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ON 5-MANIFOLDS WITH FREE FUNDAMENTAL

GROUP AND SIMPLE BOUNDARY LINKS IN S5

MATTHIAS KRECK AND YANG SU

Abstract. We classify compact oriented 5-manifolds with free
fundamental group and π2 a torsion free abelian group in terms
of the second homotopy group considered as π1-module, the cup
product on the second cohomology of the universal covering, and
the second Stiefel-Whitney class of the universal covering. We
apply this to the classification of simple boundary links of 3-spheres
in S5. Using this we give a complete algebraic picture of closed 5-
manifolds with free fundamental group and trivial second homology
group.

1. Introduction

There is a close relation between classical links and closed 3-manifolds
since all 3-manifolds are obtained by surgeries on links and Kirby cal-
culus determines when two links give the same 3-manifold. We consider
a special case of such a relation in dimension 5. The special condition
on the side of links is that we only consider simple boundary links L of
a disjoint union of 3-spheres in S5, which means that the fundamental
group of the complement is freely generated by the meridians of the
link components. As in dimension 3 we can perform surgery on the
link L to obtain a closed smooth manifold M(L). It is easy to see
that the fundamental group of M(L) is a free group and H2(M(L);Z)
=0. In addition the second homotopy group is that of the complement
X of the link and this is torsion free as abelian group. One can ask
which 5-manifolds are obtained this way and for the classification of
the links and the determination of the fibers of the map from links to
5-manifolds given by surgery.
In this paper we answer this question by giving a classification of

a more general class of closed 5-manifolds, namely we classify all 5-
manifoldsM with π1(M) a free group and π2(M) torsion free as abelian
group, in terms of an invariant we call generalized Milnor pairing, since
it is a generalization of the Milnor pairing for knots. We also consider
compact manifolds with boundary the disjoint union of copies of S1 ×
S3 and free fundamental group, such that the fundamental group is
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freely generated by the circles in the boundary, and, as before, π2(M)
torsion free as abelian group. We also define a topological version of
the generalized Milnor pairing, called topological generalized Milnor
pairing and prove a corresponding result for topological manifolds.
A second well known class of examples are fibered 5-manifolds M

over the circle with simply-connected fibre. These are in the image of
the surgery construction above if and only if we have a fibered knot and
H2(M ;Z) = 0. But in general fibered 5-manifolds over the circle have
non-trivial second homology. Thus our more general class of manifolds
also occurs naturally. See Remark 1 and the Appendix for more on
this class of manifolds.

To give a feeling for the generalized Milnor pairing we define it in
a special case, where M is spin. Then it is represented by the triple
(π1(M), π2(M), bM : π2(M)∗×π2(M)∗ → (H1(Bπ1M ;Q[π1M ]))∗), where
bM is given by the cup product. For details we refer to section 2. Now
we formulate our main result.

Theorem 1. Let M0 and M1 be two smooth (or topological), compact,
oriented, 5-manifolds with free fundamental group of rank n and torsion
free π2, with empty boundary or boundary consisting of n copies of
S1 × S3 such that the circles in the boundary generate π1(Mi). Then
there is an orientation preserving diffeomorphism (homeomorphism)
between M0 and M1 if and only if there is an isomorphism between
their (topological) generalized Milnor pairings.

We actually prove a stronger result about the realization of isomor-
phisms between the generalized Milnor pairings (Theorem 4).

Levine has classified 3-dimensional simple knots in S5 in terms of S-
equivalence class of Seifert matrices ([8]) and Liang has extended this
to higher dimensional simple boundary links in terms of l-equivalence
class of Seifert matrices ([9] ). The general case of 3-dimensional sim-
ple boundary links in S5 seems to be open. Our classification result
implies that Liang’s result extends to dimension 3. Also by extending
Liang’s argument in higher dimension we can characterize the Seifert
matrices occurring from links. We call the corresponding conditions
unimodularity conditions. Thus we obtain a complete algebraic picture
of simple boundary links in S5.

Theorem 2. The l-equivalence classes of Seifert matrices of simple
boundary links of 3-spheres in S5 determine the isotopy type of the link.
Moreover, the l-equivalence class of Seifert matrices gives a bijection
from the set of isotopy classes of simple boundary links of 3-spheres
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in S5 to the set of l-equivalence classes of square integral matrices D
satisfying the unimodularity conditions.

We would also like to give an algebraic picture of our closed 5-
manifolds. In general we don’t know which values the generalized Mil-
nor pairing takes. But if we require thatH2(M ;Z) = 0, these manifolds
are all results of surgeries on links and we can use the realization of the
link invariants to give a complete answer.
Let D be an m × m integral matrix satisfying the unimodular-

ity conditions, then there is associated to D a Z[Fn]-module map
ϕD : (Z[Fn])

m → (Z[Fn])
m and a generalized Milnor pairing

(Fn, cokerϕD, bD : (cokerϕD)
∗ × (cokerϕD)

∗ → (H1(BFn;Q[Fn]))
∗)

We will give a detailed description of this in section 4.

Theorem 3. There is a bijection between the diffeomorphism classes
of closed oriented 5-manifolds M with π1(M) a free group of rank n
and H2(M ;Z) = 0, and the isomorphism classes of generalized Mil-
nor pairings (Fn, cokerϕD, bD) for all matrices D (with various size m)
fulfilling the unimodularity conditions.

We will give more details of the generalized Milnor paring in section
2, and prove the main classification theorem in section 3. The discus-
sion of 3-links and their relation with 5-manifolds will be the contents
of section 4.

Remark 1. A special case of Theorem 4 is when π1(M) ∼= Z and
π2(M) is a finitely generated abelian group. In this case we can show
that π2(M) is torsion free and the bilinear form on π2(M) is unimod-

ular, w2(M̃) is determined by the bilinear form on π2(M), and the
realization problem of the invariants can be solved. This gives a com-
plete classification of closed 5-manifolds with π1 = Z and π2 a finitely
generated abelian group. As an application, this reproves the fibration
theorems in dimension 5 in the topological and smooth category given
by [7], [20] and [17] respectively. See more details in the Appendix.

