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Abstract

We give a criterion which allows to determine, in terms of the combinatorics of the root
system of the general linear group, which p-kernels occur in an isogeny class of p-divisible
groups over an algebraically closed field of positive characteristic. As an application we
obtain a criterion for the non-emptiness of certain affine Deligne-Lusztig varieties associated
to the general linear group.

1 Introduction

This article studies the relationship between two invariants of a p-divisible group ¥ over an
algebraically closed field of characteristic p > 0: The first is the isogeny class of ¥ which
is encoded in its Newton polygon and the second is the isomorphism class of the kernel
of multiplication by p on ¢. Once certain numerical invariants of ¢ are fixed, both these
invariants can only take on finitely many values. In this article, we give a computable criterion,
in terms of the combinatorics of the root system of the general linear group, which determines
which pairs of these invariants can occur together for some ¢. That is we determine which
p-kernels can occur in any isogeny class of p-divisible groups. We also consider the analogous
question in equal characteristic.

This question is motivated by our interest in the stratifications of suitable moduli spaces
of abelian varieties or p-divisible groups obtained by decomposing these spaces according to
the two invariants described above. For example, on a Rapoport-Zink space (c.f. [RZ]),
one can define the Ekedahl-Oort stratification by decomposing the space according to the
isomorphism class of the p-kernel of the universal p-divisible group and our criterion allows
to determine which of these strata are non-empty. Similarly, on a moduli spaces of abelian
varieties with suitable extra structure in positive characteristic, one obtains two stratifications,
the Newton polygon stratifications and the Ekedahl-Oort stratification and we would like to
understand which strata of these two stratifications intersect each other. However, in this
context one encounters not just p-divisible groups, but p-divisible groups with additional
structure such as a pairing. For applications to such stratifications it would thus be necessary
to obtain generalizations of the results of this article for p-divisible groups with such additional
structure. It seems natural to expect that in such a setting the analogues of our results should
hold with the group GLj replaced by an arbitrary reductive group. The author intends to
treat this question in a follow-up article.

As an another application of our results, in Section [6] we give a criterion for the non-
emptiness of affine Deligne-Lusztig varieties for the group GLj in the situation where the
involved Hodge cocharacter is minuscule.

Throughout, we work with Dieudonné modules instead of p-divisible groups. We work
over a fixed algebraically closed field k of characteristic p and work either over the Witt
ring O = W(k) or O = k[[t]] whose uniformizer p or ¢ we denote by e. We use the following
language: A Dieudonné module is a finite free module over O together with suitably semilinear
endomorphisms F' and V satisfying F'V = FV = e. A 1-truncated Dieudonné module is a
finite-dimensional vector space over k together with suitably semilinear endomorpism F' and
V satisfying ker F' = im V and im F' = ker V. To each Dieudonné module M one can associate
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its truncation M/eM. By a lift of a 1-truncated Dieudonné module Z we mean a Dieudonné
module M together with an isomorphism M/eM = Z. To each Dieudonné module M we
associate the Newton polygon obtained via covariant Dieudonné theory. Then we answer
the above question by determining for a given 1-truncated Dieudonné module Z and Newton
polygon P whether there exists a lift of Z with Newton polygon P.

For the sake of simplicity, in this introduction we restrict ourselves to the case that P is the
straight Newton polygon with slope n/(n+m) and endpoint (n+m,n) for some non-negative
coprime integers n and m. For the result for arbitrary Newton polygons see Theorem To
state our result, we will need the following:

Let h:=n+m and G := GLp,0. Let T' C G be the torus of diagonal matrices and B C G
the Borel subgroup of upper triangular matrices. Let W 22 S,, be the Weyl group of G with
respect to T and S = {(i,i4+1) | 1 <4 < h—1} the generating system of W induced by B. Let
1 € X.(T) be the cocharacter t — (t,...,¢,1,...,1) where ¢t occurs with multiplicity m. Let
I be the type S\ {(m,m + 1)}. We denote by W; C W the subgroup generated by I and by
"W c W the set of left reduced elements with respect to Wi. There exists a natural bijection
between isomorphism classes of 1-truncated Dieudonné modules Z satisfying rky Z = h and
tky F(Z) = n and elements of TW C W (c.f. Subsection . For w € TW we denote the
corresponding 1-truncated Dieudonné module by Z,,.

Let Z C G(O) be the preimage of B(k) under the projection G(O) — G(k). Let W be
the extended Weyl group of G. We denote the canonical inclusion X, (T) — W by A — €.
For \: t — (t*,...,t*) € X,(T) we let 5 be the unique permutation n € W such that
An1) < ... Ageny and n(@) < n(i’) for any ¢ < i’ such that A; = Ay. Finally, we let zn,m € W
be the matrix of Frobenius on the minimal Dieudonné module Hy » (c.f. Definition .
Then our result is:

Theorem 1.1 (c.f. Theorem [5.4). Let w € 'W. The following are equivalent:

(i) The 1-truncated Dieudonné module Z,, admits a lift with Newton polygon P.

