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1 Introduction

This paper serves as a thorough extension of ideas sketched in the previous paper [35]

written together with Branislav Jurčo. In particular, it turned out that instead of a di-

rect relation between low-energy string effective actions, we should aim for relation of the

respective equations of motion. Moreover, it proved necessary to use a different and techni-

cally better definition of the generalized Riemann tensor inspired by the one used in double

field theory [27]. Using those polished tools of generalized geometry, we are able to give a

full reduction procedure of a low-energy string effective action.

The original idea [36] of Kaluza to obtain a unification of four-dimensional gravity with

electromagnetism via the reduction of five-dimensional gravity dates back to year 1919

(published in 1921). Five years later it was examined by Klein from the quantum point

of view in [37], thus becoming known as Kaluza-Klein (KK) theory (or reduction). Since
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then, KK theory played an important role throughout the development of any candidate

for the grand unified theory, in particular in string theory. It is beyond the scope of this

paper to give a full list of references. Instead, we recommend the historical review in [15]

or a very comprehensive one in [3].

In this paper, we attempt to view this from the perspective within the framework of

generalized geometry as introduced by Hitchin [23] and further developed in [19, 21, 22].

In particular, it turned out that one should examine the natural generalizations of Levi-

Civita connections with respect to a generalized Riemannian metric. This idea is rather

new, coming notably in the work of Garcia-Fernandez in [16–18] and also in our papers

with Braňo Jurčo in [33, 35] and in detailed lecture notes [34].

Let us now comment on the following. At first glance, the use of Courant algebroid

connections to obtain the correspondence of equations of motion may seem unnecessary.

Without any doubt, the equivalence of both theories can be obtained by hand. However,

we believe that the approach taken here is novel and useful as it provides the guiding

principle throughout the entire procedure. All assumptions are made by considering the

natural restrictions of the involved structures given by requirements of symmetry. For

example, straightforward reducibility impositions on the generalized metric on the larger

spacetime provide the correct requirements on the fields of the low-energy string effective

action. Moreover, by construction, one a priori knows that the two sets of equations of

motion are somehow related and all calculations are then basically just a verification. Last

but not least, we believe that the framework here is quite universal and it would allow

for future straightforward generalizations by considering more complicated examples of

involved structures e.g. to include the fermionic sector of supergravity.

The basic idea is the following. As we aim for non-Abelian gauge theories, we consider

a principal G-bundle π : P → M with a compact semisimple structure Lie group G. Equa-

tions of motion of the string low-energy effective action (or equivalently the bosonic part of

type IIB supergravity) can be geometrically described in terms of the (possibly H-twisted)

Dorfman bracket on the generalized tangent bundle TP ≡ TP ⊕ T ∗P and the generalized

metric G corresponding to the metric g and the Kalb-Ramond 2-form B. Interestingly,

the scalar function φ corresponding to the dilaton field originates from the freedom in the

construction of a metric-compatible and torsion-free Courant algebroid connection on TP .

Under certain conditions on the twisting 3-form H, TP becomes a so called equivariant

Courant algebroid, allowing for its reduction to a Courant algebroid E′ above the base

manifold M . See [10] and [4]. The resulting structure is called the heterotic Courant

algebroid, and its relevance is due to the condition on the triviality of the first Pontryagin

class. This is exactly the Green-Schwarz anomaly cancellation condition when the principal

bundle P is a fibre product of a Yang-Mills bundle and the spinor bundle on M . See [4, 16].

Hence, the structure of a heterotic Courant algebroids can be used to naturally incorporate

the corresponding α′ correction. In particular, one can encode a theory resembling the

bosonic part of heterotic supergravity in terms of the generalized Riemann tensor on E′.

It is natural to examine generalized metrics G on TP which reduce naturally onto

the generalized metrics G′ on the reduced heterotic Courant algebroid E′ and similarly

Levi-Civita connections ∇ with respect to G that in some sense reduce to Levi-Civita
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connections ∇′ on E with respect to G′. One could then expect the low-energy effective

actions described by both connections to be related to each other. In this paper we find

conditions under which they are completely (classically) equivalent. See Theorem 2.1. Note

that on the level of differential equations, this is was already observed in [4].

The heterotic effective actions, Green-Schwarz mechanism and the related α′ correction

have been extensively examined recently in the double field theory [5, 28–30, 39]. For a

general review of double field theory, including discussion of effective action see [1, 26].

Recall also the generalized geometry approach to α′ corrections published in [12], and

generalized connections with applications in DFT in [31, 32]. Using the Riemann-like

tensors encoding the low-energy effective actions date back to Siegel [42, 43]. In DFT,

generalized Riemann tensors were examined extensively in [25] and in [24] for heterotic

case. For more geometrical approach, see [27]. Note that an important role of Courant

algebroids and generalized geometry in supergravity was conjectured in the talk of Peter

Bouwknegt [8]. There are many recent developments of similar ideas, see in particular the

work of Coimbra, Strickland-Constable and Waldram in [13, 14].

This paper is organized as follows: in section 2, we establish the terminology, notation

and we formulate the main theorem of this paper. This part does not require any knowledge

of generalized geometry tools used in the proof of the statement.

In section 3, we employ the variational principle to derive the equations of motion from

the respective action functionals. Of course, as this is nothing new, an uninterested reader

can skip to the end of this part and take note only of Theorem 3.11 to get acknowledged

with the notation.

Section 4 serves as a quick introduction to the theory of Courant algebroids and Levi-

Civita connections. Our intention is to skip all unnecessary details and proofs, as we have

already addressed this in detail in [34].

The main goal of section 5 is to provide a detailed and explicit calculation leading

to the description of equations of motion in terms of generalized Riemann tensor on the

heterotic Courant algebroid E′. This should repay our debt from the previous paper [35]

where we have hidden (mainly because they were much more complicated and crude at the

time) all calculations from the reader. One can also skip to the resulting Theorem 5.3.

In section 6, we quickly review the reduction of equivariant Courant algebroids, gener-

alized metrics and Levi-Civita connections. Most importantly, in subsection 6.4 we derive

a crucial relation of the quantities required to describe the equations of motion.

Finally, we are able to provide a proof of the main theorem in section 7. At this point,

it is just a combination of already proved theorems of previous two sections.

We conclude this paper by section 8 where we relate our notation using the globally

defined objects to the more conventional notation using the local connection and curva-

ture forms. In particular, we find a direct relation to the bosonic content of heterotic

supergravity for the particular choice of the principal bundle P .
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2 Kaluza-Klein reduction

Let us formulate the main theorem of this paper. Let π : P → M be a principal G-bundle

with a semisimple and compact Lie group G, and let g = Lie(G). Let c = 〈·, ·〉g denote the

corresponding negative-definite Killing form.

LetB ∈ Ω2(P ) be a 2-form on P usually called aKalb-Ramond field. LetH ∈ Ω3(P )

be any 3-form, and let H ′ = H + dB. Assume that g is a metric on P . At this moment it

can have any signature. Let φ ∈ C∞(P ) be a scalar function called a dilaton field, and

let Λ ∈ R be a real number called a cosmological constant.

Let d volg denote the volume form corresponding to g, and let 〈·, ·〉g be a fiber-wise

scalar product of p-forms induced by the Hodge duality operator ∗g, that is α ∧ ∗g(β) =

〈α, β〉g ·d volg. LetR(g) be the scalar curvature of the Levi-Civita connection corresponding

to g. We can now define the following action functional:

S[g,B, φ] =

∫

P

e−2φ

{
R(g)−

1

2
〈H ′, H ′〉g + 4〈dφ, dφ〉g − 2Λ

}
· d volg . (2.1)

We neglect any constants or string parameters α′. We will derive the equations of motion for

this action in the following section. S can be thus viewed as a field theory for backgrounds

(g,B, φ) living on the principal bundle total space P .

On the other hand, let B0 ∈ Ω2(M) be a 2-form on the base manifold, and let H0 ∈

Ω3(M) be any 3-form. Let g0 be a metric on M , and let ϑ ∈ Ω1(M, gP ) be a 1-form on

M valued in the adjoint bundle gP . Let φ0 ∈ C∞(M) be a scalar dilaton field on M , and

let Λ0 ∈ R be a cosmological constant. Let 〈〈·, ·〉〉 be a fiber-wise scalar product induced by

combination of 〈·, ·〉g0 and 〈·, ·〉g on Ωp(M, gP ), and letD : Ω•(M, gP ) → Ω•+1(M, gP ) be an

exterior covariant derivative induced by the fixed principal bundle connection A ∈ Ω1(P, g).

Define F ′ ∈ Ω2(M, gP ) and H ′
0 ∈ Ω3(M):

F ′ = F +Dϑ+
1

2
[ϑ ∧ ϑ]g, H ′

0 = H0 + dB0 −
1

2
C̃3(ϑ)− 〈F ∧ ϑ〉g, (2.2)

where C̃3(ϑ) = 〈Dϑ ∧ ϑ〉g +
1
3〈[ϑ ∧ ϑ]g ∧ ϑ〉g is a “Chern-Simons like” 3-form on M , and

F ∈ Ω2(M, gP ) is the curvature 2-form of A. We propose a following action functional:

S0[g0,B0,φ0,ϑ]=

∫

M

e−2φ0

{
R(g0)+

1

2
〈〈F ′,F ′〉〉−

1

2
〈H ′

0,H
′
0〉g0+4〈dφ0,dφ0〉g0−2Λ0

}
·dvolg0 .

(2.3)

It is a partial goal of this paper to explain how to obtain exactly this combination of the

dynamical fields (g0, B0, φ0, ϑ).

Recall that any principal bundle connection A ∈ Ω1(P, g) provides a decomposition

XG(P ) ∼= X(M) ⊕ Γ(gP ) of G-invariant vector fields, given by X = V h + j(Φ), where V h

denotes the horizontal lift of a vector field V ∈ X(M), and j(Φ) is for each Φ ∈ Γ(gP ) =

C∞
Ad(P, g) defined as {j(Φ)}(p) = #{Φ(p)} for all p ∈ P , where x ∈ g 7→ #x ∈ X(P )

denotes the infinitesimal Lie algebra action of g on P .

Having explained the notation of this paper, we may proceed to the main theorem of

this work. Its proof will be provided in the following sections.
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Theorem 2.1 (Kaluza-Klein reduction of a low-energy effective action). Assume

that g, B and φ are G-invariant tensor fields on P . Let A ∈ Ω1(P, g) be a fixed principal

bundle connection on P . In particular φ = φ0 ◦π for φ0 ∈ C∞(M), and g,B can be written

in block form with respect to the decomposition TM ⊕ gP . Furthermore, assume that their

formal block matrices have the form:

g =

(
1 ϑT

0 1

)(
g0 0

0 −1
2c

)(
1 0

ϑ 1

)
, B =

(
B0

1
2ϑ

T c

−1
2cϑ 0

)
, (2.4)

where g0 is a metric on M , B0 ∈ Ω2(M), and ϑ ∈ Ω1(M, gP ). Let Λ = Λ0 +
1
6 dim g, and

fix the 3-form H to be H = π∗(H0) +
1
2CS3(A), where CS3(A) is a Chern-Simons 3-form

corresponding to the connection A.

Then (g,B, φ) satisfy the equations of motion given by the action functional (2.1), if

and only if (g0, B0, φ0, ϑ) satisfy the equations of motion given by the action function (2.3).

In other words, the field theories given by S and S0 are classically equivalent.

Remark 2.2. We should now comment on the term “classical equivalence”. The full theory

on the spacetime P is of course not completely equivalent to the one on the orbit space

M . Therefore, by the classical equivalence of S and S0 we mean that equations of motion

given by the extremalization of the functional S together with the equations restricting

the background fields (g,B, φ) to be G-invariant and have the form (2.4) are satisfied, if

and only if the corresponding background fields (g0, B0, φ0, ϑ) on M extremalize the action

functional S0.

3 Equations of motion

In this section, we will derive the equations of motion coming from actions (2.1) and (2.3).

We include this section mainly to establish the notation. The variations of the respective

actions are well-known results and can be skipped by any reader acquainted by these

classical results. We write this in the form of a sequence of lemmas and propositions,

summarizing the statements in this section with Theorem 3.11.

Lemma 3.1. Let g be a metric on a manifold M , and fix a scalar function φ ∈ C∞(M).

