Birationally rigid Fano threefold hypersurfaces

Ivan Cheltsov and Jihun Park

Abstract

We prove that every quasi-smooth weighted Fano threefold hypersurface in the 95 families of Fletcher and Reid is birationally rigid.

Keywords: Fano hypersurface; weighted projective space; birationally rigid; birational involution.
Mathematics Subject Classification (2010): 14E07, 14E08, 14J30, 14J45., 14J70.

Contents

1 Introduction 2
1.1 Birational rigidity and Main Theorem 2
1.2 How to prove Main Theorem 5
1.3 Notations 6
1.4 The 95 families of Fletcher and Ried 7
2 Smooth points and curves 9
2.1 Excluding smooth points 9
2.2 Excluding curves 15
3 Singular points 18
3.1 Cyclic quotient singular points 18
3.2 Excluding singular points 18
3.3 Untwisting singular points 23
4 Birational involutions 26
4.1 Quadratic involution 26
4.2 Elliptic involution 28
4.3 Invisible elliptic involution 42
5 Proof of Main Theorem 53
5.1 How to read the tables 53
5.2 The tables 56
6 Epilogue 105

1 Introduction

1.1 Birational rigidity and Main Theorem

Let V be a smooth projective variety. If its canonical class K_{V} is pseudo-effective, then Minimal Model Program produces a birational model W of the variety V, so-called minimal model, which has mild singularities (terminal and \mathbb{Q}-factorial) and the canonical class K_{W} of which is nef. This has been verified in dimension 3 and in any dimension for varieties of general type (see [3, Theorem 1.1]). Meanwhile, if the canonical class K_{V} is not pseudo-effective, then Minimal Model Program yields a birational model U of V, so-called Mori fibred space. It also has terminal and \mathbb{Q}-factorial singularities and it admits a fiber structure $\pi: U \rightarrow Z$ of relative Picard rank 1 such that the divisor $-K_{U}$ is ample on fibers. This has been proved in all dimensions (see [3, Corollary 1.3.3]).

Mori fibred spaces, alongside the minimal models, represent the terminal objects in Minimal Model Program. If the canonical class is pseudo-effective and its minimal models exist, then they are unique up to flops. However, this is not the case when the canonical class is not pseudo-effective, since Mori fibred spaces are usually not unique terminal objects in Minimal Model Program. Nevertheless, some Mori fibred spaces behave very much the same as minimal models. To distinguish them, Corti introduced

Definition 1.1.1 ([24, Definition 1.3]). Let $\pi: U \rightarrow Z$ be a Mori fibred space. It is called birationally rigid if for a birational map $\xi: U \rightarrow U^{\prime}$ to a Mori fibred space $\pi^{\prime}: U^{\prime} \rightarrow Z^{\prime}$ there exist a birational automorphism $\tau: U \rightarrow U$ and a birational map $\sigma: Z \rightarrow Z^{\prime}$ such that the birational map $\xi \circ \tau$ induces an isomorphism between the generic fibers of the Mori fibrations $\pi: U \rightarrow Z$ and $\pi^{\prime}: U^{\prime} \rightarrow Z^{\prime}$ and the diagram

commutes.
Fano varieties of Picard rank one with at most terminal \mathbb{Q}-factorial singularities are the basic examples of Mori fibred spaces. For them, Definition 1.1.1 can be simplified as follows:

Definition 1.1.2. Let V be a Fano variety of Picard rank 1 with at most terminal \mathbb{Q}-factorial singularities. Then the Fano variety V is called birationally rigid if the following property holds.

- If there is a birational map $\xi: V \rightarrow U$ to a Mori fibred space $U \rightarrow Z$, then the Fano variety V is biregular to U (and hence Z must be a point).

If, in addition, the birational automorphism group of V coincides with its biregular automorphism group, then V is called birationally super-rigid.

Birationally rigid Fano varieties behave very much like canonical models. Their birational geometry is very simple. In particular, they are non-rational. The first example of a birationally rigid Fano variety is due to Iskovskikh and Manin. In 1971, they proved

Theorem 1.1.3 ([33]). A smooth quartic hypersurface in \mathbb{P}^{4} is birationally super-rigid.
In fact, Iskovskikh and Manin only proved that smooth quartic hypersurfaces in \mathbb{P}^{4} do not admit any non-biregular birational automorphisms and, therefore, they are non-rational. In late nineties, Corti observed in [23] that their proof implies Theorem 1.1.3. Inspired by this observation, Pukhlikov generalized Theorem 1.1.3 as

Theorem 1.1.4 ([44). A general hypersurface of degree $n \geq 4$ in \mathbb{P}^{n} is birationally super-rigid.
Shortly after Theorem 1.1.4 was proved, Reid suggested to Corti and Pukhlikov that they should generalize Theorem 1.1.3 for singular threefolds. Together they proved

Theorem 1.1.5 ([25]). Let X be a quasi-smooth hypersurface of degree d with only terminal singularities in weighted projective space $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$, where $d=\sum a_{i}$. Suppose that X is a general hypersurface in this family. Then X is birationally rigid.

The singular threefolds in Theorem 1.1.5 have a long history. In 1979 Reid discovered the 95 families of $K 3$ surfaces in three dimensional weighted projective spaces (see [45]). After this, Fletcher, who was a Ph.D. student of Ried, announced the 95 families of weighted Fano threefold hypersurfaces in his Ph.D. dissertation in 1988. These are quasi-smooth hypersurfaces of degrees d with only terminal singularities in weighted projective spaces $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$, where $d=\sum a_{i}$. The 95 families are determined by the quadruples of non-decreasing positive integers $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$. All Reid's 95 families of $K 3$ surfaces arise as anticanonical divisors of the Fano threefolds in Fletcher's 95 families. Because of this, the latter 95 families are often called the 95 families of Fletcher and Reid.

It is quite often that we need to know the non-rationality of an explicitly given Fano variety (which does not follow from the non-rationality of a general member in its family).

Example 1.1.6. Recently Prokhorov classified all finite simple subgroups in the birational automorphism group $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ of the three-dimensional projective space. Up to isomorphism, $\mathrm{A}_{5}, \mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right), \mathrm{A}_{6}, \mathrm{~A}_{7}, \mathrm{PSL}_{2}\left(\mathbb{F}_{8}\right)$ and $\mathrm{PSU}_{4}\left(\mathbb{F}_{2}\right)$ are all non-abelian finite simple subgroups in $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ ([43, Theorem 1.3]). Prokhorov's proof implies more. Up to conjugation, the group $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ contains a unique subgroup isomorphic to $\mathrm{PSL}_{2}\left(\mathbb{F}_{8}\right)$ and exactly two subgroups isomorphic to $\mathrm{PSU}_{4}\left(\mathbb{F}_{2}\right)$. For the alternating group A_{7}, he proved that $\operatorname{Bir}\left(\mathbb{P}^{3}\right)$ contains exactly one such subgroup provided that the threefold

$$
\begin{equation*}
\sum_{i=0}^{6} x_{i}=\sum_{i=0}^{6} x_{i}^{2}=\sum_{i=0}^{6} x_{i}^{3}=0 \subset \operatorname{Proj}\left(\mathbb{C}\left[x_{0}, \ldots, x_{6}\right]\right) \cong \mathbb{P}^{6} \tag{1.1.7}
\end{equation*}
$$

is not rational. This threefold is the unique complete intersection of a quadric and a cubic hypersurfaces in \mathbb{P}^{5} that admits a faithful action of A_{7}. Back in nineties Iskovskikh and Pukhlikov proved that a general threefold in this family is birationally rigid (see [34]). The threefold (1.1.7) is smooth. However, it does not satisfy the generality assumptions imposed in 34. It is in 2012 that Beauville proved that the threefold (1.1.7) is not rational (see [2]). It is still unknown whether it is birationally rigid or not.

It took more than ten years to prove Theorem 1.1.4 for every smooth hypersurface in \mathbb{P}^{n} of degree $n \geq 4$, which was conjectured in 44. This was done by de Fernex who proved

Theorem 1.1.8 ([27]). Every smooth hypersurface of degree $n \geq 4 \mathrm{in} \mathbb{P}^{n}$ is birationally superrigid.

The goal of this paper is to prove Theorem 1.1.5 for all quasi-smooth hypersurfaces in each of the 95 families of Fletcher and Reid, which was conjectured in [25. To be precise, we prove

Main Theorem. Let X be a quasi-smooth hypersurface of degree d with only terminal singularities in the weighted projective space $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$, where $d=\sum a_{i}$. Then X is birationally rigid.

Since birational rigidity implies non-rationality, we immediately obtain
Corollary 1.1.9. Let X be a quasi-smooth hypersurface of degree d with only terminal singularities in the weighted projective space $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$, where $d=\sum a_{i}$. Then X is not rational.

In addition, the proof of Main Theorem shows
Theorem 1.1.10. Every quasi-smooth hypersurface in the families of the 95 families of Fletcher and Reid whose general members are birationally super-rigid is birationally superrigid.

