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Abstract. We study abelian varieties over finitely generated fields K
of characteristic zero, whose `-adic Tate modules are isomorphic as Galois
modules for all primes `.

1 Introduction

Let K be a field, K̄ its separable algebraic closure, GK = Aut(K̄/K) the
absolute Galois group of K. If A is an abelian variety over a field K then
we write End(A) for its ring of all K-endomorphisms and End0(A) for the
corresponding (finite-dimensional semisimple) Q-algebra End(A)⊗Q.

If ` is a prime different from char(K) then we write T`(A) for the Z`-Tate
module of A [7, 9], which is a free Z`-module of rank 2dim (A) provided with
the natural continuous group homomorphism

ρ`,A : GK → AutZ`
(T`(A))

and the Z`-ring embedding

el : End(A)⊗ Z` ↪→ EndZ`
(T`(A)).

The image of End(A)⊗ Z` commutes with ρ`,A(GK). Tensoring by Q` (over
Z`), we obtain the Q`-Tate module of A

V`(A) = T`(A)⊗Z`
Q`,

which is a 2dim (A)-dimensional Q`-vector space containing

T`(A) = T`(A)⊗ 1
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as a Z`-lattice. We may view ρ`,A as an `-adic representation [11]

ρ`,A : GK → AutZ`
(T`(A)) ⊂ AutQ`

(V`(A))

and extend e` by Q`-linearity to the embedding of Q`-algebras

End0(A)⊗Q Q` = End(A)⊗Q` ↪→ EndQ`
(V`(A)),

which we still denote by e`. Further we will identify End0(A) ⊗Q Q` with
its image in EndQ`

(V`(A)). This provides V`(A) with the natural structure
of GK-module; in addition, End0(A)⊗Q Q` is a Q`-(sub)algebra of endomor-
phisms of the Galois module V`(A). In other words,

End0(A)⊗Q Q` ⊂ EndGK
(V`(A)).

Let K be a field of characteristic zero that is finitely generated over Q.
Suppose we are given an abelian variety A of positive dimension over K. Let
B be an abelian variety over K such that the Z`-Tate modules of A and B
are isomorphic as Galois modules for all `. (We call such A and B almost
isomorphic.) In this paper we discuss the structure of the corresponding right
End(A)-module Hom(A,B). Using a theorem of Faltings [4, 5] (conjectured
by Tate [12]), we prove that Hom(A,B) is a locally free module of rank 1. In
addition, using a special case of Serre’s tensor construction ([2, Sect. 7], [3,
Sect. 1.7.4]), we prove that there is a natural bijection between isomorphism
classes of locally free modules of rank 1 over End(A) and isomorphism classes
of abelian varieties B over K, whose Tate modules are isomorphic to ones of
A.

The paper is organized as follows. Section 2 deals with isogenies of abelian
varieties and corresponding homomorphisms of their Tate modules. In Sec-
tion 3 we discuss locally free modules of rank 1 over orders in semisimple
Q-algebras. In Section 4 we apply results of Section 3 to a construction of
almost isomorphic abelian varieties.

2 Isogenies

If ` is a prime then we write Z(`) for the subring in Q that consists of all the
rational numbers, whose denominators are prime to `. We have

Z ⊂ Z(`) = Z`
⋂

Q ⊂ Z`.
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(Here the intersection is taken in Q`.) In addition, if m is a positive integer
that is prime to ` then

Z ⊂ Z[1/m] ⊂ Z(`) ⊂ Q.

The intersection of all Z(`)’s (in Q) coincides with Z.
Let K be an arbitrary field. If ` 6= char(K) and X is an abelian variety

over K then we write X[`] for the kernel of multiplication by ` in X(K̄). It
is well known that X[`] is a finite GK-submodule in X(K̄) of order `2dim (X)

and there is a natural isomomorphism of GK-modules X[`] ∼= T`(X)/`T`(X).

Lemma 2.1 Let A and B be abelian varieties of positive dimension over K.