Let

SE [g] =

∫

M

e−2φR(g) · d volg . (3.1)

Let g′ = g + ǫh, where h is any symmetric form on M vanishing on ∂M and ǫ ∈ R is a

real number small enough for g′ to be a metric on M . Then there holds an equation

SE [g
′] = SE [g]− ǫ

∫

M

hmnGφ
mn · d volg +o(ǫ2), (3.2)

where Gφ is a modified Einstein tensor given by

Gφ(X,Y ) = e−2φ{RicLC(X,Y ) + (∇LC
X (dφ))(Y ) + (∇LC

Y (dφ))(X)− 4(X.Φ)(Y.Φ)}

+ e−2φ

{
4〈dφ, dφ〉g − 2∆g(φ)−

1

2
R(g)

}
· g(X,Y ),

(3.3)
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for all X,Y ∈ X(M), where ∇LC is the Levi-Civita connection corresponding to g, RicLC

is its Ricci tensor and ∆g = −{dδg + δgd} is the Laplace-Bertrami operator.

For φ = 0, one obtains an ordinary Einstein tensor. The most complicated part of the

proof of this lemma in fact comes from the presence of the non-constant dilaton field φ. To

deal with the remaining terms in the action S or S0, one uses the following observation.

This is again a standard result and we thus omit its proof:

Lemma 3.2. Let α ∈ Ωp(M), and let g′ = g+ ǫh be two metrics as in the previous lemma.

Then there holds an equation

∫

M

〈α, α〉g′ · d volg′ =

∫

M

〈α, α〉g · d volg −ǫ

∫

M

1

2
hmntmn · d volg +o(ǫ2), (3.4)

where t is a tensor defined as t(X,Y ) = 2〈iXα, iY α〉g − 〈α, α〉g · g(X,Y ), for all X,Y ∈

X(M). The statement holds also for α ∈ Ωp(M, gP ) with 〈·, ·〉g replaced with 〈〈·, ·〉〉.

Using these two lemmas, it is easy to prove the following two propositions:

Proposition 3.3. Let g′ = g + ǫh, where h is any symmetric form on P vanishing on

∂P , and ǫ ∈ R is a real number small enough for g′ to be a metric on P . Then for fixed

B ∈ Ω2(P ) and φ ∈ C∞(P ), one obtains

S[g′, B, φ] = S[g,B, φ]− ǫ

∫

P

hmne−2φ

{
β(g)mn −

1

2
β(φ)gmn

}
· d volg +o(ǫ2), (3.5)

where β(g) is a symmetric tensor field on P defined by

β(g)(X,Y ) = RicLC(X,Y )−
1

2
〈iXH ′, iY H

′〉g + (∇LC
X (dφ))(Y ) + (∇LC

Y (dφ))(X), (3.6)

for all X,Y ∈ X(P ), and β(φ) is a scalar field on P defined by

β(φ) = R(g)−
1

2
〈H ′, H ′〉g + 4∆g(φ)− 4〈dφ, dφ〉g − 2Λ. (3.7)

Here hmn are components of h with indices raised by g.

Proposition 3.4. Let g′0 = g0 + ǫh0, where h0 is any symmetric form on M vanishing on

∂M , and ǫ ∈ R is a real number small enough for g′0 to be a metric on M . Then for fixed

B0 ∈ Ω2(M), φ0 ∈ C∞(M) and ϑ ∈ Ω1(M, gP ), one obtains

S0[g
′
0, B0, φ0, ϑ] = S0[g0, B0, φ0, ϑ]

− ǫ

∫

M

hmn
0 e−2φ0

{
β′(g0)mn −

1

2
β′(φ0)(g0)mn

}
· d volg0 +o(ǫ2),

(3.8)

where β′(g0) is a symmetric tensor field on M defined by

β′(g0)(X,Y ) = RicLC0 (X,Y ) +
1

2
〈〈iXF ′, iY F

′〉〉 −
1

2
〈iXH ′

0, iY H
′
0〉g0

+ (∇0
X(dφ0))(Y ) + (∇0

Y (dφ0))(X),
(3.9)
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for all X,Y ∈ X(M), and β′(φ0) is a scalar field on M defined by

β′(φ0) = R(g0) +
1

2
〈〈F ′, F ′〉〉 −

1

2
〈H ′

0, H
′
0〉g0 + 4∆g0(φ0)− 4〈dφ0, dφ0〉g0 − 2Λ0. (3.10)

Here hmn
0 are components of h0 with indices raised by g0. ∇0 denotes the Levi-Civita

connection corresponding to g0, RicLC0 is the corresponding Ricci tensor, and its trace

using g0 is denoted as R(g0).

We will now show that equations of motion for scalar dilation fields corresponds to the

vanishing of the functions β(φ) and β′(φ′) appearing in the previous two propositions. To

do so, we will recall the following result of the Riemannian geometry:

Lemma 3.5. Let d be a de Rham differential, and let δg be a corresponding codiferential

induced by g. Then under the integration sign, those operations are mutually adjoint:
∫

M

〈dα, β〉g · d volg =

∫

M

〈α, δgβ〉g · d volg, (3.11)

for all α ∈ Ωp(M) and β ∈ Ωp+1(M), whenever either of the two forms vanishes on the

boundary. Similarly, there holds the formula
∫

M

〈〈Dα, β〉〉 · d volg0 =

∫

M

〈〈α,D†
g0
β〉〉 · d volg0 , (3.12)

for all α ∈ Ωp(M, gP ), β ∈ Ωp+1(M, gP ). Here D is the exterior covariant deriva-

tive, and D†
g0 the corresponding covariant codifferential, defined by the formula D†

g0(α) =

(−1)|α|{∗−1
g0

D∗g0}(α). Again, either of the forms has to vanish on ∂M .

We can use this lemma to prove the proposition examining the dilatonic equations of

motion.

Proposition 3.6. Let φ′ = φ+ ǫν, where ν ∈ C∞(P ) is any scalar function vanishing on

∂P , and ǫ ∈ R. Then for fixed metric g and B ∈ Ω2(P ), one has

S[g,B, φ′] = S[g,B, φ]− 2ǫ

∫

P

{e−2φβ(φ) · ν} · d volg +o(ǫ2), (3.13)

where β(φ) is a scalar function defined by (3.7).

Similarly, let φ′
0 = φ0 + ǫν0, where ν0 ∈ C∞(M) is any scalar function vanishing on

∂M , and ǫ ∈ R. The for fixed metric g0, B0 ∈ Ω2(M) and ϑ ∈ Ω1(M, gP ), one has

S0[g0, B0, φ
′
0, ϑ] = S0[g0, B0, φ0, ϑ]− 2ǫ

∫

M

{e−2φ0β′(φ0)} · ν0 · d volg0 +o(ǫ2), (3.14)

where β′(φ′) is a scalar function defined by (3.10).

Proof. We will prove only the first statement. Clearly e−2φ′

= e−2φ(1− 2ǫν) + o(ǫ2). It is

thus easy to see that we find

S[g,B, φ′] = S[g,B, φ]− 2ǫ

∫

P

e−2φ

{
R(g)−

1

2
〈H ′, H ′〉g + 4〈dφ, dφ〉g

}
· ν · d volg

+ 2ǫ

∫

P

〈dν, e−2φdφ〉g · d volg

(3.15)
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We only have to treat to the last term. For this, we use the preceding lemma. Under the

integral, one thus obtains the expression δg(e
−2φdφ) · ν = e−2φ{2〈dφ, dφ〉g −∆g(φ)} · ν. By

plugging this back, we obtain precisely the expression (3.13).

Using the equation (3.11), it is straightforward to find the equations of motion for the

Kalb-Ramond fields. We formulate this as a proposition.

Proposition 3.7. Let B′ = B + ǫC, where C ∈ Ω2(P ) is any 2-form vanishing on ∂P ,

and ǫ ∈ R. Then for a fixed metric g and φ ∈ C∞(P ), one has

S[g,B′, φ] = S[g,B, φ]− 2ǫ

∫

M

e−2φ〈β(B), C〉g · d volg +o(ǫ2), (3.16)

where β(B) ∈ Ω2(P ) is a 2-form defined as β(B) = 1
2e

2φδg(e
−2φH ′).

Similarly, let B′
0 = B0 + ǫC0, where C0 ∈ Ω2(P ) is any 2-form vanishing on ∂M , and

ǫ ∈ R. Then for a fixed metric g0, φ0 ∈ C∞(M) and ϑ ∈ Ω1(M, gP ), one obtains

S0[g0, B
′
0, φ0, ϑ] = S0[g0, B0, φ0, ϑ]− 2ǫ

∫

M

e−2φ0〈β′(B0), C0〉g0 · d volg0 +o(ǫ2), (3.17)

where β′(B0) ∈ Ω2(M) is a 2-form defined as β′(B0) =
1
2e

2φ0δg0(e
−2φ0H ′

0).

Proof. The proof follows from the fact that H ′ = H + ǫ · dC, combined with (3.11). The

same argument applies for the equation regarding S0.

To complete this section, we have to derive the variation of the action S0 in the dynam-

ical variable ϑ ∈ Ω1(M, gP ). To do so, first observe that such field can be used to define

a new principal connection A′ ∈ Ω1(P, g) on P . Let j : Γ(gP ) → XG(P ) be an inclusion of

sections of the adjoint bundle into the C∞(M)-module of G-invariant vector fields on P .

To each X ∈ X(M), define its horizontal lift X ′h ∈ XG(P ) corresponding to A′ as

X ′h = Xh − j(ϑ(X)), (3.18)

where Xh is a horizontal lift of X corresponding to the original connection A. Let D′ be the

exterior covariant derivative corresponding to A′. One finds its relation to D in the form

D′ω = Dω + [ϑ ∧ ω]g, (3.19)

for all ω ∈ Ωp(M, gP ). Let F ′ ∈ Ω2(M, gP ) be the curvature 2-form corresponding to A′.

Then

F ′ = F +Dϑ+
1

2
[ϑ ∧ ϑ]g. (3.20)

But according to (2.2), this is exactly the same 2-form as F ′ in the action S0.

Proposition 3.8. Let ϑ′ = ϑ+ ǫη, where η ∈ Ω1(M, gP ) is any 2-form vanishing on ∂M ,

and ǫ ∈ R. Then for a fixed metric g0, B0 ∈ Ω2(M) and φ0 ∈ C∞(M), one has

S0[g0, B0, φ0, ϑ
′] = S[g0, B0, φ0, ϑ] + 2ǫ

∫

M

e−2φ0

{
〈〈β′

ϑ, η〉〉 −
1

2
〈β′

B0
, ϑ ∧ η〉g〉g

}
· d volg0 ,

(3.21)
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where β′
ϑ ∈ Ω1(M, gP ) is a gP -valued 1-form on M defined by

β′
ϑ =

1

2
{e2φ0D′†(e−2φ0F ′) + 〈iekH

′
0, F

′〉g0 · e
k}, (3.22)

where {ek}
dimM
k=1 is any local frame on M . Here D′† is a covariant codiferential correspond-

ing to the exterior covariant derivative D′ defined by (3.19). βB0
∈ Ω2(M) is defined in

Proposition 3.7.

Proof. One can start with the variation of the kinetic term

Skin[g0, φ0, ϑ] =
1

2

∫

M

e−2φ0〈〈F ′, F ′〉〉 · d volg0 . (3.23)

This is easy using (3.19), (3.20) and (3.12). Indeed, under the variation ϑ 7→ ϑ + ǫη, we

gets F ′ 7→ F ′ + ǫD′(η) + o(ǫ2), and the action thus changes as

Skin[g0, φ0, ϑ
′] = Skin[g0, φ0, ϑ]+2ǫ

∫

M

e−2φ0〈〈
1

2
e2φ0D′†(e−2φ0F ′), η〉〉·d volg0 +o(ǫ2). (3.24)

The change of H ′
0 takes the explicit form

H ′
0 7→ H ′

0 +
1

2
ǫ{〈D′(ϑ) ∧ η〉g − 〈ϑ ∧D′(η)〉g} − ǫ〈F ′ ∧ η〉g + o(ǫ2). (3.25)

Now, note that for any α, β ∈ Ω•(M, gP ), there holds an equation

d〈α ∧ β〉g = 〈D(α) ∧ β〉g + (−1)|α|〈α ∧D(β)〉g. (3.26)

We find that H ′
0 7→ H ′

0 + ǫ · {1
2d〈ϑ ∧ η〉g − 〈F ′ ∧ η〉g} + o(ǫ2). Let SH′

0
be the part of the

action quadratic in H ′
0. One obtains a relation

SH′
0
[g0, B0, φ0, ϑ

′] = S′
H′

0
[g0, B0, φ0, ϑ]

+ ǫ

∫

M

e−2φ0

{
〈〈F ′ ∧ η〉g −

1

2
d〈ϑ ∧ η〉g, H

′
0〉g0

}
· d volg0 +o(ǫ2). (3.27)

To finish the proof, observe that there holds the equation 〈〈F ′∧η〉g, H
′
0〉g0 = 〈〈〈iekH

′
0, F

′〉g0 ·

ek, η〉〉 which can be proved by a direct calculation. Using (3.11), we find

SH′
0
[g0, B0, φ0, ϑ

′] = SH′
0
[g0, B0, φ0, ϑ] + 2ǫ

∫

M

e−2φ0〈〈
1

2
〈iekH

′
0, F

′〉g · ψ
k, η〉〉 · d volg0

− ǫ

∫

M

e−2φ0〈
1

2
e2φ0δg(e

−2φ0H ′
0), 〈ϑ ∧ η〉g〉g0 · d volg0 +o(ǫ2) (3.28)

Combining this with (3.24) gives exactly the equation (3.21).

