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Abstract

In [I] E. Bombieri and J. Pila introduced a method for bounding the number of integral lattice
points that belong to a given arc under several assumptions. In this paper we generalize the Bombieri-
Pila method to the case of function fields of genus 0 in one variable. We then apply the result to
counting the number of elliptic curves contain in an isomorphism class and with coefficients in a box.

1 Introduction

In [I] E. Bombieri and J. Pila proved that if T is a subset of an irreducible algebraic curve of degree
d inside a square of side N, then the number of lattice points on I' is bounded by ¢(d, 5)]\7%4rs for any
e > 0, where the constant ¢(d,e) does not depend on I'. There are many analogues of this remarkable
result. For example, one can be interested in finding a bound for a number of solutions of f(z,y) = 0
mod p with « € I, y € J, where I and J are short intervals in Z/pZ (see [2] and [3]). Such results are
p-analogues of the Bombieri-Pila bound. (Here we should assume that the lengths of I and J are much
shorter than p, so that the Weil bound and other standard methods cannot be applied.)

One can go further and look for a function field analogue. Here we work in a finite field Fy» modelled
as Fy[T]/f(T) where f is a fixed irreducible polynomial of degree n and T is a formal variable. Then
an interval is the set of polynomials of the form X +Y = X (T) + Y(T), where X € F,[T] is a fixed
polynomial and Y (7 runs through all polynomials of degree bounded by a given natural number. This
point of view was used by J. Cilleruelo and I. Shparlinski in [4] for obtaining some bounds on the number
of solutions of polynomial congruences modulo a prime with variables in short intervals. The same authors
also formulated [4, Problem 9|, which is solved here.

Our main goal is to prove

Theorem 1 Let C be an irreducible algebraic curve of degree d over Fy[T], q is a prime power. Define
S as the set of points on C inside I?, where I is a set of polynomials X € Fy[T] with deg X < n and
|I| = ¢"*1. Then

S| <ae 1|77,

One can pose a question: why can we not just follow the Bombieri-Pila approach in order to get
Theorem [II? Unfortunately, in this case we will cross some difficulties in getting Lemma 2 of [I], since
we do not have the necessary analogue of the mean value theorem in function fields (see [5], Lemma 1).
There seem to be at least two plausible ways to avoid this difficulty. The first one consists in getting a
function field variant of Theorem 4 in Heath-Brown’s article [6]. The second one, which we will follow
here, is to adapt the method of Helfgott-Venkatesh [7].

We will need analogues of Propositions 3.1 and 3.2 of [7]. Combining and developing the original
ideas of [I] together with an adaptation of some results of [7] will lead us to our main result.

After that we will use Theorem [I] to get some applications, such as a calculation of the number of
isomorphism classes which are represented by elliptic curves E, ; parametrized by coefficients a, b € F, [T
lying in a small box, say, I2. Using this result one can calculate the number of elliptic curves lying in
a given isomorphism class with coefficients lying in a small box. To proceed we will work with ideas
proposed in [3].
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2 Auxiliary statements

Let X and Y be variables with values in F4[T], i.e. their values are of the form X = X(T) = ao + a1 T +
coFa, Y =Y(T) = bo+bi1T+. . .4+by,T™, where T is a place holder, a;,b; € Fq, 1 =0,...,deg X =n,
j=0,...,degY =m. For X € F,[T] we denote by |X| its norm: |X| = g8 ¥,

Define "an interval" I as the set of polynomials on a formal variable T' of the form X (T) + Y (T),
where X (T) is a fixed polynomial and Y (T') runs through all polynomials of degree less or equal than a
given integer.

In what follows C is an irreducible algebraic curve of degree d over F,[T], which is described by
F(X,Y) =0, F(X,Y) € (F,[T))[X,Y]. Write S for the set of points on C inside I

For any F(X,Y) € (F4[T])[X,Y] we write degyx F' and degy F' to denote the degree of a polynomial
F with respect to X and T respectively. We also use the standard notation deg F/(X,Y) for the degree
of F(X,Y) as a polynomial in X and Y.

Let W be a set consisting of finitely many linearly independent polynomials F' € (F,[T])[X,Y] in-
cluding the constant polynomial 1. Write dyy for the total degree of all elements of VW. Assume that the
elements of W separate points, meaning that V(X1,Y7), (X2, Y2) € (F4[T7])? there is an F' € W such that
F(X1,Y1) # F(X2,Y3). We define a W-curve to be an affine algebraic curve described by an equation
G(X,Y) =0, where all the monomials of G belong to W.

