p-kernels occurring in an isogeny class of p-divisible groups

Paul Ziegler*

November 24, 2015

Abstract

We give a criterion which allows to determine, in terms of the combinatorics of the root system of the general linear group, which p-kernels occur in an isogeny class of p-divisible groups over an algebraically closed field of positive characteristic. As an application we obtain a criterion for the non-emptiness of certain affine Deligne-Lusztig varieties associated to the general linear group.

1 Introduction

This article studies the relationship between two invariants of a p-divisible group \mathscr{G} over an algebraically closed field of characteristic $p>0$: The first is the isogeny class of \mathscr{G} which is encoded in its Newton polygon and the second is the isomorphism class of the kernel of multiplication by p on \mathscr{G}. Once certain numerical invariants of \mathscr{G} are fixed, both these invariants can only take on finitely many values. In this article, we give a computable criterion, in terms of the combinatorics of the root system of the general linear group, which determines which pairs of these invariants can occur together for some \mathscr{G}. That is we determine which p-kernels can occur in any isogeny class of p-divisible groups. We also consider the analogous question in equal characteristic.

This question is motivated by our interest in the stratifications of suitable moduli spaces of abelian varieties or p-divisible groups obtained by decomposing these spaces according to the two invariants described above. For example, on a Rapoport-Zink space (c.f. RZ]), one can define the Ekedahl-Oort stratification by decomposing the space according to the isomorphism class of the p-kernel of the universal p-divisible group and our criterion allows to determine which of these strata are non-empty. Similarly, on a moduli spaces of abelian varieties with suitable extra structure in positive characteristic, one obtains two stratifications, the Newton polygon stratifications and the Ekedahl-Oort stratification and we would like to understand which strata of these two stratifications intersect each other. However, in this context one encounters not just p-divisible groups, but p-divisible groups with additional structure such as a pairing. For applications to such stratifications it would thus be necessary to obtain generalizations of the results of this article for p-divisible groups with such additional structure. It seems natural to expect that in such a setting the analogues of our results should hold with the group GL_{h} replaced by an arbitrary reductive group. The author intends to treat this question in a follow-up article.

As an another application of our results, in Section 6 we give a criterion for the nonemptiness of affine Deligne-Lusztig varieties for the group GL_{h} in the situation where the involved Hodge cocharacter is minuscule.

Throughout, we work with Dieudonné modules instead of p-divisible groups. We work over a fixed algebraically closed field k of characteristic p and work either over the Witt $\operatorname{ring} \mathcal{O}=W(k)$ or $\mathcal{O}=k[[t]]$ whose uniformizer p or t we denote by ϵ. We use the following language: A Dieudonné module is a finite free module over \mathcal{O} together with suitably semilinear endomorphisms F and V satisfying $F V=F V=\epsilon$. A 1-truncated Dieudonné module is a finite-dimensional vector space over k together with suitably semilinear endomorpism F and V satisfying $\operatorname{ker} F=\operatorname{im} V$ and $\operatorname{im} F=\operatorname{ker} V$. To each Dieudonné module M one can associate

[^0]its truncation $M / \epsilon M$. By a lift of a 1 -truncated Dieudonné module Z we mean a Dieudonné module M together with an isomorphism $M / \epsilon M \cong Z$. To each Dieudonné module M we associate the Newton polygon obtained via covariant Dieudonné theory. Then we answer the above question by determining for a given 1-truncated Dieudonné module Z and Newton polygon \mathcal{P} whether there exists a lift of Z with Newton polygon \mathcal{P}.

For the sake of simplicity, in this introduction we restrict ourselves to the case that \mathcal{P} is the straight Newton polygon with slope $n /(n+m)$ and endpoint $(n+m, n)$ for some non-negative coprime integers n and m. For the result for arbitrary Newton polygons see Theorem5.4 To state our result, we will need the following:

Let $h:=n+m$ and $G:=\mathrm{GL}_{h, \mathcal{O}}$. Let $T \subset G$ be the torus of diagonal matrices and $B \subset G$ the Borel subgroup of upper triangular matrices. Let $W \cong S_{n}$ be the Weyl group of G with respect to T and $S=\{(i, i+1) \mid 1 \leq i \leq h-1\}$ the generating system of W induced by B. Let $\mu \in X_{*}(T)$ be the cocharacter $t \mapsto(t, \ldots, t, 1, \ldots, 1)$ where t occurs with multiplicity m. Let I be the type $S \backslash\{(m, m+1)\}$. We denote by $W_{I} \subset W$ the subgroup generated by I and by ${ }^{I} W \subset W$ the set of left reduced elements with respect to W_{I}. There exists a natural bijection between isomorphism classes of 1-truncated Dieudonné modules Z satisfying $\mathrm{rk}_{k} Z=h$ and $\operatorname{rk}_{k} F(Z)=n$ and elements of ${ }^{I} W \subset W$ (c.f. Subsection 2.2. For $w \in{ }^{I} W$ we denote the corresponding 1-truncated Dieudonné module by Z_{w}.

Let $\mathcal{I} \subset G(\mathcal{O})$ be the preimage of $B(k)$ under the projection $G(\mathcal{O}) \rightarrow G(k)$. Let \tilde{W} be the extended Weyl group of G. We denote the canonical inclusion $X_{*}(T) \hookrightarrow \tilde{W}$ by $\lambda \mapsto \epsilon^{\lambda}$. For $\lambda: t \mapsto\left(t^{\lambda_{1}}, \ldots, t^{\lambda_{h}}\right) \in X_{*}(T)$ we let η_{λ} be the unique permutation $\eta \in W$ such that $\lambda_{\eta(1)} \leq \ldots \lambda_{\eta(h)}$ and $\eta(i) \leq \eta\left(i^{\prime}\right)$ for any $i \leq i^{\prime}$ such that $\lambda_{i}=\lambda_{i^{\prime}}$. Finally, we let $x_{n, m} \in \tilde{W}$ be the matrix of Frobenius on the minimal Dieudonné module $H_{n, m}$ (c.f. Definition 2.1. Then our result is:
Theorem 1.1 (c.f. Theorem 5.4. Let $w \in{ }^{I} W$. The following are equivalent:
(i) The 1-truncated Dieudonné module Z_{w} admits a lift with Newton polygon \mathcal{P}.
(ii) There exist $\lambda \in X_{*}(T)$ satisfying $\epsilon^{-\lambda} x_{n, m} \epsilon^{\lambda} \in W \epsilon^{\mu} W$ as well as $y \in W$ such that $w w_{0} w_{0, I} \epsilon^{\mu} \in \mathcal{I} y \mathcal{I} \eta_{\lambda}^{-1} \epsilon^{-\lambda} x_{n, m} \epsilon^{\lambda} \eta_{\lambda} \mathcal{I} y^{-1} \mathcal{I}$.
Let \mathcal{Z} denote the center of G. The group $X_{*}(\mathcal{Z}) \subset X_{*}(T)$ acts on the set

$$
\left\{\lambda \in X_{*}(T) \mid \epsilon^{-\lambda} x_{n, m} \epsilon^{\lambda} \in W \epsilon^{\mu} W\right\}
$$

by addition. By Lemma 5.5 this action has finitely many orbits. In this way the existence quantifier in (ii) ranges over a finite set. Hence condition (ii) is computable.

Now we explain our argument:
Given a isosimple Dieudonné module M of slope $n /(n+m)$, we obtain a filtration $\left(G^{j} Z\right)_{j \in \mathbb{Z}}$ on $Z:=M / \epsilon M$ such that for all $j \in \mathbb{Z}$ we have $F\left(G^{j} Z\right)=G^{j+n} Z \cap F(Z)$ and $V\left(G^{j} Z\right)=$ $G^{j+m} Z \cap V(Z)$ by embedding M into the minimal Dieudonné module $M_{n, m}$ (c.f. Subsection 4.2 . Conversely, given such a filtration on a 1-truncated Dieudonné module Z we can construct a lift of Z which is isoclinic of slope $n /(n+m)$ (c.f. Subsection 4.3). Hence, in order to determine whether a given Z admits such a lift, it suffices to determine whether there exists such a filtration on Z, which we call a compatible filtration of type (n, m) (c.f. Subsection 4.1.