Remark 3.9. The covariant codifferentialD† can be conveniently expressed using the covari-

ant derivative DX corresponding to A, and the Levi-Civita connection ∇0 corresponding

to g0. Indeed, for any ω ∈ Ωp(M, gP ), define a combined covariant derivative ∇̂0
X as

{∇̂0
Xω}(X1, . . . , Xp) = DX{ω(X1, . . . , Xp)}

− ω(∇0
X(X1), . . . , Xp) · · · − ω(X1, . . . ,∇

0
X(Xp)),

(3.29)
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for all X,X1, . . . , Xp ∈ X(M). The covariant codifferential can be then expressed as

{D†(ω)}(X1, . . . , Xp−1) = −(∇̂0
ek
ω)(g−1

0 (ψk), X1, . . . , Xp−1), (3.30)

for all X1, . . . , Xp−1 ∈ X(M). Here {ek}
dimM
k=1 is any local frame on M .

Remark 3.10. The 1-form 〈iekH
′
0, F

′〉g0 ·e
k can be rewritten without the explicit appearance

of the local frame, but with some additional signs:

〈iekH
′
0, F

′〉g0 · e
k = sgn(g0)(−1)n+1 ∗ (F ′ ∧ ∗H ′

0), (3.31)

where n = dimM and sgn(g0) is the signature of the determinant of g0.

We can now propose the final theorem of this section, summarizing the already proved

statements. For explicit forms of all kinds of beta functions see the respective propositions.

Theorem 3.11 (Equations of motion). The fields (g,B, φ) satisfy the equations of

motion given by the action (2.1), if and only if

βg = βB = βφ = 0. (3.32)

Similarly, the fields (g0, B0, φ0, ϑ) satisfy the equations of motion given by (2.3), if and

only if

β′
g0

= β′
B0

= β′
φ0

= β′
ϑ = 0. (3.33)

Involved tensor fields are defined in the propositions 3.3, 3.4, 3.7 and 3.8.

4 Courant algebroids and Levi-Civita connections

In this section, we will very briefly recall the geometrical objects required to describe the

equations of motion presented in the previous section. For definitions with full details,

examples and proved propositions, see our lecture notes [34]. We will present the results

mostly without the detailed calculations, as they are not very enlightening, yet requiring

a lot of space to be written in all details.

Definition 4.1. Let q : E → M be a vector bundle, equipped with a fiber-wise metric

〈·, ·〉E , a vector bundle morphism ρ : E → M , and an R-bilinear bracket [·, ·]E , such that

[ψ, fψ′]E = f [ψ, ψ′]E + (ρ(ψ).f)ψ′, (4.1)

[ψ, [ψ′, ψ′′]E ]E = [[ψ, ψ′]E , ψ
′′]E + [ψ′, [ψ, ψ′′]E ]E , (4.2)

ρ(ψ).〈ψ′, ψ′′〉E = 〈[ψ, ψ′]E , ψ
′′〉E + 〈ψ′, [ψ, ψ′′]E〉E , (4.3)

[ψ, ψ′]E = −[ψ′, ψ]E +D〈ψ, ψ′〉E , (4.4)

for all ψ, ψ′, ψ′′ ∈ Γ(E) and f ∈ C∞(M). Here D : C∞(M) → Γ(E) is defined as

〈Df, ψ〉E = ρ(ψ).f, (4.5)

for all f ∈ C∞(M) and ψ ∈ Γ(E). Then (E, ρ, 〈·, ·〉E , [·, ·]E) is called the Courant alge-

broid. Note that ρ is automatically a bracket morphism, that is

ρ([ψ, ψ′]E) = [ρ(ψ), ρ(ψ′)], (4.6)

for all ψ, ψ′ ∈ Γ(E). We sometimes write gE = 〈·, ·〉E to avoid the bracket notation.
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Example 4.2. Let E = TM ≡ TM ⊕ T ∗M , and let ρ = π1 ∈ Hom(TM,TM) be the

projection. Let 〈·, ·〉E be the canonical pairing of TM and T ∗M , and let

[(X, ξ), (Y, η)]E = ([X,Y ],LXη − iY dξ −H(X,Y, ·)), (4.7)

for all (X, ξ), (Y, η) ∈ Γ(TM), where H ∈ Ω3(M) is a closed 3-form on M . Then the 4-tuple

(TM,ρ, 〈·, ·〉E , [·, ·]E) forms a Courant algebroid called the H-twisted Dorfman bracket.

If H is not closed, one obtains a structure of pre-Courant algebroid, see [38]. For applica-

tions in this paper, this is sufficient, as we never have to use the full Leibniz identity (4.2).

Next, let us recall the notion of a generalized Riemannian metric. In essence, we

consider certain positive definite fiber-wise metrics on E, compatible with the already

present pairing 〈·, ·〉E . There are many reformulations of this concept which we recall

without proofs.

Definition 4.3. Let G be a positive definite fiber-wise metric on (E, 〈·, ·〉E) We say that

G is a generalized Riemannian metric on E if the induced map G ∈ Hom(E,E∗) is

orthogonal with respect to the fiber-wise metric 〈·, ·〉E on E and the standard induced one

〈·, ·〉E∗ on the dual vector bundle E∗. Equivalently, G defines an orthogonal and symmetric

involution τ ∈ End(E) related to G via G(ψ, ψ′) = 〈ψ, τ(ψ′)〉E , for all ψ, ψ′ ∈ Γ(E).

Finally, G defines a maximal positive definite subbundle V+ ⊂ E with respect to 〈·, ·〉E . In

particular, one has

E = V+ ⊕ V−, (4.8)

where V− = V ⊥
+ forms a maximal negative definite subbundle of E. V± are obtained as ±1

eigenbundles of the involution τ .

Example 4.4. Let E = TM and 〈·, ·〉E as above. Then the most general generalized

Riemannian metric G takes the block form

G =

(
g −Bg−1B Bg−1

−g−1B g−1

)
, (4.9)

for a Riemannian metric g on M and B ∈ Ω2(M). For applications in physics, g is usually

not Riemannian. However, this poses no issues, as G defined by formula above remains a

fiber-wise metric (of indefinite signature) on TM . To avoid any such discussions, we will

henceforth assume that g > 0.

Next, we can recall a concept of Courant algebroid connections. In substance, they

generalize both vector bundle connections and usual manifold linear connections. In par-

ticular, we assume its compatibility with the already present fiber-wise metric 〈·, ·〉E . Note

that the definition itself does not use the Courant bracket [·, ·]E .

Definition 4.5. Let (E, ρ, 〈·, ·〉E , [·, ·]E) be a Courant algebroid. An R-linear map ∇ :

Γ(E)×Γ(E) → Γ(E) is called a Courant algebroid connection, if the operator ∇ψ ≡ ∇(ψ, ·)

satisfies

∇fψψ
′ = f∇ψψ

′, ∇ψ(fψ
′) = f∇ψψ

′ + (ρ(ψ).f)ψ′, (4.10)

– 11 –



J
H
E
P
0
8
(
2
0
1
7
)
1
4
3

for all ψ, ψ′ ∈ Γ(E), f ∈ C∞(M), and

ρ(ψ).〈ψ′, ψ′′〉E = 〈∇ψψ
′, ψ′′〉E + 〈ψ′,∇ψψ

′′〉E , (4.11)

for all ψ, ψ′, ψ′′ ∈ Γ(E). Equivalently, one can write this as ∇gE = 0, where ∇ : T q
p (E) →

T q
p+1(E) is the naturally induced covariant differential on the tensor algebra of E.

Example 4.6. For any vector bundle q : E → M with a fiber-wise metric 〈·, ·〉E , one

can always construct an ordinary vector bundle connection ∇′ : X(M) × Γ(E) → Γ(E)

which satisfies ∇′gE = 0. Setting ∇ψψ
′ := ∇′

ρ(ψ)ψ
′ for all ψ, ψ′ ∈ Γ(E) defines a Courant

algebroid connection.

Having connections defined in a balanced way (both inputs are sections of E), it

makes sense to define a torsion operator. However, this has some difficulties which have

been overcome independently in [20] and [2].

Definition 4.7. Let∇ be a Courant algebroid connection. Define an R-trilinear map TG as

TG(ψ, ψ
′, ψ′′) = 〈∇ψψ

′ −∇ψ′ψ − [ψ, ψ′]E , ψ
′′〉E + 〈∇ψ′′ψ, ψ′〉E , (4.12)

for all ψ, ψ′, ψ′′ ∈ Γ(E). The map TG is C∞(M)-trilinear and skew-symmetric, that is

TG ∈ Ω3(E), and called a torsion 3-form of ∇. It is related to the torsion operator T

of ∇ as 〈T (ψ, ψ′), ψ′′〉E := TG(ψ, ψ
′, ψ′′). The connection is called torsion-free, if TG = 0.

One can also attempt to define a Riemann curvature tensor of ∇. This is even more

intriguing. Our intention was to obtain a tensorial quantity with enough symmetries to

unambiguously define a Ricci tensor. To achieve this, we have taken an inspiration in

physics, namely in double field theory and [27]. Note that it is well defined for any Courant

algebroid and connection without the requirement of any additional structures.

Definition 4.8. Let ∇ be a Courant algebroid connection. Define a map R as

R(φ′, φ, ψ, ψ′) =
1

2
{R(0)(φ′, φ, ψ, ψ′) +R(0)(ψ′, ψ, φ, φ′) + 〈∇ψλ

ψ, ψ′〉E · 〈∇ψλ

E

φ, φ′〉E},

(4.13)

where R(0) is a naive curvature operator defined by

R(0)(φ′, φ, ψ, ψ′) = 〈φ′, {[∇ψ,∇ψ′ ]−∇[ψ,ψ′]E}φ〉E , (4.14)

for all φ′, φ, ψ, ψ′ ∈ Γ(E). Here {ψλ}
rank(E)
λ=1 is an arbitrary local frame on E and ψλ

E ≡

g−1
E (ψλ) is a frame satisfying 〈ψλ, ψ

κ
E〉E = δκλ. Then R is C∞(M)-linear in all inputs, R ∈

T 0
4 (E), and called a Riemann curvature tensor corresponding to ∇. The only non-

trivial (up to a sign) partial trace of R is called a Ricci curvature tensor and defined as

Ric(ψ, ψ′) = R(ψλ
E , ψ

′, ψλ, ψ), (4.15)

for all ψ, ψ′ ∈ Γ(E). This tensor is symmetric, see [34]. Finally, one can define a smooth

function

RE = Ric(ψλ
E , ψλ), (4.16)

called a Courant-Ricci scalar curvature of ∇.
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In the written text, we will usually omit some adjectives describing R, Ric and RE .

Note that all what is said is true also for pre-Courant algebroids. However, the bracket

must satisfy (4.6) and all Courant algebroid and connection axioms with the exception of

Leibniz identity in order to prove the symmetries of the tensor R.

Definition 4.9. Let ∇ be a Courant algebroid connection. A covariant divergence

corresponding to ∇ is an R-linear map div∇ : Γ(E) → C∞(M) defined by

div∇(ψ) = 〈∇ψλ
ψ, ψλ

E〉E , (4.17)

for all ψ ∈ Γ(E), where {ψλ}
rank(E)
λ=1 is any local frame on E. This map satisfies a Leibniz

rule:

div∇(fψ) = f div∇(ψ) + ρ(ψ).f (4.18)

One can obtain a characteristic vector field of ∇ asX∇ ∈ X(M) defined for f ∈ C∞(M)

as

X∇.f = div∇(Df), (4.19)

where D : C∞(M) → Γ(E) is the map (4.5).