The families corresponding to Theorem 1.1.10 are those in the list of Fletcher and Reid with entry numbers No. $1,3,10,11,14,19,21,22,28,29,34,35,37,39,49,50,51,52,53,55,57$, $59,62,63,64,66,67,70,71,72,73,75,77,78,80,81,82,83,84,85,86,87,88,89,90,91$, 92, 93, 94 and 95 (see Section 1.4).

The 95 families of Fletcher and Reid contain the family (No. 1) of quartic hypersurfaces in \mathbb{P}^{4} and the family (No. 3) of hypersurfaces of degree 6 in $\mathbb{P}(1,1,1,1,3)$, i.e., double covers of \mathbb{P}^{3} ramified along sextic surfaces. However, we do not consider these two families in the present paper since every smooth quartic threefold and every smooth double covers of \mathbb{P}^{3} ramified along sextic surfaces (see [31) are already proved to be birationally super-rigid.

Acknowledgements. This work was motivated by the authors' conversations over several dinners at a kitchen of Max Planck Institut für Mathematik (Bonn, Germany) and initiated during the second author's participating in Mini-Workshop: Higher Dimensional Elliptic Fibrations held at Mathematisches Forschungsinstitut Oberwolfach (Germany) from October 3rd to October 9th in 2010. It was carried out during the authors' stays at Max Planck Institut für Mathematik, Institut des Hautes Études Scientifiques (Bures-sur-Yvette, France), International Centre for Mathematical Sciences (Edinburgh, UK), and the Centro Internazionale per la Ricerca Matematica (Trento, Italy) in the period 2010-2011. Both the authors appreciate their excellent environments and supports for their research. The second author would like to thank Professor Shigefumi Mori for his hospitality at Research Institute for Mathematical Sciences (Kyoto, Japan) during the second author's visit from August 15th to August 30th in 2011. This work was finalized during the authors' second stay at the Centro Internazionale per la Ricerca Matematica from July 2nd to July 31st in 2013. They thank Professor Marco Andreatta for his hospitality in Trento. They also thank the anonymous referee for his/her report that enables them to improve Sections 4.2 and 4.3 ,

The first author is partially supported by AG Laboratory GU-HSE, RF government grant, ag. 11 11.G34.31.0023. The second author has been supported by Institute for Basic Science (Grant No. CA1305-02) in Korea.

1.2 How to prove Main Theorem

In this section we present the synopsis of our proof of Main Theorem. Before we proceed, we introduce a terminology that is frequently used in birational geometry as well as in the present paper.

Definition 1.2.1. Let U be a normal \mathbb{Q}-factorial variety and \mathcal{M}_{U} a mobile linear system (a linear system without a fixed component) on U. Let a be a non-negative rational number. An irreducible subvariety Z of U is called a center of non-canonical singularities (or simply non-canonical center) of the \log pair $\left(U, a \mathcal{M}_{U}\right)$ if there is a birational morphism $h: W \rightarrow U$ and an h-exceptional divisor $E_{1} \subset W$ such that

$$
K_{W}+a h_{*}^{-1}\left(\mathcal{M}_{U}\right)=h^{*}\left(K_{U}+a \mathcal{M}_{U}\right)+\sum_{i=1}^{m} c_{i} E_{i}
$$

where each E_{i} is an h-exceptional divisor, $c_{1}<0$ and $h\left(E_{1}\right)=Z$.
The following result is known as the classical Nöther-Fano inequality.
Theorem 1.2.2 ([23, Theorem 4.2]). Let X be a terminal \mathbb{Q}-factorial Fano variety with $\operatorname{Pic}(X) \cong \mathbb{Z}$.

- If the log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$ has canonical singularities for every positive integer n and every mobile linear subsystem \mathcal{M} in $\left|-n K_{X}\right|$, then X is birationally super-rigid.
- If for every positive integer n and every mobile linear system \mathcal{M} in $\left|-n K_{X}\right|$ there exists a birational automorphism τ of X such that the \log pair $\left(X, \frac{1}{n_{\tau}} \tau(\mathcal{M})\right)$ has canonical singularities, where n_{τ} is the positive integer such that $\tau(\mathcal{M})$ is contained in $\left|-n_{\tau} K_{X}\right|$, then X is birationally rigid.

The Nöther-Fano inequality will be the master key to the proof of Main Theorem.
To prove Main Theorem, we take the following steps in order.
Step 1. We suppose that a given hypersurface X from the 95 families has a mobile linear system \mathcal{M} in $\left|-n K_{X}\right|$ for some positive integer n such that the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$ is not canonical. Then we must have a center of non-canonical singularities of the pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. A center of non-canonical singularities of the $\log \operatorname{pair}\left(X, \frac{1}{n} \mathcal{M}\right)$ can be, a priori, one of the following:

$$
\left\{\begin{array}{l}
\text { a smooth point, } \\
\text { an irreducible curve, } \\
\text { a singular point }
\end{array}\right.
$$

on the Fano threefold X.
Step 2. We prove that a smooth point of X cannot be a center of non-canonical singularities of the pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. This will be done in Section 2.1 (Theorem 2.1.10).

Step 3. In Section 2.2 we show that a curve contained in the smooth locus of X cannot be a center (Theorem 2.2.4). Then Theorem 2.2.1 implies that a singular point of X must be a center.

Step 4. For a given singular point of the hypersurface X we prove that either

- it cannot be a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$ (the job proving this part will be called excluding) or
- there exists a birational automorphism τ of X such that $\tau(\mathcal{M})$ is contained in $\left|-n_{\tau} K_{X}\right|$ for some positive integer $n_{\tau}<n$ (the job proving this part will be called untwisting).

With using induction on n, it then follows from Theorem 1.2 .2 that the given hypersurface X is birationally rigid. Step 4 will be done mainly in Section 5.2. However, to exclude or untwist singular points, we will need several pieces of machinery, some of which are light and some of which are heavy. These machines will be assembled from Section 3.2 to Section 4.3. In fact, the machines for excluding are relatively simple to use, so that they could be introduced in Section 3.2. Meanwhile, the machines for untwisting are complicated to assemble. It will be carried out one by one from Section 3.3 to Section 4.3. Before using these machines in practical situation, i.e., before reading the tables in Section 5.2, we require the reader to be acquainted with the manual for the machinery provided in Section 5.1.

Theorem 1.1.10 can be proved by excluding all the singular points of X as a center. Fifty families out of the 95 families are those considered in Theorem 1.1.10. In Section 5.2, we are immediately able to notice that a singular point of X cannot be a center if the hypersurface X belongs to one of the families considered in Theorem 1.1.10. Such families have the underlined entry numbers in their tables in Section 5.2.

1.3 Notations

Let us describe the notations we will use in the rest of the present paper. Unless otherwise mentioned, these notations are fixed from now until the end of the paper.

- In the weighted projective space $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$, we assume that $a_{1} \leq a_{2} \leq a_{3} \leq a_{4}$. For weighted homogeneous coordinates, we always use x, y, z, t and w with weights $\mathrm{wt}(x)=1, \operatorname{wt}(y)=a_{1}, \operatorname{wt}(z)=a_{2}, \operatorname{wt}(t)=a_{3}$ and $\operatorname{wt}(w)=a_{4}$.
- $f_{m}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right), g_{m}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ and $h_{m}\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ are quasi-homogeneous polynomials of degree m in variables $x_{i_{1}}, \ldots, x_{i_{k}}$ in the given weighted projective space $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$.
- If a monomial appears individually in a quasi-homogeneous polynomial, then the monomial is assumed not to be contained in any other terms. For example, in the polynomial $w^{2}+t^{3}+w f_{6}(x, y, z, t)+f_{12}(x, y, z, t)$, the polynomial f_{12} does not contain the monomial t^{3}.
- In each family, we always let X be a quasi-smooth hypersurface of degree d in the weighted projective space $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$ with only terminal singularities, where $d=$ $\sum_{i=1}^{4} a_{i}$. We also use X_{d}, instead of X, in order to indicate the degree d of X.
- On the threefold X, a given mobile linear system is denoted by \mathcal{M}.
- For a given mobile linear system \mathcal{M}, we always assume that $\mathcal{M} \sim_{\mathbb{Q}}-n K_{X}$.
- S_{x} is the surface on the hypersurface X cut by the equation $x=0$.
- S_{y} is the surface on the hypersurface X cut by the equation $y=0$.
- S_{z} is the surface on the hypersurface X cut by the equation $z=0$.
- S_{t} is the surface on the hypersurface X cut by the equation $t=0$.
- S_{w} is the surface on the hypersurface X cut by the equation $w=0$.
- $L_{t w}$ is the one-dimensional stratum on $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$ defined by $x=y=z=0$, and the other one-dimensional strata are labelled similarly.
- $O_{y}:=[0: 1: 0: 0: 0]$.
- $O_{z}:=[0: 0: 1: 0: 0]$.
- $O_{t}:=[0: 0: 0: 1: 0]$.
- $O_{w}:=[0: 0: 0: 0: 1]$.
- When we consider a singular point of type $\frac{1}{r}(1, a, r-a)$ on X, the weighted blow up of X at the singular point with weights $(1, a, r-a)$ will be denoted by $f: Y \rightarrow X$ unless otherwise stated.
- A is the pull-back of $-K_{X}$ by f.
- B is the anticanonical class of Y.
- E is the exceptional divisor of f.
- S is the proper transform of S_{x} by f.
- \mathcal{M}_{Y} is the proper transform of the linear system \mathcal{M} by f.
- When we have a curve C on X, its proper transform on Y will be always denoted by \tilde{C}. For instance, $\tilde{L}_{t w}$ is the proper transform of the curve $L_{t w}$ on X (if it is contained in X) by the weighted blow up f.

