3.5. Consider maps X0
f1
−→ X1

f2
−→ X2

f3
−→ X3

f4
−→ X4. Then the following inclusions

of subsets of T (ΣX0,X4) hold.

(1)
f4 〈f3, f2, f1〉 ⊆ 〈f4f3, f2, f1〉

(2)
〈f4, f3, f2〉 f1 ⊆ 〈f4, f3, f2f1〉

(3)
〈f4f3, f2, f1〉 ⊆ 〈f4, f3f2, f1〉

(4)
〈f4, f3, f2f1〉 ⊆ 〈f4, f3f2, f1〉 .

Proof. (1)-(2) These inclusions are straightforward.
(3)-(4) Using the iterated cofiber definition, the subset 〈f4f3, f2, f1〉cc consists of the maps

ψ : ΣX0 → X4 appearing in a commutative diagram

X0
f1 // X1

// Cf1

ϕ

��

// ΣX0

ψ

��
X0

f1 // X1
f2 // X2

f3 // X3
f4 // X4

where the top row is distinguished. Given such a diagram, the diagram

X0
f1 // X1

// Cf1
f3ϕ

!!❈
❈❈

❈❈
❈❈

// ΣX0

ψ

��
X0

f1 // X1
f2 // X2

f3 // X3
f4 // X4

exhibits the membership ψ ∈ 〈f4, f3f2, f1〉cc . A similar argument can be used to prove the
inclusion 〈f4, f3, f2f1〉ff ⊆ 〈f4, f3f2, f1〉ff . �

Example 3.6. The inclusion 〈f4f3, f2, f1〉 ⊆ 〈f4, f3f2, f1〉 need not be an equality. For

example, consider the maps X
0
−→ Y

1
−→ Y

0
−→ Z

1
−→ Z. The Toda brackets being compared are

〈1Z0, 1Y , 0〉 = 〈0, 1Y , 0〉 = {0}

〈1Z , 01Y , 0〉 = 〈1Z , 0, 0〉 = T (ΣX,Z).

Definition 3.7. In the setup of Definition 3.1, the restricted Toda brackets are the subsets
of the Toda bracket 〈

f3,
α

f2, f1

〉

fc

⊆ 〈f3, f2, f1〉fc

〈
β

f3, f2, f1

〉

fc

⊆ 〈f3, f2, f1〉fc
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consisting of all composites β(Σα) : ΣX0 → X3, where α and β appear in a commutative
diagram (3.2) where the middle row is distinguished, with the prescribed map α : X0 →
Σ−1Cf2 (resp. β : Cf2 → X3).

The lift to the fiber α : X0 → Σ−1Cf2 is a witness of the equality f2f1 = 0. Dually, the
extension to the cofiber β : Cf2 → X3 is a witness of the equality f3f2 = 0.

Remark 3.8. Let X1
f2
−→ X2

q2
−→ Cf2

ι2−→ ΣX1 be a distinguished triangle. By definition, we
have equalities of subsets

〈
f3,

α

f2, f1

〉

fc

=

〈
f3,

1
f2,−Σ

−1ι2

〉

fc

(Σα)

〈
β

f3, f2, f1

〉

fc

= β

〈
1

q2, f2, f1

〉

fc

.

4. Adams d2 in terms of 3-fold Toda brackets

In this section, we show that the Adams differential dr can be expressed in several ways
using 3-fold Toda brackets. One of these expressions is as a secondary cohomology operation.

Given an injective class I, an Adams resolution of an object Y as in Diagram (2.2), and an

object X, consider a class [x] ∈ Es,t2 represented by a cycle x ∈ Es,t1 = T (Σt−sX, Is). Recall

that d2[x] ∈ Es+2,t+1
2 is obtained as illustrated in the diagram

· · · Ysoo
##

ps
##❋

❋❋
❋❋

❋❋
❋❋

Ys+1
""

ps+1 ""❋
❋❋

❋❋
❋❋

isoo Ys+2
""

ps+2 ""❋
❋❋

❋❋
❋❋

is+1oo Ys+3
is+2oo · · ·oo

Is

��������✈✈✈✈✈
δs

::✈✈✈✈✈

Is+1

��������①①①① δs+1

<<①①①①

Is+2

��������①①①① δs+2

<<①①①①

Σt−sX

x

OO
x̃

55

s
s
r
q
♣
♣
♦

♥
♥

♠
❧

❧
❦

d2(x)

44

Explicitly, since x satisfies d1(x) = (Σps+1)δsx = 0, we can choose a lift x̃ : Σt−sX−→◦ ΣYs+2

of δsx to the fiber of Σps+1. Then the differential d2 is given by

d2[x] = [(Σps+2)x̃] .

From now on, we will unroll the distinguished triangles and keep track of the suspensions.
Following Convention 2.9, we will use the identifications

Es+2,t+1
1 = T (Σt−s−1X, Is+2) ∼= T (Σt−sX,ΣIs+2) ∼= T (Σt−s+1X,Σ2Is+2).

Proposition 4.1. Denote by d2[x] ⊆ Es+2,t+1
1 the subset of all representatives of the class

d2[x] ∈ Es+2,t+1
2 . Then the following equalities hold:

(1)

d2[x] =

〈
Σ2ps+2

Σd1,Σps+1, δsx

〉

fc

= 〈Σd1,Σps+1, δsx〉
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(2)

d2[x] = (Σ2ps+2)

〈
1

Σδs+1,Σps+1, δsx

〉

fc

= (Σ2ps+2) 〈Σδs+1,Σps+1, δsx〉

(3)

d2[x] =

〈
β

Σd1, d1, x

〉

fc

,

where β is the composite C
β̃
−→ Σ2Ys+2

Σ2ps+2
−−−−→ Σ2Is+2 and β̃ is obtained from the

octahedral axiom applied to the factorization d1 = (Σps+1)δs : Is → ΣYs+1 → ΣIs+1.

In (3), β is a witness to the fact that the composite (Σd1)d1 of primary operations is zero,
and so the restricted Toda bracket is a secondary operation.

Proof. Note that t plays no role in the statement, so we will assume without loss of generality
that t = s holds.

(1) The first equality holds by definition of d2[x], namely choosing a lift of δsx to the fiber
of Σps+1. The second equality follows from the fact that Σ2ps+2 is the unique extension of
Σd1 = (Σ2ps+2)(Σδs+1) to the cofiber of Σps+1. Indeed, Σδs+1 is I-epic and ΣIs+2 is injective,
so that the restriction map

(Σδs+1)
∗ : T (Σ2Ys+2,Σ

2Is+2) → T (ΣIs+1,Σ
2Is+2)

is injective.

(2) The first equality holds by Remark 3.8. The second equality holds because Σδs+1 is
I-epic and ΣIs+2 is injective, as in part (1).

(3) The map d1 : Is → ΣIs+1 is the composite Is
δs−→ ΣYs+1

Σps+1
−−−−→ ΣIs+1. The octahedral

axiom applied to this factorization yields the dotted arrows in a commutative diagram

Is
δs // ΣYs+1

Σps+1

��

Σis // ΣYs

α̃

��✤
✤

✤

−Σps // ΣIs

Is
d1 // ΣIs+1

Σδs+1

��

q //❴❴❴❴ Cd1

β̃
��✤
✤
✤

ι //❴❴❴❴ ΣIs

Σ2Ys+2

−Σ2is+1

��

Σ2Ys+2

��
Σ2Ys+1

Σ2is // Σ2Ys
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where the rows and columns are distinguished and the equation (−Σ2is+1)β̃ = (Σδs)ι holds.

The restricted bracket

〈
β

Σd1, d1, x

〉

fc

consists of the maps ΣX → Σ2Is+2 appearing as down-

ward composites in the commutative diagram

ΣX

Σα
��✤
✤
✤

−Σx // ΣIs

Is
d1 // ΣIs+1

q // Cd1
β̃

zz✉✉✉
✉✉
✉✉
✉

β

��

ι // ΣIs

Σ2Ys+2
Σ2ps+2

$$■
■■

■■
■■

■

ΣIs+1
Σd1

//

Σδs+1

::✈✈✈✈✈✈✈✈
Σ2Is+2

(⊇) Let β(Σα) ∈

〈
β

d1, d1, x

〉

fc

. By definition of β, we have β(Σα) = (Σ2ps+2)β̃(Σα). Then

β̃(Σα) : ΣX → Σ2Ys+2 is a valid choice of the lift x̃ in the definition of d2[x]:

(Σ2is+1)β̃(Σα) = −(Σδs)ι(Σα)

= −(Σδs)(−Σx)

= Σ(δsx).

(⊆) Given a representative (Σps+2)x̃ ∈ d2[x], let us show that Σx̃ : ΣX → Σ2Ys+2 factors as

ΣX
Σα
−−→ Cd1

β̃
−→ Σ2Ys+2 for some Σα, yielding a factorization of the desired form:

(Σ2ps+2)(Σx̃) = (Σ2ps+2)β̃(Σα)

= β(Σα).