Definition 4.10. Let (E, ρ, 〈·, ·〉E , [·, ·]E) be a Courant algebroid equipped with a gener-

alized metric G. Let ∇ be a Courant algebroid connection on E. We say that ∇ is a

Levi-Civita connection on E with respect to G, if ∇G = 0 and ∇ is torsion-free.

Recalling the ordinary Riemannian geometry, one may attempt to use the same proce-

dure to obtain a closed formula for a Levi-Civita connection. However, this is not possible

as one quickly finds out that there are infinitely many Levi-Civita connections. For the

proof of the existence of Levi-Civita connections see [18]. For exact Courant algebroids,

there is a full classification in [34] or [35]. There is one remarkable property of the in-

troduced structures. All of them transform in a covariant way under Courant algebroid

isomorphisms. In particular, the characteristic vector field forms an invariant. See [34] for

details. Having a generalized metric G, one can introduce the following notions:

Definition 4.11. Let ∇ be a Courant algebroid connection on E equipped with a gen-

eralized metric G. One says that ∇ is Ricci compatible with G if Ric(V+, V−) = 0.

Moreover, define a Ricci scalar curvature RG corresponding to G as

RG = Ric(G−1(ψλ), ψλ), (4.20)

where {ψλ}
rank(E)
λ=1 is any local frame on vector bundle E.

5 Equations of motion in terms of connections

It is a remarkable fact that both systems of equations of motion (3.32) and (3.33) can

be geometrically described in terms of Levi-Civita connections on Courant algebroids.

Note that similar approach was taken in [16] using a slightly different language. For

system (3.32), we have decided not to include a full calculation here, as it is explicitly

calculated in [34]. We will examine all details of the similar statement for the system (3.33).
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Theorem 5.1. Let E = TP be equipped with the Courant algebroid structure described in

Example 4.2. Let G be a generalized metric (4.9) corresponding to a pair (g,B). Let ∇ be

a Levi-Civita connection on TP with respect to G, such that X∇ = 0. Moreover, assume

that there is a smooth function φ ∈ C∞(P ), such that

(dφ)(Z) = 〈∇ρ∗(ek)ρ
∗(g(ek)), ρ

∗(g(Z))〉, (5.1)

where ρ∗ ∈ Hom(T ∗P,E) is a map defined as ρ∗ = g−1
E ◦ ρT , and {ek}

dimM
k=1 is some local

frame.

Then (g,B, φ) satisfy the equations of motion (3.32), if and only if RG = 2Λ and ∇

is Ricci compatible with G, that is Ric(V+, V−) = 0. The Ricci compatibility is equivalent

to βg = βB = 0. Moreover, one has RE = 0.

5.1 Suitable geometry

To find a similar statement for the system (3.33), one let us first introduce a Courant

algebroid structure on E′ = TM ⊕ gP ⊕ T ∗M . Let ρ′ = π1, a projection on the first factor

of the direct sum. The fiber-wise metric 〈·, ·〉E′ is defined as

〈(X,Φ, ξ), (Y,Φ′, η)〉E′ = η(X) + ξ(Y ) + 〈Φ,Φ′〉g, (5.2)

for all (X,Φ, ξ), (Y,Φ′, η) ∈ Γ(E′). Finally, the bracket takes the form

[(X,Φ, ξ), (Y,Φ′, η)]E′ =
(
[X,Y ], DXΦ′ −DY Φ

′ − F (X,Y )− [Φ,Φ′]g,LXη − iY dξ

−H0(X,Y, ·)− 〈F (X),Φ′〉g + 〈F (Y ),Φ〉g + 〈DΦ,Φ′〉g

)
,
(5.3)

where D is the covariant exterior derivative corresponding to a fixed principal bundle con-

nection A ∈ Ω1(P, g), and F ∈ Ω2(M, gP ) is the corresponding curvature 2-form. Observe

that in first two components [·, ·]E′ coincides with the Atiyah Lie algebroid corresponding

to P . Then (E′, ρ′, 〈·, ·〉E′ , [·, ·]E′) forms a Courant algebroid, if and only if there holds an

equation

dH0 +
1

2
〈F ∧ F 〉g = 0. (5.4)

In particular, the first Pontriyagin class of the principal bundle P must vanish. However, we

may consider the case of a general P , obtaining a pre-Courant algebroid instead. Every gen-

eralized metric G′ on E′ can be uniquely parametrized by a triple (g0, B0, ϑ) and written as

G′ =



1 ϑT B0 −

1
2ϑcϑ

T

0 1 −cϑ

0 0 1






g0 0 0

0 −c 0

0 0 g−1
0







1 0 0

ϑ 1 0

−B0 −
1
2ϑ

T cϑ −ϑT c 1


 , (5.5)

where ϑ ∈ Ω1(M, gP ) is viewed as a vector bundle map ϑ ∈ Hom(TM, gP ). This is true only

for compact g. For general semisimple Lie algebra, the positive definite fiber-wise metric

−c in the middle block can be more general. G′ can be written as G′ = (e−C)TG′e−C , where

G′ =



g0 0 0

0 −c 0

0 0 g−1
0


 , C =




0 0 0

−ϑ 0 0

B0 ϑT c 0


 . (5.6)

– 14 –



J
H
E
P
0
8
(
2
0
1
7
)
1
4
3

Instead of working with the above Courant algebroid and generalized metric G′, it is con-

venient to consider the following twisted structure. Define the bracket [·, ·]′E′ as

[ψ, ψ′]′E′ = e−C([eC(ψ), eC(ψ′)]E′ , (5.7)

for all ψ, ψ′ ∈ Γ(E′). As eC is orthogonal with respect to 〈·, ·〉E′ and ρ′◦eC = ρ′, we get that

(E′, ρ′, 〈·, ·〉E′ , [·, ·]′E′) is again a (pre-)Courant algebroid. Let∇′ be a Levi-Civita connection

on E′ with respect to G, using the bracket (5.3). We define a new connection ∇̂′ as

∇̂′
ψψ

′ = e−C(∇′
eC(ψ)e

C(ψ′)). (5.8)

It is easy to see that ∇̂ forms a Levi-Civita connection on E′ with respect to the block

diagonal generalized metric G′, using the twisted bracket [·, ·]′E′ . In fact, this bracket takes

the same form as (5.3), but with primes added to all of the quantities. Explicitly:

[(X,Φ, ξ), (Y,Φ′, η)]′E′ =
(
[X,Y ], D′

XΦ′ −D′
Y Φ− F ′(X,Y )− [Φ,Φ′]g,LXη − iY dξ (5.9)

−H ′
0(X,Y, ·)− 〈F ′(X),Φ′〉g + 〈F ′(Y ),Φ〉g + 〈D′Φ,Φ′〉g

)
,

where H ′
0 and F ′ are defined by (2.2) and D′ = D + [ϑ ∧ ·]. This is not surprising, as the

twist using C in fact corresponds to the choice of a connection A′ instead of A, see (3.18),

combined with the twist by the 2-form B0.

5.2 The connection and its curvatures

We will now construct an example of Levi-Civita connection on E′ with respect to G′ and

calculate its scalar curvature and equations equivalent to its Ricci compatibility with G′. Set

∇̂′
(X,0,0) =




∇0
X

1
2g

−1
0 〈F ′(X), ⋆〉g −1

3g
−1
0 H ′

0(X, g−1
0 (⋆), ·)

−1
2F

′(X, ⋆) D′
X

1
2F

′(X, g−1
0 (⋆))

−1
3H

′
0(X, ⋆, ·) −1

2〈F
′(X), ⋆〉g ∇0

X


 , (5.10)

∇̂′
(0,Φ,0) =




1
2g

−1
0 〈F ′(⋆),Φ〉g 0 0

0 −1
3 [Φ, ⋆]g 0

0 0 1
2〈F

′(g−1
0 (⋆)),Φ〉g


 , (5.11)

∇̂′
(0,0,ξ) =




1
6g

−1
0 H ′

0(g
−1
0 (ξ), ⋆, ·) 0 0

0 0 0

0 0 1
6H

′
0(g

−1
0 (ξ), g−1

0 (⋆), ·),


 (5.12)

where ⋆ always indicates the input. It is a straightforward check that ∇̂′ is indeed a

Levi-Civita connection on E′ with respect to G′. It is now convenient to write

∇̂′
ψψ

′ = ∇̂LC
ψ ψ′ + g−1

E′ H(ψ, ψ′, ·), (5.13)
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where ∇̂LC is a block diagonal induced connection ∇̂LC
(X,Φ,ξ) = BlockDiag(∇0

X , D′
X ,∇0

X),

and H ∈ Ω1(E′)⊗ Ω2(E′) takes the explicit form

H(ψ, ψ′, ψ′′) =
1

6
H ′

0(g
−1
0 (ξ), Y, g−1

0 (ζ)) +
1

6
H ′

0(g
−1
0 (ξ), g−1

0 (η), Z)

−
1

3
H ′

0(X,Y, Z)−
1

3
H ′

0(X, g−1
0 (η), g−1

0 (ζ))−
1

3
〈[Φ,Φ′]g,Φ

′′〉g

+
1

2
〈F ′(g−1

0 (ζ)− Z,X),Φ′〉g −
1

2
〈F ′(g−1

0 (η)− Y,X),Φ′′〉g

+
1

2
〈F ′(g−1

0 (ζ), Y )− F ′(g−1
0 (η), Z),Φ〉g,

(5.14)

where ψ = (X,Φ, ξ), ψ′ = (Y,Φ′, η) and ψ′′ = (Z,Φ′′, ζ).

Note that the connection ∇̂LC is metric compatible with the generalized metric G′, but

it is not torsion free. Explicitly, its torsion 3-form T̂LC
G reads

T̂LC
G ((X,Φ, ξ), (Y,Φ′, η), (Z,Φ′′, ζ)) = H ′

0(X,Y, Z) + 〈[Φ,Φ′]g,Φ
′′〉g + 〈F ′(X,Y ),Φ′′〉g

+ 〈F ′(Z,X),Φ′〉g + 〈F ′(Y, Z),Φ〉g (5.15)

However, the connection ∇̂′ is a Courant algebroid connection on E′ both metric compatible

with G′ and torsion-free, which reflects in the following properties of H:

H(ψ, ψ′, ψ′′) +H(ψ, ψ′′, ψ′) = 0, (5.16)

H(ψ, ψ′, τ ′0(ψ
′′)) +H(ψ, ψ′′, τ ′0(ψ

′)) = 0, (5.17)

H(ψ, ψ′, ψ′′) + cyclic(ψ, ψ′, ψ′′) = −T̂LC
G (ψ, ψ′, ψ′′), (5.18)

for all ψ, ψ′, ψ′′ ∈ Γ(E′). Here τ ′0 ∈ End(E′) is the involution corresponding to the gener-

alized metric G′. We will now derive a formula for the Ricci tensor Ric′ corresponding to

∇̂′. Plugging (5.13) into (4.13), (4.15), it is straightforward to arrive to the formula:

Ric′(ψ, ψ′) = R̂ic LC(ψ, ψ′) +
1

2

{
(∇̂LC

ψλ
H)(ψ, ψ′, ψλ

E) + (∇̂LC
ψλ

H)(ψ′, ψ, ψλ
E)

−H(ψ′, g−1
E H(ψλ, ψ, ·), ψ

λ
E)−H(ψλ

E , g
−1
E H(ψ, ψλ, ·), ψ

′)

+H(g−1
E H(·, ψλ, ψ

′), ψ, ψλ
E)

+H(T̂LC(ψλ, ψ
′), ψ, ψλ

E) +H(T̂LC(ψ, ψλ
E), ψλ, ψ

′)
}
,

(5.19)

where R̂ic LC is a Ricci tensor corresponding to the Courant algebroid connection ∇̂LC .