Remark 2. The notions of Borel manifolds and strongly Borel mani-
folds were coined in [13, Definition 0.2]. A manifoldM is called a Borel
manifold if for any homotopy equivalence f : N → M there exists a
homeomorphism h : N → M such that f and h induce the same map
on the fundamental groups up to conjugation. It is called strongly Borel
if all homotopy equivalences are homotopic to a homeomorphism. If
M5 is a closed oriented spin topological 5-manifold with free fundamen-
tal group and torsion free π2, then it is Borel. Since for any homotopy
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equivalence f : N5 ≃
→M5, f induces an isomorphism between the topo-

logical generalized Milnor pairings (in this case the Kirby-Siebenmann
invariant is determined by the bilinear form bM , see the proof of The-
orem 4), the statement follows from Theorem 1. On the other hand,
for a closed oriented topological 5-manifold M5 with free fundamental
group, a computation of the topological structure set of M using the
surgery exact sequence gives S TOP(M5) = H2(M ;Z/2). Therefore by
[13, Theorem 1.1] M is strongly Borel if and only if H2(M ;Z/2) = 0.

One often hears the statement, that the classification of high dimen-
sional manifolds is completely understood. What people mean is that
with the s-cobordism theorem one has a criterion when two manifolds
are diffeomorphic and with surgery theory one has a reduction of the
problem to find an s-cobordism to problems in homotopy theory (un-
stable and stable) and algebra (surgery obstruction groups) and the
analysis of certain maps relating the homotopy theory and the alge-
bra. But this doesn’t mean that even for some very explicit manifolds
like for example complete intersections the procedure can be carried
out successfully. Given the complications of the homotopy groups of
spheres, in higher dimensions the problems get harder and harder. But
in comparatively low dimensions (say up to 8) one has a chance, which
doesn’t mean that it is routine. Most results in that dimension range
concern simply connected manifolds. In this paper we make a first step
towards a classification of 5-manifolds with fundamental group the free
group Fn. This class is particular interesting since such manifolds on
the one hand occur from total spaces of bundles over the circle and on
the other hand as fundmental groups of links of 3-spheres in S5. We
classify both in the smooth and topological category. It might be in-
teresting to note that the topological classification of 4-manifolds with
fundamental group the free group Fn is for n > 1 completely open. The
question whether the group Fn is good in the sense of Freedman-Quinn
[6] is the key question for topological 4-manifolds. If this is the case
then one can use similar methods as in the present paper to attack the
classification of 4-manifolds with fundamental group Fn.

Acknowledgement. The first author would like to thank the Mathe-
matical Institute of the Chinese Academy of Sciences in Beijing and the
Max-Planck-Institute for Mathematics in Bonn for their support while
this research was carried out. The second author would like to thank
the Max-Planck Institute for Mathematics in Bonn for a research visit
in August and September, 2015. Both authors would like to thank the
referee and the editor for their suggestions to improve the paper.
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2. The generalized Milnor pairing and the statement of

the main theorem

Now we describe the generalized Milnor pairing which we use to
classify our manifolds. First we give the general algebraic definition.
A generalized Milnor pairing is a quadruple (π1, π2, b, w2) consisting of
the following:

(1) π1 a free group of rank n; let Λ = Z[π1] be the integral group
ring and ΛQ = Q[π1] be the rational group ring;

(2) π2 a finitely generate Λ-module, which is torsion free as an
abelian group;

(3) b : π∗
2 × π∗

2 → (H1(Bπ1; ΛQ))
∗ a symmetric Λ-equivariant pair-

ing, where ∗ stands for the Q-dual HomZ(−,Q), and by Λ-
equivariant we mean that under the diagonal action of Λ on
π∗
2×π

∗
2 , and the natural Λ-module structure on (H1(Bπ1; ΛQ))

∗,
b is a Λ-module map;

(4) w2 ∈ Hom(π2,Z/2).

An isomorphism (α, β) : (π1, π2, b, w2) → (π′
1, π

′
2, b

′, w′
2) between gener-

alized Milnor pairings consists of

(1) an isomorphism α : π1 → π′
1;

(2) an isomorphism β : π2 → π′
2, which is compatible with the Λ-

and Λ′-module structure, the pairings b and b′, and mapping w′
2

to w2.

Let M5 be a smooth closed oriented 5-manifold with π1(M) ∼= Fn

and π2(M) a torsion free abelian group, we associate a generalized Mil-

nor pairing ϕ(M) = (π1(M), π2(M), bM , w2(M̃)) to M as follows. Let

M̃ be the universal cover ofM . By Poincaré duality we have an isomor-

phism H4(M̃ ;Q) = H4(M ; Λ) ⊗ Q ∼= H1(M ; ΛQ) and the latter group
is isomorphic to H1(Bπ1(M); ΛQ), because of the fact that M has a
CW-structureM ≃ ∨nS

1∨∨S2∪e3 · · · ([19, Proposition 3.3]). Next we

use the Kronecker-isomorphism to identify H4(M̃ ;Q) with H4(M̃ ;Q)∗,
where ∗ stands for the Q-dual, and the isomorphism above to obtain

an isomorphism H4(M̃ ;Q) ∼= (H1(Bπ1(M); ΛQ))
∗. The cup product

and this identification together define a symmetric Λ-equivariant form

H2(M̃ ;Q)×H2(M̃ ;Q) → (H1(Bπ1M ; ΛQ))
∗

Using the Kronecker isomorphism and the Hurewicz isomorphism we
obtain a symmetric Λ-equivariant form

bM : π2(M)∗ × π2(M)∗ → (H1(Bπ1M ; ΛQ))
∗
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where ∗ is again the vector space of homomorphisms to Q, We will
discuss more about this bilinear form in the beginning of section 3.
To this we add the second Stiefel Whitney class

w2(M̃) ∈ Hom(H2(M̃ ;Z),Z/2) = Hom(π2(M),Z/2)

to obtain our invariant and get the quadruple

ϕ(M) = (π1(M), π2(M), bM , w2(M̃)),

we call this the generalized Milnor pairing of M . The group of self-
isomorphisms of ϕ(M) is denoted by Aut(ϕ(M)).