By construction, the map (Σ2is)(−Σ2is+1) : Σ
2Ys+2 → Σ2Ys is a cofiber of β̃. The condition

(Σ2is)(Σ
2is+1)(Σx̃) = (Σ2is)Σ(δsx) = 0

guarantees the existence of some lift Σα : ΣX → Cd1 of Σx̃. The chosen lift Σα might not
satisfy ι(Σα) = −Σx, but we will correct it to a lift Σα′ which does. The two sides of the
equation become equal after applying −Σδs, i.e., (−Σδs)(−Σx) = (−Σδs)ι(Σα) holds. Hence,
the error term factors as

−Σx− ιΣα = (−Σps)(Σθ)

for some Σθ : ΣX → ΣYs, since −Σps is a fiber of −Σδs. The corrected map Σα′ := Σα +

α̃(Σθ) : ΣX → Cd1 satisfies ι(Σα′) = −Σx and still satisfies β̃(Σα′) = β̃(Σα) = Σx̃, since the

correction term α̃(Σθ) satisfies β̃α̃(Σθ) = 0. �

Proposition 4.2. The following inclusions of subsets hold in Es+2,t+1
1 :

d2[x] ⊆ (Σ2ps+2) 〈Σδs+1, d1, x〉 ⊆ 〈Σd1, d1, x〉 .

Proof. The first inclusion is

d2[x] = (Σ2ps+2) 〈Σδs+1,Σps+1, δsx〉 ⊆ (Σ2ps+2) 〈Σδs+1, (Σps+1)δs, x〉 ,
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whereas the second inclusion is

(Σ2ps+2) 〈Σδs+1, d1, x〉 ⊆
〈
(Σ2ps+2)(Σδs+1), d1, x

〉
,

both using Lemma 3.5. �

Proposition 4.3. The inclusion (Σ2ps+2) 〈Σδs+1, d1, x〉 ⊆ 〈Σd1, d1, x〉 need not be an equality
in general.

It was pointed out to us by Robert Bruner that this can happen in principle. We give an
explicit example in Proposition A.1.

5. Higher Toda brackets

We saw in Section 3 that there are several equivalent ways to define 3-fold Toda brackets.
Following the approach given in [29], we show that the fiber-cofiber definition generalizes
nicely to n-fold Toda brackets. There are (n − 2)! ways to make this generalization, and we
prove that they are all the same up to a specified sign. We also show that this Toda bracket
is self-dual.

Other sources that discuss higher Toda brackets in triangulated categories are [40, Appendix
A], [18, IV §2] and [36, §4], which all give definitions that follow Cohen’s approach for spectra
or spaces [15]. We show that our definition agrees with those of [40] and [36]. (We believe
that it sometimes differs in sign from [15]. We have not compared carefully with [18].)

Definition 5.1. Let X0
f1
−→ X1

f2
−→ X2

f3
−→ X3 be a diagram in a triangulated category T .

We define the Toda family of this sequence to be the collection T(f3, f2, f1) consisting of all
pairs (β,Σα), where α and β appear in a commutative diagram

X0

α

��

f1 // X1

Σ−1Cf2
// X1

f2 // X2
// Cf2

β

��
X2

f3 // X3

with distinguished middle row. Equivalently,

ΣX0

Σα
��

−Σf1 // ΣX1

X1
f2 // X2

// Cf2

β

��

// ΣX1

X2
f3 // X3,

where the middle row is again distinguished. (The negative of Σf1 appears, since when a
triangle is rotated, a sign is introduced.) Note that the maps in each pair form a composable

sequence ΣX0
Σα
−−→ Cf2

β
−→ X3, with varying intermediate object, and that the collection of

composites β ◦ Σα is exactly the Toda bracket 〈f3, f2, f1〉, using the fiber-cofiber definition
(see Diagram (3.2)). (Also note that the Toda family is generally a proper class, but this is
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only because the intermediate object can be varied up to isomorphism, and so we will ignore
this.)

More generally, if S is a set of composable triples of maps, starting at X0 and ending at
X3, we define T(S) to be the union of T(f3, f2, f1) for each triple (f3, f2, f1) in S.

Definition 5.2. Let X0
f1
−→ X1

f2
−→ X2

f3
−→ · · ·

fn
−→ Xn be a diagram in a triangulated

category T . We define the Toda bracket 〈fn, . . . , f1〉 inductively as follows. If n = 2,
it is the set consisting of just the composite f2f1. If n > 2, it is the union of the sets
〈β,Σα,Σfn−3, . . . ,Σf1〉, where (β,Σα) is in T(fn, fn−1, fn−2).

In fact, there are (n − 2)! such definitions, depending on a sequence of choices of which
triple of consecutive maps to apply the Toda family construction to. In Theorem 5.11 we will
enumerate these choices and show that they all agree up to sign.

Example 5.3. Let us describe 4-fold Toda brackets in more detail. We have

〈f4, f3, f2, f1〉 =
⋃

β,α

〈β,Σα,Σf1〉 =
⋃

β,α

⋃

β′,α′

{β′ ◦Σα′}

with (β,Σα) ∈ T(f4, f3, f2) and (β′,Σα′) ∈ T(β,Σα,Σf1). These maps fit into a commutative
diagram

Σ2X0
Σα′

// CΣα
//

β′

��✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹

Σ2X1 row = −Σ2f1

ΣX1
Σα // Cf3

//

β
##●

●●
●●

●●
●●

OO

ΣX2 row = −Σf2

X2
f3 // X3

OO

f4

// X4

0

OO

where the horizontal composites are specified as above, and each “snake”

· // ·

· // ·

OO

is a distinguished triangle. The middle column is an example of a 3-filtered object as defined
below.

Next, we will show that Definition 5.2 coincides with the definitions of higher Toda brackets
in [40, Appendix A] and [36, §4], which we recall here.

Definition 5.4. Let n ≥ 1 and consider a diagram in T

Y0
λ1 // Y1

λ2 // Y2 // · · ·
λn−1 // Yn−1

consisting of n−1 composable maps. An n-filtered object Y based on (λn−1, . . . , λ1) consists
of a sequence of maps

0 = F0Y
i0 // F1Y

i1 // · · ·
in−1 // FnY = Y
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together with distinguished triangles

FjY
ij // Fj+1Y

qj+1 // ΣjYn−1−j

ej // ΣFjY

for 0 ≤ j ≤ n− 1, such that for 1 ≤ j ≤ n− 1, the composite

ΣjYn−1−j
ej // ΣFjY

Σqj // ΣjYn−j

is equal to Σjλn−j . In particular, the n-filtered object Y comes equipped with maps

σ′Y : Yn−1
∼= F1Y → Y

σY : Y = FnY → Σn−1Y0.

Definition 5.5. Let X0
f1
−→ X1

f2
−→ X2

f3
−→ · · ·

fn
−→ Xn be a diagram in a triangulated category

T . The Toda bracket in the sense of Shipley–Sagave 〈fn, . . . , f1〉SS ⊆ T (Σn−2X0,Xn) is the
set of all composites appearing in the middle row of a commutative diagram

Xn−1

σ′X
��

fn

$$■
■■

■■
■■

■■

Σn−2X0

Σn−2f1 &&▲▲
▲▲

▲▲
▲▲

▲▲
//❴❴❴❴ X

σX
��

//❴❴❴❴ Xn

Σn−2X1,

where X is an (n− 1)-filtered object based on (fn−1, . . . , f3, f2).

Example 5.6. For a 3-fold Toda bracket 〈f3, f2, f1〉SS , a 2-filtered object X based on f2
amounts to a cofiber of −f2, more precisely, a distinguished triangle

X2

σ′X // X
σX // ΣX1

Σf2 // ΣX2.

Using this, one readily checks the equality 〈f3, f2, f1〉SS = 〈f3, f2, f1〉fc, as noted in [36, Defi-

nition 4.5].

Example 5.7. For a 4-fold Toda bracket 〈f4, f3, f2, f1〉SS , a 3-filtered object X based on
(f3, f2) consists of the data displayed in the diagram

F3X = X
q3=σX// Σ2X1

ΣX1
−Σ−1e2 // F2X

q2 //

i2

OO

ΣX2 row = −Σf2

X2
−Σ−1e1 // F1X

i1

OO

q1

∼=
// X3 row = −f3

F0X = 0,

i0

OO
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where the two snakes are distinguished. The bracket consists of the maps Σ2X0 → X4

appearing as composites of the dotted arrows in a commutative diagram

Σ2X0
//❴❴❴ X

σX //

��

❉
❃

✽

✷

✳

✯

✫

Σ2X1 row = Σ2f1

ΣX1
−Σ−1e2// F2X

q2 //

OO

ΣX2 row = −Σf2

X2
−f3 // X3

OO

f4 // X4

0,

OO

where the two snakes are distinguished. By negating the first and third map in each snake,
this recovers the description in Example 5.3, thus proving the equality of subsets

〈f4, f3, f2, f1〉SS = 〈f4, f3, f2, f1〉 .