One can now significantly simplify this expression. First, note that one has

1

2
{(∇̂LC

ψλ
H)(ψ, ψ′, ψλ

E) + (∇̂LC
ψλ

H)(ψ′, ψ, ψλ
E)} = (∇̂LC

ψλ
Hs)(ψ, ψ

′, ψλ
E), (5.20)

where Hs is the symmetrization of H in first two indices. Moreover, as ∇̂LC is block

diagonal and induced, one has to consider only the terms of Hs where the third input is of

the form (0, 0, ζ):

Hs((X,Φ,ξ),(Y,Φ′,η),(0,0,ζ))=
1

4
{H ′

0(g
−1
0 (ξ),Y,g−1

0 (ζ))+H ′
0(g

−1
0 (η),X,g−1

0 (ζ))}

+
1

2
{〈F ′(g−1

0 (ζ),X),Φ′〉g+〈F ′(g−1
0 (ζ),Y ),Φ〉g}. (5.21)
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With the help of the formula (3.30), one can now derive the expression:

(∇̂LC
ψλ

Hs)(ψ, ψ
′, ψλ

E) =
1

4
{(∇0

ek
H ′

0)(g
−1
0 (ξ), Y, ek0) + (∇0

ek
H ′

0)(g
−1
0 (η), X, ek0)}

−
1

2
{〈(D′†F ′)(X),Φ′〉g + 〈(D′†F ′)(Y ),Φ〉g},

(5.22)

for ψ = (X,Φ, ξ) and ψ′ = (Y,Φ′, η), where {ek}
dimM
k=1 is an arbitrary local frame on M ,

and ek0 = g−1
0 (ek). Moreover, the remaining five terms in (5.19) can be using (5.16), (5.18)

rewritten as:

M(ψ, ψ′) =
1

2
H(ψλ

E , ψ
µ
E , ψ

′){H(ψλ, ψµ, ψ)− 2H(ψµ, ψλ, ψ)}. (5.23)

It is easy to see that this is a symmetric tensor on E′. By plugging in (5.14), and by taking

ψ = (X,Φ, ξ), ψ′ = (Y,Φ′, η), one finds the explicit formula:

M(ψ, ψ′) = −
1

3
〈iXH ′

0, iY H
′
0〉g0 +

1

6
〈ig−1

0
(ξ)H

′
0, ig−1

0
(η)H

′
0〉g0 −

1

6
〈Φ,Φ′〉g

−
1

4
〈〈F ′, iX+g−1

0
(ξ)H

′
0〉g0 ,Φ

′〉g −
1

4
〈〈F ′, iY+g−1

0
(η)H

′
0〉g0 ,Φ〉g

+
1

2
〈F ′(X, em), F ′(Y, em0 )〉g +

1

4
〈F ′(ek, em),Φ〉g〈F

′(ek0, e
m
0 ),Φ′〉g

−
1

8
〈F ′(X, em), F ′(g−1

0 (η), em0 )〉g −
1

8
〈F ′(Y, em), F ′(g−1

0 (ξ), em0 )〉g.

(5.24)

Finally, it is straightforward to see that R̂ic LC can be directly related to the ordinary Ricci

tensor RicLC0 corresponding to the metric g0 as

R̂ic LC(ψ, ψ′) = RicLC0 (ρ′(ψ), ρ′(ψ′)), (5.25)

for all ψ, ψ′ ∈ Γ(E′). Altogether, the formula (5.19) can be now written in the form

Ric′(ψ, ψ′) = RicLC0 (ρ′(ψ), ρ′(ψ′)) + (∇̂LC
ψλ

Hs)(ψ, ψ
′, ψλ

E) +M(ψ, ψ′) (5.26)

Before the calculation of the scalar curvatures, note that by construction, the scalar cur-

vatures (R′
E′ ,R′

G′) corresponding to the original Levi-Civita connection ∇′ are the same

as a pair (R̂′
E′ , R̂′

G′) corresponding to the twisted connection ∇̂ we have worked with.

This follows from (5.8) and the covariance of all involved objects under Courant algebroid

isomorphisms. Thus

R′
G′ = Ric′(G′−1(ψλ), ψλ), R′

E′ = Ric′(g−1
E′ (ψ

λ), ψλ). (5.27)

Plugging (5.26) into these and using (5.22), (5.24) gives the expressions:

R′
G′ = R(g0)−

1

2
〈H ′

0, H
′
0〉g0 +

1

2
〈〈F ′, F ′〉〉+

1

6
dim g, (5.28)

R′
E′ = −

1

6
dim g. (5.29)
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Finally, we have to study the Ricci compatibility of ∇′ with G′. It is easy to see that this is

equivalent to the Ricci compatibility of ∇̂′ with G′. Let E′ = V ′
+⊕V ′

− be the decomposition

of E′ induced by the generalized metric G′. Explicitly, one has

Γ(V ′
+) = {(X, 0, g0(X)) | X ∈ X(M)} ∼= X(M), (5.30)

Γ(V ′
−) = {(X,Φ,−g0(X)) | (X,Φ) ∈ X(M)⊕ Γ(gP )} ∼= X(M)⊕ Γ(gP ). (5.31)

The Ricci compatibility of Ric′ with G′ is thus equivalent to the vanishing of Ric′+− defined

by

Ric′+−(X, (Y,Φ)) = Ric′
(
(X, 0, g0(X)), (Y,Φ,−g0(Y ))

)
. (5.32)

Plugging in (5.26) and (5.22), (5.24), one finds the following expressions:

Ric′+−(X, (Y, 0)) = −
1

2
(δg0H

′
0)(X,Y )−

1

2
〈iXH ′

0, iY H
′
0〉g0 +

1

2
〈〈iXF ′, iY F

′〉〉, (5.33)

Ric′+−(X, (0,Φ)) = −
1

2
〈(D′†F ′)(X),Φ〉g −

1

2
〈〈F ′, iXH ′

0〉g0 ,Φ〉g. (5.34)

5.3 Introducing the dilaton

Now, we have to think how to encode the dilaton φ0 into the connection. To do so, first

note that having a Levi-Civita connection ∇̂′, one can define a new Levi-Civita connection

∇̂K using the formula

∇̂K
ψψ

′ = ∇̂′
ψψ

′ + g−1
E′ K(ψ, ψ′, ·), (5.35)

where K ∈ T 0
3 (E

′) has to satisfy the conditions similar to (5.16)–(5.18) for H.

K(ψ, ψ′, ψ′′) +K(ψ, ψ′′, ψ′) = 0, (5.36)

K(ψ, ψ′, τ ′0(ψ
′′)) +K(ψ, ψ′′, τ ′0(ψ

′)) = 0, (5.37)

K(ψ, ψ′, ψ′′) + cyclic(ψ, ψ′, ψ′′) = 0. (5.38)

One can now express the Ricci tensor Ric′K for ∇̂K using a formula analogous to (5.19).

One finds

Ric′K(ψ, ψ
′) = Ric′(ψ, ψ′) + (∇̂′

ψλ
Ks)(ψ, ψ

′, ψλ
E) +

1

2
{(∇̂′

ψK
′)(ψ′) + (∇̂′

ψ′K′)(ψ)}

− K′(ψλ)Ks(ψ, ψ
′, ψλ

E) +MK(ψ, ψ
′),

(5.39)

where Ks is the symmetrization of K in first two inputs, K′ ∈ Ω1(E′) is the partial trace

K′(ψ) = K(ψλ
E , ψλ, ψ), and MK is a symmetric tensor on E′ defined by

MK(ψ, ψ
′) =

1

2
K(ψλ

E , ψ
µ
E , ψ

′){K(ψλ, ψµ, ψ)− 2K(ψµ, ψλ, ψ)}. (5.40)

To find the expression for the scalar curvatures RK
G′ and RK

E′ , it is convenient to use the

splitting E′ = V ′
+ ⊕ V ′

− induced by the generalized metric G′. By definition, ∇̂′ preserves

the subbundles V ′
±, and thus defines a pair of connections ∇± : Γ(V ′

±) × Γ(V ′
±) → Γ(V ′

±).

Moreover, (5.36)–(5.37) imply that K is non-trivial only if all its inputs come from the

same subbundle. Let K± denote its restriction to V ′
±. Clearly (Ks)± = (K±)s. Finally, the
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generalized metric G′ restricts to a pair G′
± of fiber-wise metrics on V ′

±. The partial trace

K′ decomposes as

K′(ψ) = K′
+(ψ+)−K′

−(ψ−), (5.41)

where ψ = ψ++ψ− is a decomposition with respect to E′ = V ′
+⊕V ′

−, and K′
± are the partial

traces of K± taken over V ′
± using the fiber-wise metric G′

±. One can now prove the formulae

RK
G′ = R′

G′ + 2div∇+(K′
+)− 2 div∇−(K′

−)−‖K′
+‖

2
G′
+
−‖K′

−‖
2
G′
−

, (5.42)

RK
E′ = R′

E′ + 2div∇+(K′
+) + 2 div∇−(K′

−)−‖K′
−‖

2
G′
−

+‖K′
+‖

2
G′
−

, (5.43)

where div∇± is a covariant divergence on V ′
± defined using the fiber-wise metrics G′

±. This

expressions are useful, having the isomorphisms (5.30), (5.31). Instead of working on V ′
±,

we may use the induced objects on TM and TM ⊕ gP , respectively. We will denote the

induced objects by the same symbols. First, the induced connection ∇+ takes the form

∇+
XY = ∇0

XY −
1

6
g−1
0 H ′

0(X,Y, ·), (5.44)

for all X,Y ∈ X(M). The connection ∇− is more complicated and it can be written as

∇−
(X,Φ) =

(
∇0

X + 1
6g

−1
0 H ′

0(X, ⋆, ·) + 1
2g

−1
0 〈Φ, F ′(⋆)〉g

1
2g

−1
0 〈F ′(X), ⋆〉g

−F ′(X, ⋆) D′
X − 1

3 [Φ, ⋆]g

)
. (5.45)

The induced fiber-wise metric G′
+ on TM is G′

+ = 2g0, whereas G
′
− takes the form

G′
−((X,Φ), (Y,Φ)) = 2g0(X,Y )− 〈Φ,Φ′〉g. (5.46)

To determine the tensor K, it suffices to define the pair of induced tensors K+ ∈ T 0
3 (M)

and K− ∈ T 0
3 (TM ⊕ gP ). Let φ0 ∈ C∞(M) be any scalar function. Define

K+(X,Y,Z)=(4/(dimM−1)){g0(X,Y )〈dφ0,Z〉−g0(X,Z)〈dφ0,Y 〉}, (5.47)

K−((X,Φ),(Y,Φ′),(Z,Φ′′))=−K+(X,Y,Z), (5.48)

for all X,Y, Z ∈ X(M) and Φ,Φ′,Φ′′ ∈ Γ(gP ). It is now a straightforward calculation to

prove that by plugging into (5.42), (5.43), one obtains the final expression

RK
G′ = R′

G′ + 4∆g0(φ0)− 4〈dφ0, dφ0〉g0 , RK
E′ = R′

E′ . (5.49)

We see that the addition of K adds the correct kinetic terms for dilaton φ0 into the first

scalar curvature, without changing the Courant-Ricci scalar. We only have to check how

this choice of K modifies the Ricci compatibility conditions. Note that K′(Z,Φ′′, ζ) =

2〈dφ0, Z〉. Hence

1

2
{(∇̂′

ψK
′)(ψ′) + (∇̂′

ψ′K′)(ψ)} = (∇0
Xdφ0)(Y ) + (∇0

Y dφ0)(X)

−H ′
0(X,Y, g−1

0 (dφ0))− 〈F ′(g−1
0 (dφ0), X),Φ〉g,

(5.50)
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for ψ = (X, 0, g0(X)) and ψ′ = (Y,Φ,−g0(Y )). All other terms in (5.39) are easily seen to

vanish for this combination of (ψ, ψ′). We thus conclude that

RicK+−(X, (Y, 0)) = Ric′+−(X, (Y, 0)) + (∇0
Xdφ0)(Y ) + (∇0

Y dφ0)(X) (5.51)

−H ′
0(X,Y, g−1

0 (dφ0)),

RicK+−(X, (0,Φ)) = Ric′+−(X, (0,Φ))− 〈F ′(g−1
0 (dφ0), X),Φ〉g. (5.52)

This indeed adds the correct dilaton contribution to the Ricci compatibility condition

RicK+− = 0.

Remark 5.2. The choice of K above does not come out of the blue. In fact, it corresponds

to the deformation of Levi-Civita connections via so called Weyl endomorphisms, see [18].

In more detail, let ∇̃′ and ∇̂′ be two Levi-Civita connections, such that their covariant

divergencies are related using a given element ξ ∈ Γ(E′∗) as

div
∇̃′(ψ) = div

∇̂′(ψ)− ξ(ψ), (5.53)

for all ψ ∈ Γ(E′). Then there is K ∈ Ω1(E′) ⊗ Ω2(E′) satisfying (5.36)–(5.38), such that

∇̃′ = ∇̂K as in (5.35). Importantly, it can be shown that neither of the quantities RK
G′ , RK

E′

and RicK+− depends on the choice of such K. This can be seen directly from (5.39) and it is

(stated slightly differently) proved in [18]. In our case, we define K so that the ξ ∈ Γ(E′∗)

defined by (5.53) takes the form

ξ(ψ) = 2 · 〈dφ0, ρ
′(ψ)〉, (5.54)

for all ψ ∈ Γ(E′). See [18] for so called Weyl gauge fixing.