Remark 3. In the case where only spin manifolds are concerned,

w2(M̃) is always 0, and the generalized Milnor pairing is actually a
triple ϕ(M) = (π1(M), π2(M), bM ). This is the case in Theorem 3.

Remark 4. It’s easy to see from the Leray-Serre spectral sequence of

the fibration M̃
p
→M → ∨nS

1 that p∗ : H2(M ;Z/2) → H2(M̃ ;Z/2) is

injective. Therefore w2(M) and w2(M̃) determine each other.

We also classify a special case of compact oriented manifoldsM with
boundary which is relevant for classifying links in S5. The boundary
has to be a disjoint union of n copies of S1 × S3 and we require that
the circles in the boundary components generate the fundamental group

Fn of M . Here we replace H4(M̃ ;Q) by H4(M̃, ∂M̃ ;Q) and we note

that H2(M̃ ;Q) ∼= H2(M̃, ∂M̃ ;Q), so that the definition of bM makes
sense. With this modification we can consider the quadruple defining
ϕ(M) as before. But we have to observe, that the identification of the
fundamental groups of M and M ′ is now given by an identification of
the boundary components.

Remark 5. When X is the complement of a simple 3-knot, then we

have a bilinear paring b : H2(X̃;Q) × H2(X̃;Q) → Q, which is the
Milnor paring ([15], see also [10]).

We also classify the corresponding topological manifolds. Here we
add a fifth term to our invariant, the Kirby-Siebenmann invariant
KS(M) ∈ H4(M ;Z/2) ∼= π1(M)/[π1(M), π1(M)] ⊗ Z/2. We call the

quintuple (π1(M), π2(M), bM , w2(M̃), KS(M)) the topological general-
ized Milnor pairing of the topological manifold M . Of course in the
definition of an isomorphism (α, β) between two topological generalized
Milnor pairings we require that the isomorphism α : π1(M) → π1(M

′)
respects the Kirby-Siebenmann invariant, too.
Now we restate the classification theorem of the manifolds under

consideration and add the realization statement for induced maps.
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Theorem 4. Let M0 and M1 be two smooth (or topological), closed,
oriented, 5-manifolds with free fundamental group of rank n and torsion
free π2. Then M0 and M1 are oriented-diffeomorphic (-homeomorphic)
if and only if their (topological) generalized Milnor pairings are iso-
morphic. Any isomorphism between the (topological) generalized Mil-
nor parings can be realized by an orientation-preserving diffeomorphism
(homeomorphism) from M0 to M1.
If M0 and M1 are compact with boundary consisting of n copies of

S1 × S3 such that the circles in the boundary generate π1(Mi). Then
M0 and M1 are oriented-diffeomorphic (homeomorphic) if and only if
there exists an isomorphism (α, β) between their (topological) general-
ized Milnor pairings, where α is induced by identifying the boundary
components. Any such isomorphism can be realized by an orientation-
preserving diffeomorphism (homeomorphism).

The isomorphism α above actually sends free generators xi of π1(M0)
to conjugates of free generators x′i of π1(M1), which are represented by
different arcs in the interior to a base-point.

Remark 6. Note that in the definition of the invariant ϕ(M) we use
the cup product on the cohomology with rational coefficients. Usually
one loses information when passing from integral coefficient to rational
coefficient. But in our situation, the rational cohomology contains
essentially more information than the integral cohomology. This can
be illuminated by the following example.

Example 1. Let

A =

(
2 0
3 1

)

then A+A′ (A′ is the transpose of A) is unimodular and has signature
0. Therefore by [8, Theorem 2] there is a simple 3-knot K ⊂ S5 with
Seifert matrix S-equivalent to A. The Alexander polynomial of K is
∆K(t) = det(A − tA′) = 2t2 + 5t + 2. Let X be the complement of

K, then by [4, Theorem 1.5] H2(X̃) ∼= Z[1/2]⊕ Z[1/2]. Let M5 be the

result of surgery on K, then π1(M) ∼= Z, π2(M) ∼= H2(M̃) ∼= H2(X̃) ∼=

Z[1/2]⊕ Z[1/2]. We see that H2(M̃ ;Z) = 0 but H2(M̃ ;Q) ∼= Q2.

3. proof of Theorem 4

Before giving the proof of the main theorem we first rephrase the bi-

linear form bM in a more explicit form. Fix an identification π1(M)
∼=
→

Fn and consider the classifying map of the fundamental group f : M →
BFn = ∨n

i=1S
1
i . From the Leray-Serre spectral sequence (with twisted
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coefficients, which we denote by underbar) of the fibration M̃ →M →

∨n
i=1S

1
i we get an isomorphism H5(M) → H1(∨nS

1;H4(M̃)). Note that

H1(∨nS
1;H4(M̃)) = Ker(⊕nH4(M̃)

d
→ H4(M̃)), where d(x1, · · · , xn) =∑

i(gi − 1)xi, with g1, · · · , gn the corresponding generators of Fn. This

leads to an injection H5(M) → ⊕nH4(M̃). Denote the image of the
fundamental class [M ] by (σ1, · · · , σn). Now denote by Ii(M) the sym-

metric bilinear form H2(M̃ ;Q)×H2(M̃ ;Q) → Q, Ii(α, β) = 〈α∪β, σi〉.
From the relation

∑
i(gi−1)σi = 0 we see that the bilinear forms satisfy

the relation
∑

i Ii(α, β) =
∑

i Ii(g
∗
iα, g

∗
i β).

Geometrically, we choose regular values qi ∈ S1
i and denote Fi =

f−1(qi). Let E be the complement of an open tubular neighborhood
of ∪iFi, then E has boundary ∂E = ∪iF

±

i , where F±

i is the positive
and negative boundary component of the tubular neighborhood of Fi.

