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ODD-DIMENSIONAL COHOMOLOGY WITH FINITE

COEFFICIENTS AND ROOTS OF UNITY

YURI G. ZARHIN

Abstract. We prove that the triviality of the Galois action on the suitably
twisted odd-dimensional étale cohomology group with finite coefficients of an
absolutely irreducible smooth projective variety implies the existence of certain
primitive roots of unity in the field of definition of the variety. This text was
inspired by an exercise in Serre’s Lectures on the Mordell–Weil theorem.

1. Introduction

We recall some basic facts about cyclotomic characters. Let K be a field, K̄ its
algebraic closure, GK = Aut(K̄/K) the absolute Galois group of K. Let n be a
positive integer that is not divisible by char(K). We write µn ⊂ K̄ for the cyclic
multiplicative group of nth roots of unity in K̄. We write

χ̄n : GK → Aut(µn) = (Z/nZ)∗

for the cyclotomic character that defines the Galois action on nth roots of unity.
Clearly, µn ⊂ K if and only if

χ̄n(g) = 1 ∀g ∈ GK .

Recall that the order of (Z/nZ)∗ is φ(n) where φ is the Euler function. This implies
that

χ̄φ(n)
n (g) = 1 ∀g ∈ GK .

Let K(µn) ⊂ K̄ be the nth cyclotomic extension of K. Then the degree
[K(µn) : K] of the abelian extension K(µn)/K coincides with the order of the
finite commutative Galois group Gal(K(µn)/K). By definition of χ̄n, its kernel
coincides with GK(µn) and χ̄n is the composition of the surjection

GK 7→ GK/GK(µn) = Gal(K(µn)/K)

and the embedding

Gal(K(µn)/K) =→֒ (Z/nZ)∗,

which we continue to denote by χ̄n, slightly abusing notation.

Remark 1.1. Clearly, the exponent exp(n,K) of Gal(K(µn)/K) divides the order
of Gal(K(µn)/K), which, in turn, divides φ(n). In addition, if f is an integer then
the character χ̄f

n is trivial if and only if f is divisible by exp(n,K). In particular,

the characters χ̄
φ(n)
n and χ̄

exp(n,K)
n are trivial. On the other hand, if the degree of

the extension K(µn)/K is even then so is exp(n,K); this implies that if f is an odd

integer then the character χ̄f
n is nontrivial.

This work was partially supported by a grant from the Simons Foundation (#246625 to Yuri
Zarkhin).
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Remark 1.2. If m is another positive integer that is relatively prime to n and
char(K), then the map

µn × µm → µnm, (γ1, γ2) 7→ γ1γ2

is an isomorphism of groups (and even Galois modules). The natural map

φn,m : Z/nmZ → Z/nZ× Z/mZ, c+ nmZ 7→ (c+ nZ, c+mZ)

is a ring homomorphism and the group homomorphism

χ̄nm : GK → (Z/nmZ)∗

coincides with

g 7→ (χ̄n(g), χ̄m(g)) ∈ (Z/nZ)∗ × (Z/mZ)∗
φ−1

n,m

−→ (Z/nmZ)∗.

If A is an abelian variety over K then we write A[n] for the kernel of multipli-
cation by n in A(K̄). It is well known that A[n] is a finite Galois submodule of
A(K̄). If we forget about the Galois action then A[n] is a free Z/nZ-module of rank
2 dim(A).

The following assertion is stated without proof, as an exercise, in Serre’s Lectures
on the Mordell–Weil Theorem [7, Sect. 4.6, p. 55].

Theorem 1.3. If dim(A) > 0 and A[n] ⊂ A(K) then µn ⊂ K.

Proof. First, it suffices to check the case when n = ℓr is a power of a prime ℓ 6=
char(K).

