ERRATA TO OUR PAPER: "POSITIVE INTEGERS DIVISIBLE BY THE PRODUCT OF THEIR NONZERO DIGITS", PORTUGALIAE MATH. 64 (2007), 75-85

JEAN-MARIE DE KONINCK AND FLORIAN LUCA

Let $\mathcal{N}_{0}(x)$ be the set of positive integers $n \leqslant x$ divisible by the product of their base 10 nonzero digits and let $\mathcal{N}(x)$ be the set of all $n \leqslant x$ divisible by the product of their digits. Theorem 1 in [1] states that inequalities

$$
x^{.495}<\# \mathcal{N}_{0}(x)<x^{.654} \quad \text { and } \quad x^{.122}<\# \mathcal{N}(x)<x^{.618}
$$

hold for $x>x_{0}$. Recently, Tomohiro Yamada pointed out to us that there is a flaw in the proof of the upper bounds above. Indeed, on Page 81 , Line -2 , the formula of δ versus β should be

$$
\delta=1 / \log 10-\beta(1 / \log 10+1 / \log 2)
$$

instead of

$$
\delta=1-\beta(1 / \log 10+1 / \log 2)
$$

Inserting this formula for δ into the equation at Lines -2 and -1 of Page 81 , we get $\beta=0.0999683 \ldots$, leading to $\# \mathcal{N}_{0}(x) \leqslant x^{0.901}$ for $x>x_{0}$. A similar mistake (with a similar correction) appears on Page 82, Lines $-5,-4$ and -3 of Section 2. Inserting the correct value of δ into the equation relating β and δ at this paragraph we get $\beta=0.137991 \ldots$, leading to $\# \mathcal{N}(x) \leqslant x^{0.863}$.

We thank Tomohiro Yamada for alerting us to the flaw mentioned above.

References

[1] J.-M. De Koninck and F. Luca, 'Positive integers divisible by the product of their nonzero digits', Portugaliae Math. 64 (2007), 75-85.
(p.1)

Départment de Mathématiques et de Statistique, Université Laval, Québec G1K 7P4, Canada

E-mail address: jmdk@mat.ulaval.ca
School of Mathematics, University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa; Max Planck Institute for Mathematics, Vivatgasse 7, 53111 Bonn, Germany; Department of Mathematics, Faculty of Sciences, University of Ostrava, 30 Dubna 22, 70103 Ostrava 1, Czech Republic

E-mail address: florian.luca@wits.ac.za