To determine whether there exists a compatible filtration on Z of type (n, m), we first consider the associated graded situation: Given a compatible filtration $\left(G^{j} Z\right)_{j \in \mathbb{Z}}$ of type (n, m), one obtains the graded 1-truncated Dieudonné module $\oplus_{j \in \mathbb{Z}} G^{j} Z / G^{j+1} Z$ on which F and V act as morphisms of degree n and m respectively. Following an idea of Chen and Viehmann, in Subsection 3.2, we classify such graded 1-truncated Dieudonné modules in terms of cocharacters $\lambda \in X_{*}(T)$ satisfying $\epsilon^{-\lambda} x_{n, m} \epsilon^{\lambda} \in W \epsilon^{\mu} W$.

Then, by comparing compatible filtrations to the associated gradings, we obtain the following criterion for the existence of a compatible filtration:
Theorem 1.2 (c.f. Theorem5.3). Let M be a Dieudonné module of rank h such that $M / F M$ has length m. The following are equivalent:
(i) On the truncation $Z=M / \epsilon M$ there exists a compatible filtration of type (n, m).
(ii) There exists $\lambda \in X_{*}(T)$ satisfying $\epsilon^{-\lambda} x_{n, m} \epsilon^{\lambda} \in W \epsilon^{\mu} W$ such that the matrix of $F: M \rightarrow$ M with respect to some \mathcal{O}-basis of M lies in $\mathcal{I} \eta_{\lambda}^{-1} \epsilon^{-\lambda} x_{n, m} \epsilon^{\lambda} \eta_{\lambda} \mathcal{I}$.
Then by combining the above steps we obtain Theorem 1.1

Acknowledgement I am very grateful to Richard Pink for numerous conversations on the topic of this article. I also thank Torsten Wedhorn for helpful remarks and conversations. This work was supported by a fellowship of the Max Planck society as well as a fellowship of the Swiss National Fund. Part of this work was carried out during a visit to the FIM at ETH Zürich. I thank the institute for its hospitality and excellent working conditions.

2 Preliminaries

2.1 Setup

Throughout, we will work with the following setup and notation:

- k is an algebraically closed field of characteristic $p>0$.
- \mathcal{O} is either the Witt ring $W(k)$ or the ring $k[[t]]$.
- For $a \in k$, we let $[a] \in \mathcal{O}$ be either the canonical lift of a in $W(k)$ or the image of a under the inclusion $k \hookrightarrow k[[t]]$.
- $\epsilon \in \mathcal{O}$ is the uniformizer p or t accordingly.
- L is the function field of \mathcal{O}.
- $v: L \rightarrow \mathbb{Z}$ is the valuation normalized such that $v(\epsilon)=1$.
- $\sigma: \mathcal{O} \rightarrow \mathcal{O}$ is either the canonical lift $W(k) \rightarrow W(k)$ of Frobenius or the automorphism $k[[t]] \rightarrow k[[t]]$ fixing t and sending $a \in k$ to a^{p}.
- A Dieudonné module is a finite free \mathcal{O}-module together with a σ-linear endomorphism F and a σ^{-1}-linear endomorphism V satisfying $F V=V F=\epsilon$. (In the equicharacteristic case, such an object is usually called an effective and minuscule local GL_{h}-shtuka.)
- $F_{k}: k \rightarrow k, x \mapsto x^{p}$ is the Frobenius automorphism.
- A 1-truncated Dieudonné module is a finite-dimensional k-vector space together with an F_{k}-linear endomorphism F and an F_{k}^{-1}-linear endomorphism V such that im $F=\operatorname{ker} V$ and $\operatorname{ker} V=\operatorname{im} V$.
- To a Dieudonné module M we associate the 1-truncated Dieudonné module $M / \epsilon M$.
- By the Newton polygon of a Dieudonné module M we mean the Newton polygon obtained via covariant Dieudonné theory. That is a Dieudonné module is isoclinic of slope r / s for integers $r, s \geq 0$ if and only if it is isogenous to a Dieudonné module on which $\epsilon^{-r} F^{s}$ is an automorphism.
- We write Newton polygons in the form $\mathcal{P}=\left(\nu_{1}, \ldots, \nu_{N}\right)$ where $\nu_{1} \leq \ldots \leq \nu_{N}$ are the slopes occurring in \mathcal{P} with multiplicities.
- For $\nu \in \mathbb{Q}^{\geq 0}$ we denote by n_{ν} and m_{ν} the unique non-negative coprime integers such that $\nu=n_{\nu} /\left(n_{\nu}+m_{\nu}\right)$.
We will often work with respect to given integers $0 \leq d \leq h$. Then we use the following:
- G is the group scheme $\mathrm{GL}_{h, \mathcal{O}}$.
- $T \subset G$ is the canonical torus of diagonal matrices.
- $B \subset G$ is the canonical Borel subgroup of upper triagonal matrices.
- $\mathcal{I} \subset G(\mathcal{O})$ is the preimage of $B(k)$ under the projection $G(\mathcal{O}) \rightarrow G(k)$.
- $G(\mathcal{O})_{1}$ is the kernel of the projection $G(\mathcal{O}) \rightarrow G(k)$.
- $W \cong S_{h}$ is the Weyl group of G with respect to T which we identify with the set of monomial matrices with entries in $\{0,1\}$ in either $G(k)$ or $G(\mathcal{O})$.
- $S=\{(i, i+1) \mid 1 \leq i \leq h-1\} \subset W$ is the set of simple reflections induced by B.
- $I \subset S$ is the type $S \backslash\{(h-d-1, h-d)\}$.
- $W_{I} \subset W$ is the subgroup generated by I.
- ${ }^{I} W$ is the set of left reduced elements with respect to I, that is the set of elements w which have minimal length in $W_{I} w$.
- w_{0} is the longest element in W.
- $w_{0, I}$ is the longest element in W_{I}.
- We denote by $\tilde{W} \cong X_{*}(T) \rtimes W$ the extended Weyl group of G, which we identify with the group of monomial matrices in $G(\mathcal{O})$ with entries in $\{0\} \cup p^{\mathbb{Z}}$.
- For $\lambda \in X_{*}(T)$, we denote by $\epsilon^{\lambda}:=\lambda(p)$ its image in \tilde{W}.
- We denote the cocharacter $\lambda \in X_{*}(T)$ which sends $t \in \mathbb{G}_{m}$ to the diagonal matrix with entries $\left(t^{\lambda_{1}}, \ldots, t^{\lambda_{h}}\right)$ by $\left(\lambda_{1}, \ldots, \lambda_{h}\right)$.
- $\mu \in X_{*}(T)$ is the cocharacter $(1, \ldots, 1,0, \ldots, 0)$ where the entry 1 has multiplicity $h-d$.
- We say that a Dieudonné module M has Hodge polygon given by μ if $\mathrm{rk}_{\mathcal{O}} M=h$ and $M / F M$ has length d.
- We denote again by σ the automorphism of $G(\mathcal{O})$ induced by $\sigma: \mathcal{O} \rightarrow \mathcal{O}$.
- To an element $g \in G(\mathcal{O}) \epsilon^{\mu} G(\mathcal{O})$ we associate the Dieudonné module $M_{g}:=\left(\mathcal{O}^{h}, g \sigma\right)$. This gives a bijection between $G(\mathcal{O})-\sigma$-conjugacy classes in $G(\mathcal{O}) \epsilon^{\mu} G(\mathcal{O})$ (i.e. orbits under the action $\left.G(\mathcal{O}) \times G(\mathcal{O}) \rightarrow G(\mathcal{O}),(g, h) \mapsto g h \sigma(h)^{-1}\right)$ and isomorphism classes of Dieudonné modules with Hodge polygon given by μ.