1.4 The 95 families of Fletcher and Ried

We list the 95 families of Fletcher and Ried for the convenience of the reader (see [29, Table 5]). Here, $X_{d} \subset \mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$ is a quasi-smooth hypersurface of degree d in the projective space $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$. The entry numbers of the list are originally given in the lexicographic order of $\left(d, a_{1}, a_{2}, a_{3}, a_{4}\right)$.

No. 01. $X_{4} \subset \mathbb{P}(1,1,1,1,1)$
No. 04. $X_{6} \subset \mathbb{P}(1,1,1,2,2)$
No. 07. $X_{8} \subset \mathbb{P}(1,1,2,2,3)$
No. 10. $X_{10} \subset \mathbb{P}(1,1,1,3,5)$

No. 02. $X_{5} \subset \mathbb{P}(1,1,1,1,2)$
No. 05. $X_{7} \subset \mathbb{P}(1,1,1,2,3)$
No. 08. $X_{9} \subset \mathbb{P}(1,1,1,3,4)$
No. 11. $X_{10} \subset \mathbb{P}(1,1,2,2,5)$

No. 03. $X_{6} \subset \mathbb{P}(1,1,1,1,3)$
No. 06. $X_{8} \subset \mathbb{P}(1,1,1,2,4)$
No. 09. $X_{9} \subset \mathbb{P}(1,1,2,3,3)$
No. 12. $X_{10} \subset \mathbb{P}(1,1,2,3,4)$

No. 13. $X_{11} \subset \mathbb{P}(1,1,2,3,5)$
No. 16. $X_{12} \subset \mathbb{P}(1,1,2,4,5)$
No. 19. $X_{12} \subset \mathbb{P}(1,2,3,3,4)$
No. 22. $X_{14} \subset \mathbb{P}(1,2,2,3,7)$
No. 25. $X_{15} \subset \mathbb{P}(1,1,3,4,7)$
No. 28. $X_{15} \subset \mathbb{P}(1,3,3,4,5)$
No. 31. $X_{16} \subset \mathbb{P}(1,1,4,5,6)$
No. 34. $X_{18} \subset \mathbb{P}(1,1,2,6,9)$
No. 37. $X_{18} \subset \mathbb{P}(1,2,3,4,9)$
No. 40. $X_{19} \subset \mathbb{P}(1,3,4,5,7)$
No. 43. $X_{20} \subset \mathbb{P}(1,2,4,5,9)$
No. 46. $X_{21} \subset \mathbb{P}(1,1,3,7,10)$
No. 49. $X_{21} \subset \mathbb{P}(1,3,5,6,7)$
No. 52. $X_{22} \subset \mathbb{P}(1,2,4,5,11)$
No. 55. $X_{24} \subset \mathbb{P}(1,2,3,7,12)$
No. 58. $X_{24} \subset \mathbb{P}(1,3,4,7,10)$
No. 61. $X_{25} \subset \mathbb{P}(1,4,5,7,9)$
No. 64. $X_{26} \subset \mathbb{P}(1,2,5,6,13)$
No. 67. $X_{28} \subset \mathbb{P}(1,1,4,9,14)$
No. 70. $X_{30} \subset \mathbb{P}(1,1,4,10,15)$
No. 73. $X_{30} \subset \mathbb{P}(1,2,6,7,15)$
No. 76. $X_{30} \subset \mathbb{P}(1,5,6,8,11)$
No. 79. $X_{33} \subset \mathbb{P}(1,3,5,11,14)$
No. 82. $X_{36} \subset \mathbb{P}(1,1,5,12,18)$
No. 85. $X_{38} \subset \mathbb{P}(1,3,5,11,19)$
No. 88. $X_{42} \subset \mathbb{P}(1,1,6,14,21)$
No. 91. $X_{44} \subset \mathbb{P}(1,4,5,13,22)$
No. 94. $X_{54} \subset \mathbb{P}(1,4,5,18,27)$

No. 14. $X_{12} \subset \mathbb{P}(1,1,1,4,6)$
No. 17. $X_{12} \subset \mathbb{P}(1,1,3,4,4)$
No. 20. $X_{13} \subset \mathbb{P}(1,1,3,4,5)$
No. 23. $X_{14} \subset \mathbb{P}(1,2,3,4,5)$
No. 26. $X_{15} \subset \mathbb{P}(1,1,3,5,6)$
No. 29. $X_{16} \subset \mathbb{P}(1,1,2,5,8)$
No. 32. $X_{16} \subset \mathbb{P}(1,2,3,4,7)$
No. 35. $X_{18} \subset \mathbb{P}(1,1,3,5,9)$
No. 38. $X_{18} \subset \mathbb{P}(1,2,3,5,8)$
No. 41. $X_{20} \subset \mathbb{P}(1,1,4,5,10)$
No. 44. $X_{20} \subset \mathbb{P}(1,2,5,6,7)$
No. 47. $X_{21} \subset \mathbb{P}(1,1,5,7,8)$
No. 50. $X_{22} \subset \mathbb{P}(1,1,3,7,11)$
No. 53. $X_{24} \subset \mathbb{P}(1,1,3,8,12)$
No. 56. $X_{24} \subset \mathbb{P}(1,2,3,8,11)$
No. 59. $X_{24} \subset \mathbb{P}(1,3,6,7,8)$
No. 62. $X_{26} \subset \mathbb{P}(1,1,5,7,13)$
No. 65. $X_{27} \subset \mathbb{P}(1,2,5,9,11)$
No. 68. $X_{28} \subset \mathbb{P}(1,3,4,7,14)$
No. 71. $X_{30} \subset \mathbb{P}(1,1,6,8,15)$
No. 74. $X_{30} \subset \mathbb{P}(1,3,4,10,13)$
No. 77. $X_{32} \subset \mathbb{P}(1,2,5,9,16)$
No. 80. $X_{34} \subset \mathbb{P}(1,3,4,10,17)$
No. 83. $X_{36} \subset \mathbb{P}(1,3,4,11,18)$
No. 86. $X_{38} \subset \mathbb{P}(1,5,6,8,19)$
No. 89. $X_{42} \subset \mathbb{P}(1,2,5,14,21)$
No. 92. $X_{48} \subset \mathbb{P}(1,3,5,16,24)$
No. 95. $X_{66} \subset \mathbb{P}(1,5,6,22,33)$.

No. 15. $X_{12} \subset \mathbb{P}(1,1,2,3,6)$
No. 18. $X_{12} \subset \mathbb{P}(1,2,2,3,5)$
No. 21. $X_{14} \subset \mathbb{P}(1,1,2,4,7)$
No. 24. $X_{15} \subset \mathbb{P}(1,1,2,5,7)$
No. 27. $X_{15} \subset \mathbb{P}(1,2,3,5,5)$
No. 30. $X_{16} \subset \mathbb{P}(1,1,3,4,8)$
No. 33. $X_{17} \subset \mathbb{P}(1,2,3,5,7)$
No. 36. $X_{18} \subset \mathbb{P}(1,1,4,6,7)$
No. 39. $X_{18} \subset \mathbb{P}(1,3,4,5,6)$
No. 42. $X_{20} \subset \mathbb{P}(1,2,3,5,10)$
No. 45. $X_{20} \subset \mathbb{P}(1,3,4,5,89)$
No. 48. $X_{21} \subset \mathbb{P}(1,2,3,7,9)$
No. 51. $X_{22} \subset \mathbb{P}(1,1,4,6,11)$
No. 54. $X_{24} \subset \mathbb{P}(1,1,6,8,9)$
No. 57. $X_{24} \subset \mathbb{P}(1,3,4,5,12)$
No. 60. $X_{24} \subset \mathbb{P}(1,4,5,6,9)$
No. 63. $X_{26} \subset \mathbb{P}(1,2,3,8,13)$
No. 66. $X_{27} \subset \mathbb{P}(1,5,6,7,9)$
No. 69. $X_{28} \subset \mathbb{P}(1,4,6,7,11)$
No. 72. $X_{30} \subset \mathbb{P}(1,2,3,10,15)$
No. 75. $X_{30} \subset \mathbb{P}(1,4,5,6,15)$
No. 78. $X_{32} \subset \mathbb{P}(1,4,5,7,16)$
No. 81. $X_{34} \subset \mathbb{P}(1,4,6,7,17)$
No. 84. $X_{36} \subset \mathbb{P}(1,7,8,9,12)$
No. 87. $X_{40} \subset \mathbb{P}(1,5,7,8,20)$
No. 90. $X_{42} \subset \mathbb{P}(1,3,4,14,21)$
No. 93. $X_{50} \subset \mathbb{P}(1,3,5,16,24)$

2 Smooth points and curves

2.1 Excluding smooth points

In this section we show that smooth points of X cannot be non-canonical centers of the log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.