During the proof of Theorem [Il we will use the following choice of W:

Example 1 Define W = Wgy m as
W ={X"YI|i<d,j< M},

where d and M are given numbers. Then |W| = (d+1)(M +1), dyy = (d+1)(M +1)4E2 - The W-curves
are plane curves of degree less or equal than d and M in X and 'Y respectively.

This choice is taken straight from the work of Bombieri and Pila [I].

Lemma 1 Let C be an irreducible algebraic curve of degree d over Fy[T| and let S be the set of points
on C inside I2. Suppose that the number of residues {(X,Y)mod f, X,Y € S} is at most a|f| for some
fized o > 0 and for every irreducible polynomial f € Fy[T]. Assume that W is chosen in a way that any
W-curve contains at most constant number C of elements of S. Then the following holds

1S| <y |T|7Foac),
where w = |W)|.

Proof. We are going to prove it in the spirit of |7, Proposition 3.1]. Write P = (X,Y") for a point in
(F,[T])? with coordinates X,Y € F,[T]. Fixing an arbitrary ordering Fy, F», ..., F,, for the elements of
W, we define a function

W e (F[T))*)* — Fy[T]
by
W(Pl, e ;Pw) = det(E(Pj))lging.
Let P denote an ensemble of points in S: P = (P1,...,R,), P, = (X;,Y;) € S. We say that P is
admissible if W(P) = W(Py,...,P,) # 0 (where 0 stands for zero polynomial in Fy[T]). Define

A=TTIw®),
P

where * means that we take the operation over all admissible P.
By the definition of dyy we have
W (P)| < 1]

for every P € S“. Taking log A and applying the expression above gives

logA 3 plog|W(P)|
S|« S|«

< dwlog|I| 4+ Ow(1). (2.1)



Fix any irreducible polynomial f with |f| < N, where N is to be set at the end. Then for every
point P € (F,[T])? let pp be the fraction of points in S that reduce to Pmod f. For each P let
k(P) € {0,1,...,w — 1} be defined in a way that w — x(P) is the number of distinct points among the
points P; mod f. Then one can state

ordf A2 k(P)=> K(P) =) k(P), (2.2)
P P P

where the first sum on the right hand side is taken over all P and the second one is the sum over all
inadmissible ensembles P.

We are going to proceed in two steps. First, we will calculate the sum over all P € S by probabilistic
methods. Here we see Py,..., P, as w independent random variables with values in (F,[77)? and use

Yo — 1, if at least one of P; € S/{P} is equal to P mod f;
P 0, otherwise.

In the inadmissible case of P we have either at least two points P, = P; among the entries of P or at
least two points P; = Pymod f, P;, P; € P, P; # P;. The number of pairs P;, P; that satisfy the first
possibility can be easily bounded by O(|S|“~!) and for the latter case we permute the entries of our
matrix in order to have

det(F;(P)))i<ij<t # 0

of a maximal possible size [ and then apply the fact that any VW-curve contains at most constant number
of elements of S.

Let us start with the sum over all P € §“. Consider P as a random variable with uniform distribution.
Then the expected value of the number of distinct points among the P, mod f is equal to

Sl — K(P)) _
N @YP) |

Further,

(5]
= (1= Prob(VPi|P, # Pmod f)) = | (1 - HProb(R- # Pmod f)) => (1 = pp)>
> 1= (1=pp)¥).

> E(Yp) = > Prob(IP;|P; = Pmod f) = » (1 — Prob( AP;|P; = Pmod f))
P P P

2

We then have
ZP(W — H(P)) _ Z (1 . (1 . pP)W).

|5
Next p
erP) 2l 51 (- pr) = (- o) o~ )
Since

w w w
(1*pP)“+pr*1:17pr+(2)p%+---+(*1)“ (w)p%+wppflzp?n ((2)*Oc,w(1)),

then

L (Z p§3> . 23)
3 P

Now let us bound the sum over all inadmissible P. Consider the set of such P with x(P) > 0. Then
one of the followings is true:



1. There exist ¢ and j, such that P; = Pj;
2. There exist ¢ and j, such that P, = P;mod f, but P; # P;.

The total number of inadmissible P, such that the first condition above holds is equal to O(|S|“~1). Let
us estimate this number for the second case. Permute the entries in such a way that ¢ = 1, j = 2 and
Fy =1, F5(P,) # F>(FP;) (this is possible since we have assumed that the elements of VW separate points
and W contains 1). Then for [ = 2

det(Fi(Pj))i<ij<t 7 0-

Choose the maximal [, such that the above statement still holds. Then P,y lies on a W curve determined
by Pi, Ps, ..., P,. As we demanded, the number of possible values for P41 is bounded above by a constant.
Then the number of inadmissible P, such that the second case takes place is equal to