2.2 Classification of 1-truncated Dieudonné modules

Fix integers $0 \leq d \leq h$. We call a 1-truncated Dieudonné module Z of numerical type (d, h) ifit satisfies $\mathrm{rk}_{k} Z=h$ and $\operatorname{rk}_{k} F(Z)=h-d$. Any 1-truncated Dieudonné module of numerical type (d, h) can be lifted to a Dieudonné module with Hodge polygon given by μ. Furthermore, one can check that for two elements $g_{1}, g_{2} \in G(\mathcal{O}) \epsilon^{\mu} G(\mathcal{O})$ the truncations $M_{g_{1}} / \epsilon M_{g_{1}}$ and $M_{g_{2}} / \epsilon M_{g_{2}}$ are isomorphic as 1-truncated Dieudonné modules if and only if g_{2} is $G(\mathcal{O})-\sigma$-conjugate to an element of $\mathrm{G}(\mathcal{O})_{1} \epsilon^{\mu} G(\mathcal{O})_{1}$. Hence isomorphism classes of 1truncated Dieudonné modules of numerical type (d, h) correspond to the $\mathrm{G}(\mathcal{O})$ - σ-conjugacy classes in $G(\mathcal{O})_{1} \backslash G(\mathcal{O}) \epsilon^{\mu} G(\mathcal{O}) / G(\mathcal{O})_{1}$. By Vie, Theorem 1.1] the set $\left\{w w_{0} w_{0, I} \epsilon^{\mu} \mid w \in{ }^{I} W\right\}$ gives a set of representatives for these conjugacy classes. Thus the 1-truncated Dieudonné modules $Z_{w}:=M_{w w_{0} w_{0, I} \epsilon^{\mu}} / \epsilon M_{w w_{0} w_{0, I} \epsilon^{\mu}}$ for $w \in{ }^{I} W$ are representatives for the isomorphism classes of 1-truncated Dieudonné modules.

2.3 Minimal Dieudonné modules

For coprime non-negative integers n and m, the minimal Dieudonné module $H_{n, m}$ of slope $n /(n+m)$ is defined as follows (c.f. Oor1): It is the free \mathcal{O}-module with basis e_{1}, \ldots, e_{n+m}. For $i>n+m$, we write $i=a(n+m)+b$ for unique integers $a>1$ and $1 \leq b \leq n+m$ and define $e_{i}:=\epsilon^{a} e_{b}$. Then F and V are defined by $F\left(e_{i}\right)=e_{i+n}$ and $V\left(e_{i}\right)=e_{i+m}$ for all $i \geq 1$.

Let Φ be the σ-semilinear automorphism of $H_{n, m}$ which fixes the e_{i}. Then $\Phi \pi=\pi \Phi$, $F=\Phi \pi^{n}$ and $V=\Phi^{-1} \pi^{m}$.
Definition 2.1. Let n and m be coprime non-negative integers. We define $x_{n, m} \in \tilde{W}$ to be the matrix of $F: H_{n, m} \rightarrow H_{n, m}$ with respect to the basis $\left(e_{h}, \ldots, e_{1}\right)$.

3 Graded 1-truncated Dieudonné modules

Throughout this section we fix coprime non-negative integers n and m and let $h:=n+m$ and $d:=n$.

By a grading of a vector space we will always mean a \mathbb{Z}-grading. For a graded vector space $X=\oplus_{j \in \mathbb{Z}} X^{j}$ we will call the elements of the X^{j} the homogenous elements of X. For $i \in \mathbb{Z}$, we say that an additive homomorphism $X \rightarrow X^{\prime}$ between graded vector spaces is of degree i if it sends every homogenous element of degree j to a homogenous element of degree $j+i$.
Definition 3.1. A graded 1-truncated Dieudonné module is a 1-truncated Dieudonné module Z together with a grading $Z=\oplus_{j \in \mathbb{Z}} Z^{j}$ such that F and V send homogenous elements of Z to homogenous elements.

A morphism of graded 1-truncated Dieudonné modules is a morphism of 1-truncated Dieudonné modules of degree zero.

Definition 3.2. A graded 1-truncated Dieudonné module of type (n, m) over k is a graded 1 -truncated Dieudonné module (Z, F, V) such that F is of degree n and V is of degree m.
Lemma 3.3. Let $Z=\oplus_{j \in \mathbb{Z}} Z^{j}$ be a graded 1-truncated Dieudonné module of type (n, m). There exists an integer c such that $\operatorname{rk}_{k} Z=c(n+m)$ and such that for every $j \in \mathbb{Z}$ we have

$$
\sum_{i \equiv j} \operatorname{rk}_{k} Z^{i}=c
$$

Proof. For $j \in \mathbb{Z}$ let $Z(j):=\oplus_{i \equiv j(n+m)} Z^{i}$. The fact that Z is graded of type (n, m) implies that for each j we have a short exact sequence

$$
0 \rightarrow Z(j-m) /(Z(j-m) \cap F(Z)) \xrightarrow{V} Z(j) \xrightarrow{F} Z(j+n) \cap F(Z) \rightarrow 0
$$

Using $Z(j-m)=Z(j+n)$ this implies $\operatorname{rk}_{k} Z(j)=\operatorname{rk}_{k} Z(j+n)$. Since n and $n+m$ are coprime, iterating this fact yields the claim.

3.1 Classification in terms of semimodules

Definition 3.4 (c.f. Oor2, (1.7)] and dJO, Section 6]). A beginning of a semi-module of type (n, m) is a subset $C \subset \mathbb{Z}$ such that for each $i \in \mathbb{Z}$ the equivalence class $i+(n+m) \mathbb{Z}$ contains exactly one element of C and for each $i \in C$ either $i+n \in C$ or $i-m \in C$.
Lemma 3.5. Let $Z=\oplus_{j \in \mathbb{Z}} Z^{j}$ a graded 1-truncated Dieudonné module of type (n, m) of rank h. Then $C_{Z}:=\left\{j \in \mathbb{Z} \mid Z^{j} \neq 0\right\}$ is a beginning of a semi-module of type (n, m).

Proof. This follows from the definition of 1-truncated Dieudonné modules of type (n, m) together with Lemma 3.3 .

Construction 3.6. Let C be a beginning of a semi-module of type (n, m). We construct a graded 1-truncated Dieudonné module Z_{C} of type (n, m) and of rank h as follows:

Let Z be the free k-vector space with basis $\left(e_{j}\right)_{j \in C}$. Endow Z_{C} with the grading for which each e_{j} is homogenous of degree j. We define F and V as follows: Let $j \in C$. If $j+n \in C$ we let $F\left(e_{j}\right):=e_{j+n}$ and $V\left(e_{j+n}\right):=0$. Otherwise $j-m \in C$ and we let $V\left(e_{j-m}\right):=e_{j}$ and $F\left(e_{j}\right)=0$. Then by a direct verification Z_{C} has the required properties.
Proposition 3.7. The assignments $Z=\oplus_{j \in \mathbb{Z}} Z^{j} \mapsto C_{Z}$ and $C \mapsto Z_{C}$ give mutually inverse bijections between the set of isomorphism classes of 1-truncated Dieudonné modules of type (n, m) and of rank h and the set of beginnings of semi-modules of type (n, m).