Let $X \subset \mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$ be a quasi-smooth weighted hypersurface of degree $d=\sum a_{i}$ with terminal singularities. Suppose that a smooth point p on X is a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. Then we obtain

$$
\operatorname{mult}_{p}\left(\mathcal{M}^{2}\right)>4 n^{2}
$$

by [24, Corollary 3.4].
Let s be an integer not greater than $\frac{4}{-K_{X}^{3}}$. Suppose that we have a divisor H in $\left|-s K_{X}\right|$ such that

- it passes through the point p,
- it contains no 1-dimensional component of the base locus of the linear system \mathcal{M} that passes through the point p.

Then we can obtain the following contradictory inequality:

$$
-s n^{2} K_{X}^{3}=H \cdot \mathcal{M}^{2} \geq \operatorname{mult}_{p}(H) \cdot \operatorname{mult}_{p}\left(\mathcal{M}^{2}\right)>4 n^{2}
$$

In order to show that a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$ cannot be a smooth point, we mainly try to find such a divisor.

Before we proceed, set $\widehat{a}_{2}=\operatorname{lcm}\left\{a_{1}, a_{3}, a_{4}\right\}, \widehat{a}_{3}=\operatorname{lcm}\left\{a_{1}, a_{2}, a_{4}\right\}$ and $\widehat{a}_{4}=\operatorname{lcm}\left\{a_{1}, a_{2}, a_{3}\right\}$.
Lemma 2.1.1. Suppose that the hypersurface X satisfies one of the following:

- X does not pass through the point O_{w} and $d \cdot \widehat{a}_{4} \leq 4 a_{1} a_{2} a_{3} a_{4}$;
- X does not pass through the point O_{t} and $d \cdot \widehat{a}_{3} \leq 4 a_{1} a_{2} a_{3} a_{4}$;
- X does not pass through the point O_{z} and $d \cdot \widehat{a}_{2} \leq 4 a_{1} a_{2} a_{3} a_{4}$.

Then a smooth point of X cannot be a non-canonical center of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.
Proof. For simplicity we suppose that the hypersurface X satisfies the first condition. The proofs for the other cases are the same.

Let $\pi_{4}: X \rightarrow \mathbb{P}\left(1, a_{1}, a_{2}, a_{3}\right)$ be the regular projection centered at the point O_{w}. The linear system $\left|\mathcal{O}_{\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}\right)}\left(\widehat{a}_{4}\right)\right|$ is base point free. Choose a general member in the linear system $\left|\mathcal{O}_{\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}\right)}\left(\widehat{a}_{4}\right)\right|$ that passes through the point $\pi_{4}(p)$. Then its pull-back by the finite morphism π_{4} can play the role of the divisor H in the explanation at the beginning.

The condition above is satisfied by all the families except the families

$$
\text { No. } 2,5,12,13,20,23,25,33,40,58,61,76 .
$$

No quasi-smooth hypersurface in the families No. $23,40,61,76$ contains the curve $L_{t w}$. Using suitable coordinate changes, we may write its defining equation as

$$
t w^{2}+w\left(t g_{a_{4}}(x, y, z)+g_{d}(x, y, z)\right)+x_{i} t^{3}+t^{2} g_{d-2 a_{3}}(x, y, z)+t g_{d-a_{3}}(x, y, z)+g_{d}(x, y, z)=0
$$

where $x_{i}=y$ for the families No. 23, 61 and $x_{i}=z$ for the families No. $40,76$.
There are two kinds of quasi-smooth hypersurfaces in each family of No. 5, 12, 13, 20, 25, 33,58 . The first kind are those that do not contain the curve $L_{t w}$. The second are those that contain the curve $L_{t w}$. After appropriate coordinate changes, every quasi-smooth hypersurface of the first kind in each family can be defined by

$$
w t^{2}+t\left(w g_{a_{3}}(x, y, z)+g_{d}(x, y, z)\right)+x_{i} w^{2}+w g_{d-a_{4}}(x, y, z)+g_{d}(x, y, z)=0
$$

where $x_{i}=y$ for the families No. 13, 25 and $x_{i}=z$ for the families No. 5, 12, 20, 33, 58.
Lemma 2.1.2. Suppose that the hypersurface X satisfies the following conditions:

- $d \cdot \widehat{a}_{4} \leq 4 a_{1} a_{2} a_{3} a_{4} ;$
- $d \cdot \widehat{a}_{3} \leq 4 a_{1} a_{2} a_{3} a_{4}$.

In addition, we suppose that the curve $L_{t w}$ is not contained in the hypersurface X. Then a smooth point of X cannot be a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.

Proof. Let \mathcal{H}_{4} be the linear system consisting of the divisors in $\left|O_{X}\left(\hat{a}_{4}\right)\right|$ that pass through the point p and \mathcal{H}_{3} be the linear system consisting of the divisors in $\left|O_{X}\left(\hat{a}_{3}\right)\right|$ that pass through the point p.

Let $\pi_{4}: X \rightarrow \mathbb{P}\left(1, a_{1}, a_{2}, a_{3}\right)$ be the projection centered at the point O_{w} and π_{3} : $X \rightarrow \mathbb{P}\left(1, a_{1}, a_{2}, a_{4}\right)$ the projection centered at the point O_{t}. The linear systems $\left|\mathcal{O}_{\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}\right)}\left(\widehat{a}_{4}\right)\right|$ and $\left|\mathcal{O}_{\mathbb{P}\left(1, a_{1}, a_{2}, a_{4}\right)}\left(\widehat{a}_{3}\right)\right|$ are base point free. The pull-backs of a general member in $\left|\mathcal{O}_{\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}\right)}\left(\widehat{a}_{4}\right)\right|$ that passes through the point $\pi_{4}(p)$ and a general member in the linear system $\left|\mathcal{O}_{\mathbb{P}\left(1, a_{1}, a_{2}, a_{4}\right)}\left(\widehat{a}_{3}\right)\right|$ that passes through the point $\pi_{3}(p)$ show that a general member either in \mathcal{H}_{4} or in \mathcal{H}_{3} can serve as the divisor H in the explanation at the beginning unless the point p belongs to both a curve contracted by π_{4} and a curve contracted by π_{3}.

Suppose that the point p belongs to both a curve contracted by π_{4} and a curve contracted by π_{3}. Let $A_{1}, A_{2}, \cdots, A_{k}$ (resp. $B_{1}, B_{2}, \cdots, B_{m}$) be quasi-homogeneous polynomials of degree \hat{a}_{4} (resp. \hat{a}_{3}) that generate the linear system \mathcal{H}_{4} (resp. \mathcal{H}_{3}).

Any irreducible curve except $L_{t w}$ cannot be contracted both by π_{4} and by π_{3}. Therefore, the base locus of \mathcal{H}_{4} has no common 1-dimensional component with the base locus of \mathcal{H}_{3} around the point p since we do not have the curve $L_{t w}$ on X. This shows that the base locus of the linear system \mathcal{H} generated by quasi-homogeneous polynomials $A_{1}^{\hat{a}_{3}}, A_{2}^{\hat{a}_{3}}, \cdots, A_{k}^{\hat{a}_{3}}, B_{1}^{\hat{a}_{4}}$, $B_{2}^{\hat{a}_{4}}, \cdots, B_{m}^{\hat{a}_{4}}$ of degree $\hat{a}_{4} \hat{a}_{3}$ has no 1 -dimensional component passing through the point p. Therefore, for a general member H^{\prime} of the linear system \mathcal{H}, we have
$-\hat{a}_{3} \hat{a}_{4} n^{2} K_{X}^{3}=H^{\prime} \cdot \mathcal{M}^{2} \geq \operatorname{mult}_{p}\left(H^{\prime}\right) \cdot \operatorname{mult}_{p}\left(\mathcal{M}^{2}\right) \geq \min \left\{\hat{a}_{3}, \hat{a}_{4}\right\} \cdot \operatorname{mult}_{p}\left(\mathcal{M}^{2}\right)>4 n^{2} \min \left\{\hat{a}_{3}, \hat{a}_{4}\right\}$,
which implies $d \hat{a}_{3} \hat{a}_{4}>\min \left\{\hat{a}_{3}, \hat{a}_{4}\right\} a_{1} a_{2} a_{3} a_{4}$. This contradicts our condition.

The conditions above are satisfied by the families

$$
\text { No. } 23,40,61,76 .
$$

Also, the members of the first kind in the families No. 5, 12, 13, 20, 25, 33, 58, i.e., those that do not contain $L_{t w}$, meet these conditions.

The members of the second kind in the families No. $5,12,13,20,25,33,58$, i.e., those that contain $L_{t w}$, and the family No. 2 remain.