Second, if At is the dual of A then let us take a K-polarization λ : A → At

of smallest possible degree. Then λ is not divisible by ℓ, i.e., ker(λ) does not
contain the whole A[ℓ]. Otherwise, divide λ by ℓ to get a K-polarization of lower
degree. Thus the image λ(A[ℓr]) ⊂ At[ℓr] contains a point of exact order ℓr, say Q.
Otherwise,

λ(A[ℓr ]) ⊂ At[ℓr−1]

and therefore A[ℓ] = ℓr−1A[ℓr] lies in the kernel of λ, which is not the case.
Since A[ℓr] ⊂ A[K] and λ is defined over K, the image λ(A[ℓr]) lies in At(K).

In particular, Q is a K-rational point on At.
Third, there is a nondegenerate Galois-equivariant Weil pairing [5]

en : A[ℓr]×At[ℓr] → µℓr .

I claim that there is a point P ∈ A[ℓr] such that en(P,Q) is a primitive ℓrth root
of unity. Indeed, otherwise

en(A[ℓ
r], Q) ⊂ µℓr−1

so that the nonzero point ℓr−1Q is orthogonal to the whole A[ℓr] with respect to
en, which contradicts the nondegeneracy of en.

Thus, γ := en(P,Q) is a primitive ℓrth root of unity that lies in K, because both
P and Q are K-points. Since µℓr is generated by γ, µℓr ⊂ K. �

The aim of this paper is to a prove a variant of Serre’s exercise that deals with
the Galois action on the twisted odd-dimensional étale cohomogy group with finite
coefficients of a smooth projective variety (see Theorem 1.6 below). Our proof is
based on the Hard Lefschetz Theorem [2] and the unimodularity of Poincaré duality
[10].
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1.4. If Λ is a commutative ring with 1 and without zero divisors and M is a Λ-
module, then we write Mtors for its torsion submodule and M/tors for the quotient
M/Mtors. Usually, we will use this notation when Λ is the ring Zℓ of ℓ-adic integers.

If ℓ is a prime different from char(K) then we write Zℓ(1) for the projective limit
of the cyclic Galois modules µℓr with ℓth power as transition map. It is known that
Zℓ(1) is a free Zℓ-module of rank 1 with natural continuous action of GK defined
by the cyclotomic character

χℓ : GK → AutZℓ
(Zℓ(1)) = Z∗

ℓ .

There are canonical isomorphisms

Zℓ/ℓ
rZℓ = Z/ℓrZ, Zℓ(1)/ℓ

rZℓ(1) = µℓr ;

in addition

χℓ mod ℓr = χ̄ℓr

for all positive integers r.
We write Qℓ(1) for the one-dimensional Qℓ-vector space

Qℓ(1) = Zℓ(1)⊗Zℓ
Qℓ

provided with the natural Galois action that is defined by the character χℓ. For
each integer a we will need the ath tensor power Qℓ(a) := Qℓ(1)

⊗a, which is a
one-dimensional Qℓ-vector space provided with the Galois action that is defined by
the character χa

ℓ .
Let X be an absolutely irreducible smooth projective variety over K of posi-

tive dimension d = dim(X). We write X̄ for the irreducible smooth projective
d-dimensional variety X ×K K̄ over K̄. Let ℓ be a prime 6= char(K) and a an
integer. If i ≤ 2d is a nonnegative integer then we write Hi(X̄,Zℓ(a)) for the
corresponding twisted ith étale ℓ-adic cohomology group. Recall that all the étale
cohomology groups Hi(X̄, µ⊗a

n ) are finite Z/nZ-modules and that the Zℓ-modules
Hi(X̄,Zℓ(a)) are finitely generated. In particular, each Hi(X̄,Zℓ(a))/tors is a free
Zℓ-module of finite rank. These finiteness results are fundamental finiteness theo-
rems in étale cohomology from SGA 4, 4 1

2 , 5, see [3] and [4, pp. 22–24] for precise
references. All these groups are provided with the natural linear continuous actions
of GK . We also consider the corresponding finite-dimensional Qℓ-vector spaces

Hi(X̄,Qℓ(a)) = Hi(X̄,Zℓ(a))⊗Zℓ
Qℓ.