Proof. The identity $C=C_{Z_{C}}$ follows directly from the definition of Z_{C}.
It remains to prove that each Z is isomorphic to $Z_{C_{Z}}$ as a graded 1-truncated Dieudonné module. To see this, start with an element $j_{0} \in C_{Z}$ and a non-zero element $f_{0} \in Z^{j_{0}}$. We iteratively construct a sequence of pairs $\left(j_{s} \in C_{Z}, f_{s} \in Z^{j_{s}} \backslash\{0\}\right)$ as follows: If $j_{k}+n \in C$ we let $j_{k+1}:=j_{k}+n$ and $f_{j+1}:=F\left(f_{j}\right)$. Otherwise we let $j_{k+1}:=j_{k}-m$ and $f_{j+1} \in Z^{j_{k}-m}$ the unique element such that $V\left(f_{j+1}\right)=f_{j}$.

By construction, for $s \geq 0$, the element $j_{s} \in C_{Z}$ is the unique element of C_{Z} in $j_{s}+s n+h \mathbb{Z}$. Thus $j_{h}=j_{0}$ and hence $f_{h}=\lambda f_{0}$ for some $\lambda \in k^{*}$. Pick $\mu \in k^{*}$ such that $\mu^{p^{m-n}} \lambda=\mu$. In C_{Z} there a m elements j satisfying $j+n \in C_{Z}$ and n elements j satisfying $j-m \in C_{Z}$ (c.f. dJO, Section 6]). Hence by replacing f_{0} by μf_{0} in the above construction we obtain a sequence such that $f_{h}=f_{0}$. Then for each $j \in C_{Z}$ we let $e_{j}:=f_{k}$ for the unique $0 \leq k<h$ such that $j_{k}=j$. The resulting basis $\left(e_{j}\right)_{j \in C_{Z}}$ of Z gives an isomorphism $Z \cong Z_{C_{Z}}$ of graded 1-truncated Dieudonné modules.

3.2 Classification in terms of cocharacters

Now we show that 1-truncated Dieudonné modules of type (n, m) and rank h can also be classified by certain cocharacters $\lambda \in X_{*}(T)$. The idea behind this classification is due to Chen and Viehmann (c.f. CV).

Construction 3.8. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{h}\right) \in X_{*}(T)$ be a cocharacter satisfying $\epsilon^{-\lambda} x_{n, m} \epsilon^{\lambda} \in$ $W \epsilon^{\mu} W$. We construct a graded 1-truncated Dieudonné module of type (n, m) as follows: As in Definition 2.1 we consider the Dieudonné module $M_{n, m}$ with the basis $\left(e_{n+m}, \ldots, e_{1}\right)$. For $1 \leq j \leq h$ let $f_{j}:=\epsilon^{\lambda j} e_{h+1-j}$. The f_{j} form a \mathcal{O}-basis of a submodule $M \subset M_{n, m}$ and the matrix of F with respect to this basis is $\epsilon^{-\lambda} x_{n, m} \epsilon^{\lambda}$. Hence the assumption $\epsilon^{-\lambda} x_{n, m} \epsilon^{\lambda} \in$ $W \epsilon^{\mu} W$ means that M is a sub-Dieudonné module of $M_{n, m}$ with Hodge polygon given by μ. Let $Z:=M / \epsilon M$ with basis $\left(\bar{f}_{j}:=f_{j}+\epsilon M\right)_{1 \leq j \leq h}$. Equipping Z with the grading for which each \bar{f}_{j} is homogenous of degree $h+1-j+h \lambda_{j}$ makes Z into a graded 1-truncated Dieudonné module of type (n, m) which we denote by Z_{λ}.
Proposition 3.9. The assignment $\lambda \mapsto Z_{\lambda}$ gives a bijection from the set

$$
\left\{\lambda \in X_{*}(T) \mid \epsilon^{-\lambda} x_{n, m} \epsilon^{\lambda} \in W \epsilon^{\mu} W\right\}
$$

to the set of isomorphism classes of 1-truncated Dieudonné modules of type (n, m) and rank h.

Proof. Let Z be a 1-truncated Dieudonné module of type (n, m) and rank h. By Proposition 3.7 we may assume that $Z=Z_{C}$ for some beginning of a semi-module C. For each $1 \leq j \leq h$ let λ_{j} be the unique integer such that $h+1-j+h \lambda_{j} \in C$. Let M be the the sub- \mathcal{O}-module of $H_{n, m}$ spanned by $\left\{e_{j} \mid j \in C\right\}=\left\{\epsilon^{\lambda_{j}} e_{h+1-j} \mid 1 \leq j \leq h\right\}$. The fact that C is the beginning of a semi-module of type (n, m) implies that M is a sub-Dieudonné module of $H_{n, m}$. Furthermore, the assignment $e_{j} \in M \mapsto e_{j} \in Z_{C}$ for $i \in C$ induces an isomorphism $M / \epsilon M \cong Z_{C}$ of 1-truncated Dieudonné modules. This implies that M has Hodge polygon given by μ which in turn is equivalent to $\epsilon^{-\lambda} x_{n, m} \epsilon^{\lambda} \in W \epsilon^{\mu} W$. It follows from the above that $Z_{C} \cong Z_{\lambda}$ as graded 1-truncated Dieudonné modules. Thus the map in question is surjective. As for the injectivity, it follows directly from Construction 3.8 that λ can be recovered from the grading on Z_{λ}.

4 Compatible filtrations on 1-truncated Dieudonné modules

4.1 Definitions

By a decreasing filtration $\left(G^{j} X\right)_{j \in \mathbb{Z}}$ on a finite-dimensional vector space X we mean a family of subspaces such that $G^{j} X \supset G^{j+1} X$ for all $j \in \mathbb{Z}$, such that $G^{j} X=X$ for all small enough j and such that $G^{j} X=0$ for all large enough j. Given two descending filtrations $\left(G^{j} X\right)_{j \in \mathbb{Z}}$ and $\left(\mathrm{G}^{j} X^{\prime}\right)_{j \in \mathbb{Z}}$ on two such vector spaces X and X^{\prime} and an integer i, we call an additive homomorphism $h: X \rightarrow X^{\prime}$ filtered of degree i if $h\left(G^{j} X\right) \subset G^{j+i} X$ for all $j \in \mathbb{Z}$.
Lemma 4.1. Let n and m be coprime non-negative integers and Z a 1-truncated Dieudonné module over k. Let $\left(G^{j} Z\right)_{j \in \mathbb{Z}}$ a descending filtration on Z such that F is filtered of degree n and such that V is filtered of degree m. The following two conditions are equivalent:
(i) The vector space $\operatorname{gr} Z:=\oplus_{j} G^{j} Z / G^{j+1} Z$ together with the graded semilinear endomorphisms of degree n and m induced by F and V is a graded 1-truncated Dieudonné module of type (n, m).
(ii) For all $j \in \mathbb{Z}$ we have $F\left(G^{j} Z\right)=G^{j+n} Z \cap F(Z)$ and $V\left(G^{j} Z\right)=G^{j+m} Z \cap V(Z)$.

Proof. This follows from a direct verification.
Definition 4.2. Let n and m be coprime non-negative integers and Z a 1-truncated Dieudonné module over k. A compatible filtration of type (n, m) on Z is a decreasing filtration $E=$ $\left(\mathrm{G}^{j} Z\right)_{j \in \mathbb{Z}}$ by k-submodules such that F is filtered of degree n, such that V is filtered of degree m and such that the equivalent conditions of Lemma 4.1 are satisfied.

For such an E, we denote by $\operatorname{gr}_{E}(Z)$ the associated graded 1-truncated Dieudonné module from Lemma 4.1
Example 4.3. Let n and m be coprime non-negative integers and $Z=\oplus_{i \in \mathbb{Z}} Z^{i}$ a graded 1truncated Dieudonné module of type (n, m). Then the filtration E given by $G^{j}(Z):=\oplus_{i \geq j} Z^{i}$ is a compatible filtration of type (n, m). The associated graded 1-truncated Dieudonné module $\operatorname{gr}_{E} Z$ is canonically isomorphic to Z.