(it) There exist A € X.(T) satisfying € *Tnme* € We'W as well as y € W such that
wwowo,re" € TyIny e *wpme Iy 'T.

Let Z denote the center of G. The group X.(Z) C X.(T) acts on the set
(Ae Xu(T) | € M anme € W' W}

by addition. By Lemma this action has finitely many orbits. In this way the existence
quantifier in (i) ranges over a finite set. Hence condition (iz) is computable.

Now we explain our argument:

Given a isosimple Dieudonné module M of slope n/(n+m), we obtain a filtration (G? Z) ¢z
on Z := M/eM such that for all j € Z we have F(G’Z) = G'*"Z N F(Z) and V(G Z) =
GIT™Z NV (Z) by embedding M into the minimal Dieudonné module M, (c.f. Subsection
. Conversely, given such a filtration on a 1-truncated Dieudonné module Z we can con-
struct a lift of Z which is isoclinic of slope n/(n+m) (c.f. Subsection [4.3)). Hence, in order to
determine whether a given Z admits such a lift, it suffices to determine whether there exists
such a filtration on Z, which we call a compatible filtration of type (n,m) (c.f. Subsection
).

To determine whether there exists a compatible filtration on Z of type (n,m), we first
consider the associated graded situation: Given a compatible filtration (G?Z);cz of type
(n,m), one obtains the graded 1-truncated Dieudonné module ®;czG?Z/G'*'Z on which
F and V act as morphisms of degree n and m respectively. Following an idea of Chen and
Viehmann, in Subsection[3.2} we classify such graded 1-truncated Dieudonné modules in terms
of cocharacters A € X..(T) satisfying € >z, me* € WerW.

Then, by comparing compatible filtrations to the associated gradings, we obtain the fol-
lowing criterion for the existence of a compatible filtration:

Theorem 1.2 (c.f. Theorem[5.3). Let M be a Dieudonné module of rank h such that M/FM
has length m. The following are equivalent:

(i) On the truncation Z = M/eM there exists a compatible filtration of type (n,m).

(i) There exists A € X.(T) satisfying € *xn me> € We*W such that the matriz of F: M —
M with respect to some O-basis of M lies in In/\_lefkmn,meAnAI.

Then by combining the above steps we obtain Theorem [[.1]
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2 Preliminaries

2.1 Setup

Throughout, we will work with the following setup and notation:

e [ is an algebraically closed field of characteristic p > 0.
e O is either the Witt ring W (k) or the ring k[[¢]].

e For a € k, we let [a] € O be either the canonical lift of a in W (k) or the image of a
under the inclusion k < k[[t]].

e ¢ € O is the uniformizer p or ¢t accordingly.
e [ is the function field of O.
e v: L — 7Z is the valuation normalized such that v(e) = 1.

e 0: O — O is either the canonical lift W (k) — W (k) of Frobenius or the automorphism
k[[t]] — E[[t] fixing ¢t and sending a € k to a®.

e A Dieudonné module is a finite free O-module together with a o-linear endomorphism F'
and a ¢~ *-linear endomorphism V satisfying FV = VF = e. (In the equicharacteristic
case, such an object is usually called an effective and minuscule local GLj-shtuka.)

e Fi:k — k, x+— xP is the Frobenius automorphism.

e A 1-truncated Dieudonné module is a finite-dimensional k-vector space together with an
Fi-linear endomorphism F' and an Fk_l—linear endomorphism V' such that im F' = ker V/
and ker V =imV.

e To a Dieudonné module M we associate the 1-truncated Dieudonné module M /eM.

e By the Newton polygon of a Dieudonné module M we mean the Newton polygon ob-
tained via covariant Dieudonné theory. That is a Dieudonné module is isoclinic of slope
r/s for integers r, s > 0 if and only if it is isogenous to a Dieudonné module on which
e "F? is an automorphism.

e We write Newton polygons in the form P = (v1,...,vn) where vn < ... < vy are the
slopes occurring in P with multiplicities.

e For v € Q2° we denote by n, and m, the unique non-negative coprime integers such
that v = n,/(ny, +m,).

We will often work with respect to given integers 0 < d < h. Then we use the following;:

e G is the group scheme GLj, 0.

e T C @ is the canonical torus of diagonal matrices.

e B C @ is the canonical Borel subgroup of upper triagonal matrices.

e 7 C G(O) is the preimage of B(k) under the projection G(O) — G(k).