The Galois action on Hi(X̄,Zℓ(a)) extends by Qℓ-linearity to Hi(X̄,Qℓ(a)). There
are natural isomorphisms of GK-modules

Hi(X̄,Qℓ(a+ b)) = Hi(X̄,Qℓ(a))⊗Qℓ
Qℓ(b)

for all integers a and b.

Remark 1.5. If a positive integer m is relatively prime to n and char(K), then
the splitting µnm = µn × µm induces the splitting of Galois modules

Hi(X̄, µnm
⊗a) = Hi(X̄, µn

⊗a)⊕Hi(X̄, µm
⊗a).

The Qℓ-dimension of Hi(X̄,Qℓ(a)) is denoted by bi(X̄) and called the ith Betti

number of X̄: it does not depend on a choice of (a and) ℓ. In characteristic zero
it follows from the comparison theorem between classical and étale cohomology [6].
In finite characteristic the independence follows from results of Deligne [1]. It is
also known that bi(X̄) = 0 if i > 2d [4, 3].
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Our main result is the following statement.

Theorem 1.6. Let i be a nonnegative integer.

(i) Suppose that i ≤ d−1 and b2i+1(X̄) 6= 0. If the Galois action on H2i+1(X̄, µn
⊗i)

is trivial then µn ⊂ K.
(ii) Suppose that 1 ≤ i ≤ d and b2i−1(X̄) 6= 0. If the Galois action on

H2i−1(X̄, µn
⊗i) is trivial then µn ⊂ K.

Example 1.7. Let us take i = 1. Then Kummer theory tells us that

H2i−1(X̄, µn
⊗i) = H1(X̄, µn) = Pic(X̄)[n]

is the kernel of multiplication by n in the Picard group Pic(X̄) of X̄ . On the other
hand if B is an abelian variety over K that is the Picard variety of X [5] then
dim(B) = b1(X̄) and B[n] is a Galois submodule of H1(X̄, µn). If we know that
the Galois action on H1(X̄, µn) is trivial then the same is true for its submodule
B[n]. Now if b1(X̄) 6= 0 then B 6= {0} and Theorem 1.3 applied to B implies that
µn ⊂ K.

Theorem 1.6 may be viewed as a special case (when a = j±1
2 ) of the following

statement.

Theorem 1.8. Let j be a nonnegative integer and bj(X̄) 6= 0. Let a be an integer.
Assume that the Galois action on Hj(X̄, µn

⊗a) is trivial. Then

χ̄2a−j
n (g) = 1 ∀g ∈ G = GK .

If, in addition, 2a− j is relatively prime to φ(n) then µn ⊂ K.

Corollary 1.9 (Corollary to Theorem 1.8). Let K be a field, n a positive integer
prime to char(K). Suppose that K does not contain a primitive nth root of unity.
Suppose that j is an odd positive integer. Let a be an integer such that 2a−j is rela-
tively prime to φ(n). Then for each absolutely irreducible smooth projective variety
X over K with bj(X̄) 6= 0 the Galois group GK acts nontrivially on Hj(X̄, µ⊗a

n )

The next assertion covers (in particular) the case of quadratic χ̄n (e.g., when K
is the maximal real subfield Q(µn)

+ of the nth cyclotomic field Q(µn) of Q.)

Theorem 1.10. Let K be a field, n a positive integer prime to char(K). Suppose
that the degree [K(µn) : K] is even. (E.g., K(µn)/K is a quadratic extension.)
Then for each positive odd integer j, each integer a and every absolutely irreducible
smooth projective variety X over K with bj(X̄) 6= 0 the Galois group GK acts
nontrivially on Hj(X̄, µ⊗a

n ).