Proposition 5.8. Definitions 5.2 and 5.5 agree. In other words, we have the equality

〈fn, . . . , f1〉SS = 〈fn, . . . , f1〉

of subsets of T (Σn−2X0,Xn).

Proof. This is a straightforward generalization of Example 5.7. �

We define the negative of a Toda family T(f3, f2, f1) to consist of pairs (β,−Σα) for
(β,Σα) ∈ T(f3, f2, f1). (Since changing the sign of two maps in a triangle doesn’t affect
whether it is distinguished, it would be equivalent to put the minus sign with the β.)

Lemma 5.9. Let X0
f1
−→ X1

f2
−→ X2

f3
−→ X3

f4
−→ X4 be a diagram in a triangulated category T .

Then the two sets of pairs T(T(f4, f3, f2),Σf1) and T(f4,T(f3, f2, f1)) are negatives of each
other.

This is stronger than saying that the two ways of computing the Toda bracket 〈f4, f3, f2, f1〉
are negatives, and the stronger statement will be used inductively to prove Theorem 5.11.

Proof. We will show that the negative of T(T(f4, f3, f2),Σf1) is contained in the family
T(f4,T(f3, f2, f1)). The reverse inclusion is proved dually.
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Suppose (β,Σα) is in T(T(f4, f3, f2),Σf1), that is, (β,Σα) is in T(β′,Σα′,Σf1) for some
(β′,Σα′) in T(f4, f3, f2). This means that we have the following commutative diagram

ΣX1
−Σf2 //

Σα′

��✤
✤

✤

✤

✤
ΣX2

X2
f3 // X3

f4 ��❄
❄❄

❄❄
// Cf3

β′��⑧
⑧
⑧

//

��

ΣX2

X4

CΣα′

β__❄
❄
❄

��

Σ2X0

Σα
??⑧

⑧
⑧

−Σ2f1 ��❄
❄❄

❄❄

Σ2X1

in which the long row and column are distinguished triangles.
Using the octahedral axiom, there exists a map δ : Cf2 → X3 in the following diagram

making the two squares commute and such that the diagram can be extended as shown, with
all rows and columns distinguished:

ΣX0
γ

��⑧
⑧
⑧ −Σf1

��❄
❄❄

❄❄

X2
// Cf2

//

δ

��✤
✤

✤

✤

✤
ΣX1

−Σf2 //

Σα′

��✤
✤

✤

✤

✤
ΣX2

X2
f3 // X3

f4

��❄
❄❄

❄❄
//

��

Cf3

β′��⑧
⑧
⑧

//

��

ΣX2

X4

Cδ

��

CΣα′

β
__❄
❄
❄

��

Σ2X0

Σα
??⑧

⑧
⑧

−Σ2f1 ��❄
❄❄

❄❄Σγ

��⑧
⑧
⑧

ΣCf2
// Σ2X1.

Define Σγ to be the composite Σ2X0 → CΣα′ = Cδ → ΣCf2 , where the first map is Σα.
Then the small triangles at the top and bottom of the last diagram commute as well. There-
fore, (δ, γ) is in T(f3, f2, f1). Moreover, this diagram shows that (β,−Σα) is in T(f4, δ, γ),
completing the argument. �
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To concisely describe different ways of computing higher Toda brackets, we introduce the
following notation. For 0 ≤ j ≤ n− 3, write Tj(fn, fn−1, . . . , f1) for the set of tuples

{(fn, fn−1, . . . , fn−j+1, β,Σα,Σfn−j−3, . . . ,Σf1)},

where (β,Σα) is in T(fn−j, fn−j−1, fn−j−2). (There are j maps to the left of the three
used for the Toda family.) If S is a set of n-tuples of composable maps, we define
Tj(S) to be the union of the sets Tj(fn, fn−1, . . . , f1) for (fn, fn−1, . . . , f1) in S. With this
notation, the standard Toda bracket 〈fn, . . . , f1〉 consists of the composites of all the pairs
occurring in the iterated Toda family

T(fn, . . . , f1) := T0(T0(T0(· · ·T0(fn, . . . , f1) · · · ))).

A general Toda bracket can be written in the form Tj1(Tj2(Tj3(· · ·Tjn−2
(fn, . . . , f1) · · · ))),

where j1, j2, . . . , jn−2 is a sequence of natural numbers with 0 ≤ ji < i for each i. There are
(n− 2)! such sequences.

Remark 5.10. There are six ways to compute the five-fold Toda bracket 〈f5, f4, f3, f2, f1〉, as
the set of composites of the pairs of maps in one of the following sets:

T0(T0(T0(f5, f4, f3, f2, f1))) = T(T(T(f5, f4, f3),Σf2),Σ
2f1),

T0(T0(T1(f5, f4, f3, f2, f1))) = T(T(f5,T(f4, f3, f2)),Σ
2f1),

T0(T1(T1(f5, f4, f3, f2, f1))) = T(f5,T(T(f4, f3, f2),Σf1)),

T0(T1(T2(f5, f4, f3, f2, f1))) = T(f5,T(f4,T(f3, f2, f1))),

T0(T0(T2(f5, f4, f3, f2, f1))), and

T0(T1(T0(f5, f4, f3, f2, f1))).

The last two cannot be expressed directly just using T.

Now we can prove the main result of this section.

Theorem 5.11. The Toda bracket computed using the sequence j1, j2, . . . , jn−2 equals the
standard Toda bracket up to the sign (−1)

∑
ji.

Proof. Let j1, j2, . . . , jn−2 be a sequence with 0 ≤ ji < i for each i. Lemma 5.9 tells us that if
we replace consecutive entries k, k + 1 with k, k in any such sequence, the two Toda brackets
agree up to a sign. To begin with, we ignore the signs. We will prove by induction on ℓ
that the initial portion j1, . . . , jℓ of such a sequence can be converted into any other sequence,
using just the move allowed by Lemma 5.9 and its inverse, and without changing ji for i > ℓ.
For ℓ = 1, there is only one sequence 0. For ℓ = 2, there are two sequences, 0, 0 and 0, 1, and
Lemma 5.9 applies. For ℓ > 2, suppose our goal is to produce the sequence j′1, . . . , j

′
ℓ. We

break the argument into three cases:

Case 1: j′ℓ = jℓ. We can directly use the induction hypothesis to adjust the entries in the first
ℓ− 1 positions.

Case 2: j′ℓ > jℓ. By induction, we can change the first ℓ− 1 entries in the sequence j so that
the entry in position ℓ− 1 is jℓ, since jℓ < j′ℓ ≤ ℓ− 1. Then, using Lemma 5.9, we can change
the entry in position ℓ to jℓ + 1. Continuing in this way, we get j′ℓ in position ℓ, and then we
are in Case 1.

Case 3: j′ℓ < jℓ. Since the moves are reversible, this is equivalent to Case 2.
To handle the sign, first note that signs propagate through the Toda family construction.

More precisely, suppose S is a set of n-tuples of maps, and let S′ be a set obtained by negating



HIGHER TODA BRACKETS AND THE ADAMS SPECTRAL SEQUENCE 21

the kth map in each n-tuple for some fixed k. Then Tj(S) has the same relationship to Tj(S
′),

possibly for a different value of k.
As a result, applying the move of Lemma 5.9 changes the resulting Toda bracket by a sign.

That move also changes the parity of
∑

i ji. Since we get a plus sign when each ji is zero, it

follows that the difference in sign in general is (−1)
∑

i ji . �

An animation of this argument is available at [14]. It was pointed out by Dylan Wilson
that the combinatorial part of the above proof is equivalent to the well-known fact that if a
binary operation is associative on triples, then it is associative on n-tuples.

In order to compare our Toda brackets to the Toda brackets in the opposite category, we
need one lemma.

Lemma 5.12. Let X0
f1
−→ X1

f2
−→ X2

f3
−→ X3 be a diagram in a triangulated category T . Then

the Toda family T(Σf3,Σf2,Σf1) is the negative of the suspension of T(f3, f2, f1). That is, it
consists of (Σβ,−Σ2α) for (β,Σα) in T(f3, f2, f1).

Proof. Given a distinguished triangle Σ−1Cf2
k
−→ X1

f2
−→ X2

ι
−→ Cf2 , a distinguished triangle

involving Σf2 is

Cf2
−Σk
−−−→ ΣX1

Σf2
−−→ ΣX2

Σι
−→ ΣCf2 .

Because of the minus sign at the left, the maps that arise in the Toda family based on this
triangle are −Σ2α and Σβ, where Σα and β arise in the Toda family based on the starting
triangle. �

Given a triangulated category T , the opposite category T op is triangulated in a natural
way. The suspension in T op is Σ−1 and a triangle

Y0
g1 // Y1

g2 // Y2
g3 // Σ−1Y0

in T op is distinguished if and only if the triangle

ΣΣ−1Y0 Y1
g′1oo Y2

g2oo Σ−1Y0
g3oo

in T is distinguished, where g′1 is the composite of g1 with the natural isomorphism Y0 ∼=
ΣΣ−1Y0.