G(0O); is the kernel of the projection G(O) — G(k).

o W = S is the Weyl group of G with respect to 7' which we identify with the set of
monomial matrices with entries in {0,1} in either G(k) or G(O).

S={(i,i+1)|1<i<h—1} CW is the set of simple reflections induced by B.
e [ C Sisthetype S\{(h—d—-1,h—d)}.
Wr C W is the subgroup generated by I.

W is the set of left reduced elements with respect to I, that is the set of elements w
which have minimal length in Wrw.



e o is the longest element in W.
e wo s is the longest element in W7.

e We denote by W = X, (T) x W the extended Weyl group of G, which we identify with
the group of monomial matrices in G(O) with entries in {0} U p”.

e For A € X.(T), we denote by €* := A(p) its image in W.

e We denote the cocharacter A € X, (T') which sends ¢t € G,, to the diagonal matrix with
entries (t*,...,t ) by (A1,..., An).

e 1 € X, (T) is the cocharacter (1,...,1,0,...,0) where the entry 1 has multiplicity h —d.

e We say that a Dieudonné module M has Hodge polygon given by p if rko M = h and
M/FM has length d.

e We denote again by o the automorphism of G(O) induced by o: O — O.

e To an element g € G(0)e*G(O) we associate the Dieudonné module M, = (O", go).
This gives a bijection between G(O)-o-conjugacy classes in G(O)e"*G(O) (i.e. orbits
under the action G(O) x G(0) — G(0O), (g, h) — gha(h)™") and isomorphism classes of
Dieudonné modules with Hodge polygon given by pu.

2.2 Classification of 1-truncated Dieudonné modules

Fix integers 0 < d < h. We call a 1-truncated Dieudonné module Z of numerical type
(d, h) ifit satisfies tky, Z = h and rky F(Z) = h —d. Any l-truncated Dieudonné module
of numerical type (d, h) can be lifted to a Dieudonné module with Hodge polygon given by
w. Furthermore, one can check that for two elements g1,g2 € G(O)e"G(O) the truncations
My, /eMy, and My, /eM,, are isomorphic as 1-truncated Dieudonné modules if and only if
g2 is G(O)-o-conjugate to an element of G(0)1e*G(0O)1. Hence isomorphism classes of 1-
truncated Dieudonné modules of numerical type (d, h) correspond to the G(O)-o-conjugacy
classes in G(0)1\G(O)e*G(O)/G(O)1. By [Vie, Theorem 1.1] the set {wwowo,re | w € TW}
gives a set of representatives for these conjugacy classes. Thus the 1-truncated Dieudonné
modules Zy, 1= Muywywg rer /eMwwOwO’Ieu for w € TW are representatives for the isomorphism
classes of 1-truncated Dieudonné modules.

2.3 Minimal Dieudonné modules

For coprime non-negative integers n and m, the minimal Dieudonné module Hy ,, of slope
n/(n+m) is defined as follows (c.f. [Oorl]): It is the free O-module with basis e1, ..., entm.
For i > n 4+ m, we write i = a(n + m) + b for unique integers ¢ > 1 and 1 < b < n+ m and
define e; := €*ep. Then F and V are defined by F(e;) = eiyn and V(e;) = €ijym for all 4 > 1.

Let ® be the o-semilinear automorphism of H, ., which fixes the e;. Then &7 = 7d,
F=&r"and V=0 '7"

Definition 2.1. Let n and m be coprime non-negative integers. We define x,, », € W to be
the matrix of F': Hy, m — Hy,m with respect to the basis (en, ..., e1).

3 Graded 1l-truncated Dieudonné modules

Throughout this section we fix coprime non-negative integers n and m and let h := n +m
and d :=n.

By a grading of a vector space we will always mean a Z-grading. For a graded vector space
X = @jezX? we will call the elements of the X7 the homogenous elements of X. For i € Z,
we say that an additive homomorphism X — X’ between graded vector spaces is of degree i
if it sends every homogenous element of degree j to a homogenous element of degree j + i.

Definition 3.1. A graded 1-truncated Dieudonné module is a 1-truncated Dieudonné module
Z together with a grading Z = @;cz2Z such that F' and V send homogenous elements of Z
to homogenous elements.

A morphism of graded 1-truncated Dieudonné modules is a morphism of 1-truncated
Dieudonné modules of degree zero.



Definition 3.2. A graded 1-truncated Dieudonné module of type (n,m) over k is a graded
1-truncated Dieudonné module (Z, F, V') such that F' is of degree n and V is of degree m.