Definition 4.4. Let $\mathcal{P}=\left(\nu_{1}, \ldots, \nu_{N}\right)$ a Newton polygon. Let Z be a 1-truncated Dieudonné module. A compatible filtration with Newton polyon \mathcal{P} on Z is a filtration $0=Z_{0} \subset Z_{1} \ldots \subset$ $Z_{N}=Z$ by sub-1-truncated Dieudonné modules such that the subquotients Z_{i} / Z_{i-1} are 1truncated Dieudonné modules of rank $n_{\nu_{i}}+m_{\nu_{i}}$ together with compatible filtrations E_{i} on the Z_{i} / Z_{i-1} of type $\left(n_{\nu_{i}}, m_{\nu_{i}}\right)$.

4.2 Compatible filtrations associated to Dieudonné modules

In this subsection, for a Dieudonné module M with Newton polygon \mathcal{P} we construct a compatible filtration with Newton polygon \mathcal{P} on $M / \epsilon M$. The idea behind this construction is originally due to Manin (c.f. Man Section III.5]) and was also used by de Jong and Oort in dJO and by Oort in Oor2.
Construction 4.5. Let n and m be coprime non-negative integers. Let M be an isosimple Dieudonné module of slope $n /(n+m)$. We define a compatible filtration of type (n, m) on the 1-truncated Dieudonné module $Z:=M / p M$ as follows:

By the slope assumption there exists an embedding $M \hookrightarrow H_{n, m}$. We choose such an embedding and let $M^{j}:=M \cap \pi^{j} H_{n, m}$ for all $j \geq 0$. The fact that $F=\pi^{n} \Phi$ and $V=\pi^{m} \Phi^{-1}$ on $H_{n, m}$ implies that $F\left(M^{j}\right)=M^{j+n} \cap F(M)$ and $V\left(M^{j}\right)=M^{j+m} \cap V(M)$ for all $j \in \mathbb{Z}$. These two identities imply that $G^{j}(Z):=\left(M^{j}+\epsilon M\right) / \epsilon M \subset Z$ defines a compatible filtration E_{M} of type (n, m) on Z. Since M is isosimple, the vector spaces Z and $\operatorname{gr}_{E} Z$ have rank $n+m$.

Remark 4.6. By dJO Section 5.6] a different choice of embedding $M \hookrightarrow H_{n, m}$ in Construction 4.5 yields to a filtration which differs from the given one only by a shift of the indexing of the filtration.

Construction 4.7. Let M be a Dieudonné module and $Z:=M / \epsilon M$. Let \mathcal{P} be the Newton polygon of M. We define a compatible filtration on Z as follows: We start with the slope filtration of M (c.f. e.g. [Zin, Corollary 13]) and refine it to a filtration $0=M_{0} \subset M_{1} \subset \ldots \subset$ $M_{N}=M$ by sub-Dieudonné modules such that each M_{i} / M_{i-1} is isosimple. For $0 \leq i \leq N$ let $Z_{i}:=M_{i} / \epsilon M_{i}$. Then Construction 4.5 applied to the Dieudonné modules M_{i} / M_{i-1} yields compatible filtrations E_{i} on $Z_{i} / Z_{i-1} \cong\left(M_{i} / M_{i-1}\right) / \epsilon\left(M_{i} / M_{i-1}\right)$. Alltogether we obtain a compatible filtration with Newton polygon \mathcal{P}.

4.3 Lifts associated to compatible filtrations

In Construction 4.7, we associate to each Dieudonné module M a compatible filtration E_{M} on $M / \epsilon M$ with the same Newton polygon as M. In this subsection we show that conversely, for each 1-truncated Dieudonné module Z together with a compatible filtration E on Z with Newton polygon \mathcal{P} there exists a Dieudonné module M lifting Z which has Newton polygon \mathcal{P}.
Construction 4.8. Let $\mathcal{P}=\left(\nu_{1}, \ldots, \nu_{N}\right)$ be a Newton polygon. Let Z be a 1-truncated Dieudonné module and $E=\left(\left(Z_{i}\right)_{0 \leq i \leq N},\left(E_{i}\right)_{1 \leq i \leq N}\right)$ a compatible filtration with Newton polygon \mathcal{P} on Z. We construct a Dieudonné module M lifting Z as follows:

For each $1 \leq i \leq N$ let C_{i} be the beginning of a semi-module of type $\left(n_{i}, m_{i}\right):=$ $\left(n_{\nu_{i}}, m_{\nu_{i}}\right)$ associated to $\operatorname{gr}_{E_{i}}\left(Z_{i} / Z_{i-1}\right)$. By Proposition 3.7 we can choose isomorphisms $\operatorname{gr}_{E_{i}}\left(Z_{i} / Z_{i-1}\right) \cong Z_{C_{i}}$ of graded 1-truncated Dieudonné modules and hence obtain bases $\left(e_{j}^{i}\right)_{j \in C_{i}}$ of the $\operatorname{gr}_{E_{i}}\left(Z_{i} / Z_{i-1}\right)$. In the following by a pair (i, j) we always mean such a pair satisfying $1 \leq i \leq N$ and $j \in C_{i}$. For each pair (i, j) let $f_{j}^{i} \in Z_{i}$ be a lift of e_{j}^{i}.

Let M be the free \mathcal{O}-module with basis $\left(g_{i}^{j}\right)_{(i, j)}$. We make M into a Dieudonné module by defining the image of g_{j}^{i} under F and V by a nested double induction, with the outer induction being increasing on i and the inner induction being decreasing on j. For pairs (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ we let $(i, j) \prec\left(i^{\prime}, j^{\prime}\right)$ if and only if either the conditions $i=i^{\prime}$ and $j>j^{\prime}$ or the condition $i<i^{\prime}$ is satisfied.

First we define F : Consider a pair (i, j). If $j+n_{i} \in C_{i}$ then

$$
F\left(f_{j}^{i}\right)=f_{j+n_{i}}^{i}+\sum_{\left(i^{\prime}, j^{\prime}\right) \prec\left(i, j+n_{i}\right)} a_{j^{\prime}}^{i^{\prime}} f_{j^{\prime}}^{i^{\prime}}
$$

for certain $a_{j^{\prime}}^{i^{\prime}} \in k$. Then we let

$$
F\left(g_{j}^{i}\right):=g_{j+n_{i}}^{i}+\sum_{\left(i^{\prime}, j^{\prime}\right)\left\langle\left(i, j+n_{i}\right)\right.}\left[a_{j^{\prime}}^{i^{\prime}}\right] g_{j^{\prime}}^{i^{\prime}} .
$$

Otherwise we have $j-m_{i} \in C_{i}$ and

$$
f_{j}^{i}=V\left(f_{j-m_{i}}^{i}\right)+\sum_{\left(i^{\prime}, j^{\prime}\right) \prec(i, j)} b_{j^{\prime}}^{i^{\prime}} f_{j^{\prime}}^{i^{\prime}}
$$

for certain $b_{j^{\prime}}^{i^{\prime}} \in k$. In this case we define

$$
F\left(f_{j}^{i}\right):=\epsilon g_{j-m_{i}}^{i}+\sum_{\left(i^{\prime}, j^{\prime}\right) \prec(i, j)}\left[\left(b_{j^{\prime}}^{i^{\prime}}\right)^{p}\right] F\left(g_{j^{\prime}}^{i^{\prime}}\right),
$$

where the terms $F\left(g_{j^{\prime}}^{i^{\prime}}\right)$ appearing are already defined by induction.
We define V dually: Consider a pair (i, j). If $j+m_{i} \in C_{i}$ then

$$
V\left(f_{j}^{i}\right)=f_{j+m_{i}}^{i}+\sum_{\left(i^{\prime}, j^{\prime}\right) \prec\left(i, j+m_{i}\right)} c_{j^{\prime}}^{i^{\prime}} f_{j^{\prime}}^{i^{\prime}}
$$

for certain $c_{j^{\prime}}^{i^{\prime}} \in k$. Then we let

$$
V\left(g_{j}^{i}\right):=g_{j+m_{i}}^{i}+\sum_{\left(i^{\prime}, j^{\prime}\right) \prec\left(i, j+m_{i}\right)}\left[c_{j^{\prime}}^{i^{\prime}}\right] g_{j^{\prime}}^{i^{\prime}}
$$