We deal with the family No. 2 in the end of this section. Instead, we first consider the members of the second kind in the families No. $5,12,13,20,25,33,58$, i.e., those that contain $L_{t w}$. These members are not covered by Lemma 2.1.2, Since these members are the ones that contain the curve $L_{t w}$, the defining polynomials of X do not contain the monomial $t^{2} w$. Therefore, using coordinate changes, we may assume that the polynomial is given by
$w^{2} z+w\left(\operatorname{tg}_{a_{3}}(x, y, z)+g_{2 a_{3}}(x, y, z)\right)+t^{3} y+t^{2} h_{d-2 a_{3}}(x, y, z)+t h_{d-a_{3}}(x, y, z)+h_{d}(x, y, z)=0$ for the families No. 12, 20,
$w^{2} y+w\left(t g_{a_{3}}(x, y, z)+g_{2 a_{3}}(x, y, z)\right)+t^{3} z+t^{2} h_{d-2 a_{3}}(x, y, z)+t h_{d-a_{3}}(x, y, z)+h_{d}(x, y, z)=0$
for the families No. $5,13,25,33,58$. Note that for the family No. 5 the coefficients of w^{2} and t^{3} cannot coincide, i.e., we cannot assume that the hypersurface X is defined by

$$
w^{2} y+w\left(t g_{2}+g_{4}\right)+t^{3} y+t^{2} h_{3}+t h_{5}+h_{7}=0 .
$$

In such a case, the hypersurface is not quasi-smooth at the point defined by $x=y=z=$ $w^{2}+t^{3}=0$.

Lemma 2.1.3. Suppose that the hypersurface X satisfies the following conditions:

- $d \cdot \widehat{a}_{4} \leq 4 a_{1} a_{2} a_{3} a_{4} ;$
- $d \cdot \widehat{a}_{3} \leq 4 a_{1} a_{2} a_{3} a_{4}$.

Suppose that the curve $L_{t w}$ is contained in the hypersurface X. If a smooth point of X is a non-canonical center of the log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$, then the point lies on the curve $L_{t w}$.

Proof. The proof of Lemma 2.1.2 immediately shows the statement.
Lemma 2.1.4. Suppose that the curve $L_{t w}$ is contained in the hypersurface X. In addition, we suppose that $a_{3}>1,\left(a_{3}, a_{4}\right)=1, a_{3} a_{4}>d$, and there are non-negative integers m_{1} and m_{2} such that $m_{1} a_{1}+m_{2} a_{2}=a_{3} a_{4}$. Then any smooth point on $L_{t w}$ cannot be a center of non-canonical singularities of the log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$ if $-a_{3} a_{4} K_{X}^{3} \leq 4$.

Proof. Suppose that the hypersurface X is defined by $F(x, y, z, t, w)=0$. Let p be a smooth point on the curve $L_{t w}$. Then there are non-zero constants λ and μ such that the surface cut by $\lambda t^{a_{4}}+\mu w^{a_{3}}=0$ contains the point p. We then consider the linear system \mathcal{H} on X generated by $x^{a_{3} a_{4}}, y^{m_{1}} z^{m_{2}}$, and $\lambda t^{a_{4}}+\mu w^{a_{3}}$. The base locus of this linear system consists of the locus cut by

$$
x=y^{m_{1}} z^{m_{2}}=\lambda t^{a_{4}}+\mu w^{a_{3}}=0 .
$$

The degree d of F is smaller than $a_{3} a_{4}$ by the condition and the polynomial $\lambda t^{a_{4}}+\mu w^{a_{3}}$ is irreducible since $\left(a_{3}, a_{4}\right)=1$. Therefore, neither $F(0,0, z, t, w)$ nor $F(0, y, 0, t, w)$ can divide $\lambda t^{a_{4}}+\mu w^{a_{3}}$ and vice versa. Therefore, the base locus of the linear system \mathcal{H} is of dimension at most 0 . Then a general member of this linear system is able to play the role of the divisor H in the explanation at the beginning.

Combining Lemmas 2.1.3 and 2.1.4, we can conclude that any smooth point cannot be a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$ for the families No. 33 and 58.

Lemma 2.1.5. For the families No. 13, 25, a smooth point of X cannot be a center of noncanonical singularities of the log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.

Proof. The following method works for both the families exactly in the same way. For this reason, we demonstrate the method only for the family No. 25 .

Suppose that the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$ is not canonical at some smooth point p. Then Lemma 2.1.3 shows that the point p must lie on the curve $L_{t w}$.

Consider the pencil $\left|-K_{X}\right|$. Its base locus consists of two reduced and irreducible curves. One is the curve $L_{t w}$ and the other is the curve C defined by the equations

$$
x=y=t^{3}-c z^{4}=0
$$

where c is a non-zero constant. Note that the curve $L_{t w}$ is quasi-smooth everywhere and C is quasi-smooth outside the point O_{w}. They intersect only at the point O_{w}. Choose a general member H in the pencil $\left|-K_{X}\right|$. Then the \log pair $\left(X, H+\frac{1}{n} \mathcal{M}\right)$ is not \log canonical at the point p. By Inversion of Adjunction ([38, Theorem 5.50]), we see that the \log pair $\left(H,\left.\frac{1}{n} \mathcal{M}\right|_{H}\right)$ is not \log canonical at the point p.

Let D_{y} be the divisor on H defined by the equation $y=0$. Then $D_{y}=L_{t w}+C$. We have the following intersection numbers on the surface H :

$$
L_{t w}^{2}=-\frac{11}{28}, \quad C^{2}=-\frac{2}{7}, \quad C \cdot L_{t w}=\frac{3}{7}, \quad D_{y} \cdot L_{t w}=\frac{1}{28}, \quad D_{y} \cdot C=\frac{1}{7} .
$$

Indeed, we can obtain these intersection numbers directly from the polynomials defining the curves. On the other hand, we are also able to obtain them from the singularity types of the K3 surface H. Note that H is a $K 3$ surface with A_{3} and A_{6} singularities at the points O_{t} and O_{w}, respectively. For instance, the curve $L_{t w}$ is a smooth rational curve on the K3 surface H passing through one A_{3}-singular point and one A_{6}-singular point, and hence the self-intersection number $L_{t w}^{2}$ is obtained by $-2+\frac{3}{4}+\frac{6}{7}$. The A_{3}-singular point contributes to the self-intersection number by $\frac{3}{4}$ and the A_{6}-singular point by $\frac{6}{7}$ (see Remark 2.1.6 below for more detail).

Let M be a general member in the mobile linear system \mathcal{M} and then put

$$
M_{H}:=\left.\frac{1}{n} M\right|_{H}=a L_{t w}+b C+\Delta,
$$

where a and b are non-negative rational numbers and Δ is an effective divisor whose support contains neither $L_{t w}$ nor C. We then obtain

$$
\frac{1}{7}=C \cdot M_{H}=a L_{t w} \cdot C+b C^{2}+\Delta \cdot C \geq \frac{3 a}{7}-\frac{2 b}{7} .
$$

On the other hand, we obtain

$$
\frac{5}{28}=M_{H}^{2}=a L_{t w} \cdot D_{y}+b C \cdot D_{y}+\Delta \cdot D_{y} \geq \frac{a}{28}+\frac{b}{7}
$$

Combining these two inequalities we see that $a \leq 1$. Therefore, the \log pair $\left(H, L_{t w}+b C+\Delta\right)$ is not \log canonical at the point p, and hence the log pair $\left(L_{t w},\left.(b C+\Delta)\right|_{L_{t w}}\right)$ is not log canonical at the point p. Consequently, we see that

$$
\operatorname{mult}_{p}\left(\left.(b C+\Delta)\right|_{L_{t w}}\right)>1
$$

However,

$$
(b C+\Delta) \cdot L_{t w}=\left(M_{H}-a L_{t w}\right) \cdot L_{t w}=\frac{1}{28}+\frac{11 a}{28} \leq \frac{3}{7}
$$

This completes the proof.

Remark 2.1.6. Let p be an A_{n}-singular point on a normal surface Σ. Suppose that a smooth curve C on Σ passes through the point p. Let $\phi: \bar{\Sigma} \rightarrow \Sigma$ be the minimal resolution of the point p. Then we have (-2)-curves E_{1}, \cdots, E_{n} over the point p whose intersection matrix is

$$
\left(E_{i} \cdot E_{j}\right)=\left(\begin{array}{cccccc}
-2 & 1 & 0 & \cdots & 0 & 0 \\
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

The log pair (Σ, C) is purely log terminal by Inversion of Adjunction ([38, Theorem 5.50]). Therefore, the proper transform \bar{C} by ϕ intersects transversally only one of E_{i} 's and it should be either E_{1} or $E_{n}\left(\left[35\right.\right.$, Theorem 9.6]). We may assume that it is E_{n}. We then obtain

$$
\phi^{*}(C)=\bar{C}+\frac{1}{n+1}\left(E_{1}+2 E_{2}+\cdots+(n-1) E_{n-1}+n E_{n}\right)
$$

Therefore,

$$
C^{2}=\bar{C}^{2}+\frac{n}{n+1}
$$

Lemma 2.1.7. For the families No. 12, 20, any smooth point of X cannot be a center of non-canonical singularities of the $\log \operatorname{pair}\left(X, \frac{1}{n} \mathcal{M}\right)$.