Lemma 3.3. Let Z = @;czZ’ be a graded 1-truncated Dieudonné module of type (n,m).
There exists an integer ¢ such that rky Z = c(n + m) and such that for every j € Z we have

Z kg 7' =c.

i=j  (n+m)

Proof. For j € Z let Z(j) := ®i=; (n+m)Z'. The fact that Z is graded of type (n,m) implies
that for each j we have a short exact sequence

0 Z(j —m)/(Z(j —m)NF(Z)) % Z(j) 5 Z(j +n) N F(Z) — 0.
Using Z(j — m) = Z(j + n) this implies rky Z(j) = rkx Z(j + n). Since n and n + m are
coprime, iterating this fact yields the claim.

O

3.1 Classification in terms of semimodules

Definition 3.4 (c.f. [Oor2, (1.7)] and [dJO| Section 6]). A beginning of a semi-module of
type (n,m) is a subset C' C Z such that for each i € Z the equivalence class i + (n + m)Z
contains exactly one element of C' and for each i € C either i +n € C or i —m € C.

Lemma 3.5. Let Z = @jgsz a graded 1-truncated Dieudonné module of type (n,m) of rank
h. Then Cz :=={j € Z | Z’ # 0} is a beginning of a semi-module of type (n,m).

Proof. This follows from the definition of 1-truncated Dieudonné modules of type (n,m)
together with Lemma [3.3] O

Construction 3.6. Let C be a beginning of a semi-module of type (n,m). We construct a
graded 1-truncated Dieudonné module Z¢ of type (n,m) and of rank h as follows:

Let Z be the free k-vector space with basis (e;);cc. Endow Z¢ with the grading for which
each e; is homogenous of degree j. We define F' and V as follows: Let j € C. If j+n € C
we let F'(e;) := €j4n and V(ej4n) := 0. Otherwise j —m € C and we let V(ej_m) := e; and
F(e;) = 0. Then by a direct verification Z¢ has the required properties.

Proposition 3.7. The assignments Z = @ngZj — Cz and C — Zc give mutually inverse
bijections between the set of isomorphism classes of 1-truncated Dieudonné modules of type
(n,m) and of rank h and the set of beginnings of semi-modules of type (n,m).

Proof. The identity C = Cz,, follows directly from the definition of Z¢.

It remains to prove that each Z is isomorphic to Z¢, as a graded 1-truncated Dieudonné
module. To see this, start with an element jo € Cz and a non-zero element fy € Z%°. We
iteratively construct a sequence of pairs (js € Cz, fs € Z7+ \ {0}) as follows: If ji +n € C we
let jrr1 := jr +n and fj+1 := F(f;). Otherwise we let jr41 := jx —m and fj41 € Z7* ™™ the
unique element such that V(fj+1) = f;.

By construction, for s > 0, the element js € Cz is the unique element of Cz in js+sn+hZ.
Thus jr = jo and hence fn = Afo for some A € k*. Pick u € k* such that p*" A = p.
In Cz there a m elements j satisfying j +n € Cz and n elements j satisfying j — m € Cz
(c.f. [dJOL Section 6]). Hence by replacing fo by pfo in the above construction we obtain a
sequence such that f, = fo. Then for each j € Cz we let e; := fi for the unique 0 < k < h
such that ji = j. The resulting basis (e;);ec, of Z gives an isomorphism Z 2 Z¢, of graded
1-truncated Dieudonné modules. O

3.2 Classification in terms of cocharacters

Now we show that 1-truncated Dieudonné modules of type (n,m) and rank h can also be
classified by certain cocharacters A € X.(T'). The idea behind this classification is due to
Chen and Viehmann (c.f. [CV]).



Construction 3.8. Let A = (A\1,..., ) € X.(T) be a cocharacter satisfying ez, ne* €
WetW. We construct a graded 1-truncated Dieudonné module of type (n,m) as follows: As
in Deﬁnition we consider the Dieudonné module M, ., with the basis (éntm,...,e1). For
1 <j < hlet fj = e)‘fehﬂ,j. The f; form a O-basis of a submodule M C M, », and
the matrix of F' with respect to this basis is ef)‘xn,me)‘. Hence the assumption eiAwn,mEA S
We'W means that M is a sub-Dieudonné module of M, ,,, with Hodge polygon given by pu.
Let Z := M/eM with basis (f; := f; + eM)1<j<n. Equipping Z with the grading for which
each f; is homogenous of degree h+1—j+h\; makes Z into a graded 1-truncated Dieudonné
module of type (n,m) which we denote by Z,.

Proposition 3.9. The assignment X\ — Zx gives a bijection from the set
Ae X (T) | € zpme € WHW}

to the set of isomorphism classes of 1-truncated Dieudonné modules of type (n,m) and rank
h.