Otherwise we have $j-n_{i} \in C_{i}$ and

$$
f_{j}^{i}=F\left(f_{j-n_{i}}^{i}\right)+\sum_{\left(i^{\prime}, j^{\prime}\right) \prec(i, j)} d_{j^{\prime}}^{i^{\prime}} f_{j^{\prime}}^{i^{\prime}}
$$

for certain $d_{j^{\prime}}^{i^{\prime}} \in k$. In this case we define

$$
V\left(f_{j}^{i}\right):=\epsilon g_{j-n_{i}}^{i}+\sum_{\left(i^{\prime}, j^{\prime}\right) \prec(i, j)}\left[\left(d_{j^{\prime}}^{i^{\prime}}\right)^{-p}\right] V\left(g_{j^{\prime}}^{i^{\prime}}\right),
$$

where the terms $V\left(g_{j^{\prime}}^{i^{\prime}}\right)$ appearing are already defined by induction.
We extend F and V to a σ - respectively a σ^{-1}-linear endomorphism of M.
Lemma 4.9. Let M be a Dieudonné module and n and m non-negative integers such that the Newton polygon of M has endpoint $(c n, c(n+m)$) for some integer $c \geq 0$. Assume that there exists a function $v: M \backslash\{0\} \rightarrow \mathbb{Z}^{\geq 0}$ with the following properties:
(i) $v(F(x))=v(x)+n$ for all $x \in M$.
(ii) $v(V(x))=v(x)+m$ for all $x \in M$.

Then M is isoclinic of slope $n /(n+m)$.
Proof. Let ν be a slope of M. There exists a non-zero Dieudonné submodule M^{\prime} of M such that for all integers $a \geq 0$ we have $F^{a\left(n_{\nu}+m_{\nu}\right)} M^{\prime}=p^{a n_{\nu}} M^{\prime}$. Let x be a non-zero element of M^{\prime}. For some integer $a \geq 0$, write $F^{a\left(n_{\nu}+m_{\nu}\right)}(x)=p^{a n_{\nu}}\left(x^{\prime}\right)$ for some $x^{\prime} \in M^{\prime}$. Then we get:

$$
v(x)+a\left(n_{\nu}+m_{\nu}\right) n=v\left(F^{a\left(n_{\nu}+m_{\nu}\right)}(x)\right)=v\left(p^{a n_{\nu}}\left(x^{\prime}\right)\right)=v\left(x^{\prime}\right)+a n_{\nu}(n+m) \geq a n_{\nu}(n+m)
$$

By letting a go to infinity this inequality implies $\nu=n_{\nu} /\left(n_{\nu}+m_{\nu}\right) \leq n /(n+m)$. From this the claim follows by comparing the Newton polygon of M to the constant Newton polygon of slope $n /(n+m)$ with the same endpoint.

Proposition 4.10. Let Z and E be as in Construction 4.8. For each $1 \leq i \leq N$ let $M_{i} \subset M$ be the \mathcal{O}-submodule spanned by $\left\{g_{j}^{i^{\prime}} \mid i^{\prime} \leq i, j \in C_{i^{\prime}}\right\}$.
(i) The module M from Construction 4.8 is a Dieudonné module, i.e. $F V=V F=\epsilon$.
(ii) The assigment $g_{j}^{i}+\epsilon M \mapsto f_{j}^{i}$ gives an isomorphism $M / \epsilon M \cong Z$ of 1-truncated Dieudonné modules.
(iii) The M_{i} are Dieudonné submodules of M.
(iv) For each $1 \leq i \leq N$, the Dieudonné module M_{i} / M_{i-1} is isoclinic of slope $n_{i} /\left(n_{i}+m_{i}\right)$.
(v) The Dieudonné module M has Newton polygon \mathcal{P}.

Proof. (i), (ii) and (iii) follow from the definition of M by the same double induction as in Construction 4.8
(iv): We continue to use the notation from Construction 4.8 For $j \in C_{i}$ we denote $f_{j}^{i}+M_{i-1}$ by \bar{f}_{j}^{i}. These elements form a \mathcal{O}-basis of M_{i} / M_{i-1}. We define a function

$$
v: M_{i} / M_{i-1} \backslash\{0\} \rightarrow \mathbb{Z}^{\geq 0}
$$

by

$$
v\left(\sum_{j \in C_{i}} a_{j} \bar{f}_{j}^{i}\right):=\min _{j \in C_{i}}\left(\left(n_{i}+m_{i}\right) v\left(a_{j}\right)+j\right) .
$$

It follows from the definition of M that v satisfies the conditions of Lemma 4.9 for $n=n_{i}$ and $m=m_{i}$. Thus (iv) follows from Lemma 4.9
(v) follows from (iv).

5 Existence of compatible flags

Let $\mathcal{P}=\left(\nu_{1}, \ldots, \nu_{N}\right)$ be a Newton polygon. For $1 \leq i \leq N$ we denote ($n_{\nu_{i}}, m_{\nu_{i}}$) by (n_{i}, m_{i}) and let $h_{i}:=n_{i}+m_{i}$ and $d_{i}:=m_{i}$. For such i we let $G_{i}, T_{i}, W_{i}, \mathcal{I}_{i}, \mu_{i}$, etc., be the data from Subsection 2.1 associated to $(h, d)=\left(h_{i}, d_{i}\right)$. Let $h=\sum_{i} h_{i}$ and $\prod_{1 \leq i \leq N} G_{i} \cong H \subset G=$ GL $_{h}$ be the Levi subgroup containing T corresponding to the decomposition $h=h_{1}+\ldots+h_{N}$. We denote by $\tilde{W}_{H}:=H(W(k)) \cap \tilde{W}$ (resp. W_{H}) the extended Weyl group (resp. the Weyl group) of H. Let $d:=\sum_{1 \leq i \leq N} n_{i}$.
Definition 5.1. Let $\lambda \in X_{*}(T)$. There is a unique permutation $\eta \in W_{H}$ with the following properties:
(i) For each $1 \leq i \leq N$ we have $\lambda_{\eta\left(h_{1}+\ldots+h_{i-1}+1\right)} \leq \lambda_{\eta\left(h_{1}+\ldots+h_{i-1}+2\right)} \leq \ldots \leq \lambda_{\eta\left(h_{1}+\ldots+h_{i}\right)}$.
(ii) For each $1 \leq j, j^{\prime} \leq h$ such that $\lambda_{j}=\lambda_{j^{\prime}}$ we have $j<j^{\prime}$ if and only if $\eta(j)<\eta\left(j^{\prime}\right)$.

We denote this permutation η by η_{λ}.
Definition 5.2. Let $x_{\mathcal{P}} \in \tilde{W}_{H}$ be the matrix whose i-th block is given by $x_{n_{i}, m_{i}}$ for each $1 \leq i \leq N$.
Theorem 5.3. Let M be a Dieudonné module with Hodge polygon given by μ. The following are equivalent:
(i) On the truncation $Z=M / \epsilon M$ there exists a compatible filtration with Newton polygon \mathcal{P}.
(ii) There exists $\lambda \in X_{*}(T)$ satisfying $\epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda} \in W \epsilon^{\mu} W$ such that the matrix of $F: M \rightarrow M$ with respect to some \mathcal{O}-basis of M lies in $\mathcal{I} \eta_{\lambda}^{-1} \epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda} \eta_{\lambda} \mathcal{I}$.