M̃ is obtained by glueing infinitely many copies of E under the deck

transformation, i. e. M̃ = ∪g∈Fn
Eg. Let M i → M be the Z-covering

of M corresponding to M → ∨n
i=1S

1
i → S1

i , then it’s easy to see that
the Leray-Serre spectral sequence of this covering gives an isomorphism

H5(M)
∼=
→ H4(M i), with [M ] 7→ [F−

i ]. Furthermore the commutative
diagram

M̃

  ❅
❅❅

❅❅
❅❅

❅
// M i

~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

M

induces

⊕nH4(M̃)

projection to the i-th component
��

H5(M)

99sssssssssss

%%▲
▲▲

▲▲
▲▲

▲▲
▲

H4(M̃)i

��

H4(M i)

From this we see that each σi is represented by F−

i in E ⊂ M̃ .
By [19, Proposition 3.3] we know that M has a CW-structure of the

form M ≃ ∨n
i=1S

1
i ∨ ∨S2 ∪ e3 · · · . Therefore we have isomorphisms

H4(M̃) ∼= H1
c (M̃) ∼= H1(∨nS

1,Λ), where Λ denotes the group ring

Z[Fn]. Thus we have a surjection Λn → H4(M̃). Let ei be the standard
basis of Λn, then ei is mapped to σi. Therefore σ1, · · · , σn form a

set of generators of the Λ-module H4(M̃). For any α, β ∈ H2(M̃ ;Q),
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x ∈ H4(M̃), we may assume that x =
∑

i λiσi, with λi =
∑

g a
(i)
g ·g ∈ Λ.

Then 〈α ∪ β, x〉 = 〈α ∪ β,
∑

i λiσi〉 =
∑

i,g a
(i)
g 〈g−1α ∪ g−1β, σi〉 =

∑
i,g a

(i)
g Ii(g

−1α, g−1β). Thus we have shown:

Lemma 1. The sequence of bilinear forms (I1, · · · , In) contain the
same information as the bilinear pairing bM together with an identi-
fication of π1(M) with the free group Fn.

Next we relate the signature of forms Ii to the signatures of the fibre
F 4
i .

Lemma 2. The bilinear form Ii : H
2(M̃ ;Q)×H2(M̃ ;Q) → Q has the

same signature as the signature of the intersection form of F 4
i .

Proof. We use homology and cohomology with Q-coefficients.
Let E be the exterior of an open tubular neighborhood of ∪iFi. Then

the universal cover M̃ is M̃ = ∪g∈Fn
Eg where each Eg is a copy of E.

Since H2(Fi) is finite dimensional, there exists a connected compact

submanifoldM0 ⊂ M̃ , which is a union of finitely many Eg’s, Fi ⊂M0,

such that any x ∈ Ker(H2(Fi) → H2(M̃)) is in Ker(H2(Fi) → H2(M0)).

Therefore Ker(H2(Fi) → H2(M̃)) = Ker(H2(Fi) → H2(M0)). Dually
on cohomology, we have

Im(H2(M̃) → H2(Fi)) = Im(H2(M0) → H2(Fi)).

∂M0 has a component F0, which is the image of Fi under a deck
transformation by g ∈ π1(M). There is a commutative diagram

H2(M0) //

%%❑
❑❑

❑❑
❑❑

❑❑
❑

H2(Fi)

g∗

��

H2(F0)

where g∗ is an isometry. So we have

H2(M̃)/rad(Ii) = Im(H2(M̃) → H2(Fi))/rad
= Im(H2(M0) → H2(Fi))/rad
∼= Im(H2(M0) → H2(F0))/rad

Note that Ker(H2(∂M0) → H2(M0)) is a Lagrangian in H2(∂M0).
Therefore

Ker(H2(F0) → H2(M0)) = Ker(H2(∂M0) → H2(M0)) ∩H2(F0)

is isotropic. A standard argument in linear algebra shows that dually
on cohomology, Im(H2(M0) → H2(F0)) has a complement which is
isotropic. Let’s denote it by K, it generates a hyperbolic form H(K)
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in H2(F0) and we have Im(H2(M0) → H2(F0))/rad⊕H(K) = H2(F0).
Therefore sign(Ii) = sign(H2(F0)). �

The proof of Theorem 4 is based on modified surgery theory. We
refer to [12] for the details of this machinery for classifying manifolds.
For the convenience of the reader we summarize the basic concepts and
the main theorem we apply. The basic idea is to weaken the normal
homotopy type which is the first basic invariant of a manifold M in
classical surgery to the normal k-type. This is roughly given by the
k-skeleton of M together with the restriction of the normal bundle.
Since the k-skeleton is not well defined we pass to Postnikov towers
instead or better Moore-Postnikov decompositions. The normal bundle
is equivalent to the normal Gauss map ν : M → BO. The normal

k-type is the k-th stage of the Moore Postnikov tower of ν̄, which
is s fibration p : Bk(M) → BO which is completely characterized by
the property that there is a lift ν̄ : M → Bk(M) of ν which induces
an isomorphism on homotopy groups up to degree k and is surjective
in degree k + 1. Note that if k is larger than the dimension of M
the normal k-type is equivalent to the normal homotopy type, thus
modified surgery generalizes classical surgery. Such a lift is called a
normal k-smoothing.
Given two normal k-smoothings (M, ν̄M ) and (M ′, ν̄M ′) in the same

fibrationBk the first step is to decide whether these normal k-smoothings
are bordant. This means that there is a coboundary W together with
a lift of the normal Gauss map ν̄W (but this is not highly connected).
The main theorem of modified surgery is that if k ≥ dimM

2
− 1, then

there is a surgery obstruction in a monoid ldimM+1(π1(M), w1(M)) from
which one can decide whether W is Bk-bordant to an s-cobordism.