Remark 1.11. The special case of Theorem 1.10 when χ̄n is a quadratic char-
acter follows directly from Theorem 1.6, because in this case the Galois module

Hj(X̄, µ⊗a
n ) is isomorphic either to Hj(X̄, µ

⊗[(j+1)/2]
n ) or to Hj(X̄, µ

⊗[(j−1)/2]
n ).

The paper is organized as follows. Section 2 contains auxiliary results about
pairings between finitely generated modules over discrete valuation rings. We use
them in Section 3, in order to prove Theorems 1.8, 1.6 and 1.10.

Acknowledgements. This work is a follow up of [8, 9, 10]. I am deeply grateful
to Alexey Parshin for helpful comments. My thanks also go to Peter Schneider,
Alice Silverberg, Adebisi Agboola, Alexei Skorobogatov and Nick Katz for their
interest in this paper (and/or the previous ones). My very special thanks go to
the referee, whose numerous suggestions and comments significantly improved the
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exposition. The final version of this paper was prepared during my stay at the
Max-Planck-Institut für Mathematik (Bonn), whose hospitality and support are
gratefully acknowledged.

2. Linear algebra

This section contains auxiliary results that will be used in the next section in
order to prove main results of the paper.

2.1. Let E be a discrete valuation field, Λ ⊂ E the corresponding discrete valuation
ring with maximal ideal m. Let π ∈ m be an uniformizer, i.e., m = πΛ.

If U is a finitely generated Λ-module then we write UE for the corresponding
finite-dimensional E-vector space U ⊗Λ E. The kernel of the homomorphism of
Λ-modules

⊗1 : U → U ⊗Λ E = UE, x 7→ x⊗ 1

coincides with Utors while the image

Ũ := ⊗1(U) ⊂ UE

is a Λ-lattice in VE of maximal rank dimE(UE).
Let G be a group and

χ : G → Λ∗ ⊂ E∗

is a homomorphism of G to the group Λ∗ of invertible elements of Λ. If H is a
nonzero finite-dimensional vector space over E and

ρ : G → AutE(H)

is a E-linear representation of G in H then H becomes a module over the group
algebra E[G] of G over E. Then

ρ⊗ χ : G → AutE(H), ρ⊗ χ(g) = χ(g)ρ(g) ∀g ∈ G

is also a linear representation of G in H . We denote the corresponding E[G]-module
by H(χ) and call it the twist of H by χ. Notice that H and H(χ) coincide as E-
vector spaces. It is also clear that if T is a Λ-lattice in H then it is G-stable in H(χ)
if and only if it is G-stable in the E[G]-module H . On the other hand, let L be a
one-dimensional E-vector space provided with a structure of G-module defined by

gz := χ(g)z ∀g ∈ G, z ∈ L.

Then the G-modules H(χ) and H ⊗E L are isomorphic noncanonically.

Lemma 2.2. Suppose that H1 and H2 are nonzero finite-dimensional E-vector
spaces and

ρ1 : G → AutE(H1), ρ2 : G → AutE(H2)

are isomorphic E-linear representations of G. Suppose that T1 is a G-stable Λ-
lattice in H1 of rank dimE(H1) and T2 is a G-stable Λ-lattice in H2 of rank
dimE(H2). Then there is an isomorphism of E[G]-modules u : H1 → H2 such
that

u(T1) ⊂ T2, u(T1) 6⊂ π · T2.
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Proof. Clearly,

H2 =

∞⋃

j=1

π−j · T2,

∞⋂

j=1

πj · T2 = {0}.

Let u0 : H1
∼= H2 be an isomorphism of E[G]-modules. Since H1 is a finitely

generated Λ-module, there exists an integer j such that π−j · u0(T1) ⊂ T2. Let us
take the smallest j that enjoys this property and put u = π−ju0. �

Theorem 2.3. Suppose that U and V are finitely generated Λ-modules provided
with group homomorphisms

G → AutΛ(U), G → AutΛ(V ).