(a) If A and B are isogenous over K then the right End(A)⊗Q-module
Hom(A,B)⊗Q is free of rank 1. In addition, one may choose as a generator
of Hom(A,B)⊗Q any isogeny φ : A→ B.

(b) The following conditions are equivalent.

(i) The right End(A)⊗Q-module Hom(A,B)⊗Q is free of rank 1.

(ii) dim (A) ≤ dim (B) and there exists a dim (A)-dimensional abelian K-
subvariety B0 ⊂ B such that A and B0 are isogenous over K and

Hom(A,B) = Hom(A,B0).

In particular, the image of every K-homomorphism of abelian varieties
A→ B lies in B0.

(c) If the equivalent conditions (i) and (ii) hold and dim (B) ≤ dim (A) then
dim (A) = dim (B), B = B0, and A and B are isogenous over K.

Proof. (a) is obvious.
Suppose (bii) is true. Let us pick an isogeny φ : A → B0. It follows

that Hom(A,B0)⊗Q = φEnd0(A) is a free right End0(A)-module of rank 1
generated by φ. Now (bi) follows from the equality

Hom(A,B)⊗Q = Hom(A,B0)⊗Q.

Suppose that (bi) is true. We may choose a homomorphism of abelian
varieties φ : A → B as a generator (basis) of the free right End(A) ⊗ Q-
module Hom(A,B)⊗Q. In other words, for every homomorphism of abelian
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varieties ψ : A→ B there are u ∈ End(A) and a nonzero integer n such that
nψ = φu. In addition, for each nonzero u ∈ End(A) the composition φu is
a nonzero element of Hom(A,B). Clearly, B0 := φ(A) ⊂ B is an abelian
K-subvariety of B with dim (B0) ≤ dim (A). We have

nψ(A) = φu(A) ⊂ ψ(A) ⊂ B0.

It follows that the identity component of ψ(A) lies in B0. Since ψ(A) is a
(connected) abelian K-subvariety of B, we have ψ(A) ⊂ B0. This proves that
Hom(A,B) = Hom(A,B0). On the other hand, if dim (B0) = dim (A) then
φ : A→ B0 is an isogeny and we get (bii) under our additional assumption.
If dim (B0) < dim (A) then ker(φ) has positive dimension that is strictly less
than dim (A). By the Poincaré complete reducibility theorem [7], there is an
endomorphism u0 ∈ End(A) such that the image u0(A) coincides with the
identity component of ker(φ); in particular, u0 6= 0, u0(A) ⊂ ker(φ). This
implies that φu0 = 0 in Hom(A,B) and we get a contradiction, which proves
(bii).

(c) follows readily from (bii).

Lemma 2.2 Suppose that A,B,C are abelian varieties over K of positive
dimension that are mutually isogenous over K. We view Hom(A,B) ⊗ Q
and Hom(A,C) ⊗ Q as right End0(A) = End(A) ⊗ Q-modules. Then the
natural map

mB,C : Hom(B,C)⊗Q→ HomEnd0(A)(Hom(A,B)⊗Q,Hom(A,C)⊗Q)

that associates to τ : B → C a homomorphism of right End(A)⊗Q-modules

mB,C(τ) : Hom(A,B)⊗Q→ Hom(A,C)⊗Q, ψ 7→ τψ

is a group isomorphism.

Proof. Clearly, mB,C is injective. In order to check the surjectiveness,
notice that the statement is clearly invariant by isogeny, so we can assume
that B = A and C = A, in which case it is obvious.

Now till the end of this paper we assume that K is a field of characteristic
zero that is finitely generated over Q, and A and B are abelian varieties of
positive dimension over K. By a theorem of Faltings [4, 5],

HomGK
(T`(A), T`(B)) = Hom(A,B)⊗ Z`. (∗)
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Lemma 2.3 Let ` be a prime. Then the following conditions are equivalent.

(i) There is an isogeny φ` : A→ B, whose degree is prime to `.