Corollary 5.13. The Toda bracket is self-dual up to suspension. More precisely, let X0
f1
−→

X1
f2
−→ X2

f3
−→ · · ·

fn
−→ Xn be a diagram in a triangulated category T . Then the subset

〈f1, . . . , fn〉
T op

⊆ T op(Σ−(n−2)Xn,X0) = T (X0,Σ
−(n−2)Xn)

defined by taking the Toda bracket in T op is sent to the subset

〈fn, . . . , f1〉
T ⊆ T (Σn−2X0,Xn)

defined by taking the Toda bracket in T under the bijection Σn−2 : T (X0,Σ
−(n−2)Xn) →

T (Σn−2X0,Xn).

Proof. First we compare Toda families in T and T op. It is easy to see that the Toda family
T T op

(f1, f2, f3) computed in T op consists of the pairs (α,Σ−1β) for (Σα, β) in the Toda family
T T (f3, f2, f1) computed in T . In short, one has to desuspend and transpose the pairs.

Using this, one can see that the iterated Toda family

T T op

(T T op

· · · T T op

(f1, f2, f3), . . . ,Σ
−(n−3)fn)
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is equal to the transpose of

Σ−1T T (Σ−(n−3)fn,Σ
−1T T (Σ−(n−4)fn−1,Σ

−1T T · · ·Σ−1T T (f3, f2, f1) · · · ))

By Lemma 5.12, the desuspensions pass through all of the Toda family constructions, intro-
ducing an overall sign of (−1)1+2+3+···+(n−3), and producing

Σ−(n−2)T T (fn, T
T (fn−1, T

T · · · T T (f3, f2, f1) · · · ))

By Theorem 5.11, composing the pairs gives the usual Toda bracket up to the sign
(−1)0+1+2+···+(n−3). The two signs cancel, yielding the result. �

We do not know a direct proof of this corollary. To summarize, our insight is that by
generalizing the corollary to all (n−2)! methods of computing the Toda bracket, we were able
to reduce the argument to the 4-fold case (Lemma 5.9) and some combinatorics.

Remark 5.14. As with the 3-fold Toda brackets (see Remark 3.2), the higher Toda brackets
depend on the triangulation. If the triangulation is negated, the n-fold Toda brackets change
by the sign (−1)n.

6. Higher order operations determine dr

In this section, we show that the higher Adams differentials can be expressed in terms of
higher Toda brackets, in two ways. One of these expressions is as an rth order cohomology
operation.

Given an injective class I, an Adams resolution of an object Y as in Diagram (2.2), and an

object X, consider a class [x] ∈ Es,tr represented by an element x ∈ Es,t1 = T (Σt−sX, Is). The
class dr[x] is the set of all (Σps+r)x̃, where x̃ runs over lifts of δsx through the (r − 1)-fold
composite Σ(is+1 · · · is+r−1) which appears across the top edge of the Adams resolution.

Our first result will be a generalization of Proposition 4.1(1), expressing dr in terms of an
(r + 1)-fold Toda bracket.

Theorem 6.1. As subsets of Es+r,t+r−1
1 , we have

dr[x] =
〈
Σr−1d1, . . . ,Σ

2d1,Σd1,Σps+1, δsx
〉
.

Proof. We compute the Toda bracket, applying the Toda family construction starting from
the right, which introduces a sign of (−1)1+2+···+(r−2), by Theorem 5.11. We begin with the
Toda family T(Σd1,Σps+1, δsx). There is a distinguished triangle

ΣYs+2
Σis+1 // ΣYs+1

Σps+1 // ΣIs+1
Σδs+1 // Σ2Ys+2,

with no needed signs. The map Σd1 factors through Σδs+1 as Σ2ps+2, and this factorization
is unique because Σδs+1 is I-epic and Σ2Is+2 is injective. The other maps in the Toda family
are Σx1, where x1 is a lift of δsx through Σis+1. So

T(Σd1,Σps+1, δsx) = {(Σ2ps+2, Σx1) | x1 a lift of δsx through Σis+1}.

(The Toda family also includes (Σ2ps+2 φ, φ
−1(Σx1)), where φ is any isomorphism, but these

contribute nothing additional to the later computations.) The composites of such pairs give
d2[x], up to suspension, recovering Proposition 4.1(1).

Continuing, for each such pair we compute

T(Σ2d1,Σ
2ps+2,Σx1) = −ΣT(Σd1,Σps+2, x1)

= −Σ{(Σ2ps+3, Σx2) | x2 a lift of x1 through Σis+2}.
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The first equality is Lemma 5.12, and the second reuses the work done in the previous para-
graph, with s increased by 1. Composing these pairs gives −d3[x]. The sign which is needed
to produce the standard Toda bracket is (−1)1, and so the signs cancel.

At the next step, we compute

T(Σ3d1,Σ
3ps+3,−Σ2x2) = −Σ2T(Σd1,Σps+3, x2)

= −Σ2{(Σ2ps+4, Σx3) | x3 a lift of x2 through Σis+3}.

Again, the composites give −d4[x]. Since it was a double suspension that passed through the
Toda family, no additional sign was introduced. Similarly, the sign to convert to the standard
Toda bracket is (−1)1+2, and since 2 is even, no additional sign was introduced. Therefore,
the signs still cancel.

The pattern continues. In total, there are 1+2+ · · ·+(r−2) suspensions that pass through
the Toda family, and the sign to convert to the standard Toda bracket is also based on that
number, so the signs cancel. �

Remark 6.2. Theorem 6.1 can also be proved using the definition Toda brackets based on r-
filtered objects, as in Definitions 5.4 and 5.5. However, one must work in the opposite category
T op. In that category, there is a unique r-filtered object, up to isomorphism, based on the
maps in the Toda bracket. One of the dashed arrows in the diagram from Definition 5.5 is also
unique, and the other corresponds naturally to the choice of lift in the Adams differential.

In the remainder of this section, we describe the analog of Proposition 4.1(3). We begin by
defining restricted higher Toda brackets, in terms of restricted Toda families.

Consider a Toda family T(gh1, g1h0, g0h), where the maps factor as shown, there are dis-
tinguished triangles

Zi
gi // Ji

hi // Zi+1
ki // ΣZi (6.1)

for i = 0, 1, and g and h are arbitrary maps Z2 → A and B → Z0, respectively. This
information determines an essentially unique element of the Toda family in the following
way. The octahedral axiom applied to the factorization g1h0 yields the dotted arrows in a
commutative diagram

J0
h0 // Z1

g1

��

k0 // ΣZ0

α2

��✤
✤

✤

−Σg0 // ΣJ0

J0
g1h0 // J1

h1
��

q //❴❴❴❴ W2

β2
��✤
✤

✤

ι //❴❴❴❴ ΣJ0

Z2

k1
��

Z2

γ2
��

ΣZ1
Σk0 // Σ2Z0,

where the rows and columns are distinguished and γ2 := (Σk0)k1. It is easy to see that
−Σ(g0h) lifts through ι as α2(Σh), and that gh1 extends over q as gβ2. We define the re-

stricted Toda family to be the set T(gh1
!, g1h0

!, g0h) consisting of the pairs (gβ2, α2(Σh))
that arise in this way. Since α2 and β2 come from a distinguished triangle involving a
fixed map γ2, such pairs are unique up to the usual ambiguity of replacing the pair with
(gβ2φ, φ

−1α2(Σh)), where φ is an isomorphism. Similarly, given any map x : B → J0, we
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define T(gh1
!, g1h0, x) to be the set consisting of the pairs (gβ2, Σα), where β2 arises as above

and Σα is any lift of −Σx through ι.

Definition 6.3. Given distinguished triangles as in Equation (6.1), for i = 1, . . . , n− 1, and
maps g : Zn → A and x : B → J1, we define the restricted Toda bracket

〈
ghn−1

!, gn−1hn−2
!, . . . !, g3h2

!, g2h1, x
〉

inductively as follows: If n = 2, it is the set consisting of just the composite gh1x. If n = 3,

it is the set of composites of the pairs in T(gh2
!, g2h1, x). If n > 3, it is the union of the sets

〈
gβ2

!, α2(Σhn−3)
!, Σ(gn−3hn−4)

!, . . . ,Σx
〉
,

where (gβ2, α2(Σhn−3)) is in T(ghn−1
!, gn−1hn−2

!, gn−2hn−3).

Remark 6.4. Despite the notation, we want to make it clear that these restricted Toda families
and restricted Toda brackets depend on the choice of factorizations and on the distinguished
triangles in Equation (6.1). Moreover, the elements of the restricted Toda families are not
simply pairs, but also include the factorizations of the maps in those pairs, and the distin-
guished triangle involving α2 and β2. This information is used in the (n − 1)-fold restricted
Toda bracket that is used to define the n-fold restricted Toda bracket.