Let us assume that U/tors 6= {0}, i.e., rank of U is positive.
Suppose that we are given a Λ-bilinear pairing

e : U × V → Λ

that enjoys the following properties.

(i)
e(gx, gy) = χ(g) · e(x, y) ∀g ∈ G;x ∈ U, y ∈ V.

(ii) The Λ-bilinear pairing

U/tors× V/tors → Λ

induced by e is perfect (unimodular).
(iii) The E[G]-modules UE and VE are isomorphic.

Let r be a positive integer such that the induced G-action on U/πrU is trivial,
i.e.,

x− gx ∈ πrU ∀g ∈ G, x ∈ U.

Then
χ(g) mod πrΛ = 1 ∈ Λ/πrΛ ∀g ∈ G.

Proof. Clearly,
e(Utors, V ) = {0} = e(U, Vtors).

Also Utors is a G-submodule of U and Vtors is a G-submodule of V . Moreover, the
G-module [U/tors]/πr[U/tors] is isomorphic to a quotient of the G-module U/πrU .
In particular, the G-action on [U/tors]/[πrU/tors] is also trivial. In the notation of
Sect. 2.1, the natural homomorphisms

U/tors = U/Utors → Ũ , x+Utors 7→ x⊗1, V/tors = V/Vtors → Ṽ , x+Vtors 7→ x⊗1

are G-equivariant isomorphisms of free Λ-modules of finite rank

U/tors ∼= Ũ , V/tors ∼= Ṽ

where Ũ and Ṽ are G-stable lattices of maximal rank in UE and VE respectively.
This implies that the G-action on Ũ/πrŨ and e induces a Λ-bilinear perfect pairing

ẽ : Ũ × Ṽ → Λ

such that
ẽ(gx, gy) = χ(g) · ẽ(x, y) ∀g ∈ G;x ∈ Ũ , y ∈ Ṽ .

Applying Lemma 2.2 to the isomorphic E[G]-modules UE and VE , we obtain a
“nicer” isomorphism of E[G]-modules u : UE

∼= VE such that

u(T1) ⊂ T2, u(T1) 6⊂ πT2.



ODD-DIMENSIONAL COHOMOLOGY 7

Let us pick x0 ∈ T1 with y := u(x0) 6∈ πT2. Since x0 mod πrT1 ∈ T1/π
rT1 is

G-invariant, its image

u(x) mod πrT2 = y mod πrT2 ∈ T2/π
rT2

is also G-invariant. Since y is not divisible in T2, the Λ-submodule Λ · y is a direct
summand of T2. Since the pairing ẽ between T1 and T2 is perfect, there is x ∈ T1

with e(x, y) = 1. This implies that

χ(g) = χ(g) · 1 = χ(g) · ẽ(x, y) = ẽ(gx, gy),

i.e.,

χ(g) = ẽ(gx, gy) ∀g ∈ G.

On the other hand, since

x− gx ∈ πrT1, y − gy ∈ πrT2,

we have

ẽ(gx, gy)− ẽ(x, y) ∈ πrΛ ∀g ∈ G.

This means that

χ(g)− 1 = ẽ(gx, gy)− ẽ(x, y) ∈ πrΛ ∀g ∈ G

and we are done. �

The next statement is a useful variant of Theorem 2.3 that deals with twisted

representations.

Theorem 2.4. Suppose that U and V are finitely generated Λ-modules provided
with group homomorphisms

G → AutΛ(U), G → AutΛ(V ).

Assume that U/tors 6= {0}, i.e. the rank of U is positive.
Suppose that we have a Λ-bilinear pairing

e : U × V → Λ

that enjoys the following properties.

(i)

e(gx, gy) = e(x, y) ∀g ∈ G;x ∈ U, y ∈ V.

(ii) The Λ-bilinear pairing

U/tors× V/tors → Λ

induced by e is perfect (unimodular).
(iii) The E[G]-modules UE and VE(χ) are isomorphic.