(ii) The Tate modules T`(A) and T`(B) are isomorphic as Z`[GK ]-Galois modules.

If the equivalent conditions (i) and (ii) hold then the right End(A) ⊗ Z(`)-
module Hom(A,B)⊗Z(`) is free of rank 1 and the right End(A)⊗Z`-module
Hom(A,B)⊗ Z` is free of rank 1

Proof. (i) implies (ii). Indeed, let φ` : A→ B be an isogeny such that its
degree d := deg(φ`) is prime to `. Then there exists an isogeny ϕ` : B → A
such that φ`ϕ` is multiplication by d in B and ϕ`φ` is multiplication by d
in A. This implies that φ` induces an GK-equivariant isomorphism of the
Z`-Tate modules of A and B.

Suppose that (ii) holds. Since the rank of the free Z`-module T`(A) (resp.
T`(B)) is 2dim (A) (resp. 2dim (B)), we conclude that 2dim (A) = 2dim (B),
i.e. dim (A) = dim (B). By the theorem of Faltings (*), there is an iso-
morphism of the Z`-Tate modules of A and B that lies in Hom(A,B) ⊗ Z`.
Since Hom(A,B) is dense in Hom(A,B) ⊗ Z` in the `-adic topology, and
the set of isomorphisms T`(A) ∼= T`(B) is open in Hom(A,B) ⊗ Z`, there
is φ` ∈ Hom(A,B) that induces an isomorphism T`(A) ∼= T`(B). Clearly,
ker(φ`) does not contain points of order ` and therefore is finite. This implies
that φ` is an isogeny, whose degree is prime to `. This proves (i).

In order to prove the last assertion of Lemma 2.3, one has only to observe
that φ` ∈ Hom(A,B) ⊂ Hom(A,B)⊗ Z(`) ⊂ Hom(A,B)⊗ Z` is a generator
of the (obviously) free right Z(`)-module Hom(A,B) ⊗ Z(`) and of the free
right Z`-module Hom(A,B)⊗ Z`.

We say that A and B are almost isomorphic if for all primes ` the equiv-
alent conditions (i) and (ii) of Lemma 2.3 hold. Clearly, if A and B are
isomorphic over K then they are almost isomorphic. It is also clear that if
A and B are almost isomorphic then they are isogenous over K. Obviously,
the property of being almost isomorphic is an equivalence relation on the set
of (nonzero) abelian varieties over K.

Corollary 2.4 Suppose that A and B are almost isomorphic. Then A and
B are isomorphic over K if and only if Hom(A,B) is a free End(A)-modules
of rank 1. In particular, if End(A) is a principal ideal domain (for example,
End(A) = Z) then every abelian variety over K, which is almost isomorphic
to A, is actually isomorphic to A.
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Proof. Suppose Hom(A,B) is a free End(A)-module, i.e., there is a homo-
morphism of abelian varieties φ : A→ B such that Hom(A,B) = φEnd(A).
We know that for any prime ` there is an isogeny φ` : A→ B of degree prime
to `. (In particular, dim (A) = dim (B).) Therefore there is u` ∈ End(A) with
φ` = φu`. In particular, φ`(A) ⊂ φ(A) and deg(φ`) is divisible by deg(φ).
Since φ`(A) = B and deg(φ`) is prime to `, we conclude that φ(A) = B (i.e.,
φ is an isogeny) and deg(φ) is prime to `. Since the latter is true for all
primes `, we conclude that deg(φ) = 1, i.e., φ is an isomorphism.

Conversely, if A ∼= B then Hom(A,B) is obviously a free End(A)-module
generated by an isomorphism between A and B.

The last assertion of Corollary follows from the well-known fact that every
finitely generated module without torsion over a principal ideal domain is
free.

Remark The special case of Corollary 2.4 when End(A) = Z was actually
done in [10, second paragraph of p. 1205].

The next statement is a generalization of Corollary 2.4.