Recall that the maps d1 are defined to be (Σps+1)δs, and that we have distinguished triangles

Ys
ps // Is

δs // ΣYs+1
Σis // ΣYs

for each s. The same holds for suspensions of d1, with the last map changing sign each time
it is suspended. Thus for x : Σt−sX → Is in the E1 term, the (r + 1)-fold restricted Toda

bracket
〈
Σr−1d1

!, . . . !,Σd1
!, d1, x

〉
makes sense for each r, where we are implicitly using the

defining factorizations and the triangles from the Adams resolution.

Theorem 6.5. As subsets of Es+r,t+r−1
1 , we have

dr[x] =
〈
Σr−1d1

!, . . . !,Σd1
!, d1, x

〉
.

This is a generalization of Proposition 4.1(3). The data in the Adams resolution is the
witness that the composites of the primary operations are zero in a sufficiently coherent way
to permit an rth order cohomology operation to be defined.

Proof. The restricted Toda bracket
〈
Σr−1d1

!, . . . !,Σd1
!, d1, x

〉
is defined recursively, working

from the left. Each of the r − 2 doubly restricted Toda families has essentially one ele-
ment. The first one involves maps α2, β2 and γ2 that form a distinguished triangle, and
γ2 is equal to [(−1)rΣris+r−2][−(−1)rΣris+r−1]. We will denote the corresponding maps in
the following octahedra αk, βk and γk, where each γk equals [(−1)rΣris+r−k] γk−1, and so
γk = −(−1)rkΣr(is+r−k · · · is+r−1). One is left to compute the singly restricted Toda family〈
Σrps+rβr−1

!, αr−1Σ
r−2δs, Σ

r−2x
〉
, where αr−1 and βr−1 fit into a distinguished triangle

Σr−1Ys+1
αr−1 // Wr−1

βr−1 // ΣrYs+r
γr−1 // ΣrYs+1,
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and γr−1 = −Σr(is+1 · · · is+r−1). Thus, to compute the last restricted Toda bracket, one uses
the following diagram, obtained as usual from the octahedral axiom:

Σt−s+r−1X

−Σr−1x

��
Σr−2Is

Σr−2δs // Σr−1Ys+1

αr−1

��

(−1)r Σr−1is // Σr−1Ys

αr

��✤
✤

✤

−Σr−1ps // Σr−1Is

Σr−2Is // Wr−1

βr−1

��

qr−1 //❴❴❴❴❴❴❴ Wr

βr

��✤
✤

✤

ιr−1 //❴❴❴❴❴❴❴ Σr−1Is

ΣrIs+r ΣrYs+r
Σrps+roo

γr−1

��

ΣrYs+r

γr

��
ΣrYs+1

(−1)r Σris // ΣrYs.

Up to suspension, both dr[x] and the last restricted Toda bracket are computed by composing
certain maps x̃ : Σt−s+r−2X → ΣrYs+r with Σrps+r. For dr[x], the maps x̃ must lift Σr−1(δsx)
through −γr−1. For the last bracket, the maps x̃ are of the form βry, where y : Σt−s+r−1X →
Wr is a lift of −Σr−1x through ιr−1. As in the proof of Proposition 4.1(3), one can see that
the possible choices of x̃ coincide. �

We next give a description of dr[x] using higher Toda brackets defined using filtered objects,
as in Definitions 5.4 and 5.5. The computation of the restricted Toda bracket above produces
a sequence

0 =W0
q0 // W1

q1 // · · ·
qr−1 // Wr, (6.2)

whereWk is the fibre of the k-fold composite Σr(is+r−k · · · is+r−1). (The map γk may differ in
sign from this composite, but that doesn’t affect the fibre.) For each k, we have a distinguished
triangle

Wk
qk // Wk+1

ιk // Σr−1Is+r−k−1
−(Σαk)(Σ

r−1δs+r−k−1) // ΣWk,

where we extend downwards to k = 0 by definingW1 = Σr−1Is+r−1 and using the non-obvious
triangle

W0
q0=0 // W1

ι0=−1 // Σr−1Is+r−1
0 // ΣW0.

One can check that

(Σιk−1)(−Σαk)(Σ
r−1δs+r−k−1) = (Σrps+r−k)(Σ

r−1δs+r−k−1) = Σr−1d1 = Σk(Σr−k−1d1),

where Σr−k−1d1 is the map appearing in the (k + 1)st spot of the Toda bracket. In other
words, the sequence (6.2) is an r-filtered object based on (Σr−2d1, . . . , d1).

The natural map σW : Wr → Σr−1Is is ιr−1, and the natural map σ′W : Σr−1Is+r−1
∼=

W1 →Wr is the composite qr−1 · · · q1ι0 = −qr−1 · · · q1. The Toda bracket computed using the
filtered object W consists of all composites appearing in the middle row of this commutative
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diagram:

Σr−1Is+r−1

σ′
W

��

Σr−1d1

&&▼▼
▼▼

▼▼
▼▼

▼▼
▼

Σt−s+r−1X

Σr−1x ''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

a //❴❴❴❴❴ Wr

σW
��

b
//❴❴❴❴❴ ΣrIs+r

Σr−1Is.

(6.3)

We claim that there is a natural choice of extension b. Since Σr−1d1 = (Σrps+r)(Σ
r−1δs+r−1),

it suffices to extend Σr−1δs+r−1 over σ
′
W . Well, β2 by definition is an extension of Σr−1δs+r−1

over q1, and each subsequent βk gives a further extension. Because ι0 = −1, −(Σrps+r)βr is
a valid choice for b.

On the other hand, as described at the end of the previous proof, the lifts a of Σr−1x through
σW = ιr−1, when composed with −(Σrps+r)βr, give exactly the Toda bracket computed there.

In summary, we have:

Theorem 6.6. Given an Adams resolution of Y and r ≥ 2, there is an associated r-filtered
object W and a choice of a map b in Diagram (6.3), such that for any X and class [x] ∈ Es,tr ,
we have

dr[x] =
〈
Σr−1d1, . . . ,Σd1, d1, x

〉
,

where the Toda bracket is computed only using the r-filtered object W and the chosen extension
b.

7. Sparse rings of operations

In this section, we focus on injective and projective classes which are generated by an
object with a “sparse” endomorphism ring. In this context, we can give conditions under
which the restricted Toda bracket appearing in Theorem 6.5 is equal to the unrestricted Toda
bracket, producing a cleaner correspondence between Adams differentials and Toda brackets.
We begin in Subsection 7.1 by giving the results in the case of an injective class, and then
briefly summarize the dual results in Subsection 7.2. Subsection 7.3 gives examples.

Let us fix some notation and terminology, also discussed in [36], [34], [37, §2], and [8].

Definition 7.1. Let N be a natural number. A graded abelian group R∗ is N-sparse if R∗

is concentrated in degrees which are multiples of N , i.e., Ri = 0 whenever i 6≡ 0 (mod N).

7.1. Injective case.

Notation 7.2. Let E be an object of the triangulated category T . Define the E-cohomology

of an object X to be the graded abelian group E∗X given by EnX := T (X,ΣnE). Postcom-
position makes E∗X into a left module over the graded endomorphism ring E∗E.

Assumption 7.3. For the remainder of this subsection, we assume the following.

(1) The triangulated category T has infinite products.
(2) The graded ring E∗E is N -sparse for some N ≥ 2.

Let IE denote the injective class generated by E, as in Example 2.6. Explicitly, IE consists
of retracts of (arbitrary) products

∏
iΣ

niE.

Lemma 7.4. With this setup, we have:
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(1) Let I be an injective object such that E∗I is N -sparse. Then I is a retract of a product∏
i Σ

miNE.
(2) If, moreover, W is an object such that E∗W is N -sparse, then we have T (W,ΣtI) = 0

for t 6≡ 0 (mod N).

Proof. (1) I is a retract of a product P =
∏
iΣ

niE, with a map ι : I →֒ P and retraction
π : P ։ I. Consider the subproduct P ′ =

∏
N |ni

ΣniE, with inclusion ι′ : P ′ →֒ P (via the

zero map into the missing factors) and projection π′ : P ։ P ′. Then the equality

ι′π′ι = ι : I → P

holds, using the fact that E∗I is N -sparse. Therefore, we obtain πι′π′ι = πι = 1I , so that I
is a retract of P ′.

(2) By the first part, T (W,ΣtI) is a retract of

T (W,Σt
∏

i

ΣmiNE) = T (W,
∏

i

ΣmiN+tE)

=
∏

i

T (W,ΣmiN+tE)

=
∏

i

EmiN+tW

= 0,

using the assumption that E∗W is N -sparse. �

Lemma 7.5. Let I0
f1
−→ I1

f2
−→ I2 → · · ·

fr
−→ Ir be a diagram in T , with r ≤ N + 1. Assume

that each object Ij is injective and that each E∗(Ij) is N -sparse. Then the iterated Toda family
T(fr, fr−1, . . . , f1) is either empty or consists of a single composable pair Σr−2I0 → C → Ir,
up to automorphism of C.