Proof. Let Z be a 1-truncated Dieudonné module of type (n,m) and rank h. By Proposition
[3-7 we may assume that Z = Z¢ for some beginning of a semi-module C. For each 1 < j < h
let \; be the unique integer such that h +1 — j 4+ h); € C. Let M be the the sub-O-module
of Hy m spanned by {e; | j € C} = {eYeny1; | 1 < j < h}. The fact that C is the
beginning of a semi-module of type (n,m) implies that M is a sub-Dieudonné module of
Hy . Furthermore, the assignment e; € M — e; € Z¢ for ¢ € C induces an isomorphism
M/eM = Zc of 1-truncated Dieudonné modules. This implies that M has Hodge polygon
given by p which in turn is equivalent to €y, me* € WeW. It follows from the above that
Zc =2 Zy as graded 1-truncated Dieudonné modules. Thus the map in question is surjective.
As for the injectivity, it follows directly from Construction that A can be recovered from
the grading on Zj. O

4 Compatible filtrations on 1-truncated Dieudonné
modules

4.1 Definitions

By a decreasing filtration (G?X);ez on a finite-dimensional vector space X we mean a family
of subspaces such that G/ X D G/T1X for all j € Z, such that G’ X = X for all small enough
j and such that G?X = 0 for all large enough j. Given two descending filtrations (G7X);cz
and (G’ X’)jez on two such vector spaces X and X’ and an integer 4, we call an additive
homomorphism h: X — X filtered of degree i if h(GX) C G'T*X for all j € Z.

Lemma 4.1. Let n and m be coprime non-negative integers and Z a 1-truncated Dieudonné
module over k. Let (G’ Z)jecz a descending filtration on Z such that F' is filtered of degree n
and such that V is filtered of degree m. The following two conditions are equivalent:

(i) The vector space gr Z := ®;G’ Z/GIT' Z together with the graded semilinear endomor-
phisms of degree n and m induced by F' and V' is a graded 1-truncated Dieudonné module
of type (n,m).

(ii) For all j € Z we have F(G'Z) = GI""ZNF(Z) and V(G Z) = GI*™Z NV (2).

Proof. This follows from a direct verification. O

Definition 4.2. Let n and m be coprime non-negative integers and Z a 1-truncated Dieudonné
module over k. A compatible filtration of type (n,m) on Z is a decreasing filtration £ =
(G? Z)jez by k-submodules such that F is filtered of degree n, such that V is filtered of
degree m and such that the equivalent conditions of Lemma [f.1] are satisfied.

For such an E, we denote by gr(Z) the associated graded 1-truncated Dieudonné module
from Lemma 411

Example 4.3. Let n and m be coprime non-negative integers and Z = @®;ezZ" a graded 1-
truncated Dieudonné module of type (n,m). Then the filtration E given by G¥(Z) 1= @, 2"
is a compatible filtration of type (n, m). The associated graded 1-truncated Dieudonné module
grp Z is canonically isomorphic to Z.



Definition 4.4. Let P = (v1,...,vn) a Newton polygon. Let Z be a 1-truncated Dieudonné
module. A compatible filtration with Newton polyon P on Z is a filtration 0 = Zyp C Z;1 ... C
ZN = Z by sub-1-truncated Dieudonné modules such that the subquotients Z;/Z;_1 are 1-
truncated Dieudonné modules of rank n,, + m,, together with compatible filtrations E; on
the Z;/Z;—1 of type (nv,, my;).

4.2 Compatible filtrations associated to Dieudonné modules

In this subsection, for a Dieudonné module M with Newton polygon P we construct a com-
patible filtration with Newton polygon P on M/eM. The idea behind this construction is
originally due to Manin (c.f. [Man| Section IIL.5]) and was also used by de Jong and Oort in
[dJO] and by Oort in [Oor2].

Construction 4.5. Let n and m be coprime non-negative integers. Let M be an isosimple
Dieudonné module of slope n/(n + m). We define a compatible filtration of type (n,m) on
the 1-truncated Dieudonné module Z := M /pM as follows:

By the slope assumption there exists an embedding M <— H, . We choose such an
embedding and let M7 := M N7/ Hy, ., for all j > 0. The fact that F = 7"® and V = 7™ ™"
on H, ., implies that F(M7) = M7t 0 F(M) and V(M?) = M7*™ N V(M) for all j € Z.
These two identities imply that G’ (Z) := (M7 +eM)/eM C Z defines a compatible filtration
Eu of type (n,m) on Z. Since M is isosimple, the vector spaces Z and gryp Z have rank
n-+m.

Remark 4.6. By [dJO| Section 5.6] a different choice of embedding M < H,, », in Construc-
tion yields to a filtration which differs from the given one only by a shift of the indexing
of the filtration.