Corollary 2.5 Suppose that A,B,C are abelian varieties of positive dimen-
sion over K that are almost isomorphic to each other.

Then B and C are isomorphic over K if and only if the right End(A)-
modules Hom(A,B) and Hom(A,C) are isomorphic.

Proof. We know that all A,B,C are mutually isogenous over K. Let us
choose an isogeny φ : B → C. We are given an isomorphism δ : Hom(A,B) ∼=
Hom(A,C) of right End(A)-modules that obviously extends by Q-linearity
to the isomorphism Hom(A,B)⊗Q→ Hom(A,C)⊗Q of right End(A)⊗Q-
modules, which we continue to denote by δ. By Lemma 2.2, there exists
τ0 ∈ Hom(B,C)⊗Q such that δ = mB,C(τ0), i.e.,

δ(ψ) = τ0ψ ∀ψ ∈ Hom(A,B)⊗Q.

There exists a positive integer n such that τ = nτ0 ∈ Hom(B,C) and τ is
not divisible in Hom(B,C). This implies that

n · Hom(A,C) = nδ(Hom(A,B)) = nτ0Hom(A,B) = τHom(A,B).

Since B and C are almost isomorphic, for each ` there is an isogeny φ` : B →
C of degree prime to `. Since nφ` ∈ τHom(A,B), we conclude that τ is an

6



isogeny and deg(τ) is prime to ` if ` does not divide n. We need to prove that
τ is an isomorphism. Suppose it is not, then there is a prime ` that divides
deg(τ) and therefore divides n. We need to arrive to a contradiction. Since
A and B are almost isomorphic, there is an isogeny ψ` : A → B of degree
prime to `. We have τψ` ∈ n ·Hom(A,C) ⊂ ` ·Hom(A,C). This implies that
τ kills all points of order ` on B and therefore is divisible by ` in Hom(B,C),
which is not the case. This gives us the desired contradiction.

Remark Let Z(A) (resp. Z(B)) be the the center of End(A) (resp. End(B)).
Then Z(A)Q := Z(A) ⊗ Q (resp. Z(B)Q := Z(B) ⊗ Q) is the center of
End(A)⊗Q (resp. End(B)⊗Q) and for all primes ` the Z(`)-subalgebra

Z(A)(`) := Z(A)⊗ Z(`) ⊂ Z(A)Q ⊂ End(A)⊗Q

(resp. the Z(`)-subalgebra

Z(B)(`) := Z(B)⊗ Z(`) ⊂ Z(B)Q ⊂ End(B)⊗Q)

is the center of End(A) ⊗ Z(`) (resp. of End(B) ⊗ Z(`)). Every K-isogeny
φ : A→ B gives rise to an isomorphism of Q-algebras

iφ : End(A)⊗Q ∼= End(B)⊗Q, u 7→ φuφ−1,

such that iφ(Z(A)Q) = Z(B)Q and the restriction iZ : Z(A)Q ∼= Z(B)Q of
iφ to the center(s) does not depend on a choice of φ [14]. If φ` : A→ B is a
K-isogeny of degree prime to ` then iφ`(End(A)⊗Z(`)) = End(B)⊗Z(`) and
therefore iZ(Z(A)(`))) = Z(B)(`). This implies that if A and B are almost
isomorphic then iZ(Z(A)) coincides with Z(B) and therefore iZ defines a
canonical isomorphism of commutative rings Z(A) ∼= Z(B). In particular, if
End(A) is commutative then End(B) is also commutative (because End(A)⊗
Q and End(B)⊗Q are isomorphic) and there is a canonical ring isomorphisms
End(A) ∼= End(B).