Proof. In the case r = 2, there is nothing to prove, so we may assume r ≥ 3. The iterated
Toda family is obtained by r − 2 iterations of the 3-fold Toda family construction. The first
iteration computes the Toda family of the diagram

Ir−3
fr−2 // Ir−2

fr−1 // Ir−1
fr // Ir.

Choose a cofiber of fr−1, i.e., a distinguished triangle Ir−2
fr−1
−−−→ Ir−1 → C1 → ΣIr−2. A lift

of fr−2 to the fiber Σ−1C1, if it exists, is determined up to

T (Ir−3,Σ
−1Ir−1) = T (ΣIr−3, Ir−1),

which is zero by Lemma 7.4(2). Likewise, an extension of fr to the cofiber C1, if it exists, is
determined up to

T (ΣIr−2, Ir) = 0.

Hence, T(fr, fr−1, fr−2) is either empty or consists of a single pair (β1,Σα1), up to automor-
phisms of C1. It is easy to see that the object C1 has the following property:

If E∗W = 0 for ∗ ≡ 0, 1 (mod N), then T (W,C1) = 0. (7.1)

For r ≥ 4, the next iteration computes the Toda family of the diagram

ΣIr−4
Σfr−3 // ΣIr−3

Σα1 // C1
β1 // Ir.
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The respective indeterminacies are

T (Σ2Ir−4, C1),

which is zero by Property (7.1), and

T (Σ2Ir−3, Ir),

which is zero by Lemma 7.4(2), since N ≥ 3 in this case. Hence, T(β1,Σα1,Σfr−3) is either
empty or consists of a single pair (β2,Σα2), up to automorphism of the cofiber C2 of Σα1.
Repeating the argument inductively, the successive iterations compute the Toda family of a
diagram

ΣjIr−3−j

Σjfr−2−j // ΣjIr−2−j

Σαj // Cj
βj // Ir

for 0 ≤ j ≤ r − 3, where Cj has the following property:

If E∗W = 0 for ∗ ≡ 0, 1, . . . , j (mod N), then T (W,Cj) = 0. (7.2)

The indeterminacy groups T (Σj+1Ir−3−j, Cj) and T (Σj+1Ir−2−j , Ir) are again zero. Hence,
T(βj ,Σαj,Σ

jfr−2−j) is either empty or consists of a single pair (βj+1,Σαj+1), up to auto-
morphism of Cj+1. Note that the argument works until the last iteration j = r − 3, by the
assumption r − 2 < N . �

We will need the following condition on an object Y :

Condition 7.6. Y admits an IE-Adams resolution Y• (see (2.2)) such that for each injective
Ij in the resolution, E∗(ΣjIj) is N -sparse.

Remark 7.7.

(1) Condition 7.6 implies that E∗Y is itself N -sparse, because of the surjection E∗I0 ։

E∗Y .
(2) The condition can be generalized to: there is an integer m such that for each j,

E∗(ΣjIj) is concentrated in degrees ∗ ≡ m (mod N). We take m = 0 for notational
convenience.

(3) We will see in Propositions 7.9 and 7.10 situations in which Condition 7.6 holds.

Theorem 7.8. Let X and Y be objects in T and consider the Adams spectral sequence abutting
to T (X,Y ) with respect to the injective class IE. Assume that Y satisfies Condition 7.6. Then

for all r ≤ N , the Adams differential is given, as a subset of Es+r,t+r−1
1 , by

dr[x] =
〈
Σr−1d1, . . . ,Σd1, d1, x

〉
.

In other words, the restricted bracket appearing in Theorem 6.5 coincides with the full Toda
bracket.

Proof. We will show that
〈
Σr−1d1

!, . . . !,Σd1
!, d1, x

〉
=

〈
Σr−1d1, . . . ,Σd1, d1, x

〉
.

Consider the diagram

Is
d1 // ΣIs+1

Σd1 // Σ2Is+2
// · · · // Σr−1Ir−1

Σr−1d1// ΣrIs+r

X

x

OO
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whose Toda bracket is being computed. The corresponding Toda family is

T(Σr−1d1, . . . ,Σd1, d1, x) = T
(
T(Σr−1d1, . . . ,Σd1, d1),Σ

r−2x
)
.

We know that
T(Σr−1d1

!, . . . !,Σd1
!, d1) ⊆ T(Σr−1d1, . . . ,Σd1, d1).

By Lemma 7.5, the Toda family on the right has at most one element, up to automorphism.
But fully-restricted Toda families are always non-empty, so the inclusion must be an equality.

Write Σr−2Is
f
−→ C

g
−→ ΣrIs+r for an element of these families. It remains to show that the

inclusion 〈
g !, f,Σr−2x

〉
⊆

〈
g, f,Σr−2x

〉

is an equality, i.e., that the extension of g to the cofiber of f is unique. This follows from the
equality T (Σr−1Is,Σ

rIs+r) = 0, which uses the assumption on the injective objects Ij and
that r − 1 < N . �

Next, we describe situations in which Theorem 7.8 applies.

Proposition 7.9. Assume that every product of the form
∏
iΣ

miNE has cohomology
E∗

(∏
iΣ

miNE
)
which is N -sparse. Then every object Y such that E∗Y is N -sparse also

satisfies Condition 7.6.

Proof. Let (yi) be a set of non-zero generators of E∗Y as an E∗E-module. Then the cor-
responding map Y →

∏
iΣ

|yi|E is IE-monic into an injective object; we take this map as
the first step p0 : Y0 → I0, with cofiber ΣY1. By our assumption on Y , each degree |yi| is
a multiple of N , and thus E∗I0 is N -sparse, by the assumption on E. The distinguished

triangle Y1 → Y0
p0
−→ I0 → ΣY1 induces a long exact sequence on E-cohomology which implies

that the map I0 → ΣY1 is injective on E-cohomology. It follows that E∗(ΣY1) is N -sparse as
well. Repeating this process, we obtain an IE-Adams resolution of Y such that for every j,
E∗(ΣjYj) and E

∗(ΣjIj) are N -sparse. �

The condition on E is discussed in Example 7.17.

Proposition 7.10. Assume that the ring E∗E is left coherent, and that E∗Y is N -sparse
and finitely presented as a left E∗E-module. Then Y satisfies Condition 7.6.

Proof. Since E∗Y is finitely generated over E∗E, the map p0 : Y → I0 can be chosen so that
I0 =

∏
iΣ

miNE ∼= ⊕iΣ
miNE is a finite product. It follows that E∗I0 is N -sparse and finitely

presented. We have that E∗−1Y1 = ker (p∗0 : E
∗I0 ։ E∗Y ). This is N -sparse, since E∗I0 is,

and is finitely presented over E∗E, since both E∗I0 and E
∗Y are, and E∗E is coherent [9, §I.2,

Exercises 11–12]. Repeating this process, we obtain an IE-Adams resolution of Y such that
for every j, ΣjIj is a finite product of the form

∏
iΣ

miNE. �

7.2. Projective case. The main applications of Theorem 7.8 are to projective classes instead
of injective classes. For future reference, we state here the dual statements of the previous
subsection and adopt a notation inspired from stable homotopy theory.

Notation 7.11. Let R be an object of the triangulated category T . Define the homotopy

(with respect to R) of an object X as the graded abelian group π∗X given by πnX :=
T (ΣnR,X). Precomposition makes π∗X into a right module over the graded endomorphism
ring π∗R.

Assumption 7.12. For the remainder of this subsection, we assume the following.

(1) The triangulated category T has infinite coproducts.
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(2) The graded ring π∗R is N -sparse for some N ≥ 2.

Let PR denote the stable projective class spanned by R, as in Example 2.4. Explicitly, PR
consists of retracts of (arbitrary) coproducts ⊕iΣ

niR.

Condition 7.13. X admits a PR-Adams resolution X• as in Diagram (2.1) with the property
that π∗(Σ

−jPj) is N -sparse for each projective Pj .

Theorem 7.14. Let X and Y be objects in T and consider the Adams spectral sequence
abutting to T (X,Y ) with respect to the projective class PR. Assume that X satisfies Condi-

tion 7.13. Let [y] ∈ Es,tr be a class represented by y ∈ Es,t1 = T (Σt−sPs, Y ). Then for all

r ≤ N , the Adams differential is given, as a subset of Es+r,t+r−1
1 , by

dr[y] =
〈
y, d1,Σ

−1d1, . . . ,Σ
−(r−1)d1

〉
.

Note that we used Corollary 5.13 to ensure that the equality holds as stated, not merely
up to sign.

Proposition 7.15. Assume that every coproduct of the form ⊕iΣ
miNR has homotopy

π∗
(
⊕iΣ

miNR
)
which is N -sparse. Then every object X such that π∗X is N -sparse also

satisfies Condition 7.13.