Construction 4.7. Let M be a Dieudonné module and Z := M/eM. Let P be the Newton
polygon of M. We define a compatible filtration on Z as follows: We start with the slope
filtration of M (c.f. e.g. [Zin, Corollary 13]) and refine it to a filtration 0 = Mo C My C ... C
My = M by sub-Dieudonné modules such that each M;/M;_, is isosimple. For 0 < i < N
let Z; := M;/eM;. Then Construction applied to the Dieudonné modules M;/M;_1 yields
compatible filtrations F; on Z;/Z;—1 = (M;/M;—1)/e(M;/M;—1). Alltogether we obtain a
compatible filtration with Newton polygon P.

4.3 Lifts associated to compatible filtrations

In Construction @, we associate to each Dieudonné module M a compatible filtration Ens
on M/eM with the same Newton polygon as M. In this subsection we show that conversely,
for each 1-truncated Dieudonné module Z together with a compatible filtration E on Z with
Newton polygon P there exists a Dieudonné module M lifting Z which has Newton polygon
P.

Construction 4.8. Let P = (v1,...,vn) be a Newton polygon. Let Z be a l-truncated
Dieudonné module and E = ((Z;)o<i<n, (Ei)1<i<n) a compatible filtration with Newton
polygon P on Z. We construct a Dieudonné module M lifting Z as follows:

For each 1 < i < N let C; be the beginning of a semi-module of type (n;,m;) :=
(nw;,my,;) associated to grg, (Z;/Z;—1). By Proposition we can choose isomorphisms
8y, (Zi/Zi-1) = Zc,; of graded 1-truncated Dieudonné modules and hence obtain bases
(€})jec, of the grg, (Zi/Z;i—1). In the following by a pair (4, j) we always mean such a pair
satisfying 1 <4 < N and j € C;. For each pair (,7) let f; € Z; be a lift of €.

Let M be the free O-module with basis (g7)(; ;). We make M into a Dieudonné module
by defining the image of g; under F' and V by a nested double induction, with the outer
induction being increasing on ¢ and the inner induction being decreasing on j. For pairs (i, )
and (i',5') we let (i,5) < (i',5') if and only if either the conditions i = i’ and j > j’ or the
condition i < 4’ is satisfied.

First we define F: Consider a pair (¢, 7). If j + n; € C; then

F(f)) = fjam + >, aify

(#,3") = (4:3+ns)



for certain a;'-// € k. Then we let
F(g}) =g, + > lajlgj
(¢/,5")=(4,5+n;)
Otherwise we have j — m; € C; and

B=V(fim)+ > bifh

(#.5/)=(0.)

for certain b;// € k. In this case we define

F(f}) = eGjom + 30 (05 1F(g)),

(i,37)=<(4,3)

where the terms F' (g;l,) appearing are already defined by induction.
We define V' dually: Consider a pair (z,j). If j +m; € C; then

V(f]) = fism: + S Gty

(4",5") =< (4, 5+m;)
for certain c;// € k. Then we let
V() = Gim, + D l¢lgp
(¢,5")=(4,5+m;)
Otherwise we have j —n; € C; and

B=F(fa)+ > difh

(i, =(6,9)

for certain d;l/ € k. In this case we define

VU = egimn + 30 (@) IV,

(i",3")= (1,9
where the terms V(g;l/) appearing are already defined by induction.
We extend F and V to a o- respectively a ¢~ '-linear endomorphism of M.

Lemma 4.9. Let M be a Dieudonné module and n and m non-negative integers such that
the Newton polygon of M has endpoint (cn,c(n + m)) for some integer ¢ > 0. Assume that
there exists a function v: M\ {0} — ZZ° with the following properties:

(i) v(F(x)) =v(x)+n for allz € M.
(i) v(V(z)) =v(z)+m for allxz € M.
Then M is isoclinic of slope n/(n+ m).
Proof. Let v be a slope of M. There exists a non-zero Dieudonné submodule M’ of M such

that for all integers a > 0 we have F*"v+™) A/ — pa™v M| Let x be a non-zero element of
M’. For some integer a > 0, write F*"+m) (3) = p2™ (2 for some =’ € M’. Then we get:

v(@) + aln, +my)n = v(F*™ ) (2)) = v (p*™ (') = v(2) + anu(n + m) > an,(n + m)

By letting a go to infinity this inequality implies v = n, /(n, + m,) < n/(n +m). From this
the claim follows by comparing the Newton polygon of M to the constant Newton polygon of
slope n/(n + m) with the same endpoint.

O

Proposition 4.10. Let Z and E b’e as in Construction@ For each1 <i< N let M; C M
be the O-submodule spanned by {g; | i <4,j € Cy}.

(i) The module M from Construction 1s a Dieudonné module, i.e. FV =VF =e.



(i) The assigment gi+eM — fi gives an isomorphism M/eM = Z of 1-truncated Dieudonné
modules.