3 Locally free modules of rank 1

Throughout this section, Λ is a ring with 1 that, viewed as an additive group,
is a free Z-module of finite positive rank. In addition, we assume that the
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finite-dimensional Q-algebra ΛQ := Λ⊗Q is semisimple. We write Λ` (resp.
Λ(`)) for the Z`-algebra Λ⊗Z` (resp. for the Z(`)-algebra Λ⊗Z(`)). We have

Λ = Λ⊗ 1 ⊂ Λ(`) ⊂ ΛQ ⊂ Λ⊗Q`,

Λ ⊂ Λ(`) ⊂ Λ` ⊂ Λ⊗Q`.

In addition, the intersection of Λ` and ΛQ (in Λ⊗Q`) coincides with Λ(`).
Let M be an arbitrary free commutative group of finite positive rank that

is provided with a structure of a right Λ-module. We write MQ for the right
ΛQ-module M⊗Q, M` for the right Λ`-module M⊗Z` and M(`) for the right
Λ(`)-module M ⊗ Z(`). We have

M = M ⊗ 1 ⊂M(`) ⊂MQ ⊂M ⊗Q`,

M ⊂M(`) ⊂M` ⊂M ⊗Q`.

In addition, the intersection of M` and MQ (in M ⊗Q`) coincides with M(`).
Definition. We say that M is a locally free right Λ-module of rank 1 if

for all primes ` the right Λ`-module M` is free of rank 1. (See [6].)

Theorem 3.1 Let M be a locally free right Λ-module of rank 1. Then it
enjoys the following properties.

(i) M is a projective Λ-module. More precisely, M is isomorphic to a direct
summand of a free right Λ-module of rank 2.

(ii) The right ΛQ-module MQ is free of rank 1.

(iii) The right Λ(`)-module M(`) is free of rank 1 for all primes `.

Proof. Let J(ΛQ) be the (multiplicative) idele group of ΛQ, i.e., the group
of invertible elements of the adele ring of ΛQ [6, p. 114]. (In the notation of [6,
Sect. 2], o = Z, K = Q, A = ΛQ, U = Λ.) To each α ∈ J(ΛQ) corresponds a
certain right Λ-submodule αΛ ⊂ ΛQ that is a locally free Λ-module of rank
1 and a Z-lattice of maximal rank in the Q-vector space ΛQ, i.e., the natural
homomorphism of Q-vector spaces αΛ ⊗ Q → ΛQ is an isomorphism [6, p.
114]. This implies that (αΛ)Q is a free ΛQ-module of rank 1. In addition,
the direct sum αΛ ⊕ α−1Λ is a free right Λ-module of rank 2 [6, Th. 1 on
pp. 114–115]. This implies that αΛ is isomorphic to a direct summand of a
rank 2 free module; in particular, it is projective. By the same Theorem 1 of
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[6], every right locally free Λ-module M of rank 1 is isomorphic to αΛ for a
suitable α. This proves (i) and (ii).

Let f0 be a generator of the free ΛQ-module MQ of rank 1. Multiplying
f0 by a sufficiently divisible positive integer, we may and will assume that
f0 ∈M = M ⊗ 1 ⊂MQ. Clearly, the right Λ⊗Q`-module

M ⊗Q` = MQ ⊗Q Q` = M` ⊗Z`
Q`

is free of rank 1 for all primes ` and f0 is also a generator of M ⊗ Q`. It is
also clear that every generator f` of the Λ`-module M` is a generator of the
Λ ⊗ Q`-module M ⊗ Q`. We claim that there is a generator f` that lies in
M . Indeed, with respect to the `-adic topology, the subset

M = M ⊗ 1 ⊂M ⊗ Z` = M`

is dense in M` while the set of generators of the free Λ`-module M` is open,
because the group of units (Λ`)

∗ is open in Λ`. This implies that there exists
a (nonzero) generator f` ∈ M ⊂ M` of the Λ`-module M`. Recall that f` is
also a generator of the free Λ⊗Q`-module M ⊗Q`. This implies that there
exists µ0 ∈ (Λ ⊗ Q`)

∗ such that f` = f0µ0 ∈ M ⊗ Q`. On the other hand,
since f` lies in the free rank 1 ΛQ-module MQ = f0ΛQ, we have µ0 ∈ ΛQ.
This implies that µ0 is not a zero divisor in the finite-dimensional Q-algebra
ΛQ (because it is invertible in Λ ⊗ Q`) and therefore lies in Λ∗Q. It follows
that f` is also a generator of the free ΛQ-module MQ of rank 1.