Recall the following terminology:

Definition 7.16. An object X of T is compact if the functor T (X,−) preserves infinite
coproducts.

Example 7.17. If R is compact in T , then R satisfies the assumption of Proposition 7.15.
This follows from the isomorphism

π∗
(
⊕iΣ

miNR
)
∼=

⊕

i

π∗(Σ
miNR) =

⊕

i

ΣmiNπ∗R

and the assumption that π∗R is N -sparse. The same argument works if R is a retract of a
coproduct of compact objects.

Dually, if E is cocompact in T , then E satisfies the assumption of Proposition 7.9. This
holds more generally if E is a retract of a product of cocompact objects.

Remark 7.18. Some of the related literature deals with compactly generated triangulated
categories. As noted in Remark 2.13, we do not assume that the object R is a generator, i.e.,
that the condition π∗X = 0 implies X = 0.

Proposition 7.19. Assume that the ring π∗R is right coherent, and that π∗X is N -sparse
and finitely presented as a right π∗R-module. Then X satisfies Condition 7.13.

The following is a variant of [34, Lemma 2.2.2], where we do not assume that R is a
generator. It identifies the E2 term of the spectral sequence associated to the projective class
PR. The proof is straightforward.

Proposition 7.20. Assume that the object R is compact.

(1) Let P be in the projective class PR. Then the map of abelian groups

T (P, Y ) → Homπ∗R(π∗P, π∗Y )

is an isomorphism for every object Y .
(2) There is an isomorphism

ExtsPR
(X,Y ) ∼= Extsπ∗R(π∗X,π∗Y )

which is natural in X and Y .



HIGHER TODA BRACKETS AND THE ADAMS SPECTRAL SEQUENCE 31

7.3. Examples. Theorem 7.14 applies to modules over certain ring spectra. We describe
some examples, along the lines of [34, Examples 2.4.6 and 2.4.7].

Example 7.21. Let R be an A∞ ring spectrum, and let hModR denote the homotopy category
of the stable model category of (right) R-modules [37, Example 2.3(ii)] [17, §III]. Then R
itself, the free R-module of rank 1, is a compact generator for hModR. The R-homotopy of
an R-module spectrum X is the usual homotopy of X, as suggested by the notation:

hModR(Σ
nR,X) ∼= hModS(S

n,X) = πnX.

In particular, the graded endomorphism ring π∗R is the usual coefficient ring of R.
The projective class PR is the ghost projective class [13, §7.3], generalizing Example 2.4,

where R was the sphere spectrum S. The Adams spectral sequence relative to PR is the
universal coefficient spectral sequence

Extsπ∗R(Σ
tπ∗X,π∗Y ) ⇒ hModR(Σ

t−sX,Y )

as described in [17, §IV.4] and [13, Corollary 7.12]. We used Proposition 7.20 to identify the
E2 term.

Some A∞ ring spectra R with sparse homotopy π∗R are discussed in [34, §4.3, 5.3, 6.4]. In
view of Proposition 7.20, the Adams spectral sequence in hModR collapses at the E2 page if
π∗R has (right) global dimension less than 2.

The Johnson–Wilson spectrum E(n) has coefficient ring

π∗E(n) = Z(p)[v1, . . . , vn, v
−1
n ], |vi| = 2(pi − 1),

which has global dimension n and is 2(p − 1)-sparse. Hence, Theorem 7.14 applies in this
case to the differentials dr with r ≤ 2(p − 1), while dr is zero for r > n. Likewise, connective
complex K-theory ku has coefficient ring

π∗ku = Z[u], |u| = 2,

which has global dimension 2 and is 2-sparse.

Example 7.22. Let R be a differential graded (dg for short) algebra over a commutative
ring k, and consider the category of dg R-modules dgModR. The homology H∗X of a dg R-
module is a (graded) H∗R-module. The derived category D(R) is defined as the localization of
dgModR with respect to quasi-isomorphisms. The free dg R-module R is a compact generator
of D(R). The R-homotopy of an object X of D(R) is its homology π∗X = H∗X. In particular,
the graded endomorphism ring of R in D(R) is the graded k-algebra H∗R.

The Adams spectral sequence relative to PR is an Eilenberg–Moore spectral sequence

ExtsH∗R

(
ΣtH∗X,H∗Y

)
⇒ D(R)(Σt−sX,Y )

from ordinary Ext to differential Ext, as described in [4, §8, 10]. See also [25, §III.4], [21,
Example 10.2(b)], and [16].

Remark 7.23. Example 7.22 can be viewed as a special case of Example 7.21. Letting HR
denote the Eilenberg–MacLane spectrum associated to R, the categories ModHR and dgModR
are Quillen equivalent, by [37, Example 2.4(i)] [41, Corollary 2.15], yielding a triangulated
equivalence hModHR ∼= D(R). The generator HR corresponds to the generator R via this
equivalence.

Example 7.24. Let R be a ring, viewed as a dg algebra concentrated in degree 0. Then
Example 7.22 yields the ordinary derived category D(R). The graded endomorphism ring of
R in D(R) is H∗R, which is R concentrated in degree 0. This is N -sparse for any N ≥ 2.
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The Adams spectral sequence relative to PR is the hyperderived functor spectral sequence

ExtsH∗R

(
ΣtH∗X,H∗Y

)
=

∏

i∈Z

ExtsR (Hi−tX,HiY ) ⇒ D(R)(Σt−sX,Y ) = Exts−tR (X,Y )

from ordinary Ext to hyper-Ext, as described in [44, §5.7, 10.7].

Appendix A. Computations in the stable module category of a group

In this appendix, we give some computations in the stable module category of a group
algebra kG, where k is a field and G is a finite group. These computations are used in
Proposition 4.3.

Write R for the group algebra kG. We will work in the stable module category T :=
StMod(R). This is the category whose objects are (left) R-modules, and whose morphisms
fromM to N consist of the R-module homomorphisms fromM to N modulo those that factor
through a projective module. An isomorphism in StMod(R) is called a stable equivalence,
and two R-modules M and N are stably equivalent if and only if there are projectives P and
Q such that M ⊕ P ∼= N ⊕Q. The category StMod(R) is triangulated. The suspension ΣM
is defined by choosing an embedding of M into an injective module and taking the quotient,
the desuspension ΩM is defined by choosing a surjection from a projective to M and taking
the kernel, and these are inverse to each other because the projectives and injectives coincide.
Given a short exact sequence

0 −→M1 −→M2 −→M3 −→ 0

and an embedding of M1 into an injective module I, one can choose maps

0 // M1
// M2

//

��✤
✤

✤
M3

//

��✤
✤

✤
0

0 // M1
// I // ΣM1

// 0

(A.1)

making the diagram commute in ModR. The distinguished triangles are defined to be those
triangles isomorphic in StMod(R) to one of the form

M1 −→M2 −→M3 −→ ΣM1

constructed in this way.
Rather than working with respect to an injective class in T , we will consider the ghost

projective class P, which is generated by the trivial module k. More precisely, P consists of
the retracts of coproducts ⊕i Σ

nik, and the associated ideal consists of the maps which induce
the zero map in Tate cohomology. See [12, §4.2] for details.

Proposition A.1. Let G be the cyclic group C4 =
〈
g | g4 = 1

〉
, let k = F2, and write R =

kG. There exists an R-module M , an Adams resolutions of M with respect to the ghost
projective class, and a map κ : M → M such that the inclusion 〈κ, d1, δ〉 (Σp) ⊆ 〈κ, d1, d1〉
from Proposition 4.2 (dualized) is proper.

Proof. To produce our counterexample, we will consider the Adams spectral sequence abut-
ting to StMod(M,Ω∗M), where M is a two-dimensional module with basis vectors that are
interchanged by g.

In order to make concrete computations, it will be helpful to observe that, as a k-algebra,
R is the truncated polynomial algebra

R = k[g]
/
(g4 − 1) = k[g]

/
(g − 1)4 = k[x]

/
x4,
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where we define x := g− 1 ∈ R. In this notation, the trivial module k is R/x and the module
M is R/x2.

We will need to compute their desuspensions, which are given, as R-modules, by:

Ωk = ker (R։ k) = k
{
x, x2, x3

}
∼= R/x3

Ω2k = ker
(
R։ R/x3

)
= k

{
x3

}
∼= R/x = k

ΩM = ker
(
R։ R/x2

)
= k

{
x2, x3

}
∼= R/x2 =M,

where curly brackets denote the k-vector space with the given generating set.
In order to produce a P-epic map to M , we need to know the maps from suspensions of k

to M . Since k is 2-periodic, the following calculations give us what we need:

T (k,M) = ModR(k,M)/∼ ∼= ModR(R/x,R/x
2)/∼ = k {µx} /∼ = k {µx}

T (Ωk,M) = ModR(Ωk,M)/∼ = ModR(R/x
3, R/x2)/∼ = k {µ1, µx} /∼ = k {µ1} ,

where f ∼ g if f − g factors through a projective, and µr : R/x
m → R/xn denotes the R-

module map given by multiplication by r ∈ R (when this is well-defined). Here, we used the
fact that µx : R/x

3 → R/x2 is stably null, since it factors as

R/x3
µx
−→ R

µ1
−→ R/x2.