5.4 Main statement

Combining the previous two sections, we now arrive to the main result of this section. Its

proof is a summarization of the above calculations.

Theorem 5.3. Let ∇′ be the Courant algebroid connection on (E′, ρ′, 〈·, ·〉E′ , [·, ·]E′) defined

as

∇′
ψψ

′ = eC(∇̂K
e−C(ψ)e

−C(ψ′)), (5.55)

for all ψ, ψ′ ∈ Γ(E′), where C ∈ End(E′) was defined in (5.6), and ∇̂K has the form

∇̂K
ψψ

′ = ∇̂′
ψψ

′ + g−1
E′ K(ψ, ψ′, ·), (5.56)

for all ψ, ψ′ ∈ Γ(E′), and ∇̂′ is defined by (5.10)–(5.12). The tensor K is defined

by (5.47), (5.48). Note that such ∇′ is a Levi-Civita connection on E′ with respect to

the generalized metric G′.

Then (g0, B0, φ0, ϑ) satisfy the equations of motion (3.33), if and only if R′
G′ = 2Λ0 +

1
6 dim g and ∇′ is Ricci compatible with G′, that is Ric′(V ′

+, V
′
−) = 0. Moreover, one has

R′
E′ = −1

6 dim g.
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Proof. For scalar curvatures, we have R′
G′ = RK

G′ and R′
E′ = RK

E′ , where the functions on

the right-hand side are given by (5.49) and (5.28), (5.29). We thus obtain

R′
G′ = β′

φ0
+

(
2Λ0 +

1

6
dim g

)
, R′

E′ = −
1

6
dim g. (5.57)

Next, ∇′ is Ricci compatible with G′, if and only if RicK+− = 0. Plugging (5.33), (5.34)

into (5.51), (5.52), one finds

RicK+−(X, (Y, 0)) = β′(g0)(X,Y )− β′(B0)(X,Y ), (5.58)

RicK+−(X, (0,Φ)) = −〈β′(ϑ),Φ〉g, (5.59)

for all X,Y ∈ X(M) and Φ ∈ Γ(gP ). The statement of the theorem now follows easily.

6 Reduction procedure

In the previous section, we have established a geometrical description of the equations of

motion for both the actions (2.1) and (2.3). Courant algebroids over a principal G-bundle

π : P → M can be under some conditions reduced to Courant algebroids over the base man-

ifold M . This was in great detail described in [10] and in present context also in [4] or [41].

Moreover, one can discover necessary and sufficient conditions for a reduction of generalized

metrics and Levi-Civita connections. We will now briefly recall all necessary notions.

6.1 Equivariant Courant algebroids

Let (E, ρ, 〈·, ·〉E , [·, ·]E) be a Courant algebroid over a principal G-bundle π : P → M . Let

ℜ : g → Γ(E) be a R-linear map preserving the bracket:

ℜ([x, y]g) = [ℜ(x),ℜ(y)]E , (6.1)

for all x, y ∈ g, and covering the infinitesimal action # : g → X(P ), that is the diagram

g Γ(E)

X(P )

ℜ

#
ρ (6.2)

commutes. It follows that x ⊲ ψ ≡ [ℜ(x), ψ]E defines an infinitesimal action of g on Γ(E).

One can show that it also defines an infinitesimal Lie algebra action on a total space

manifold E. It always integrates locally to an action of Lie group G acting via vector

bundle isomorphisms over the principal bundle action R : P × G → P . This leads one to

the following definition:

Definition 6.1. Let ℜ : g → Γ(E) be a map defined as above. (E, ρ, 〈·, ·〉E , [·, ·]E) is

called an equivariant Courant algebroid if ⊲ integrates globally to a Lie group action

R : E ×G → E covering the principal bundle action R, that is

1. For each g ∈ G, (Rg, Rg) is a vector bundle isomorphism.
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2. For each x ∈ g and ψ ∈ Γ(E), one has x ⊲ ψ = d
dt

∣∣
t=0

Re−tx(ψ),

where {Rg(ψ)}(m) := Rg{ψ(Rg−1(m))}, for all g ∈ G and m ∈ M .

There are several remarks in order. First, observe that one has

D〈ℜ(x),ℜ(y)〉E = [ℜ(x),ℜ(y)]E + [ℜ(y),ℜ(x)]E = ℜ([x, y]g + [y, x]g) = 0. (6.3)

Recall that D = ρ∗◦d. Whenever ρ is fiber-wise surjective, the above condition implies that

〈ℜ(x),ℜ(y)〉E is locally constant and thus defines a symmetric bilinear form (·, ·)g on g via

(x, y)g = −〈ℜ(x),ℜ(y)〉g, (6.4)

for all x, y ∈ g, where we for simplicity assume that M is connected. Moreover, it fol-

lows that (·, ·)g is ad-invariant with respect to [·, ·]g. It is now straightforward to see that

(Rg, Rg) forms a Courant algebroid isomorphism of (E, ρ, 〈·, ·〉E , [·, ·]E) for each g ∈ G. We

can now make use of the simple observation making things very easy in our case. For the

original idea see [41]. We state it here without the proof.

Lemma 6.2. Let E = TP be equipped with the standard Courant algebroid structure given

by the H-twisted Dorfman bracket as in Example 4.2. Assume that ℜ : g → Γ(TP ) makes E

into an equivariant Courant algebroid. Let A ∈ Ω1(P, g) be any principal bundle connection.

Then there exists a 2-form B ∈ Ω2(P ), such that ℜ′ = e−B ◦ℜ makes (H+dB)-twisted

Dorfman bracket on TP into an equivariant Courant algebroid, and ℜ′ has the form

ℜ′(x) =

(
#x,−

1

2
(A, x)g

)
. (6.5)

Moreover, one has (·, ·)′g = (·, ·)g, and the 3-form H ′ ≡ H + dB has to take the form

H ′ = π∗(H0) +
1

2
CS3(A), (6.6)

where H0 ∈ Ω3(M) satisfies the equation dH0 +
1
2(F ∧ F )g = 0, and CS3(A) is defined as

CS3(A) = (dA ∧A)g +
1

3
([A ∧A]g ∧A)g. (6.7)

This lemma has important consequences. First, note that the action ⊲′ induced by ℜ′ is

x⊲′(Y,η)=

[(
#x,−

1

2
(A,x)g

)
,(Y,η)

]′

E

=

(
[#x,Y ],L#xη+

1

2
iY d(A,x)g−H ′(#x,Y,·)

)

=

(
[#x,Y ],L#xη+

1

2
{iY d(A,x)g−iY i#xCS3(A)}

)

=
(
[#x,Y ],L#xη

)
, (6.8)

where we have used the fact that i#xCS3(A) = (dA, x)g. In other words, the action R′

integrating ⊲′ is an ordinary right translation on the TP induced by the principal bundle

action R on P . Next, we see that TP with the H-twisted Dorfman bracket is equivariant
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with given (·, ·)g, if and only if the Pontriyagin class [(F ∧ F )g]dR vanishes. Note that

(·, ·)g can be zero.

Finally, we may consider choosing a different principal bundle connection A′ ∈ Ω1(P, g).

There thus exists a unique ̺ ∈ Ω1(M, gP ), such that X ′h = Xh − j(̺(X)), see (3.18). Let

ℜ(x) =

(
#x,−

1

2
(A, x)g

)
, ℜ′(x) =

(
#x,−

1

2
(A′, x)g

)
. (6.9)

By previous lemma, there exists a (non-unique) 2-form B ∈ Ω2(P ), such that ℜ′(x) =

e−B(ℜ(x)). We thus have to find a solution B to the equation 1
2(A

′ − A, x)g = −i#xB. It

follows that B must be a G-invariant 2-form, that is L#xB = 0. In fact, it is easy to find

the general solution:

B = π∗(B0) +
1

2
(A′ ∧A)g (6.10)

As B is G-invariant, it can be written with respect to the decomposition XG(P ) ∼= X(M)⊕

Γ(gP ) induced by the connection A. One can write B in the block form as

B =

(
B0

1
2̺

T s

−1
2s̺ 0

)
, (6.11)

where s ∈ Hom(gP , g
∗
P ) is the map induced by a symmetric ad-invariant bilinear form (·, ·)g.

Note that for (·, ·)g = 〈·, ·〉g and ̺ = ϑ, we obtain exactly the same form of B as in (2.4).

6.2 Reduction of Courant algebroids

Let us assume that E = TP is equipped with the H-twisted Dorfman bracket and A ∈

Ω1(P, g) is a principal bundle connection. Let ℜ be of the special form given by Lemma 6.2,

that is

ℜ(x) =

(
#x,−

1

2
(A, x)g

)
, H = π∗(H0) +

1

2
CS3(A), (6.12)

for all x ∈ g, where (·, ·)g is any invariant symmetric bilinear form on g. The reduced

Courant algebroid Ered over M is constructed as follows. Note that ℜ can be viewed

as a vector bundle map from a trivial vector bundle P × g to E which coincides with

the original map on constant sections. It is fiber-wise injective and we can thus define a

subbundle K ⊆ TP as K = ℜ(P × g). It is easy to see that K is invariant with respect to

the action R integrating ℜ. Indeed, let Φ ∈ Γ(P × g) ∼= C∞(P, g). Then one has

x ⊲ ℜ(Φ) = [ℜ(x),Φαℜ(tα)]E = Φα[ℜ(x),ℜ(tα)]E + (ρ(ℜ(x)).Φα)ℜ(tα)

= Φαℜ([x, tα]g) + (#x.Φα)ℜ(tα)

= ℜ([x,Φ]g +#x.Φ).

(6.13)

This proves that x ⊲ ℜ(Φ) ∈ Γ(K). Moreover, we see that ℜ(Φ) ∈ ΓG(K), if and only

if Φ ∈ C∞
Ad(P, g)

∼= Γ(gP ). In other words, ℜ induces a C∞(M)-module isomorphism

Γ(gP ) ∼= ΓG(K). Explicitly

ΓG(K) =

{(
j(Φ),−

1

2
(A,Φ)g

)
| Φ ∈ Γ(gP )

}
, (6.14)
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where j : Γ(gP ) → XG(P ) is the inclusion of gP into G-invariant vector fields on P . Next,

one considers the orthogonal complement K⊥. This is again a G-invariant subbundle, as

one has

〈x ⊲ ψ,ℜ(y)〉E = 〈[ℜ(x), ψ]E ,ℜ(y)〉E = #x.〈ψ,ℜ(y)〉E − 〈ψ,ℜ([x, y]g)〉E = 0, (6.15)

for all x, y ∈ g, whenever ψ ∈ Γ(K⊥). Using the explicit form of ℜ, one can see that

ΓG(K
⊥) =

{(
Xh + j(Φ), π∗(ξ) +

1

2
(A,Φ)g

)
| (X,Φ, ξ) ∈ Γ(TM ⊕ gP ⊕ T ∗M)

}
. (6.16)

Finally, for general (·, ·)g, the intersection K ∩K⊥ is not trivial. Instead, one finds

ΓG(K ∩K⊥) = {(j(Φ), 0) | Φ ∈ Γ(nP )}, (6.17)

where nP ⊆ gP is a subbundle of gP , such that Γ(nP ) ∼= C∞
Ad(P, n), and n ≡ ker(s). The

reduced Courant algebroid Ered is defined on the quotient vector bundle:

Ered =
K⊥/G

(K⊥ ∩K)/G
. (6.18)

On the level of sections, we have Γ(Ered) = ΓG(K
⊥)/ΓG(K ∩K⊥). The Courant algebroid

structure on Ered is naturally induced by the original structure on E.