Now we return to our situation of 5-manifolds. We will work with the
normal 2-type of M . Then the obstruction is actually in the classical
Wall group L5(π1(M), w1(M)). We prepare the proof with a construc-
tion of the normal 2-type (c. f. [12, Proposition 2]) of a smooth manifold
M (of arbitrary dimension) which might be of separate interest else-
where. Let u : M → P be the second stage Postnikov tower of M ,
there are unique cohomology classes wi ∈ H i(P ;Z/2) (i = 1, 2) such
that u∗(wi) = wi(M). Let w1 × w2 : P → K(Z/2, 1) × K(Z/2, 2) be
the classifying map of these classes, and w1(EO) × w2(EO) : BO →
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K(Z/2, 1)×K(Z/2, 2) be the classifying map of the universal Stiefel-
Whitney classes. Consider the following pullback square

B(π1(M), π2(M), k1, w1(M), w2(M))
h

//

p

��

P

w1×w2

��

BO
w1(EO)×w2(EO)

// K(Z/2, 1)×K(Z/2, 2)

then there is a lift ν : M → B(π1(M), π2(M), k1, w1(M), w2(M)) of the
normal Gauss map ν : M → BO of M , which a 3-equivalence, and p is
3-coconnected. Thus we have shown:

Lemma 3. The fibration

p : B(π1(M), π2(M), k1, w1(M), w2(M)) → BO

is the normal 2-type of M . There is a corresponding construction in
the topological category, if one replaces BO by BTop.

Now we are ready to prove Theorem 4.

Proof of Theorem 4. We begin with the smooth category. In our sit-
uation, the second stage Postnikov tower P of M is a fibration over
∨n
i=1S

1
i with fiber K = K(π2(M), 2), and monodromy given by the

π1(M)-module structure of π2(M). We denote the normal 2-type by
p : B → BO, and recall that by the lemma above it is determined by
π1(M), π2(M) as a Z[π1(M)]-module, and w2(M).
Now we compute the bordism group Ω5(B, p). Note that Ω5(B, p) =

πS
5 (M(p)). We consider the fibration B̃ → B → ∨n

i=1S
1
i , the Wang

sequence of the generalized homology theory πS
∗ is

· · · → Ω5(B̃, p̃) → Ω5(B, p) → ⊕nΩ4(B̃, p̃) → · · ·

where B̃ is the pullback

B̃ //

p̃

��

K

const×w2

��

BO // K(Z/2, 1)×K(Z/2, 2)

where w2 ∈ H2(K;Z/2) is the image of w2 ∈ H2(P ;Z/2) under the

injection H2(P ;Z/2) → H2(K;Z/2). From this we have Ωn(B̃, p̃) =
Ωspin

n (K; η), where the latter group is the bordism group of f : M → K
together with a spin structure on f ∗η⊕ νM , where η is a complex line
bundle over K such that w2(η) = w2 ∈ H2(K;Z/2).
π2(M) is the direct limit of its finitely generated subgroups, by as-

sumption π2(M) is a torsion-free abelian group, hence it is a direct
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limit of finitely generated free abelian groups lim
−→

Gα. Therefore K
is a direct limit of spaces K = lim

−→
K(Gα, 2). In general there is

an Atiyah-Hirzebruch spectral sequence computing Ωspin
n (X ; η) with

E2-terms Hp(X ; Ωspin
q ) and the differential d2 is dual to Sq2 + w2(η)·

([18]). An easy computation with this spectral sequence shows that

Ωspin
5 (K(Gα, 2); η) = 0 for a finitely generated free abelian group Gα,

and henceforth Ωspin
5 (K; η) = lim

−→
Ωspin

5 (K(Gα, 2); η) = 0.

Therefore we have an injection Ω5(B, p) → ⊕nΩ
spin
4 (K; η). There is

a commutative diagram

Ω5(B, p) //

��

⊕nΩ
spin
4 (K; η)

��

H5(P ) // ⊕nH4(K)

with the horizontal arrows injective and the vertical arrows the edge
homomorphisms. Following the definition of the boundary map in the
Mayer-Vietoris sequence of the bordism theory, we see that a bordism
class [f : M → B] is mapped to

([h ◦ f : F1 → K], · · · , [h ◦ f : Fn → K]) ∈ ⊕nΩ
spin
4 (K; η)

where h : B → P is the map in the pullback square, π : P → ∨nS
1 is the

projection map, and Fi = (π ◦ h ◦ f)−1(qi) is the preimage of a regular
value qi ∈ S1

i . A direct calculation with the Atiyah-Hirzebruch spectral

sequence shows that a bordism class [ϕ : N4 → K] ∈ Ωspin
4 (K(Gα, 2); η)

is determined by sign(N) and ϕ∗[N ] ∈ H4(K(Gα, 2)). Passing to the

limit we see that a bordism class [ϕ : N4 → K] ∈ Ωspin
4 (K; η) is deter-

mined by sign(N) and ϕ∗[N ] ∈ H4(K). NowH4(K) = lim
−→

H4(K(Gα, 2))
is a direct limit of free abelian groups, hence is torsion-free, therefore
ϕ∗[N ] is determined by its image in H4(K;Q), which is further de-
termined by the evaluation with elements in H4(K;Q). Note that
H4(K;Q) = H4(K(π2(M)⊗ Q, 2);Q) where π2(M) ⊗Q is a Q-vector
space. From this it’s easy to see that the cup product map H2(K;Q)⊗

H2(K;Q)
∪
→ H4(K;Q) is surjective, therefore ϕ∗[N ] ∈ H4(K;Q) is

determined by 〈ϕ∗α ∪ ϕ∗β, [N ]〉, ∀α, β ∈ H2(K;Q).
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For a normal 2-smoothing ν : M → B, let f : M
ν
→ B

h
→ P be the

composition, we have a commutative diagram

M̃

��

f̃
// K

��
M

f
// P

and f : Fi → K is the composition f̃ ◦ i : Fi ⊂ M̃ → K. Notice that

f̃ ∗ : H2(K;Q) → H2(M̃ ;Q) is an isomorphism, therefore the evaluation

〈f ∗α ∪ f ∗β, [Fi]〉 = 〈f̃ ∗α ∪ f̃ ∗β, i∗[Fi]〉 = 〈f̃ ∗α ∪ f̃ ∗β, σi〉 is exactly the

bilinear form Ii : H
2(M̃ ;Q)⊗H2(M̃ ;Q) → Q.