Proof. Using σ-conjugation by elements of $G(\mathcal{O})$, which amounts to base change on M, one sees that (ii) is equivalent to saying that there exists such a λ such that the matrix of F with respect to some \mathcal{O}-basis of M lies in ${ }^{n}{ }^{n} \mathcal{I} \epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda}$.
$(i) \Rightarrow(i i)$: Let $E=\left(\left(Z_{i}\right)_{0 \leq i \leq N},\left(E_{i}\right)_{1 \leq i \leq N}\right)$ be a compatible filtration of Newton polygon \mathcal{P} on Z. Fix $1 \leq i \leq N$. By Proposition 3.9 there exists $\lambda^{i} \in X_{*}\left(T_{i}\right)$ satisfying $\epsilon^{-\lambda^{i}} x_{n_{i}, m_{i}} \epsilon^{\lambda^{i}} \in W_{i} \epsilon^{\mu_{i}} W_{i}$ such that $\operatorname{gr}_{E_{i}}\left(Z_{i} / Z_{i-1}\right) \cong Z_{\lambda^{i}}$. Let M^{i} and $\left(f_{j}^{i}\right)_{1 \leq i \leq h_{i}}$ be the Dieudonné module together with its \mathcal{O}-basis from Construction 3.8 applied to $\lambda=\lambda^{i}$ such that
 Fix an isomorphism $M^{i} / \epsilon M^{i} \cong \operatorname{gr}_{E_{i}}\left(Z_{i} / Z_{i-1}\right)$ and let $\left(\bar{f}_{j}^{i}\right)_{1 \leq j \leq h_{i}}$ be the image of $\left(f_{j}^{i}\right)_{1 \leq j \leq h_{i}}$ in $\mathrm{gr}_{E_{i}}\left(Z_{i} / Z_{i-1}\right)$. Let M_{i} be the preimage of Z_{i} in M and for $1 \leq j \leq h_{i}$ let \tilde{f}_{j}^{i} be lift of \bar{f}_{j}^{i} to Z_{i} and g_{j}^{i} a lift of \tilde{f}_{j}^{i} to M_{i}.

By comparing the definition of $Z_{\lambda^{i}}$ and $\eta_{\lambda^{i}}$ one sees that the subspaces appearing in the filtration E_{i} on Z_{i} / Z_{i-1} are those of the form $\sum_{1 \leq j^{\prime} \leq j} k \tilde{f}_{\eta_{\lambda^{i}\left(j^{\prime}\right)}^{i}}^{i}+Z_{i-1}$ for $1 \leq j \leq h_{i}$. This together with the fact that the matrix of $F: M^{i} \rightarrow M^{i}$ with respect to $\left(f_{j}^{i}\right)_{1 \leq j \leq h_{i}}$ is $\epsilon^{-\lambda_{i}} x_{n_{i}, m_{i}} \epsilon^{\lambda_{i}}$ implies that the matrix of $F: M_{i} / M_{i-1} \rightarrow M_{i} / M_{i-1}$ with respect to the basis $\left(g_{j}^{i}\right)_{1 \leq j \leq h_{i}}$ lies in ${ }^{\eta_{\lambda_{i}}} \mathcal{I} \epsilon^{-\lambda_{i}} x_{n_{i}, m_{i}} \epsilon^{\lambda_{i}}$.

Now let $\lambda \in X_{*}(T)$ be the cocharacter whose factor in the i-th block of H is given by λ^{i} for each $1 \leq i \leq N$. From the definition of $x_{\mathcal{P}}$ and the corresponding property of the λ^{i} it follows that $\epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda} \in W \epsilon^{\mu} W$. Furthermore, from the definition of η_{λ} and the above it follows that the matrix of $F: M \rightarrow M$ with respect to the \mathcal{O}-basis $\left(f_{j}^{i}\right)_{i, j}$ lies in ${ }^{\eta} \mathcal{I}^{1} \epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda}$. This proves (ii).
$(i i) \Rightarrow(i)$: We reverse the above arguments: By assumption there exists a \mathcal{O}-basis of M with respect to which the matrix of F lies in ${ }^{\eta}{ }_{\lambda} \mathcal{I} \epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda}$. Write such a basis as $\left(f_{1}^{1}, f_{2}^{1}, \ldots, f_{h_{i}}^{1}, f_{1}^{2}, \ldots, f_{h_{N}}^{N}\right)$. For $1 \leq i \leq N$ let $M_{i}:=\sum_{i^{\prime} \leq i, j} \mathcal{O} f_{j}^{i^{\prime}}$ and Z_{i} the image of M_{i} in Z. The form of the matrix of F with respect to the basis $\left(f_{j}^{i}\right)_{(i, j)}$ implies that $F\left(M_{i}\right) \subset M_{i}$ for each i. Fix $1 \leq i \leq N$. Let λ^{i} (resp. $\eta_{\lambda^{i}}$) be the part of λ (resp. η_{λ}) in G_{i}. Then the matrix of F on M_{i} / M_{i-1} with respect to $\left(g_{j}^{i}\right)_{1 \leq j \leq h_{i}}$ lies in ${ }^{\eta} \lambda^{i} \mathcal{I}_{i} \epsilon^{-\lambda^{i}} x_{n_{i}, m_{i}} \epsilon^{\lambda^{i}}$ which proves that M_{i} / M_{i-1} is a Dieudonné module with Hodge polygon given by μ_{i} and hence that Z_{i} / Z_{i-1} is a 1-truncated Dieudonné module of rank h_{i}.

For $1 \leq j \leq h_{i}$ let \tilde{f}_{j}^{i} be the image of g_{j}^{i} in Z_{i}. As above we consider the graded 1truncated Dieudonné module $Z_{\lambda^{i}}$ with its canonical basis $\left(\bar{f}_{j}^{i}\right)_{1 \leq i \leq j}$. Let $\left(G^{j}\left(Z_{\lambda^{i}}\right)\right)_{j \in \mathbb{Z}}$ be the canonical filtration of type $\left(n_{i}, m_{i}\right)$ associated to the grading on $Z_{\lambda^{i}}$. For $j \in \mathbb{Z}$ define $G^{j}\left(Z_{i} / Z_{i-1}\right):=\sum_{\left\{j^{\prime}: \bar{f}_{j^{\prime}}^{i} \in G^{j}\left(Z_{\lambda^{i}}\right)\right\}} k \tilde{f}_{j^{\prime}}^{i}$. Similar to the above one checks by comparison with $Z_{\lambda^{i}}$ that this defines a compatible filtration E_{i} of type $\left(n_{i}, m_{i}\right)$ on Z_{i} / Z_{i-1}. Alltogether we have constructed a compatible filtration with Newton polygon \mathcal{P} on Z.

Now we can prove our main result:
Theorem 5.4. Let $w \in{ }^{I} W$. The following are equivalent:
(i) The 1-truncated Dieudonné module Z_{w} admits a lift with Newton polygon \mathcal{P}.
(ii) On Z_{w} there exists a compatible filtration with Newton polygon \mathcal{P}.
(iii) There exists $\lambda \in X_{*}(T)$ satisfying $\epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda} \in W \epsilon^{\mu} W$ such that $w w_{0} w_{0, I} \epsilon^{\mu}$ is $G(\mathcal{O})-\sigma$ conjugate to an element of $\mathcal{I} \eta_{\lambda}^{-1} \epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda} \eta_{\lambda} \mathcal{I}$.
(iv) There exist $\lambda \in X_{*}(T)$ satisfying $\epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda} \in W \epsilon^{\mu} W$ as well as $y \in W$ such that $w w_{0} w_{0, I} \epsilon^{\mu} \in \mathcal{I} y \mathcal{I} \eta_{\lambda}^{-1} \epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda} \eta_{\lambda} \mathcal{I} y^{-1} \mathcal{I}$.