Proof. The method for its proof is the same as that of Lemma 2.1.5 with some slight difference. The only difference is that two base locus curves of the pencil $\left|-K_{X}\right|$ intersect at the point O_{t}. For this reason, we omit the proof.

Lemma 2.1.8. For the family No. 5, a smooth point of X_{7} cannot be a center of non-canonical singularities of the log pair $\left(X_{7}, \frac{1}{n} \mathcal{M}\right)$.

Proof. Suppose that the \log pair $\left(X_{7}, \frac{1}{n} \mathcal{M}\right)$ is not canonical at a smooth point p. Then Lemma 2.1.3 shows that the point p lies on the curve $L_{t w}$.

Consider the 2-dimensional linear system $\left|-K_{X_{7}}\right|$. Its base locus consists of the reduced and irreducible curve $L_{t w}$. The curve $L_{t w}$ is a quasi-smooth curve passing through the singular points O_{t} and O_{w}.

Let H be the surface cut by the equation $z=\lambda x+\mu y$ with general complex numbers λ and μ. It is a $K 3$ surface with A_{1} and A_{2} singularities at the points O_{t} and O_{w}, respectively. It also contains the rational curve $L_{t w}$. The self-intersection number of $L_{t w}$ on H is $-\frac{5}{6}$ $\left(=-2+\frac{1}{2}+\frac{2}{3}\right)$. Let D_{y} be the divisor on H defined by the equation $y=0$. Then we can easily see that $D_{y}=L_{t w}+R$, where R is the curve defined by the equation

$$
y=z-\lambda x=\lambda t^{3}+x h_{5}(x, t, w)=0 .
$$

The two curves $L_{t w}$ and R meet only at the point O_{w}.
Let M be a general member of the linear system \mathcal{M} and then write

$$
M_{H}:=\left.\frac{1}{n} M\right|_{H}=a L_{t w}+\Delta,
$$

where a is a non-negative rational number and Δ is an effective divisor whose support does not contain the curve $L_{t w}$. The \log pair $\left(X_{7}, H+\frac{1}{n} \mathcal{M}\right)$ is not \log canonical at the point p. By Inversion of Adjunction ($\left[38\right.$, Theorem 5.50]), we see that the \log pair $\left(H,\left.\frac{1}{n} \mathcal{M}\right|_{H}\right)$ is not log canonical at the point p. We then obtain

$$
1=R \cdot M_{H}=a L_{t w} \cdot R+\Delta \cdot R \geq a .
$$

Therefore, the log pair $\left(H, L_{t w}+\Delta\right)$ is not log canonical at the point p, and hence the log pair $\left(L_{t w},\left.\Delta\right|_{L_{t w}}\right)$ is not \log canonical at the point p. Consequently, we see that

$$
\operatorname{mult}_{p}\left(\left.\Delta\right|_{L_{t w}}\right)>1
$$

However,

$$
\Delta \cdot L_{t w}=\left(M_{H}-a L_{t w}\right) \cdot L_{t w}=\frac{1}{6}+\frac{5 a}{6} \leq 1
$$

This completes the proof.
Finally, we deal with smooth points on quasi-smooth hypersurfaces in the family No. 2 .
Lemma 2.1.9. For the family No. 2, a smooth point of X_{5} cannot be a center of non-canonical singularities of the log pair $\left(X_{5}, \frac{1}{n} \mathcal{M}\right)$.

Proof. This case has been resolved completely in [25]. For the convenience of the reader we reproduce the proof from p. 211 in [25].

By suitable coordinate change we may assume that the hypersurface X_{5} in $\mathbb{P}(1,1,1,1,2)$ is given by

$$
w^{2} x+w f_{3}+f_{5}=0
$$

where f_{m} is a quasi-homogeneous polynomial of degree m in variables x, y, z and t.
Suppose that the \log pair $\left(X_{5}, \frac{1}{n} \mathcal{M}\right)$ is not canonical at some smooth point p. Then the point p must lie on the curve L contracted by the projection $\pi_{4}: X_{5} \rightarrow \mathbb{P}^{3}$ centered at the
point O_{w}. By an additional coordinate change, we may assume that the curve L is defined by the equations $x=y=z=0$, i.e., $L=L_{t w}$.

Let H be a general element in $\left|-K_{X_{5}}\right|$ containing the curve $L_{t w}$. Then the surface H is a $K 3$ surface with an A_{1} singularity at the point O_{w}. The self-intersection number of $L_{t w}$ on H is $-\frac{3}{2}$.

We write

$$
\mathcal{M}_{H}:=\left.\frac{1}{n} \mathcal{M}\right|_{H}=a L_{t w}+\mathcal{L},
$$

where a is a non-negative rational number and \mathcal{L} is a mobile linear system on H whose base locus does not contain the curve $L_{t w}$.

Choose another curve R that is contacted by the projection π_{4}. Note that such a curve is given by a point on the zero set in \mathbb{P}^{3} defined by $x=f_{3}=f_{6}=0$. Then we see that the intersection number $L_{t w}$ and R is $\frac{1}{2}$. We then obtain

$$
\frac{1}{2}=R \cdot \mathcal{M}_{H}=a L_{t w} \cdot R+\mathcal{L} \cdot R \geq \frac{a}{2}
$$

and hence $a \leq 1$.
The log pair $\left(X_{5}, H+\frac{1}{n} \mathcal{M}\right)$ is not log canonical at the point p. By Inversion of Adjunction ([38, Theorem 5.50]), we see that the \log pair $\left(H, \mathcal{M}_{H}\right)$ is not \log canonical at the point p. We then obtain from [24, Theorem 3.1]

$$
4(1-a)<\mathcal{L}^{2}=\left(\mathcal{M}_{H}-a L_{t w}\right)^{2}=\mathcal{M}_{H}^{2}-2 a \mathcal{M}_{H} \cdot L_{t w}+a^{2} L_{t w}^{2}=\frac{5}{2}-a-\frac{3 a^{2}}{2} .
$$

However, this inequality cannot be satisfied with any value of a. This completes the proof.
In summary, we have verified
Theorem 2.1.10. A smooth point on X cannot be a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.

2.2 Excluding curves

We now show that an irreducible curve on X can not be a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$ provided that no point on this curve is a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. Indeed, the proof comes from [25, pp. 206-207] and it is based on the following local result of Kawamata:

Theorem 2.2.1 ([36, Lemma 7]). Let (U, p) be a germ of a threefold terminal quotient singularity of type $\frac{1}{r}(1, a, r-a)$, where $r \geq 2$ and a is coprime to r and let \mathcal{M}_{U} be a mobile linear system on U. Suppose that $\left(U, \lambda \mathcal{M}_{U}\right)$ is not canonical at p for a positive rational number λ. Let $f: W \rightarrow U$ be the weighted blowup at the point p with weights $(1, a, r-a)$. Then

$$
\mathcal{M}_{W}=f^{*}\left(\mathcal{M}_{U}\right)-m E
$$

for some positive rational number $m>\frac{1}{r \lambda}$, where E is the exceptional divisor of f and \mathcal{M}_{W} is the proper transform of \mathcal{M}_{U}. In particular,

$$
K_{W}+\lambda \mathcal{M}_{W}=f^{*}\left(K_{U}+\lambda \mathcal{M}_{U}\right)+\left(\frac{1}{r}-\lambda m\right) E
$$

where $\frac{1}{r}-\lambda m<0$, and hence the point p is a center of non-canonical singularities of the log pair $\left(U, \lambda \mathcal{M}_{U}\right)$.

Note that, in this theorem, we do not assume that the point p is a center of non-canonical singularities of the \log pair $\left(U, \lambda \mathcal{M}_{U}\right)$. A \log pair may not be canonical at a point that is not a center of non-canonical singularities of the log pair. For example, consider the linear system $\mathcal{M}_{\mathbb{C}^{3}}$ generated by z_{1}^{2} and z_{2}^{2} on \mathbb{C}^{3}, where $\left(z_{1}, z_{2}, z_{3}\right)$ is the standard coordinate system for \mathbb{C}^{3}. Then the log pair $\left(\mathbb{C}^{3}, \mathcal{M}_{\mathbb{C}^{3}}\right)$ is not canonical at the origin. The line $z_{1}=z_{2}=0$ is a center of non-canonical center of the \log pair $\left(\mathbb{C}^{3}, \mathcal{M}_{\mathbb{C}^{3}}\right)$. However, the origin is not a center of non-canonical center of the log pair $\left(\mathbb{C}^{3}, \mathcal{M}_{\mathbb{C}^{3}}\right)$.