0.(181°7%),

where ¢ is the number of pairs (Q1,Q2) € S? that reduce to the same point mod f. By the definition of
pp we have
§=1S>> " rp-
P

Summing two results we see that there are at most

Ou (|S1°7H +18]°7%0) = O, <|S|“ (1 + ﬁ:)) =[S0, <|5|1 (1 + ﬁ:)) (24)

P P

inadmissible P with «(P) > 0. Putting [23) and ([24)) into ([2:2]) we have

ordf A _ Y pk(P) =D p k(P) wlw—1) 5 1 9
S S 2P = P > < o oC’w(1)> zp:pp — 0, <|S| (1 +2P:pp>> .

Using Cauchy’s inequality

2
2 o 1 _
2702 @”) ol ]

one can state

ordy A (w(w -1 ) 1 1
2 — 0C,w 1 T _Owa S .
|S|“’ 9 c, ( ) a|f| | f (| | )

Multiply the equation above by log|f| and sum over all |f| < N:

w(w—1 1 _
5 toelsl (25 o)) i+ Oua (1817 X sl < P52 e
[fISN [fISN
As we know from (2.1])
log A
fs% < dwlog 1] + Ow(1).

Applying this estimate to (2.5) gives

w(lw—1 lo _ lo
sl s ff'lf'mw,a 5170 S tog ] | = oca | 30 ff'{' < dy log 1] + Ow(1).
[fISN [fISN [fIKN

Taking N = |S| we end with
1] < [T[ZETHom D),



Lemma 2 Let C be an irreducible algebraic curve of degree d over Fy[T| which is defined by F(X,Y) = 0.
There exists a linear transformation

(X,Y) = (X",Y")
such that degy, F(X',Y'") = d.

Proof. We can assume degy F(X,Y) < d, otherwise we are done. Any polynomial of the form F(X,Y) €

(Fq[T))[X,Y] can be written as
F(X,)Y)= Y F;X'VI,
i€Jy

j€Jo
where Jy, J2 C {0,1,...,d}, F;; € Fy and
max(i +j) =deg F' =d, maxi=degy F <d.
en A

Consider a linear transformation

(X,Y) = (X',Y")

such that (X,Y) = (AX' 4+ BY',CX’ + DY"), where A, B,C, D € F,[T] with AD — BC # 0. Changing
the variables (X,Y) — (X’,Y’) we obtain

F(X,Y)= Y F;(AX'+BY')(CX'+ DY')
i€Jq
j€Jo

7 7 . .
= Z ZZ <;> <]l) Fiin*kBijlel(X/)i+jfkfl(yl)k+l'
;22 k=0 1=0

In new variables (X', Y”) we have

degy, F = ke{o,gl.%}}(,ieh (i+j—-k=1),
tefo,..., J},ledg
which is equal to d, since maxics, (i + j) = deg F = d. O
JjEJ2

3 Proof of the theorem

We start with an interpolation argument, which is used for a similar goal in [6]. Let again F €
(Fq[T))[X,Y] be written in a form
F(X,)Y)= Y F;X'VI,

i€y
JjE€Jo

where J1, Jo C {0,1,...,d}, F;; € F,. We are counting the number of distinct lattice points P = (X,Y) €
I2 N C. If we have less than r(d) = d? + 1 such points, then we are done. Suppose that we have at least
r(d) points: P; = (X;,Y;) € CNI?1,i=1,...,r(d) with F(P;) = 0. Denote by n(d) = $(d + 1)(d + 2)
the number of monomials of degree less or equal than d. Consider n(d) x r(d) matrix A, whose i-th row
consists of the monomials of degree d in the variables X;, Y;. Let be Fy @ bhe a vector, whose entries are
the corresponding coefficients Fj; of F/(X,Y’). For such a vector b we have an equation

Ab = 0.

Since b =+ 6, then the matrix A has a rank less than or equal to n(d) — 1. Thus there is a solution
G # 0, where § is constructed out of the minors of A with |g| <4 |I|*"(¥. Let G € (F,[T])[X,Y] be the
form of degree d corresponding to the vector §. Then G(X,Y) and F(X,Y) share r(d) zeros (points P;).
By Bézout’s theorem it is possible only if G is a multiple of F. Since F' is irreducible, then G is also
irreducible and defines the same curve C. Let us work with G instead of F.