Let r be a positive integer such that the induced G-action on U/πrU is trivial,
i.e.

x− gx ∈ πrU ∀g ∈ G, x ∈ U.

Then

χ(g) mod πrΛ = 1 ∈ Λ/πrΛ ∀g ∈ G.
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Proof. Let
ρU : G → AutΛ(U), ρV : G → AutΛ(V )

be the structure homomorphisms that define the actions of G on U and V respec-
tively. In this notation,

e(ρU (g)x, ρV (g)y) = e(x, y) ∀g ∈ G;x ∈ U, y ∈ V.

Let us twist ρV by considering the group homomorphism

ρV (χ) : G → AutΛ(V ), g 7→ χ(g)ρ(g).

We denote the resulting G-module by V (χ) and call it the twist of V by χ. Notice
that V coincides with V (χ) as Λ-module. On the other hand, the E[G]-module
V (χ)E is canonically isomorphic to VE(χ). The pairing e defines the Λ-bilinear
pairing

eχ : U × V (χ) → Λ, eχ(x, y) := e(x, y) ∀x ∈ U, y ∈ V = V (χ)

of G-modules U and V (χ), which satisfies

eχ(ρU (g)x, ρV (χ)(g)y) = e(ρU (g)x, χ(g)ρV (g)y) = χ(g)e(ρU (g)x, ρV (g)y) =

χ(g)e(x, y) = χ(g)eχ(x, y) ∀g ∈ G;x ∈ U, y ∈ V (χ).

This implies that

eχ(ρU (g)x, ρV (χ)(g)y) = χ(g)eχ(x, y) ∀g ∈ G;x ∈ U, y ∈ V (χ).

Now the result follows from Theorem 2.3 applied to U , V (χ) and eχ. �

3. Proofs of main results

Let ℓ be a prime different from char(K) and r a positive integer. Let us put

E = Qℓ,Λ = Zℓ, π = ℓ,G = GK .

We keep the notation and assumptions of Sect. 1.4. Recall that d = dim(X) ≥ 1.

Proposition 3.1. Let j be a nonnegative integer with j ≤ 2d and bj(X̄) 6= 0. Let
a be an integer. Assume that the Galois action on Hj(X̄, µℓr

⊗a) is trivial. Then

χ̄2a−j
ℓr (g) = 1 ∀g ∈ G = GK .

Proof. Let us put U := Hj(X̄,Zℓ(a)): it is provided with the natural structure
of G = GK -module. Then the universal coefficients theorem [6, Ch. V, Sect. 1,
Lemma 1.11] gives us a canonical GK-equivariant embedding

U/ℓrU = Hj(X̄,Zℓ(a))/ℓ
rHj(X̄,Zℓ(a)) →֒ Hj(X̄, µn

⊗a).

Since the Galois action on Hj(X̄, µn
⊗a) is trivial, it is also trivial on U/ℓrU . We

have (in the notation of Sect. 2.1)

UE = Hj(X̄,Zℓ(a))⊗Zℓ
Qℓ = Hj(X̄,Qℓ(a)).

Let V := H2d−j(X̄,Zℓ(d−a)): it has the natural structure of G = GK -module and

VE = H2d−j(X̄,Zℓ(d− a))⊗Zℓ
Qℓ = H2d−j(X̄,Qℓ(d− a)).