By Lemma 2 sign(Fi) equals the signature of the bilinear form Ii.
This shows that the bordism class [M, ν] is determined by the bilinear
forms Ii (i = 1, · · · , n).
Now given two manifolds M and M ′ with isomorphic algebraic in-

variants and - depending on an ordering of the boundary components
in the bounded case - equal boundary as in Theorem 4, then they have
the same normal 2-type (B, p). We identify the boundaries (one of the
manifolds with opposite orientation) to obtain a closed manifold and
use the normal 2-smoothings ν : M → B and ν ′ : M ′ → B to obtain
an element in Ω5(B, p). We note here that we controlled the restric-
tion of the normal 2-smoothings to the boundary by requiring that the
identification of the boundary components is compatible with the iden-
tification of the fundamental groups. By the consideration above this
is the zero element if our invariant ϕ agrees for M0 and M1 with the
normal 2-smoothings chosen such that the invariants agree.
Let W be a B-null-bordism of the glued manifold, then there is an

obstruction θ(W ) ∈ l6(Fn). If this is elementary, then W is B-bordant
rel. boundary to an s-cobordism [12, Theorem 3]. In our situation with
π1(M) ∼= Fn the Whitehead group Wh(Fn) = ⊕Wh(Z) = 0, and so we
won’t have to consider the preferred bases. Furthermore by the remark
on [12, p.730] the obstruction sits in the ordinary L-group L6(Fn). This
group is isomorphic to Z/2 and the obstruction is detected by the Arf-
invariant ([2, Theorem 16]). Since there is a simply-connected closed
6-manifold with Arf-invariant 1 we can change W by disjoint sum with
this, if necessary, to show that θ(W ) = 0 ∈ L6(Fn). This implies that
θ(W ) is elementary and finishes the proof in the smooth case.
The proof of the topological case is similar, since the modified surgery

method also applies to topological manifolds (c. f. [12]). The only
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difference is that an element [ϕ : F 4 → K] ∈ ΩTopSpin
4 (K; η) is de-

termined by the image of the fundamental class ϕ∗[F ] ∈ H4(K), the
signature sign(F ) and the Kirby-Siebenmann invariant KS(F ). Each
Fi has trivial normal bundle in M , therefore under the isomorphism

H4(M ;Z/2)
∼=
→ ⊕n

i=1H
4(Fi;Z/2), KS(M) is mapped to

(KS(F1), · · · , KS(Fn)).

The rest is the same as in the smooth case. �

4. Proof of Theorem 2 and 3

The Seifert matrix of a boundary link is defined as follows (c. f. [9]):
choose Seifert manifolds Fi of the link L, then there are linking forms

θij : Hq(Fi)⊗Hq(Fj) → Z, (α, β) 7→ L(z1, z2)

defined by linking numbers between z1, representing α, and z2, repre-
senting i+β. With respect to a basis of the torsion-free part of Hq(Fi)
the linking forms θij are represented by a matrix Aij , then the Seifert
matrixD = (Aij) of L is an integral square matrix formed by the blocks
Aij, and D is (−1)q-symmetric. Different choices of Seifert manifolds
will lead to different Seifert matrices, but they are related by a sequence
of “algebraic moves” and are l-equivalent. The l-equivalence class of
the Seifert matrix D is a well-defined invariant of L ([9, Theorem 1]).
Given a square integral matrix D = (Aij), consisting of matrices

blocks Aij , the unimodularity condition of D requires that Aii + A′
ii

(i = 1, · · · , n) and D+D′ are unimodular. It’s shown in [9] that there
is a boundary simple (2q− 1)-link L whose Seifert matrix is D = (Aij)
when q ≥ 3 [9, Theorem 1].
Given a link f : ∪n

i=1 S
3 →֒ S5 we note that up to isotopy there is a

unique tubular neighborhood U of Image(f). We denote the comple-
ment of the interior of this tubular neighborhood by Xf and use the
tubular neighborhood to identify ∂Xf with ∪n(S

1 × S3).
If two links f : ∪n

i=1 S
3 →֒ S5 and f ′ : ∪n

i=1 S
3 →֒ S5 are iso-

topic the isotopy extension theorem implies that the identification
∂Xf → ∂Xf ′ extends to a diffeomorphism Xf → Xf ′ . In turn if there is
an orientation-preserving diffeomorphism g : Xf → Xf ′ extending the
identification on the boundary, then we can extend this by the iden-
tification on the tubular neighborhoods to an orientation-preserving
diffeomorphism ĝ : S5 → S5 mapping the first link to the second.
Now we use the fact that π0(Diff+(S5)) is isomorphic to the group of
homotopy 6-spheres (using the h-cobordism theorem and Cerf’s the-
orem [3] that pseudo-isotopy implies isotopy) and that the group of
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6-dimensional homotopy spheres is trivial [11]. Thus the two links are
isotopic.
Now note that link complement X has free fundamental group of

rank n, generated by the circles in the boundary components. Further-
more, from Farber [5, Theorem 5.7] we know that π2 of the complement
of a simple boundary link is torsion free. Thus Theorem 4 applies to
complements of simple boundary 3-links in S5.

The meridians give rise to an identification π1(Xf )
∼=
→ Fn, under this

identification, by the reinterpretation of the invariants in the beginning
of section 3, we have an invariant

ψ(Xf) = (π2(Xf), bi : π2(Xf)
∗ × π2(Xf)

∗ → Q, i = 1, · · · , n).

Here we consider π2(Xf) as a Fn-module and ∗ stands for the Q-dual.
The link complementXf is a Spin-manifold, thus Theorem 4 implies
that this invariant determines the oriented diffeomorphism type mod
boundary, meaning that the identification on the boundary extends to
an orientation-preserving diffeomorphism between the whole manifolds.
Thus we have proved the following

Lemma 4. Two simple boundary 3-links f : ∪n S
3 →֒ S5 and f ′ : ∪n

S3 →֒ S5 are isotopic if and only if under certain identifications of
π1(Xf ) and π1(Xf ′) with Fn coming from enumerating of the link com-
ponents, ψ(Xf) and ψ(Xf ′) are isomorphic.

Proof of Theorem 2. By Lemma 4, to prove that the l-equivalence class
of the Seifert matrices determines the isotopy type of the link, we need
to show that the l-equivalence class of the Seifert matrices determines
ψ(Xf). Let Fi be Seifert manifolds of a link given by an embedding f .
LetXf be the complement of the tubular neighborhood of the link, then

the universal cover X̃f is obtained by glueing infinitely many copies of
Y via the deck transformation, where Y is obtained from Xf by cutting
up along the Seifert manifolds. We identify π1(Xf ) with Fn by sending
the meridian (with the induced orientation from that of S5 and S3) of
the i-th component of the link to the i-th standard generator ti of Fn.