We are going to proceed in two steps:



1. If degy G < d, then by Lemma 2l we can change variables so that degy, G = d. If not, then proceed
to the next step.

2. Using Weil bounds we obtain
H{(X,Y) € (Fy[T]mod f)? : G(X,Y) = 0mod f}| = |f| + Oa(/|f])-

Further, for every ¢ > 0 and for every irreducible polynomial f € F,[T] with the condition |f| > ¢(¢)
the set S intersects at most (1+ £) |f| residue classes mod f (here c(¢) is a constant that depends
only on ¢€). Applying Lemma [ with a = 14 § and W from Example[} W = Wg_1 » we obtain

1+%)(d+1\4—1)
S| e 1] TR Foeic ),

We choose M to be large enough and end with

|S| Lew |I|%+3TE+05,C(1).

4 An application to counting elliptic curves

In this section we are going to proceed with counting the number of elliptic curves E, ; with coefficients
a,b living in a small box that lie in the same isomorphic classes. This is basically the generalization of
several statements presented in [3]. Doing this we have an opportunity to apply Theorem [I] and also to
show that some results for number fields can be also adapted to function fields.

Let I stand again for an interval of polynomials of the form X (T') + Y (T), where X(T') € F,[T] is
a fixed polynomial and Y (T') € Fy[T] runs through all polynomials of degree less or equal than d. The
coefficients of X and Y belong to F, just as in section 2.

For a prime power ¢ we consider a family of elliptic curves E, 3

Eup:Y?=X>+aX +b,

where X and Y belong to Fy[T] as before and a, b are some coefficients from Fy[T'] with the property
that 4a® + 27b? # 0. As in the number field case we say that two curves E,p and E,. 4 are isomorphic if

at* = ¢(mod f) and bt® = d (mod f).
The existence of an isomorphism between E, ; and E. 4 implies that
a*d? = c*b? (mod f) (4.1)

for some f € F,[T]. We denote by N(I?) the number of solutions to {I]) with (a,b), (c,d) € I?. Then
for A € Fy[T] we write Ny (I?) for the number of solutions to the congruence

a® = \? (mod f), (a,b) € I”.

We are going to give an upper bound on N (I?) that implies upper bounds for the number of elliptic
curves E, ; with coefficients a,b € I that lie in the same isomorphic classes.
For a polynomial X € F,[T] and an irreducible polynomial f € F,[T] we use {X} ¢ to denote

XY= min |[X - fY|= min ¢l
{X}s i X — fY] yin q
From Dirichlet pigeon-hole principle we obtain
Lemma 3 For real numbers Ty, ..., Ts with 1 < Ty,...,Ts < |f|, T1---Ts > |f|*~ and any polynomials

Xi,...,Xs € F[T] there exists a polynomial t € Fy[T] such that t is not a multiple of f and

Now we can give a good bound for Ny (I?):



Theorem 2 Let I be an interval of polynomials of degree less or equal than d with coeﬂicients inFy and
the length of I is |I| = q%. For any irreducible polynomial f € Fy[T| such that 1 < |I| < |f|? 5 and for any
A € Fy[T] we have

Ny(I?) < [I]|5HoM),
Proof. We have to estimate the number of solutions to
(X + X0)? = MXo +Y)? (mod f).
This congruence is equivalent to
X3 43X X3 +3X%X — A\Y? —2)\X,Y = AXZ — X§ (mod f). (4.2)
For any T < ¢1 i 2 we can apply Lemma [3to

X, =1, X3 =3Xy, X3 =3X2, X; =)\, X5=-2)\X,

e £ £
Ty =TYIJ? Th =Ty = Th =T =
1 1% T =Ty T BT
and find that there exists ¢ with [t| < T*|I|? such that
|f| |f| <l
Xot X2 i}y < 22Xt —.

For i =1,...,5 denote by f; a polynomial which satisfies f; = X;t. Then multiply [@2]) by ¢ leads us to
the equality

X2+ X2+ 3 X + 1Y + Y + fo = |f|Z, (4.3)

where

AT
TIJ

Since for X,Y € I we have |X|,|Y| < |I], then the left hand side of (3] is bounded above by T*|I|°> +
AU s
T 2"

|f| |f|

|fil STYIP, |fal, | fal < | fal; 1 fs] < = | fel <

TP Al
1Z] < + =+ 1.
£ T
Choosing T ~ llfl‘z and applying the condition 1 < |I| < |f|% we end with the bound
Mk
Zl < +1< 1.
5

([l
Application of Theorem [ to the family of curves E,2 ,s with |z| < |I |% shows that the result of

Theorem [2] can not be improved. Thus in general we are not able to get any bound stronger than
1
NA(I?) = O(|1]3).
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