Proof. The implication $(i) \Rightarrow(i i)$ follows from Construction 4.7. The implication $(i i) \Rightarrow(i)$ follows from Proposition 4.7. The equivalence of $(i i)$ and $(i i i)$ is a reformulation of Theorem 5.3 applied to the Dieudonné module $M_{w w_{0} w_{0, I} \epsilon^{\mu}}$.

The implication (iii) $\Rightarrow(i v)$ follows from the decomposition $G(\mathcal{O})=\coprod_{y \in W} \mathcal{I} y \mathcal{I}$. If (iv) holds, there exists an element of $\mathcal{I} w w_{0} w_{0, I} \epsilon^{\mu} \mathcal{I}$ which is $G(\mathcal{O})-\sigma$-conjugate to an element of $\mathcal{I} \eta_{\lambda}^{-1} \epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda} \eta_{\lambda} \mathcal{I}$. By Vie Theorem 1.1], each element of $\mathcal{I} w w_{0} w_{0, I} \epsilon^{\mu} \mathcal{I}$ is $G(\mathcal{O})$ - σ-conjugate to an element of $G(\mathcal{O})_{1} w w_{0} w_{0, I} \epsilon^{\mu} G(\mathcal{O})_{1}$. Using the fact that $G(\mathcal{O})_{1}$ is normal in $G(\mathcal{O})$ this implies (iii).

Let \mathcal{Z} be the center of H. Then $X_{*}(\mathcal{Z})$ acts on the set

$$
X_{*}(T)^{\mathcal{P}}:=\left\{\lambda \in X_{*}(T) \mid \epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda} \in W \epsilon^{\mu} W\right\}
$$

by addition.
Lemma 5.5. This action on $X_{*}(T)^{\mathcal{P}}$ has finitely many orbits.
Proof. By looking at each block of H separately, we assume that $\mathcal{P}=(n /(n+m))$ for coprime non-negative integers n and m. Via Propositions 3.7 and 3.9 , the set $X_{*}(T)^{\mathcal{P}}$ can be identified with the set of beginnings C of semimodules of type (n, m). Under this identification, an element $i \in X_{*}(\mathcal{Z}) \cong \mathbb{Z}$ sends $C \subset \mathbb{Z}$ to $C+i$. In this form the claim is dJO, 6.3].

6 Non-emptiness of certain affine Deligne-Lusztig varieties

Fix $0 \leq d \leq h$. For $x \in \tilde{W}$ and $b \in G(L)$, we consider the associated affine Deligne-Lusztig variety (c.f. Rapoport Rap), which is the following set:

$$
X_{x}(b):=\left\{g \mathcal{I} \in G(L) / \mathcal{I} \mid g^{-1} b \sigma(g) \in \mathcal{I} x \mathcal{I}\right\}
$$

From Theorem 5.4 we get the follwing criterion for the non-emptiness of certain of the $X_{x}(b)$. Here we use again the objects defined in Section 5 with respect to the given Newton polygon \mathcal{P}. In case the Newton polygon \mathcal{P} has a single slope, a different such criterion was previously given by Görtz, He and Nie in GHN.
Theorem 6.1. Let $x \in W \epsilon^{\mu} W$ and $b \in G(\mathcal{O}) \epsilon^{\mu} G(\mathcal{O})$. Let \mathcal{P} the Newton polygon of the Dieudonné module M_{b}. The following are equivalent:
(i) The set $X_{x}(b)$ is non-empty.
(ii) There exist $\lambda \in X_{*}(T)$ satisfying $\epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda} \in W \epsilon^{\mu} W$ and $y \in W$ such that

$$
x \in \mathcal{I} y \mathcal{I} \eta_{\lambda}^{-1} \epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda} \eta_{\lambda} \mathcal{I} y^{-1} \mathcal{I} .
$$

Proof. $(i) \Rightarrow(i i)$: Let $g \mathcal{I} \in X_{x}(b)$ and $h:=g b \sigma\left(g^{-1}\right) \in \mathcal{I} x \mathcal{I}$. Since $x \in W \epsilon^{\mu} W$ we obtain a Dieudonné module M_{h} with Hodge polygon given by μ and Newton polygon \mathcal{P}. Hence by Theroem 5.4 there exists a compatible filtration with Newton polygon \mathcal{P} on $M_{h} / \epsilon M_{h}$. Hence by Theorem 5.3 applied to $M=M_{h}$ there exist λ as in (ii) and $r \in G(\mathcal{O})$ such that $r h \sigma(r)^{-1} \in \mathcal{I} \eta_{\lambda} \epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda} \eta_{\lambda} \mathcal{I}$. Using $G(\mathcal{O})=\coprod_{y \in W} \mathcal{I} w \mathcal{I}$ this proves (ii).
(ii) $\Rightarrow(i)$: By $(i i)$ there exists an element $h \in \mathcal{I} x \mathcal{I}$ which is $G(\mathcal{O})-\sigma$-conjugate to an element of $\mathcal{I} \eta_{\lambda}^{-1} \epsilon^{-\lambda} x_{\mathcal{P}} \epsilon^{\lambda} \eta_{\lambda} \mathcal{I}$. Hence by Theorem 5.4 the 1-truncated Dieudonné module $Z:=$ $M_{h} / \epsilon M_{h}$ has a lift M with Newton polygon \mathcal{P}. Since M and M_{h} have the same truncation, as discussed in Subsection 2.2 the matrix h^{\prime} of $F: M \rightarrow M$ with respect to a suitable basis lies in $G(\mathcal{O})_{1} h G(\mathcal{O})_{1}$. Since $G(\mathcal{O})_{1} \subset \mathcal{I}$ we have $h^{\prime} \in \mathcal{I} x \mathcal{I}$. Since $M_{h^{\prime}} \cong M$ has Newton polygon \mathcal{P} there exists $g \in G(L)$ such that $g^{-1} b \sigma(g)=h^{\prime} \in \mathcal{I} x \mathcal{I}$. Thus $g \mathcal{I} \in X_{x}(b)$.

References

[CV] M. Chen and E. Viehmann. Affine Deligne-Lusztig varieties and the action of J. arXiv:1507.02806.
[dJO] A. J. de Jong and F. Oort. Purity of the stratification by Newton polygons. J. Amer. Math. Soc., 13(1):209-241, 2000.
[GHN] Ulrich Görtz, Xuhua He, and Sian Nie. P-alcoves and nonemptiness of affine DeligneLusztig varieties. Ann. Sci. Éc. Norm. Supér. (4), 48(3):647-665, 2015.
[Man] Ju. I. Manin. Theory of commutative formal groups over fields of finite characteristic. Uspehi Mat. Nauk, 18(6 (114)):3-90, 1963.
[Oor1] Frans Oort. Minimal p-divisible groups. Ann. Math. (2), 161(2):1021-1036, 2005.
[Oor2] Frans Oort. Simple p-kernels of p-divisible groups. Adv. Math., 198(1):275-310, 2005.
[Rap] Michael Rapoport. A guide to the reduction modulo p of Shimura varieties. Astérisque, (298):271-318, 2005. Automorphic forms. I.
[RZ] M. Rapoport and Th. Zink. Period spaces for p-divisible groups, volume 141 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1996.
[Vie] Eva Viehmann. Truncations of level 1 of elements in the loop group of a reductive group. Ann. of Math. (2), 179(3):1009-1040, 2014.
[Zin] Thomas Zink. On the slope filtration. Duke Math. J., 109(1):79-95, 2001.

[^0]: *Imperial College London, p.ziegler@imperial.ac.uk