We want to prove that M(`) = f`[Λ⊗Z(`)]. (This would prove that M(`) is
a free right Λ(`)-module of rank 1 with the generator f`.) For each x ∈ M(`)

there exists a unique λ ∈ Λ` with x = fλ. We need to prove that λ ∈ Λ(`).
Notice that x ∈ M(`) ⊂ MQ. Since f` is a generator of the free ΛQ-module
MQ, there exists exactly one µ0 ∈ ΛQ such that x = fµ0. We get the
equalities fµ0 = x = fµ in M ⊗Q`.

Since f` is a generator of the free Λ⊗Q`-module M ⊗Q`, we get µ = µ0.
Since Λ(`) coincides with intersection of Λ` and ΛQ in Λ ⊗ Q`, we conclude
that µ = µ0 ∈ Λ(`) and therefore x ∈ f [Λ⊗ Z(`)]. This implies that M(`) is a
free right Λ(`) module of rank 1, which proves (iii).

Corollary 3.2 Let M be a free commutative group of finite positive rank
that is provided with a structure of a right Λ-module. Then M is a locally
free Λ-module of rank 1 if and only if the right Λ(`)-module M(`) is free of
rank 1 for all primes `.
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Proof. Clearly, if M(`) is a free right Λ(`)-module of rank 1 then the right
Λ`-module M` is free of rank 1. The converse follows from Theorem 3.1(iii).

Remark Suppose that Λ is an order in a number field E, i.e., Λ is a finitely
generated over Z a subring (with 1) of E such that ΛQ = E. Let M be a
Λ-module in E, i.e., a free commutative additive (sub)group of finite rank in
E such that M · Λ = M . In particular, MQ = E is a free E = ΛQ-module of
rank 1.

(i) If Λ is the ring of all integers in E then it is a Dedekind ring and each
of its localizations Λ(`) is a Dedekind ring with finitely many maximal
ideals and therefore is a principal ideal domain [8, Ch. III, Prop. 2.12
on p.93]. This implies that M(`) is a free Λ(`)-module, whose rank is
obviously 1. By Corollary 3.2, M is locally free of rank 1.

(ii) Suppose that E is a quadratic field. We don’t impose any restrictions
on Λ but instead assume that EndΛ(M) = Λ. Then it is known [1,
Lemma 2 on p. 55] that for each prime ` there is a nonzero ideal J ⊂ Λ
such that the order of the finite quotient Λ/J is prime to ` and the
Λ-modules M and J are isomorphic. This implies that the Λ(`)-module
J(`) = Λ(`) is free and therefore the Λ(`)-module M(`) is also free and its
rank is obviously 1. By Corollary 3.2, M is locally free of rank 1.

4 Tensor products

Now we are going to use Theorem 3.1, in order to construct abelian varieties
A ⊗M over K that are almost isomorphic to a given A. Notice that our
A⊗M are a rather special naive case of powerful Serre’s tensor construction
([2, Sect. 7], [3, Sect. 1.7.4]).

Suppose we are given a a free commutative group M of finite (positive)
rank that is provided with a structure of a right locally free Λ = End(A)-
module of rank 1. Let F2 be a free right Λ-module of rank 2. It follows
from Theorem 3.1(i) that there is an endomorphism γ : F2 → F2 of the right
Λ-module F2 such that γ2 = γ and whose image M ′ = γ(F2) is isomorphic
to M . Notice that EndΛ(F2) is the matrix algebra M2(Λ) of size 2 over Λ.
So, the idempotent

γ ∈ EndΛ(F2) = M2(Λ) = M2(End(A)) = End(A2)
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where A2 = A× A. Let us define the K-abelian (sub)variety

B = A⊗M := γ(A2) ⊂ A2.