The Mayer-Vietoris sequence computing H2(X̃f ) is

⊕n
i=1H2(Fi)⊗Z Z[Fn]

ϕ
→ H2(Y )⊗Z Z[Fn] → H2(X̃f) → 0

where under the basis ofH2(Fi) and the Alexander dual basis ofH2(Y ),

and ϕ is given by (Aij − tiA
′
ij). Therefore the Z[Fn]-module H2(X̃f)

is determined by D = (Aij). Also we see that the map H2(Fi) →

H2(X̃f) is determined by D = (Aij), hence the dual map H2(X̃f ;Q) →
H2(Fi;Q). And the intersection form of Fi is given by Aii + A′

ii. It’s
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easy to see from the definition that the bilinear pairing bi is given by

the composition H2(X̃f ;Q) → H2(Fi;Q) with the intersection form on
H2(Fi;Q). Therefore the bilinear form bi is determined by the Seifert
matrix D = (Aij).
Given two simple boundary 3-links L0 and L1, with l-equivalent

Seifert matrices D0 = (A
(0)
ij ) and D1 = (A

(1)
ij ), then by [9, Lemma 1] we

may choose Seifert manifolds {F 0
i } and {F 1

i } of L0 and L1 respectively,
such that the corresponding Seifert matrices are equal. Then by the
above discussion L0 and L1 are equivalent.

Using a stabilization trick introduced by Levine in the case of knots,
we can extend the construction of links with given Seifert matrix in [9]
to the case q = 2. The construction goes as follows.
Firstly by [8, Lemma 16] we may find embeddings F 4

i ⊂ B5
i ⊂

S5 with ∂Fi = S3 is a simple 3-knot, whose Seifert matrix Ai is S-
equivalent to Aii. After stabilization by connected sum with copies
of S2 × S2, these Seifert manifolds F 4

i are diffeomorphic to connected
sums of S2 × S2 and the Kummer surface with a 4-ball B4 deleted.
These smooth 4-manifolds all have a handle decomposition of the form
Fi = D4 ∪ h1 ∪ · · · ∪ hk where the hi’s are 2-handles (see e. g. [14]).
Then by the same argument in the proof of [9, Theorem 1] we can show
that the new Seifert matrix D′, which is l-equivalent to D, is the Seifert
matrix of a boundary simple 3-link L. �

Now we describe the Milnor pairing associated to an (m × m) in-
tegral matrix D = (Aij) satisfying the unimodularity conditions. Let
ϕD : (Z[Fn])

m → (Z[Fn])
m be the Z[Fn]-module map given by the ma-

trix (Aij − tiA
′
ij). Assume the square matrix Aii has dimension mi,

then Aii + A′
ii defines a symmetric bilinear form Ii on Zmi . Let ιi be

the composition

ιi : Z
mi

⊕jAij

−→ ⊕jZ
mj → ⊕jZ

mj ⊗Z Z[Fn] = (Z[Fn])
m → cokerϕD

The Q-dual of ιi is ι∗i : (cokerϕD)
∗ → Qmi . Let C1 = (Z[Fn])

n d1→
C0 = Z[Fn] be the standard chain complex computing H∗(BFn;Z[Fn]),
{ei, i = 1, · · · , n} be standard basis of (Z[Fn])

n, {e∗i , i = 1, · · · , n} be
the dual basis, [e∗i ] ∈ H1(BFn;Z[Fn]) be the corresponding cohomology
class. Then the bilinear form

bD : (cokerϕD)
∗ × (cokerϕD)

∗ → (H1(BFn;Q[Fn]))
∗

is given by 〈bD(u, v), [e
∗
i ]〉 = Ii(ι

∗
i (u), ι

∗
i (v)). (See Lemma 1.)

Proof of Theorem 3. There is a surjective map from the set of isotopy
classes of simple boundary n-components links L ⊂ S5 to the set of
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diffeomorphism classes of smooth oriented closed 5-manifolds M5 with
free fundamental group of rank n, and H2(M ;Z) = 0. This is given
by surgery: given a link L, we may do surgery on L and obtain a 5-
manifold M with H2(M ;Z) = 0. If L is simple boundary, then it’s
easy to see that π1(M) is isomorphic to Fn. The meridians of the
link components form an embedding ∪nS

1 ⊂ M , and these circles
generate π1(M). On the other hand, given such an M5 we may choose
an embedding ∪nS

1 ⊂ M5 such that the circle generate π1(M). Then
we do surgery on this embedding and obtain S5, the complementary
spheres ∪nS

3 ⊂ S5 form a link L. Clearly this is a simple boundary
link.
By comparing the definitions, we see that the generalized Milnor

pairing ϕ(M) ofM is the same as the generalized Milnor pairing ψ(Xf)
of the link complement defined before Lemma 4. In the proof of Theo-
rem 2 we have shown how the generalized Milnor pairing ψ(Xf) is deter-
mined by the Seifert matrixD = (Aij). This is exactly (Fn, cokerϕD, bD),
which was described before the proof of Theorem 3. By Theorem 2,
all such matrices satisfying the unimodular conditions are realized by
simple boundary links. This finishes the proof. �

5. Appendix

In this appendix we show some basic properties of the class of mani-
folds mentioned in Remark 1, i. e. oriented closed 5-manifolds M with
π1(M) ∼= Z and π2(M) a finitely generated abelian group.

Lemma 5. Let M5 be a 5-manifold with π1(M) = Z and π2(M) a
finitely generated abelian group, then all higher homotopy groups πi(M)
(i ≥ 2) are finitely generated abelian groups.