Theorem 2.2.1 and the mobility of the linear system \mathcal{M} imply the following global properties.
Corollary 2.2.2 ([25, Lemma 5.2.1]). Let Λ be a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. In case when Λ is a singular point of type $\frac{1}{r}(1, a, r-a)$, let $f: Y \rightarrow X$ be the weighted blow up at Λ with weights $(1, a, r-a)$. In case when Λ is a smooth curve contained in the smooth locus of X, let $f: Y \rightarrow X$ be the blow up along Λ. Then the 1-cycle $\left(-K_{Y}\right)^{2} \in N_{1}(Y)$ lies in the interior of the Mori cone of Y :

$$
\left(-K_{Y}\right)^{2} \in \operatorname{Int}(\overline{\mathrm{NE}(Y)})
$$

Corollary 2.2.3 ([25, Corollary 5.2.3]). Under the same notations as in Corollary [2.2.2, we have $H \cdot\left(-K_{Y}\right)^{2}>0$ for a non-zero nef divisor H on Y.

Let L be an irreducible curve on X. Suppose that L is a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. Then it follows from Theorem 2.2.1 that every singular point of X contained in L (if any) must be a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. Later we will show that for a given singular point of X either it cannot be a center of noncanonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$ or it can be untwisted by a birational involution (see Definition 3.3.1). Moreover, it will be done regardless of the fact that the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$ is canonical outside of this singular point. Therefore it is enough to exclude only irreducible curves contained in the smooth locus of X.

Suppose that L is contained in the smooth locus of X. Pick two general members H_{1} and H_{2} in the mobile linear system \mathcal{M}. Then we obtain

$$
-n^{2} K_{X}^{3}=-K_{X} \cdot H_{1} \cdot H_{2} \geq\left(\operatorname{mult}_{L}(\mathcal{M})\right)^{2}\left(-K_{X} \cdot L\right)>-n^{2} K_{X} \cdot L
$$

since we have $\operatorname{mult}_{L}(\mathcal{M})>n$. Therefore, $-K_{X} \cdot L<-K_{X}^{3}$.
Since the curve L is contained in the smooth locus of X, we have $-K_{X} \cdot L \geq 1$. Therefore the curve L can exists only on the hypersurface X with $-K_{X}^{3}>1$ as a curve of degree less than $-K_{X}^{3}$. Such conditions can be satisfied only in the following cases:

- quasi-smooth hypersurface of degree 5 in $\mathbb{P}(1,1,1,1,2)$ with a curve L of degree 1 or 2 ;
- quasi-smooth hypersurface of degree 6 in $\mathbb{P}(1,1,1,2,2)$ with a curve L of degree 1 ;
- quasi-smooth hypersurface of degree 7 in $\mathbb{P}(1,1,1,2,3)$ with a curve L of degree 1 .

Let $f: Y \rightarrow X$ be the blow up of the ideal sheaf of the curve L. Then Y is smooth whenever the curve L is smooth. As explained in [25, page 207] (it is independent of generality), in
each of the three cases listed above, there exists a non-zero nef divisor M on Y such that $M \cdot K_{Y}^{2} \leqslant 0$. Corollary 2.2 .3 therefore shows that the curve L must be singular. Consequently, the curve L must be an irreducible curve of degree 2 in a quasi-smooth hypersurface of degree 5 in $\mathbb{P}(1,1,1,1,2)$. More precisely, the curve L has either an ordinary double point (which implies that Y has an ordinary double point on the exceptional divisor E) or L has a cusp (which implies that Y has an isolated double point that is locally given by $x^{2}+y^{2}+z^{2}+t^{3}=0$ in \mathbb{C}^{4}). In both the cases, we can proceed exactly as explained in [25, page 207] (the very end of the proof of [25, Theorem 5.1.1]) to obtain a contradiction.

In summary, so far we have proved
Theorem 2.2.4. An irreducible curve contained in the smooth locus of X cannot be a center of non-canonical singularities of the log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.
At this stage, we are therefore able to draw a conclusion that if the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$ is not canonical, then at least one singular point of X must be a non-canonical center of $\left(X, \frac{1}{n} \mathcal{M}\right)$.

3 Singular points

3.1 Cyclic quotient singular points

Let (U, p) be a germ of a cyclic quotient singular point of type $\frac{1}{r}(1, a, r-a)$, where r and a are relatively prime positive integers with $a<r$. We have an orbifold chart $\pi:(\hat{U}, 0) \rightarrow(U, p)$, where \hat{U} is an open neighbourhood of the origin in \mathbb{C}^{3} and the morphism π is the quotient map by the group action of $\mathbb{Z} / r \mathbb{Z}$. We say that functions z_{1}, z_{2}, z_{3} on U induce local parameters at the point p if their pull-backs $\pi^{*}\left(z_{1}\right), \pi^{*}\left(z_{2}\right), \pi^{*}\left(z_{3}\right)$ are eigen-coordinate functions around the origin in $\hat{U} \subset \mathbb{C}^{3}$, corresponding to the weights $1, a, r-a$.

Let $\tilde{f}:(\tilde{U}, E) \rightarrow(U, p)$ be the local weighted blow up at the point p with weights $(1, a, r-a)$, where E is the exceptional divisor. The multiplicity of an effective Weil divisor D on U at the point p is defined by the number $\frac{m}{r}$ such that

$$
\tilde{f}^{*}(D)=\tilde{D}+\frac{m}{r} E,
$$

where \tilde{D} is the proper transform of D by \tilde{f}. An analytic function $g\left(z_{1}, z_{2}, z_{3}\right)$ on U defines a divisor D on U. The vanishing order (or the multiplicity) of g at the point p is defined by the multiplicity of the divisor D at the point p. The multiplicity can be also obtained in the following way. The functions z_{1}, z_{2}, z_{3} induce local parameters at the point p, so that we could assume that their pull-backs $\pi^{*}\left(z_{1}\right), \pi^{*}\left(z_{2}\right), \pi^{*}\left(z_{3}\right)$ are eigen-coordinate functions on \mathbb{C}^{3} locally around the origin, corresponding to the weights $1, a, r-a$, respectively. Counting the multiplicities of $\pi^{*}\left(z_{1}\right), \pi^{*}\left(z_{2}\right), \pi^{*}\left(z_{3}\right)$ as $1, a, r-a$, respectively, we see that the multiplicity of g at the point p coincides with the number

$$
\frac{1}{r} \operatorname{mult}_{0}\left(\pi^{*}\left(g\left(z_{1}, z_{2}, z_{3}\right)\right)\right)
$$

(see [42, Lemma 3.2.1]).
In the present paper, it is crucial to obtain the multiplicities of various quasi-homogeneous polynomials $G(x, y, z, t, w)$ at a singular point p on a given quasi-smooth hypersurface X. At the point p, we can always see that three, say z_{1}, z_{2} and z_{3}, of the homogenous coordinates x, y, z, t, w induce local parameters at the point p. Locally around the point p, the quasi-homogeneous polynomial $G(x, y, z, t, w)$ induces a function $g\left(z_{1}, z_{2}, z_{3}\right)$ as a formal power series in variables z_{1}, z_{2}, z_{3}. The vanishing order (or the multiplicity) of G at the point p is defined by the multiplicity of $g\left(z_{1}, z_{2}, z_{3}\right)$ at the point p which is equal to the number $\frac{1}{r} \operatorname{mult}_{0}\left(\pi^{*}\left(g\left(z_{1}, z_{2}, z_{3}\right)\right)\right)$ with counting the multiplicities of $\pi^{*}\left(z_{1}\right), \pi^{*}\left(z_{2}\right), \pi^{*}\left(z_{3}\right)$ as 1 , a, $r-a$, respectively, as before.

3.2 Excluding singular points

This section provides the methods we apply when we exclude the singular points as centers of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.

Let p be a singular point of type $\frac{1}{r}(1, a, r-a)$ on X, where r and a are relatively prime positive integers with $a<r$. As mentioned in Section 1.3, the weighted blow up of X at the point p with weights $(1, a, r-a)$ will be denoted by $f: Y \rightarrow X$. Its exceptional divisor and the anticanonical divisor of Y will be denoted by E and B, respectively. We denote by \mathcal{M}_{Y} the proper transform of the linear system \mathcal{M} by the weighted blow up f. The pull-back of $-K_{X}$
will be denoted by A. The surface S is the proper transform of the surface on X cut by the equation $x=0$.

Since the Picard group of X is generated by $-K_{X}$, the surface S is always irreducible. The surface S can be assumed to be \mathbb{Q}-linearly equivalent to B if one of the following conditions holds:

- $a_{1}=1$;
- $d-1$ is not divisible by r.

If $a_{1}>1$ and $d-1$ is divisible by r, then it is easy to check that S is always \mathbb{Q}-linearly equivalent to either B or $B-E$.

Before we explain how to show that p is not a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$, let us prove the following statement slightly modified from Corollary 2.2.2,

Lemma 3.2.1. Suppose that p is a center of non-canonical singularities of the log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. Then the 1 -cycle $B \cdot S \in N_{1}(Y)$ lies in the interior of the Mori cone of Y :

$$
B \cdot S \in \operatorname{Int}(\overline{\operatorname{NE}(Y)})
$$

Proof. It follows from Theorem 2.2.1 that

$$
\mathcal{M}_{Y} \sim_{\mathbb{Q}} n B-\epsilon E
$$

for some positive rational number ϵ. Since

$$
S \cdot \mathcal{M}_{Y}=S \cdot(n B-\epsilon E)
$$

is an effective 1-cycle, the 1-cycle $B \cdot S$ must lie in the interior of the Mori cone of Y because the 1-cycles $S \cdot E$ and $S \cdot B$ are not proportional in $N_{1}(Y)$ and the 1-cycle $S \cdot E$ generates the extremal ray contracted by f.