Let Ψ′ : Γ(TM ⊕ gP ⊕ T ∗M) → ΓG(K
⊥) be the map defined as

Ψ′(X,Φ, ξ) =

(
Xh + j(Φ), π∗(ξ) +

1

2
(A,Φ)g

)
, (6.19)

for all (X,Φ, ξ) ∈ Γ(TM ⊕ gP ⊕ T ∗M). It follows from the above discussion that the

map Ψ ∈ Hom(E′, Ered) defined as Ψ(X, [Φ], ξ) = [Ψ′(X,Φ, ξ)] forms a vector bundle

isomorphism, where E′ is defined as E′ = TM ⊕ (gP /nP )⊕ T ∗M . Square brackets denote

equivalence classes in Γ(gP /nP ) and Γ(Ered), respectively. Let us now examine the resulting

induced Courant algebroid structure on E′. For the anchor ρ′, we get

ρ′(X, [Φ], ξ) ◦ π = T (π) ◦ ρ(Ψ′(X,Φ, ξ)) = T (π)(Xh) = X ◦ π, (6.20)

and thus ρ′ ∈ Hom(E′, TM) is just a projection onto TM . For the pairing 〈·, ·〉E′ , one

obtains

〈(X, [Φ], ξ), (Y, [Φ′], η)〉E′ ◦ π = 〈Ψ′(X,Φ, ξ),Ψ′(Y,Φ′, η)〉E

= {〈η,X〉+ 〈ξ, Y 〉+ (Φ,Φ′)g} ◦ π
(6.21)

We find that 〈(X, [Φ], ξ), (Y, [Φ′], η)〉E′ = 〈η,X〉 + 〈ξ, Y 〉 + (Φ,Φ′)g. This is a well defined

non-degenerate C∞(M)-linear symmetric form, hence a fiber-wise metric on E′. Next, one

gets

[(X,[Φ],ξ),(Y,[Φ′],η)]E′ =
(
[X,Y ],[DXΦ′−DY Φ−[Φ,Φ′]g−F (X,Y )],LXη−iY dξ

−H0(X,Y,·)−(F (X),Φ′)g+(F (Y ),Φ)g+(DΦ,Φ′)g

)
. (6.22)
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To see that this bracket is well defined, notice that the covariant derivative DX preserves

the subbundle nP . This follows from the metric compatibility of D and (·, ·)g:

X.(Φ,Φ′)g = (DXΦ,Φ′)g + (Φ, DXΦ′)g, (6.23)

for all X ∈ X(M) and Φ,Φ′ ∈ Γ(gP ). This equation can be derived from the axiom (4.3)

for E. Moreover, the ad-invariance of (·, ·)g implies that Γ(nP ) ⊆ Γ(gP ) is an ideal with

respect to [·, ·]g. These two properties ensure that the right-hand side of (6.22) does not

depend on the choice of the representatives Φ and Φ′. It is a straightforward verification

that (E′, ρ′, 〈·, ·〉E′ , [·, ·]E′) forms a Courant algebroid.

To conclude this subsection, note that we can choose (·, ·)g = 〈·, ·〉g. In this case nP = 0,

and thus E′ = TM ⊕gP ⊕T ∗M . The bracket [·, ·]E′ is precisely the one (5.3) we have used

in the previous section. Naturally, this is exactly how we have originally obtained such

a Courant algebroid. Moreover, in this case K ∩ K⊥ = 0, which implies that we have a

decomposition

ΓG(E) = ΓG(K
⊥)⊕ ΓG(K) ∼= Γ(E′)⊕ Γ(gP ). (6.24)

As ΓG(E) is involutive with respect to [·, ·]E , it is convenient to write this bracket with

respect to the above decomposition. For (ψ,Φ) ∈ Γ(E′ ⊕ gP ) and (ψ′,Φ′) ∈ Γ(E′ ⊕ gP ),

one finds

[(ψ,Φ), (ψ′,Φ′)]E = ([ψ, ψ′]E′ − [i(Φ), i(Φ′)]E′ ,p{[ψ, i(Φ′)]E′ − [ψ′, i(Φ)]E′} − 2[Φ,Φ′]g),

(6.25)

where i ∈ Hom(gP , E
′) is the inclusion and p ∈ Hom(E′, gP ) is the projection.

6.3 Generalized metric and connections relevant for reduction

Having a reduction procedure from the Courant algebroid on E = TP to E′ = TM ⊕ gP ⊕

T ∗M , we can try to reduce the other ingredients as well. Any generalized metric G on

E defines an involution τ ∈ Aut(E). Let ℜ : g → Γ(E) be the map making E into an

equivariant Courant algebroid. We assume that ℜ and H take the form (6.12). We impose

the conditions

τ([ℜ(x), (Y, η)]E) = [ℜ(x), τ(Y, η)]E , τ(K⊥) ⊆ K⊥. (6.26)

First condition ensures that τ(ΓG(E)) ⊆ ΓG(E). In terms of (g,B), it is equivalent to g

and B being the G-invariant tensor fields on P . To examine the second condition, note

that we can restrict τ to ΓG(E) and use the decomposition ΓG(E) ∼= Γ(E′)⊕Γ(gP ). With

respect to this, we have

τ =

(
τ ′ τ1
0 τg

)
, gE =

(
gE′ 0

0 −c

)
. (6.27)

The orthogonality of τ immediately implies τ1 = 0. Moreover, the positive definite fiber-

wise metric h = −cτg on gP must satisfy hc−1h = c. For a compact Lie group G, there is

only one such h, namely h = −c, and consequently τg = 1. This observation proves that
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τ(ℜ(x)) = ℜ(x), and consequently ℜ(x) ∈ Γ(V+). This implies that g and B written as

formal two by two block matrices with respect to the decomposition XG(P ) ∼= TM ⊕ gP

have the form

g =

(
1 ϑT

0 1

)(
g0 0

0 −1
2c

)(
1 0

ϑ 1

)
, B =

(
B0

1
2ϑ

T c

−1
2cϑ 0

)
, (6.28)

for a Riemannian metric g0 > 0, B0 ∈ Ω2(M) and ϑ ∈ Ω1(M, gP ). But this is precisely the

form (2.4) required for Kaluza-Klein reduction in Theorem 2.1. Moreover, τ ′ ∈ Aut(E′)

defines a generalized metric G′ on E′. Plugging in the above form of g and B, one finds, not

very surprisingly, exactly the generalized metric (5.5). In particular, every generalized met-

ric G′ can be obtained by the reduction of the unique generalized metric G. Note that one

can write G in the block form with respect to the decomposition ΓG(E) ∼= Γ(E′)⊕Γ(gP ) as

G =

(
G′ 0

0 −c

)
. (6.29)

Let us now consider a Courant algebroid connection∇ on E. First, we impose the condition:

[ℜ(x),∇ΨΨ
′]E = ∇[ℜ(x),Ψ]EΨ

′ +∇Ψ[ℜ(x),Ψ
′]E , (6.30)

for all Ψ,Ψ′ ∈ Γ(E), which ensures that ∇ preserves invariant sections. Next, we want

∇ΨΨ
′ ∈ Γ(K⊥) whenever Ψ,Ψ′ ∈ Γ(K⊥). Furthermore, we want ∇ to be a Levi-Civita

connection on E with respect to G. It turns out that the most general such ∇ has the form

∇(ψ,Φ) =

(
∇′

ψ VΦ

c−1V T
Φ gE′ Dρ′(ψ) + c−1U(ψ, ⋆, ·)− 2

3 [Φ, ⋆]g + c−1a(Φ, ⋆, ·)

)
, (6.31)

where ∇′ ∈ LC(E′,G′) is a Levi-Civita connection on E′ with respect to G′, V ∈

Ω1(gP )⊗End(gP , V
′
+) and a ∈ Ω1(gP )⊗Ω2(gP ) satisfies a(Φ,Φ

′,Φ′′)+cyclic(Φ,Φ′,Φ′′) = 0.

Finally, U ∈ Ω1(E′)⊗ Ω2(gP ) is determined by V as

U(ψ,Φ,Φ′) = 〈ψ, VΦ(Φ
′)− VΦ′(Φ)〉E′ − 〈[Φ,Φ′]g,p(ψ)〉g. (6.32)

For the purposes of this paper, we will assume the simplest scenario, where V = a = 0.

The resulting connection reads

∇(ψ,Φ) =

(
∇′

ψ 0

0 Dρ′(ψ) − [p(ψ), ⋆]g −
2
3 [Φ, ⋆]g

)
(6.33)

This connection does not contain any additional data except for the Levi-Civita connec-

tion ∇′ on E′. We say that (6.33) is a Levi-Civita connection on E which is relevant for

reduction.
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6.4 Comparison of Ricci tensors and of scalar curvatures

Let ∇ ∈ LC(E,G) be a Levi-Civita connection on E relevant for reduction. The main goal

of this subsection to compare its Ricci tensor Ric and consequently also scalar curvatures

to the Ricci tensor Ric′ of the reduced connection ∇′. As all quantities are tensorial, we

may work with invariant sections and use the decomposition ΓG(E) ∼= Γ(E′) ⊕ Γ(gP ).

Using (6.33), it is then a straightforward calculation to prove the following relations:

Ric((ψ, 0), (ψ′, 0)) = Ric′(ψ, ψ′), (6.34)

Ric((0,Φ), (0,Φ′)) = −
1

6
〈Φ,Φ′〉g, (6.35)

Ric((ψ, 0), (0,Φ′)) = 0. (6.36)

We slightly abuse the notation, as Ric is a tensor on TP . However, evaluated on invariant

sections, it defines a function on M and the above relations make sense. Note that one has

to use the fact that 〈·, ·〉g comes from the Killing form of g, that is

〈Φ,Φ′〉g = 〈Φα, [Φ, [Φ′,Φα]g]g〉, (6.37)

where {Φα}
dim g
α=1 is any local basis for Γ(gP ). From (6.27), (6.29) it is now easy to find the

corresponding relation of the two scalar curvatures. One gets

RG = R′
G′ ◦ π +

1

6
dim g, RE = R′

E′ ◦ π +
1

6
dim g. (6.38)

Finally, one can see from (6.27) that under the decomposition ΓG(E) ∼= Γ(E′)⊕Γ(gP ), one

has

ΓG(V+) = Γ(V ′
+)⊕ Γ(gP ), ΓG(V−) = Γ(V ′

−)⊕ {0}. (6.39)

Together with (6.34)–(6.36), this proves the following proposition right away:

Proposition 6.3. Let ∇ ∈ LC(E,G) be a Levi-Civita connection on E relevant for reduc-

tion, inducing a Levi-Civita connection ∇′ ∈ LC(E′,G′) on E′.

Then ∇ is Ricci compatible with G, if and only if ∇′ is Ricci compatible with G′.

7 Proof of the main theorem

We have now finished the necessary preparations to prove the main theorem of this paper.

It is a neat combination of sections 5 and 6.

Proof of Theorem 2.1. Let G be a generalized metric (4.9) on E = TP corresponding

to a pair (g,B), and let G′ be a generalized metric (5.5) on E′ = TM ⊕ gP ⊕ T ∗M

corresponding to a pair (g0, B0, ϑ). The assumption on 3-form H allows one to reduce the

Courant algebroid E onto E′ as described in the previous section, see the relations (6.12).

Under the assumptions (2.4) of the theorem, G reduces to G′ in the sense of subsec-

tion 6.3. Let ∇′ ∈ LC(E′,G′) be the connection defined in Theorem 5.3.

Now, define the connection ∇ ∈ LC(E,G) using the block form (6.33). This deter-

mines it uniquely on invariant sections of E. As such sections generate Γ(E), we extend
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∇ to all sections via the rules (4.10). We claim that ∇ satisfies the assumptions of The-

orem 5.1 for φ = φ0 ◦ π. As this involves a slightly non-trivial discussion using the twists

of the both Courant brackets, we refer to section 5 of our previous paper [35] where we

proved this in detail.

Theorem 5.1 says that βg = βB = 0, if and only if ∇ is Ricci compatible with G.

By Proposition 6.3, this is equivalent to the Ricci compatibility of ∇′ with G′. Finally,

by Theorem 5.3, this is equivalent to β′
g0

= β′
B0

= βϑ = 0. Next, the combination of

Theorem 5.1, Theorem 5.3 and the relation (6.38) gives

βφ = RG − 2Λ = R′
G′ ◦ π +

1

6
dim g− 2Λ

= β′
φ0

◦ π +

(
2Λ0 +

1

6
dim g

)
+

1

6
dim g− 2Λ

= β′
φ0

◦ π +

(
1

3
dim g− 2(Λ− Λ0)

)
.

(7.1)

This is where the last assumption Λ = Λ0 +
1
6 dim g becomes important, and we get

βφ = β′
φ0

◦ π. (7.2)

We have thus argued that the system (3.32) is equivalent to (3.33) which by Theorem 3.11

implies the main statement of the theorem.

Remark 7.1. We have swept several technical details under the carpet.

First, Theorem 2.1 does not assume anything about the signature of the metric g0,

whereas in the proof, we have worked with the Riemannian metric g0 > 0. However,

the fiber-wise metrics G and G′ remain well-defined and non-degenerate (they are not

positive definite), and they still induce the decompositions E = V+⊕V− and E′ = V ′
+⊕V ′

−

required to define the Ricci compatibility. All conclusions drawn from the calculations

involving Levi-Civita connections thus remain valid.