Clearly, B is a direct factor of A2. More precisely, if we consider the
K-abelian (sub)variety C = (1 − γ)(A2) ⊂ A2 then the natural homomor-
phism B × C → A2, (x, y) 7→ x + y of abelian varieties over K is an iso-
morphism, i.e., A2 = B × C. This implies that the right End(A)-module
Hom(A,B) coincides with

γHom(A,A2) ⊂ Hom(A,A2) = End(A)⊕ End(A) = F2

and therefore the right End(A)-module Hom(A,B) is canonically isomorphic
to γ(F2) = M ′ ∼= M . It also follows that for every prime `

γ(A2[`]) = B[`]. (∗∗)

Theorem 4.1 Let us consider the abelian variety B = A⊗M over K. Then:

(i) A and B are isogenous over K.

(ii) The right End(A)-module Hom(A,B) is isomorphic to M .

(iii) A and B are almost isomorphic.

Proof. We have already seen that Hom(A,B) ∼= M , which proves (ii).
Since the right End(A)⊗Q-module M ⊗Q is free of rank 1, the same is

true for the right End(A)⊗Q-module Hom(A,B). By Lemma 2.1, dim (A) ≤
dim (B) and there exists a dim (A)-dimensional abelian K-subvariety B0 ⊂ B
such that A and B0 are isogenous over K and

Hom(A,B) = Hom(A,B0). (∗ ∗ ∗)

We claim that B = B0. Indeed, if B0 6= B then, by the Poincaré Complete
Reducibility theorem [7, Th. 6 on p. 28], there is an “almost complimentary”
abelian K-subvariety B1 ⊂ B of positive dimension dim (B)− dim (B0) such
that the intersection B0

⋂
B1 is finite and B0 +B1 = B. It follows from (***)

that Hom(A,B1) = {0}. However, B1 ⊂ B ⊂ A2 is an abelian K-subvariety
ofA2 and therefore there is a surjective homomorphismA2 → B and therefore
there exists a nonzero homomorphism A→ B. This is a contradiction, which
proves that B = B0, the right End(A)-module Hom(A,B) is isomorphic to
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M , and A and B are isogenous over K. In particular, dim (A) = dim (B).
This proves (i).

Let ` be a prime. Since M ⊗ Z` is a free right End(A) ⊗ Z`-module of
rank 1, Hom(A,B) ⊗ Z` is a free right End(A) ⊗ Z`-module of rank 1. Let
us choose a generator φ ∈ Hom(A,B) of the module Hom(A,B) ⊗ Z`. The
surjection γ : A2 → B ⊂ A2 is defined by a certain pair of homomorphisms
φ1, φ2 : A→ B, i.e.,

γ(x1, x2) = φ1(x1) + φ2(x2) ∀(x1, x2) ∈ A2.

Since φ is the generator, there are u1, u2 ∈ End(A)⊗ Z` such that

φ1 = φu1, φ1 = φu1

in Hom(A,B)⊗ Z`. It follows that

γ(A2[`]) = φ1(A[`]) + φ2(A[`]) = φu1(A[`]) + φu2(A[`]) ⊂ φ(A[`]) ⊂ B[`].

By (**), γ(A2[`]) = B[`]. This implies that φ induces a surjective homomor-
phism A[`] → B[`]. Since finite groups A[`] and B[`] have the same order,
φ induces an isomorphism A[`] → B[`]. This implies that ker(φ) does not
contain points of order ` and therefore is an isogeny of degree prime to `.
This proves (iii).

Corollary 4.2 Suppose that for each i = 1, 2 we are given a commutative
free group Mi of finite positive rank provided with the structure of a right
locally free End(A)-module of rank 1. Then abelian varieties B1 = A ⊗M1

and B2 = A⊗M2 are isomorphic over K if and only if the End(A)-modules
M1 and M2 are isomorphic.