Using this, we obtain a P-epic map p := µx + µ1 : k ⊕ Ωk → M . Since p is surjective, its
fiber is its kernel. This kernel is generated by (1, x) and is readily seen to be isomorphic to
M . Under the identification of ΩM with M , the natural map ΩM → M (using the dual
of Equation (A.1)) is µx. Since we are working at the prime 2, fibre sequences and cofiber
sequences agree, so we obtain the following Adams resolution of M

M ��������

µx // M

δ{{✇✇
✇✇
✇✇
✇✇
✇

��������

µx // M

δ{{✇✇
✇✇
✇✇
✇✇
✇

��������

µx // M

δzz✈✈
✈✈
✈✈
✈✈
✈

�������� // · · ·

k ⊕ Ωk

p

cccc●●●●●●●●●

k ⊕Ωk

p

cccc●●●●●●●●●

k ⊕ Ωk,

p

dddd❍❍❍❍❍❍❍❍❍

where δ = [ µ1µx ], and we have chosen to put the degree shifts on the horizontal arrows.
We will be considering the Adams spectral sequence formed by applying the functor

T (−,M). The map d1 = δp : k ⊕ Ωk → k ⊕ Ωk is
[ 0 µ1
µ
x2

µx

]
, which simplifies to

[
0 µ1
µ
x2

0

]
,

using the fact that µx : Ωk → Ωk is stably null, since it factors as Ωk
µx
−→ R

µ1
−→ Ωk. The

stable maps k ⊕ Ωk → M are of the form [ aµx bµ1 ] for a and b in k, and all composites
[ aµx bµ1 ] ◦ d1 are stably null. Using this twice for d1’s in different positions, one sees that if
κ : k ⊕ Ωk →M is any map, then d2[κ] is defined and has no indeterminacy.

Now consider 〈κ, d1, δ〉 (Σp). One part of the indeterminacy here consists of maps of the
form fΣ(δ)Σ(p) = fΣ(d1), for f : Σ(k ⊕ Ωk) → M . As above, all such composites are zero.
The other part of the indeterminacy consists of maps of the form κfΣ(p), for f : ΣM →
k ⊕ Ωk, and again, one can show that all such composites are zero. So 〈κ, d1, δ〉 (Σp) has no
indeterminacy and therefore equals d2[κ].

Finally, consider 〈κ, d1, d1〉. The part of the indeterminacy involving d1 is again zero. The
other part consists of all composites κf , for f : Σ(k ⊕ Ωk) → k ⊕ Ωk. Since there is an
isomorphism Σ(k⊕Ωk) → k⊕Ωk, this indeterminacy is non-zero if and only if κ is non-zero.

Since non-zero maps κ : k ⊕ Ωk →M exist, we conclude that the containment

〈κ, d1, δ〉 (Σp) ⊆ 〈κ, d1, d1〉

can be proper. �
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Remark A.2. If in the proof above we take κ to be the map [µx 0 ] : k⊕Ωk →M , then using
the same techniques one can show that

〈κ, d1, δ〉 = {1M},

〈κ, d1, δ〉 (Σp) = {Σp} = d2[κ] = {[ µ1 µx ]} ,

and

〈κ, d1, d1〉 = {[ µ1 bµx ] | b ∈ F2}

as subsets of T (Ωk⊕ k,M) ∼= T (Σ(k ⊕ Ωk),M), where we identify M with ΩM and ΣM , as
before.

Remark A.3. Theorem 7.14 does not apply to the example in Proposition A.1. Indeed, the
graded endomorphism ring of k in StMod(kG) is the Tate cohomology ring H̃n(G; k) =

StMod(kG)(Ωnk, k) [11, §6]. This ring is not sparse, as we have H̃−1(G; k) 6= 0.

Example A.4. The following example illustrates the fact that a Toda bracket need not be
equal to its own negative, as noted in Remark 3.2.

Consider the ground field k = F3 and the group algebra R = kC3
∼= k[x]/x3, where we

denote x = g − 1 ∈ R for g ∈ C3 a generator. Consider the R-modules k = R/x and
M = R/x2. Let us compute the Toda bracket of the diagram

M
µ1 // k

µx // M
µ1 // k

in the triangulated category T = StMod(R). We will use appropriate isomorphisms Σk ∼=M
and ΣM ∼= k, and in particular compute the Toda bracket as a subset of T (k, k) ∼= T (ΣM,k).
Via these isomorphisms, the suspension Σµ1 : ΣM → Σk equals µx : k → M . Consider the
commutative diagram in T

k

Σα
��✤
✤

✤

−µx // M

k
µx // M

µ1 // k

β
��✤
✤

✤

µx // M

M
µ1 // k

where the middle row is distinguished. The only choices for the dotted arrows are Σα = −1k
and β = 1k, from which we conclude

〈µ1, µx, µ1〉fc = {−1k} ⊂ T (k, k).

Appendix B. 3-fold Toda brackets determine the triangulated structure

Heller proved the following theorem in [20, Theorem 13.2]. We present an arguably simpler
proof here. The argument was kindly provided by Fernando Muro.

Theorem B.1. Let T be a triangulated category. Then the diagram X
f
−→ Y

g
−→ Z

h
−→ ΣX in

T is a distinguished triangle if and only if the following two conditions hold.

(1) The sequence of abelian groups

T (A,Σ−1Z)
(Σ−1h)∗// T (A,X)

f∗ // T (A,Y )
g∗ // T (A,Z)

h∗ // T (A,ΣX)

is exact for every object A of T .
(2) The Toda bracket 〈h, g, f〉 ⊆ T (ΣX,ΣX) contains the identity map 1ΣX .
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Proof. (⇒) A distinguished triangle satisfies the first condition. For the second condition,
consider the commutative diagram

X
f // Y

g // Z

1Z
��

h // ΣX

1ΣX

��
X

f // Y
g // Z

h // ΣX.

Since the top row is distinguished, this diagram exhibits the membership 1ΣX ∈ 〈h, g, f〉.
(⇐) Assume that 1ΣX ∈ 〈h, g, f〉 holds. By definition of the Toda bracket, there exists a

map ϕ : Cf → Z making the diagram

X
f // Y

q // Cf
ι //

ϕ

��

ΣX

1ΣX

��
X

f // Y
g // Z

h // ΣX

commute, where the top row is distinguished. To show that the bottom row is distinguished,
it suffices to show that ϕ : Cf → Z is an isomorphism. By the Yoneda lemma, it suffices to
show that ϕ∗ : T (A,Cf ) → T (A,Z) is an isomorphism for every object A of T .

Consider the diagram

X
f // Y

q // Cf
ι //

ϕ

��

ΣX

1ΣX

��

−Σf // ΣY

1ΣY

��
X

f // Y
g // Z

h // ΣX
−Σf // ΣY

(B.1)

Applying T (A,−) yields the diagram of abelian groups

T (A,X)
f∗ // T (A,Y )

q∗ // T (A,Cf )
ι∗ //

ϕ∗

��

T (A,ΣX)

1
��

(−Σf)∗// T (A,ΣY )

1
��

T (A,X)
f∗ // T (A,Y )

g∗ // T (A,Z)
h∗ // T (A,ΣX)

(−Σf)∗// T (A,ΣY ).

The top row is exact, since the top row of (B.1) is a cofiber sequence, and the bottom row is
exact, using the first condition. By the 5-lemma, ϕ∗ is an isomorphism. �

Remark B.2. Some remarks about the first condition.

(1) It implies gf = g∗f∗(1X ) = 0 and hg = h∗g∗(1Y ) = 0.
(2) It is equivalent to the exactness of the long sequence (infinite in both directions)

· · · // T (A,ΣnX)
(Σnf)∗ // T (A,ΣnY )

(Σng)∗ // T (A,ΣnZ)
(Σnh)∗ // T (A,Σn+1X) // · · ·

for every object A of T .
(3) It is a weaker version of what is sometimes called a pre-triangle [33, §1.1]. Indeed, the

condition states that the sequence

H(Σ−1Z)
H(Σ−1h) // H(X)

H(f) // H(Y )
H(g) // H(Z)

H(h) // H(ΣX)

is exact for every decent homological functor H : T → Ab of the form H = T (A,−).
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Corollary B.3. Given the suspension functor Σ: T → T , 3-fold Toda brackets in T deter-
mine the triangulated structure. In particular, 3-fold Toda brackets determine the higher Toda
brackets, via the triangulation.

Remark B.4. It is unclear to us if the higher Toda brackets can be expressed directly in terms
of three-fold brackets.
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