Proof. By Serre’s mod C theory [16], we only need to show that Hi(M̃)
(i ≥ 3) are finitely generated abelian groups. The only problem is

H3(M̃). H3(M̃) = H3(M ; Λ) ∼= H2(M ; Λ), where Λ = Z[Z] = Z[t, t−1]
is the group ring. By [19, Proposition 3.3], the CW-structure ofM has
the form

M = S1 ∨ (∨S2) ∪ · · ·

Therefore the cellular chain complex C∗(M ; Λ) has the form

· · · → C3
d
→ C2

0
→ C1 → C0.

From the exact sequence C3
d
→ C2 → cokerd → 0 we have the dual

exact sequence 0 → (cokerd)∗ → C∗
2

d∗

→ C∗
3 , hence H

2(M ; Λ) = ker d∗ =
(cokerd)∗. Now cokerd = H2(M ; Λ) = π2(M) is a finitely generated
abelian group, the proof is done by the following lemma. �
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Lemma 6. If a Λ-module G is a finitely generated abelian group, then
HomΛ(G,Λ) = 0.

Proof. The torsion subgroup T is a sub-Λ-module, the exact sequence
0 → T → G→ G/T → 0 induces an exact sequence

0 → HomΛ(G/T,Λ) → HomΛ(G,Λ) → HomΛ(T,Λ)

therefore HomΛ(G/T,Λ) ∼= HomΛ(G,Λ) since HomΛ(T,Λ) = 0. There-
fore we may assume that G is a finitely generated free abelian group.
Let x1, · · · , xn be a basis of G, a Λ-module structure on G is given

by A ∈ GLn(Z), which specifies the action of the generator t on the
basis. A Λ-homomorphism G → Λ is given by v1, · · · , vn ∈ Λ which
are the images of x1, · · · , xn. The n-tuple v = (v1, · · · , vn) should
satisfy the equation (tI − A)v = 0. Clearly det(tI − A) 6= 0, thus
the equation has no non-zero solution in the quotient field (Λ is an
integral domain), hence also has no non-zero solution in Λ. Therefore
HomΛ(G,Λ) = 0. �

Now let M5 be a closed orientable 5-manifold with π1(M) = Z and
π2(M) a finitely generated abelian group. Fix an orientation of M and
a generator t of π1(M), these choices determine a generator (a funda-

mental class) σM ∈ H4(M̃) = Z. Then on the finitely generated free

abelian group H2(M̃) a symmetric bilinear form H2(M̃)×H2(M̃) → Z

is defined by (α, β) 7→ 〈α ∪ β, σM〉. By the following proposition we
see that this bilinear form is unimodular and π2(M) is a free abelian
group. Thus this bilinear form induces a symmetric bilinear form on

π2(M) = π2(M̃) = H2(M̃) = H2(M̃)∗, denoted by I(M).

Proposition 1. Let M5 be an orientable 5-manifold with π1(M) =
Z and π2(M) a finitely generated abelian group. Then we have the
following

(1) π2(M) is torsion free.
(2) The symmetric bilinear form I(M) is unimodular; I(M) is even

if and only if w2(M) = 0.

(3) 〈p1(M), σM 〉 = 3 · sign(I(M)), where σM ∈ H4(M̃) is the gen-
erator determined by the orientation of M and the generator t
of π1(M).

Proof. Consider M × CP2. By the Lemma 5 and Browder-Levine’s
fibration theorem [1], we know that this manifold is a fiber bundle over

S1 with simply-connected fiber F 8. Therefore M̃ × CP2 is homotopy
equivalent to F .



ON 5-MANIFOLDS WITH FREE FUNDAMENTAL GROUP AND SIMPLE BOUNDARY LINKS IN S
5

19

(1) By Künneth formula and Poincaré duality, we have

H3(M̃) ∼= H7(M̃ × CP2) ∼= H7(F ) ∼= H1(F ) = 0.

This proves that torsπ2(M) = torsH2(M̃) = torsH3(M̃) = 0.

(2) On H4(M̃ × CP2) there is defined a symmetric bilinear form
I(M ×CP2), which is isometric to the tensor product of I(M) and the
intersection form of CP2 plus a hyperbolic form. On the other hand,
the bilinear form I(M×CP2) is isometric to the intersection form of F ,
which is unimodular by Poincaré duality. Therefore the bilinear form
I(M) is unimodular.
From the discussion above we see that I(M) is even if and only if

the Wu class v4(F ) = 0. The Wu classes and Stiefel-Whitney classes of
M and F are related as follows. Let i : F →M ×CP2 be the inclusion
of the fiber, then TF ⊕ R = i∗T (M × CP2). We have

w2(M) = v2(M), w3(M) = Sq1w2(M), w4(M) = w2(M)2.

v2(F ) = w2(F ) = i∗(w2(M) + w2(CP
2)),

w3(F ) = Sq1w2(F ) + v3(F ),

on the other hand, w3(F ) = i∗w3(M), from this we have

v3(F ) = i∗(Sq1w2(M) + w3(M)).

By the Wu formula

w4(F ) = v2(F )
2 + Sq1v3(F ) + v4(F ),

on the other hand

w4(F ) = i∗(w4(M) + w2(M)w2(CP
2) + w4(CP

2)),

compare these two equations we have

v4(F ) = i∗(w2(M)w2(CP
2)).

But H3(F ;Z2) ∼= H3(M̃×CP2;Z2) ∼= H3(M̃ ;Z2) = 0 (the last identity

is a consequence of the fact that H2(M̃) is free and H3(M̃) = 0, see
Lemma 5), from the Wang sequence we see that i∗ : H4(M×CP2;Z2) →
H4(F ;Z2) is injective. Thus v4(F ) = 0 if and only if w2(M) = 0.
(3) Since I(M) and I(M×CP2) differ by a hyperbolic form, we have

sign(I(M)) = sign(I(M × CP2)) = sign(F ) =
〈7p2(F )− p1(F )

2, [F ]〉

45
,

where the last identity is the Hirzebruch index formula. Since F has
trivial normal bundle in M × CP2, we have

p1(F ) = i∗p1(M × CP2) = i∗(p1(M) + p1(CP
2)),

p2(F ) = i∗p2(M × CP2) = i∗(p1(M)p1(CP
2)).
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A straightforward calculation shows that 3·sign(I(M)) = 〈p1(M), σM 〉.
�
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