Proof. By Theorem 4.1(ii), the right End(A)-module Hom(A,Bi) is iso-
morphic to Mi. Now the result follows from Theorem 4.1(iii) combined with
Corollary 2.5.

Corollary 4.3 Let A and B be abelian varieties over K of positive dimen-
sion. Suppose that the Galois modules T`(A) and T`(B) are isomorphic for all
primes `. Then abelian varieties B and C := A⊗Hom(A,B) are isomorphic
over K.
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Proof. By Theorem 4.1(ii), the right End(A)-module Hom(A,C) is iso-
morphic to Hom(A,B). Now the result follows from Theorem 4.1(iii) com-
bined with Corollary 2.5.

Remark Let g ≥ 2 be an integer and a g-dimensional abelian variety A is a
product A1×A2 where A1 and A2 are abelian varieties of positive dimension
over K with Hom(A1, A2) = {0}. Then End(A) = End(A1) ⊕ End(A2).
Suppose that for each i = 1, 2 we are given a commutative free group Mi

of finite positive rank provided with the structure of a right locally free
End(Ai)-module of rank 1.

Then the direct sum M = M1 ⊕M2 becomes a right locally free module
of rank 1 over the ring End(A1)⊕ End(A2) = End(A).

There is an obvious canonical isomorphism between abelian varieties A⊗
M and (A1 ⊗M1)× (A2 ⊗M2) over K.

For example, we may take as A2 (for a suitable number field K) an elliptic
curve such that End(A2) is the ring of integers in an imaginary quadratic field
with class number > 1 while A1 is a (g−1)-dimensional principally polarized
with

End(A1 × K̄) = End(A1) = Z.

(If g > 2 then one may take as A1 the (g − 1)-dimensional jacobian of the
hyperelliptic curve y2 = x2g−1−x−1, see [13].) Clearly, all K̄-endomorphisms
of A are defined over K; in particular, A1 is absolutely simple. Let us take
M1 = Z. Clearly, Hom(A1, A2) = {0}. Actually, every K̄-homomorphism
between A1 and A2 is 0. Let M2 be a non-principal ideal in End(A2). Then
elliptic curves A2 and A2⊗M are almost isomorphic but are not isomorphic
over K and even over K̄. This implies that A⊗M = A1×(A2⊗M2) is almost
isomorphic over K but is not isomorphic to A = A1×A2 over K̄. Notice that
both A and A⊗M are principally polarized, since A1 is principally polarized
while both A2 and A2 ⊗M2 are elliptic curves.

Remark See last section of [15] for examples of almost isomorphic but not
isomorphic elliptic curves over finite fields.

Acknowledgements. I am grateful to Jiangwei Xue for useful discus-
sions, to Stefan Patrikis and Felipe Voloch for their interest in this paper
and to the Simons Foundation for financial and moral support (via grant
#246625 to Yuri Zarkhin). Part of this work was done in May–June 2015

13



when I was visiting Department of Mathematics of the Weizmann Institute
of Science (Rehovot, Israel) and in May-June 2016 when I was a visitor at
the Max-Planck-Institut für Mathematik (Bonn, Germany). The hospitality
and support of both Institutes are gratefully acknowledged.

References

[1] Z.I. Borevich, D.K. Faddeev, Integral representations of quadratic
rings. Vestnik Leningrad. Univ. 15 (1960), no. 19, 52–64. (Russian)
MR0153707 (27 #3668).

[2] B. Conrad, Gross-Zagier revisited. With an appendix by W. R. Mann.
In: Math. Sci. Res. Inst. Publ., 49, Heegner points and Rankin L-series,
67–163, Cambridge Univ. Press, Cambridge, 2004.

[3] C.-L. Chai, B. Conrad, F. Oort, Complex multiplication and lifting prob-
lems. Mathematical Surveys and Monographs 195, American Mathe-
matical Society, Providence, RI, 2014.

[4] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern,
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