(iii) The M; are Dieudonné submodules of M.
(w) For each 1 <i < N, the Dieudonné module M;/M;_1 is isoclinic of slope n;/(n; + m;).
(v) The Dieudonné module M has Newton polygon P.

Proof. (1), (#) and (¢it) follow from the definition of M by the same double induction as in
Construction 8

(v): We continue to use the notation from Construction For 7 € C; we denote
f; + M;_1 by f; These elements form a O-basis of M;/M;_1. We define a function

v Mi/Mi—l \ {0} — ZEO

by
o(Y ] aiff) = min((n; +mi)v(a;) + 7).
JjeC; ‘
It follows from the definition of M that v satisfies the conditions of Lemma [£.9] for n = n;
and m = m;. Thus (iv) follows from Lemma
(v) follows from (iv).

O

5 Existence of compatible flags

Let P = (v1,...,vn) be a Newton polygon. For 1 <+4i < N we denote (n,,, my;) by (n;, m;)
and let h; := n; + m; and d; := m;. For such i we let G;,T;, W;, Z;, ., etc., be the data from
Subsection [2.1] associated to (h,d) = (hi,di). Let h=3 hi and [[,.,.yGi = H C G = GLy,
be the Levi subgroup containing 7' corresponding to the decomposition h = h1 + ... + hn.
We denote by Wy := H(W (k)N w (resp. Wx) the extended Weyl group (resp. the Weyl
group) of H. Let d:=>", ., n M-

Definition 5.1. Let A € X.(T). There is a unique permutation n € Wy with the following
properties:

(i) For each 1 <4 < N we have An(ha o thi1+1) S Aqhatothi_1+2) S oo S Aq(hg+othy)-
(i) For each 1 < j,j' < h such that A; = A\;» we have j < j" if and only if n(j) < n(j").
We denote this permutation n by 7.
Definition 5.2. Let xp € WH be the matrix whose i-th block is given by z,, m, for each
1<i<N.
Theorem 5.3. Let M be a Dieudonné module with Hodge polygon given by . The following
are equivalent:
(i) On the truncation Z = M/eM there exists a compatible filtration with Newton polygon
P.

(i) There exists \ € X.(T) satisfying e *xpe € WeW such that the matriz of F: M — M
with respect to some O-basis of M lies in In;le”\acpekml

Proof. Using o-conjugation by elements of G(O), which amounts to base change on M, one
sees that (i7) is equivalent to saying that there exists such a A such that the matrix of F' with
respect to some O-basis of M lies in " Ze ape.

(1) = (#): Let E = ((Zi)o<i<n, (Ei)i<i<n) be a compatible filtration of Newton poly-
gon P on Z. Fix 1 < ¢ < N. By Proposition there exists \' € X.(T}) satisfying
€N T mie® € Wie"iW; such that grg, (Zi/Zi—1) =2 Zyi. Let M* and (f})i<i<n; be the
Dieudonné module together with its O-basis from Constructionapplied toA = /\_i such that
Zyi = M'/eM'" and the matrix of F: M' — M* with respect to (fi)i<j<n, is € > Tngm €
Fix an isomorphism M*/eM" = grp (Z;/Z;-1) and let (f;)1<j<n, be the image of (f})i<j<n,
in grg, (Zi/Zi—1). Let M; be the preimage of Z; in M and for 1 < j < h; let f; be lift of f;

to Z; and g;- a lift of f]’ to M;.



By comparing the definition of Z,: and 7,: one sees that the subspaces appearing in
the filtration E; on Z;/Z;_1 are those of the form 2131'/33' kffw(j,) + Zi—q for 1 < 5 < h;.
This together with the fact that the matrix of F': M* — M® with respect to (f})i<j<n, is
e*Aimni,mieAi implies that the matrix of F': M;/M,_1 — M;/M;_1 with respect to the basis
(99)1<j<n,; lies in "™ Te Miap, m €.

Now let A € X,(T) be the cocharacter whose factor in the i-th block of H is given by
A\ for each 1 < i < N. From the definition of zp and the corresponding property of the X\’
it follows that e *zpe® € We*W. Furthermore, from the definition of 1y and the above it
follows that the matrix of F': M — M with respect to the O-basis (f{),; lies in " Ze *ape’.
This proves (i).

(i) = (4): We reverse the above arguments: By assumption there exists a O-basis
of M with respect to which the matrix of F lies in " Ze *zpe*. Write such a basis as
(FLof3e e fh R f)- For 1< i < N let My i=Y,,  Ofi and Z; the image of M;
in Z. The form of the matrix of F' with respect to the basis (f}),;) implies that F(M;) C M;
for each 4. Fix 1 <4 < N. Let A* (resp. ny:) be the part of A (resp. nx) in G;. Then the ma-
trix of F' on M;/M;_1 with respect to (g})1<j<n, lies in " Zie N Ty m, € which proves that
M;/M;_1 is a Dieudonné module with Hodge polygon given by u; and hence that Z;/Z;_1 is
a 1-truncated Dieudonné module of rank h;.