The cup product pairing gives rise to a Zℓ-bilinear GK-invariant pairing known as
Poincaré duality ([6, Ch. VI, Sect. 11, Cor. 11.2 on p. 276], [4, p. 23], [3, Ch. II,
Sect. 1])

e : Hj(X̄,Zℓ(a))×H2d−j(X̄,Zℓ(d− a)) →→ H2d(X̄,Zℓ(d)) ∼= Zℓ.
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It is known [10] that the induced pairing of free Zℓ-modules of finite rank

e : Hj(X̄,Zℓ(a))/tors×H2d−j(X̄,Zℓ(d− a))/tors → Zℓ

is perfect and unimodular.
Let us choose an invertible very ample sheaf L on X and let

h ∈ H2(X̄,Qℓ(1))
GK ⊂ H2(X̄,Qℓ(1))

be its first ℓ-adic Chern class. If j ≤ d then the Hard Lefschetz Theorem ([2], [3,
Ch. IV, Sect. 5, pp. 274–275]) tells us that cup multiplication by (d− j)th power
of h establishes an isomorphism between the Qℓ-vector spaces Hj(X̄,Qℓ(a)) and
H2d−j(X̄,Qℓ(a + d − j)). On the other hand, if d ≥ j then cup multiplication
by the (j − d)th power of h establishes an isomorphism between Qℓ-vector spaces
H2d−j(X̄,Qℓ(a+d−j)) and Hj(X̄,Qℓ(a)). In both cases the Galois-invariance of h
implies that the Qℓ-vector spaces UE = Hj(X̄,Qℓ(a)) and H2d−j(X̄,Qℓ(a+d− j))
are isomorphic as GK-modules. On the other hand, the GK-module

H2d−j(X̄,Qℓ(a+ d− j)) = H2d−j(X̄,Qℓ(d− a+ 2a− j)) =

H2d−j(X̄,Qℓ(d− a))⊗Qℓ
Qℓ(2a− j) ∼= VE(χ)

where

χ := χ2a−j
ℓ : G = GK → Z∗

ℓ = Λ∗.

So the G-module UE is isomorphic to VE(χ) and Theorem 2.4 tells us that

χ̄2a−j
ℓr (g) = (χℓ(g))

2a−j mod ℓrZℓ = χ(g) mod ℓrZℓ = 1 ∀g ∈ G = GK .

�

Proof of Theorem 1.8. Since bj(X̄) 6= 0, we have j ≤ 2d. Recall that n is a positive

integer that is not divisible by char(K). Let ℓ be a prime dividing n and let ℓrn(ℓ)

be the exact power of ℓ that divides n. Applying Proposition 3.1 to all such ℓ with
r = rn(ℓ) and using Remarks 1.2 and 1.5, we obtain that the character χ̄2a−j

n is
trivial, which gives as the first assertion of Theorem 1.8. On the other hand, we

know that χ̄
φ(n)
n is trivial. This implies that if 2a− j and φ(n) are relatively prime

then χ̄n is itself trivial, i.e., µn ⊂ K. This proves the second assertion of Theorem
1.8. �

Now we use Theorem 1.8 in order to prove Theorems 1.9 and 1.10.

Remark 3.2. In the statement of Theorem 1.8 we do not require that j is odd

and therefore its immediate Corollary 1.9 remains true without this assumption.
However, if we drop this assumption in Corollary 1.9 (while keeping all the other
ones) and assume instead that j is even then 2a−j is also even and therefore φ(n) is
odd, because it is relatively prime to 2a− j. This implies that n = 2 and therefore
char(K) 6= 2 and K does not contain a primitive square root of unity, i.e., K does
not contain −1, which is absurd.

Remark 3.3. The second assertion of Theorem 1.8 (and its proof) remains true
(valid) if in its statement we replace φ(n) by its divisor exp(n,K).

Proof of Theorem 1.6. Since a = (j ± 1)/2, the integer 2a − j = ±1 is relatively
prime to φ(n). Now the result follows from already proven Theorem 1.8.

�
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Proof of Theorem 1.10. Suppose that the Galois action on Hj(X̄, µn
⊗a) is trivial

for some absolutely irreducible smooth projective variety X with bj(X̄) 6= 0. By
Theorem 1.8, the character χ̄2a−j

n is trivial. On the other hand, since f := 2a− j
is odd and [K(µn) : K] is even, Remark 1.1 tells us that χ̄2a−j

n is nontrivial. This
gives us a desired contradiction. �
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