Next, if we want to talk about Courant algebroids, the 3-form H twisting the Dorfman

bracket must be closed. However, the form H = π∗(H0)+
1
2CS3(A) can be closed only if the

first Pontriyagin class [〈F ∧F 〉g]dR vanishes. See [9] for elaborate discussion in the context

of Courant algebroids. However, H must be closed only for E and E′ to satisfy the full

Leibniz identities (4.2). But the only relevant property for all calculations done in this paper

is (4.6), which remains valid also for dH 6= 0. As we have already noted in Example 4.2,

we can without issues work with pre-Courant algebroids instead of Courant algebroids.

Finally, we have assumed compactness of Lie group G. This had three implications.

First, the Killing form 〈·, ·〉g is negative definite. This is necessary when working with

Riemannian g due to (2.4). If we allow any signature of g, this is not needed. Next, the

compactness was used in Lemma 6.2 to find the special form of the map ℜ. However,

we can simply define ℜ by (6.2). Finally, for non-compact G, the generalized metric G′

given by (5.5) can be more general, and similarly with the generalized metric G relevant

for reduction. This poses no problems, as we can always assume G′ and G to be of the

required form. Altogether, the compactness assumption on G can be dropped.
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8 Analysis of the action S0

8.1 Rewriting in terms of local fields

As a last bit of this paper, let us examine the action (2.3). We have already argued that F ′ is

actually a curvature 2-form of a principal bundle connection A′ ∈ Ω1(P, g) which is related

to the assumed fixed connection A by (3.18). In the usual treatment of Yang-Mills theory,

one uses local sections (equivalent to the choice of gauge) to obtain locally defined objects on

M , ensuring that the resulting action functional does not depend on the choice of the gauge.

Let σ : U → P be a smooth local section of π : P → M , that is in particular π◦σ = 1U .

Let Ω ∈ Ω2(P, g) and Ω′ ∈ Ω2(P, g) be the curvature 2-forms of the connections A and A′,

respectively. Define their local counterparts on U as

A = σ∗(A), F = σ∗(Ω), A′ = σ∗(A′), F ′ = σ∗(Ω′). (8.1)

The first term in S0 can be on U rewritten using the local form F ′ ∈ Ω2(U, g):

〈〈F ′, F ′〉〉 = 〈F ′ ∧ ∗g0F
′〉g ≡ 〈〈F ′,F ′〉〉. (8.2)

This is a standard kinetic term for the non-Abelian gauge field A′ in the Yang-Mills action

functional. It is more interesting to examine the 3-form H ′
0. Note that its restriction onto

U is a priori gauge invariant. To find the local expression in terms of the local connection

forms, note that for all X ∈ X(U), one has

(A′ −A)(X) = ϑ(X) ◦ σ. (8.3)

Using this expression, one can replace all occurrences of ϑ in H ′
0 with the difference A′−A.

The resulting restriction of H ′
0 onto U gives

H ′
0 = d

(
B0 +

1

2
〈A′ ∧ A〉g

)
+

{
H0 +

1

2
CS3(A)

}
−

1

2
CS3(A

′), (8.4)

where CS3(A) ∈ Ω3(U) is a pullback of the Chern-Simons 3-form for A, that is

CS3(A) ≡ σ∗(CS3(A)) = 〈F ∧ A〉g −
1

3!
〈[A ∧A]g ∧ A〉g. (8.5)

The definition of CS3(A
′) is analogous. One can now check explicitly that the expression

for H ′
0 is invariant with respect to the usual form of local gauge transformations, that is if

one considers instead the section σ̃(m) = σ(m) · g(m) for all m ∈ U , where g : U → G an

arbitrary smooth function. One gets

Ã = Adg−1(A) + g∗(θL), (8.6)

where θL ∈ Ω1(G, g) is a left Maurer-Cartan form on G. A similar rule holds for A′.

With some effort, one can show that the local Chern-Simons form changes under this

transformation as

CS3(Ã) = CS3(A) + d(〈A ∧ g∗(θR)〉g)− 2g∗(η), (8.7)
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where θR is the right Maurer-Cartan form on G and η ∈ Ω3(G) is the canonical biinvariant

Cartan 3-form η = 1
12〈[θ

L ∧ θL]g ∧ θL〉g. The similar rule applies for CS3(A
′). It is

now straightforward to see that the contributions from the gauge transformation cancel

and H ′
0 remains unchanged. Note that one often considers only the infinitesimal gauge

transformations, where for λ : U → g, one obtains the following rules,

Ã = A+ [A, λ]g + dλ, F̃ = F + [F , λ]g, CS3(Ã) = CS3(A) + d(〈dA, λ〉g), (8.8)

obtained from (8.6) and (8.7) by taking g = exp(tλ) and collecting at most linear terms in

the expansion with respect to the infinitesimal parameter t.

To relate this to the usual notation in physics literature, recall that H0 +
1
2CS3(A)

is a closed 3-form on U . Assuming that U is contractible, there exists B0 ∈ Ω2(U) with

H0 +
1
2CS3(A) = dB0. Define a 2-form B ∈ Ω2(U) as B = B0 +

1
2〈A

′ ∧ A〉g + B0 to write

H ′
0 (8.4) in the form

H ′
0 = dB −

1

2
CS3(A

′). (8.9)

We see that the new field B must transform non-trivially under the gauge transformations:

dB̃ = dB +
1

2
d〈A′ ∧ g∗(θR)〉g + g∗(η). (8.10)

As U is assumed contractible, for each g : U → G, we can solve the equation g∗(η) = d(ξg)

for some ξg ∈ Ω2(U), which allows us to write the transformation rule for the field B itself:

B̃ = B +
1

2
〈A′ ∧ g∗(θR)〉g + ξg. (8.11)

For the infinitesimal gauge transformation, we obtain a little bit simpler rule B̃ = B +
1
2〈A

′, λ〉g.

We can now consider the following action functional:

S′
0[g0,B, φ0,A

′] =

∫

M

e−2φ0

{
R(g0)+

1

2
〈〈F ′,F ′〉〉−

1

2
〈H,H〉g0+4〈dφ0, dφ0〉g0−2Λ0

}
·d volg0 ,

(8.12)

where H ∈ Ω3(M) is defined by (8.9): H = dB − 1
2CS3(A

′), and B is any local 2-form

transforming as (8.11) under the gauge transformations. Note that the only difference

between S0 and S′
0 is the fact that our original B = B0+

1
2〈A

′∧A〉g+B0 explicitly depends

on A′, and B in S′
0 is assumed to be an independent dynamical variable.

However, this is not an issue, as we will now demonstrate. Consider a variation A′ 7→

A′ + ǫ · C′, where C′ vanishes on ∂M . Then H ′
0 given by (8.4) changes as H ′

0 7→ H ′
0 + ǫ ·

{δH + 1
2d〈C

′ ∧ A〉g}, where δH denotes the first order variation of −1
2CS3(A

′). But the

corresponding term in action then changes as

e−2φ0〈H ′
0, H

′
0〉g0 7→ e−2φ0

(
〈H ′

0, H
′
0〉g0 + 2ǫ · 〈H ′

0, δH〉g0 + ǫ · 〈H ′
0, d〈C

′ ∧ A〉g〉g0
)
. (8.13)

The only term arising from the additional dependence of B on A′ is the last one. But

e−2φ0〈H ′
0, d〈C

′ ∧ A〉g〉g0 = 〈δ(e−2φ0H ′
0), 〈C

′ ∧ A〉g〉g0 = 0, (8.14)

where we have used the equation of motion for B0 (or B) in the last step. We conclude

that it is safe to forget about the variation of B with A′ and declare its independence. This

shows that the actions S′
0 and S0 are classically equivalent.
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8.2 Relation to heterotic supergravity

Now, for a particular choice of the principal bundle P , one can relate S′
0 to so called het-

erotic supergravity. This is a theory obtained as a low-energy limit of the heterotic

string. See e.g. [7] and [40]. Without the spin part of the principal bundle, the correspond-

ing effective action is sometimes called Einstein-Yang-Mills gravity, see [6, 11].

Assume that M is a ten-dimensional spin manifold with the Lorentzian metric g0 of

signature (9, 1). Let π1 : PYM → M be any principal bundle with a compact structure

group K, equal to either SO(32) or E(8) × E(8). Next, let π2 : PSpin → M be the

spinor principal bundle corresponding to the spin structure on M , with the structure group

Spin(9, 1). We can now consider the fibered product principal bundle π : P → M , where

P = PYM ×M PSpin is a principal (K × Spin(9, 1))-bundle. That is G = K × Spin(9, 1).

The corresponding Lie algebra g can be written as a direct product g = k⊕ so(9, 1). It

follows that in this case every connection A ∈ Ω1(P, g) decomposes uniquely as

A = (p∗1(AYM), p∗2(ASpin)), (8.15)

where p1 : P → PYM, p2 : P → PSpin are the canonical projections, and AYM ∈

Ω1(PYM, k) and ASpin ∈ Ω1(PSpin, so(9, 1)) are the connections on the respective prin-

cipal bundles.

Now, consider the question of rescaling of the invariant form c = 〈·, ·〉g. One has

to carefully keep track of changes in the proof of Theorem 2.1. Let c′ = λc for non-

zero real scalar λ ∈ R. The expressions (5.28), (5.29) change almost as expected, that

is c is everywhere just replaced by c′. Except for the scalars 1
6 dim g which change to

1
6λ dim g. The same thing happens in the relations (6.38). For g = k ⊕ so(9, 1), we have

〈·, ·〉g = 〈·, ·〉k + 〈·, ·〉so, where 〈·, ·〉k and 〈x, y〉so = 8Tr(xy) are the Killing forms on k and

so(9, 1), respectively. We can then take a more adventurous linear combination 〈·, ·〉g =

λ1〈·, ·〉k + λ2〈·, ·〉so. The resulting scalar is then 1
6(

1
λ1

dim k + 1
λ2

dim so(9, 1)). To obtain

the heterotic supergravity, one chooses (λ1, λ2) = (−α′, α′), where α′ is the usual string

parameter corresponding to its tension. The relation of cosmological constants changes to

Λ = Λ0 +
1

6α′
(dim so(9, 1)− dim k) = Λ0 +

1

6α′
(45− 496). (8.16)

The adjoint bundle gP of P splits as gP = kPYM
⊕ so(9, 1)PSpin

, and the curvature 2-form

F ′ ∈ Ω2(P, gP ) thus decomposes accordingly as F ′ = (F ′
YM, F ′

Spin), and F ′ = F ′
YM+F ′

Spin

for the local connection 2-forms. Clearly, the connection ASpin corresponds to some spin

connection ∇T on M . The kinetic term then decomposes as

1

2
〈〈F ′,F ′〉〉 =

α′

2
{〈〈F ′

Spin,F
′
Spin〉〉so − 〈〈F ′

YM,F ′
YM〉〉k}. (8.17)

Note that in terms of∇T , one finds 〈〈F ′
Spin,F

′
Spin〉〉so = 4K(∇T ), whereK(∇T ) denotes the

Kretschmann scalar of the metric connection∇T . The 3-formH in S′
0 can be now written as

H = dB +
α′

2
{CS3(A

′
YM)− CS3(A

′
Spin)}, (8.18)
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and thanks to (5.4) it is subject to the so called anomaly cancellation condition:

dH =
α′

2
{〈F ′

YM ∧ F ′
YM〉k − 〈F ′

Spin ∧ F ′
Spin〉so}. (8.19)

In other words, we find the relation p1(PSpin) = p1(PYM) of the Pontriyagin classes.
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[26] O. Hohm, D. Lüst and B. Zwiebach, The spacetime of double field theory: review, remarks

and outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].

[27] O. Hohm and B. Zwiebach, Towards an invariant geometry of double field theory,

J. Math. Phys. 54 (2013) 032303 [arXiv:1212.1736] [INSPIRE].

[28] O. Hohm and B. Zwiebach, Double field theory at order α′, JHEP 11 (2014) 075

[arXiv:1407.3803] [INSPIRE].

[29] O. Hohm and B. Zwiebach, Double metric, generalized metric and α′-deformed double field

theory, Phys. Rev. D 93 (2016) 064035 [arXiv:1509.02930] [INSPIRE].

[30] O. Hohm and B. Zwiebach, Green-Schwarz mechanism and α′-deformed Courant brackets,

JHEP 01 (2015) 012 [arXiv:1407.0708] [INSPIRE].

[31] I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double

field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].

[32] I. Jeon, K. Lee and J.-H. Park, Stringy differential geometry, beyond Riemann,

Phys. Rev. D 84 (2011) 044022 [arXiv:1105.6294] [INSPIRE].
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