For 1 < j < h; let f; be the image of gj- in Z;. As above we consider the graded 1-
truncated Dieudonné module Z,: with its canonical basis (f;)i<i<j. Let (G’(Zyi))jez be
the canonical filtration of type (n;, m;) associated to the grading on Z,:. For j € Z define
G Zi)Zi—1) = 2o 7i,e6i(2,0) kf;, Similar to the above one checks by comparison with

Z i that this defines a compatible filtration E; of type (ni;,m;) on Z;/Z;—1. Alltogether we
have constructed a compatible filtration with Newton polygon P on Z.

O

Now we can prove our main result:
Theorem 5.4. Let w € TW. The following are equivalent:
(i) The 1-truncated Dieudonné module Z,, admits a lift with Newton polygon P.
() On Z,, there exists a compatible filtration with Newton polygon P.
(iii) There exists A € X.(T) satisfying € *zpe* € We*W such that wwowo, e is G(O)-o-
conjugate to an element of In;le_AxpeAn,\I.
(iv) There exist A € X.(T) satisfying e *zpe* € We'W as well as y € W such that

wwowo,re” € TyIny ‘e *wpe*mIy 'Z.

Proof. The implication (i) = (i) follows from Construction .71 The implication (ii) = (4)
follows from Proposition The equivalence of (i) and (4i¢) is a reformulation of Theorem
applied to the Dieudonné module Mwwowo,ze“-

The implication (i77) = (iv) follows from the decomposition G(O) = [,y ZyZ. If (iv)
holds, there exists an element of Zwwowo,re*Z which is G(O)-o-conjugate to an element of
Iny e *rpe*nnZ. By [Vie, Theorem 1.1], each element of Zwwowo,e"Z is G(O)-o-conjugate
to an element of G(O)jwwowo, 7" G(O)1. Using the fact that G(O); is normal in G(O) this
implies (7). O

Let Z be the center of H. Then X.(Z) acts on the set

X (T = {r e X.(T) | € *azpe’ € We'W}

by addition.
Lemma 5.5. This action on X. (T)P has finitely many orbits.

Proof. By looking at each block of H separately, we assume that P = (n/(n+m)) for coprime
non-negative integers n and m. Via Propositions and the set X,.(T)” can be identified
with the set of beginnings C' of semimodules of type (n,m). Under this identification, an
element ¢ € X, (Z) 2 Z sends C C Z to C + 4. In this form the claim is [dJOl 6.3]. O
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6 Non-emptiness of certain affine Deligne-Lusztig va-
rieties

Fix 0 <d<h. Forz € Wandbe G(L), we consider the associated affine Deligne-Lusztig
variety (c.f. Rapoport [Rap]), which is the following set:

X, (b) :={gZ € G(L)/T | g 'bo(g) € TzT}

From Theorem [5.4] we get the follwing criterion for the non-emptiness of certain of the
Xz(b). Here we use again the objects defined in Section |[5| with respect to the given Newton
polygon P. In case the Newton polygon P has a single slope, a different such criterion was
previously given by Gortz, He and Nie in [GHN].

Theorem 6.1. Let v € We'W and b € G(O)e"G(O). Let P the Newton polygon of the
Dieudonné module My. The following are equivalent:

(i) The set X (b) is non-empty.

(ii) There exist A € X.(T) satisfying e *xpe* € We'W and y € W such that

T € IyIngleﬂ\mpeAnAIgflI.

Proof. (i) = (ii): Let g7 € X,(b) and h := gbo(g™") € ZaZ. Since x € We'W we obtain
a Dieudonné module M) with Hodge polygon given by p and Newton polygon P. Hence
by Theroem there exists a compatible filtration with Newton polygon P on My, /eMj,.
Hence by Theorem applied to M = M, there exist A as in (i) and r € G(O) such that
rho(r)~t € Ime *zpe*mZ. Using G(O) = [, ew ZwZ this proves (ii).

(49) = (¢): By (it) there exists an element h € ZaZ which is G(O)-o-conjugate to an
element of In/\_lef)‘xpekm\l. Hence by Theoremthe 1-truncated Dieudonné module Z :=
My, JeM}, has a lift M with Newton polygon P. Since M and M}, have the same truncation, as
discussed in Subsection the matrix b’ of F: M — M with respect to a suitable basis lies
in G(0)1hG(0O);. Since G(O)1 C I we have b’ € ZzZ. Since M}, =2 M has Newton polygon
P there exists g € G(L) such that g~ 'bo(g) = b’ € TzZ. Thus gZ € X, (b). O
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