We have two kinds of singular points on X. The singular points with $B^{3} \leq 0$ are one kind and the singular points with $B^{3}>0$ are the other kind. Those with $B^{3} \leq 0$ will be excluded as centers of non-canonical singularities of the $\log \operatorname{pair}\left(X, \frac{1}{n} \mathcal{M}\right)$. Meanwhile, those with $B^{3}>0$ will be either excluded or untwisted (see Definition 3.3.1).
To exclude singular points with $B^{3} \leq 0$, we mainly apply the following lemma. It is a slightly modified version of [25, Lemma 5.4.3].

Lemma 3.2.2. Suppose that $B^{3} \leq 0$ and there is an index i such that

- there is a surface T on Y such that $T \sim_{\mathbb{Q}} a_{i} A-\frac{m}{r} E$ with $a_{i} \geq m>0$;
- the intersection $\Gamma=S \cap T$ consists of irreducible curves that are numerically proportional to each other;
- $T \cdot \Gamma \leq 0$.

Then the point p is not a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.

Proof. Let $\Gamma=\sum e_{i} \tilde{C}_{i}$, where $e_{i}>0$ and \tilde{C}_{i} 's are distinct irreducible and reduced curves. Let \tilde{R} be the extremal ray of the Mori cone $\overline{\mathrm{NE}(Y)}$ of Y contracted by $f: Y \rightarrow X$.

Since the curves \tilde{C}_{i} are numerically proportional to each other, each irreducible curve \tilde{C}_{i} defines the same ray in the Mori cone of Y. None of the curves \tilde{C}_{i} is contained in E because $T \cdot \tilde{C}_{i} \leq 0$ and $T \cdot E^{2}<0$. Therefore, the ray \tilde{Q} defined by Γ cannot be \tilde{R}.

We first claim that the ray \tilde{Q} is an extremal ray of $\overline{\mathrm{NE}(Y)}$, so that the Mori cone $\overline{\mathrm{NE}(Y)}$ could be spanned by \tilde{R} and \tilde{Q}.

Since $\tilde{C}_{i} \not \subset E$ for each i, we have $E \cdot \tilde{C}_{i} \geq 0$. Therefore,

$$
a_{i} B \cdot \Gamma \leq T \cdot \Gamma \leq 0
$$

where the first inequality follows from $a_{i} \geq m$.
If the surface T is nef, then $T \cdot \Gamma=0$ and hence Γ is in the boundary of $\overline{\mathrm{NE}(Y)}$. Therefore, the ray \tilde{Q} is an extremal ray of $\overline{\mathrm{NE}(Y)}$.

Suppose that the surface T is not nef and that the ray \tilde{Q} is not an extremal ray. Then there is a curve \tilde{C} with $T \cdot \tilde{C}<0$ that generates a ray between \tilde{Q} and the extremal ray other than \tilde{R} since $T \cdot \tilde{R}=-\frac{m}{r} E \cdot \tilde{R}>0$. It follows from $\tilde{C} \not \subset E$ that

$$
S \cdot \tilde{C} \leq B \cdot \tilde{C}=\frac{1}{a_{i}}\left(T-\frac{a_{i}-m}{r} E\right) \cdot \tilde{C}<0,
$$

and hence $\tilde{C} \subset S \cap T$. Therefore, the curve \tilde{C} must be one of the component of Γ, and hence
 $\overline{\mathrm{NE}(Y)}$ other than \tilde{R}.

If $B \cdot S \in \operatorname{Int}(\overline{\operatorname{NE}(Y)})$, then the ray

$$
\tilde{Q}=\mathbb{R}_{+}\left[S \cdot\left(a_{i} B+\frac{a_{i}-m}{r} E\right)\right]
$$

cannot be a boundary of $\overline{\mathrm{NE}(Y)}$. Therefore, Lemma 3.2 .1 implies that the point p cannot be a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.

Remark 3.2.3. The condition $T \cdot \Gamma \leq 0$ is equivalent to the inequality

$$
r a(r-a) a_{i}^{2} A^{3} \leq k m^{2}
$$

where $k=1$ if $S \sim_{\mathbb{Q}} B ; k=r+1$ otherwise.
We have singular points with $B^{3} \leq 0$ to which we cannot apply Lemma 3.2.2 in a simple way. Such singular points are dealt with in a special way in [25, Subsections 5.7.2 and 5.7.3]. However, we are dealing with every quasi-smooth hypersurface, not only a general one and the method of [25] is too complicated for us to analyze the irreducible components of the intersections Γ, which is inevitable for our purpose. We here present another method that enables us to avoid such difficulty.

Lemma 3.2.4. Suppose that there is a nef divisor T on Y with $T \cdot S \cdot B \leq 0$ and $T \cdot S \cdot A>0$. Then the point p cannot be a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.

Proof. Suppose that p is a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. Then it follows from Theorem 2.2.1 that

$$
\frac{1}{n} \mathcal{M}_{Y}=f^{*}\left(\frac{1}{n} \mathcal{M}\right)-m E
$$

with some rational number $m>\frac{1}{r}$. The intersection of the surface S and a general surface M_{Y} in the mobile linear system \mathcal{M}_{Y} gives us an effective 1-cycle. However,

$$
T \cdot S \cdot M_{Y}=n T \cdot S \cdot(A-m E)<n T \cdot S \cdot\left(A-\frac{1}{r} E\right)=n T \cdot S \cdot B \leq 0
$$

where the first inequality follows from $0<T \cdot S \cdot A \leq \frac{1}{r} T \cdot S \cdot E$. This contradicts the condition that T is nef.

Remark 3.2.5. For the divisor T equivalent to $c A-\frac{m}{r} E=c B+\frac{c-m}{r} E$ with some positive integers c and m, the condition $T \cdot S \cdot B \leq 0$ is equivalent to the inequality

$$
r a(r-a) c A^{3} \leq k m,
$$

where $k=1$ if $S \sim_{\mathbb{Q}} B ; k=r+1$ otherwise. The condition $T \cdot S \cdot A>0$ is always satisfied by any divisor T equivalent to $c A-\frac{m}{r} E$ with positive integers c.

To apply Lemma 3.2.4 we construct a nef divisor T in $|c B+b E|$ for some integers $c \geq 0$ and $b \leq \frac{c}{r}$. To construct a nef divisor T the following will be useful.

Lemma 3.2.6. Let \mathcal{L}_{X} be a mobile linear subsystem in $\left|-c K_{X}\right|$ for some positive integer c. Denote the proper transforms of the base curves of the linear system \mathcal{L}_{X} on Y by $\tilde{C}_{1}, \ldots, \tilde{C}_{s}$ (if any). Let T be the proper transform of a general surface in \mathcal{L}_{X}. Then the following hold.

- The divisor T belongs to $|c B+b E|$ for some integer b not greater than $\frac{c}{r}$.
- The divisor T is nef if $T \cdot \tilde{C}_{i} \geqslant 0$ for every i. In particular, it is nef if the base locus of \mathcal{L}_{X} contains no curves.
Proof. Since $T \sim_{\mathbb{Q}} c A-\frac{m}{r} E$ for some non-negative integer m and $B \sim_{\mathbb{Q}} A-\frac{1}{r} E$, we obtain $T \sim_{\mathbb{Q}} c B+\frac{c-m}{r} E$. The number $b:=\frac{c-m}{r}$ must be an integer because the divisor class group of Y is generated by B and E.

Suppose that T is not nef. Then there exists a curve $\tilde{C} \subset Y$ such that $T \cdot \tilde{C}<0$, which implies that the curve \tilde{C} is contained in the base locus of the proper transform of the linear system \mathcal{L}_{X}. Since $E \cong \mathbb{P}(1, a, r-a), \mathcal{O}_{E}(E)=\mathcal{O}_{E}(-r)$ and $b \leq \frac{c}{r}$, the divisor $\left.T\right|_{E}$ is nef, and hence $\tilde{C} \not \subset E$. We then draw an absurd conclusion that \tilde{C} is one of the curves $\tilde{C}_{1}, \ldots, \tilde{C}_{s}$.

With Lemma 3.2.4 we can easily exclude the singular points that are taken special cares in [25, 5.7.2 and 5.7.3]. However, in spite of our new methods, we encounter special cases that cannot be excluded by the methods proposed so far. To deal with these special cases, we apply the following two lemmas.

Lemma 3.2.7. Suppose that the surface S is \mathbb{Q}-linearly equivalent to B and there is a normal surface T on Y such that the support of the 1-cycle $\left.S\right|_{T}$ consists of curves on T whose intersection form is negative-definite. Then the singular point p cannot be a center of non-canonical singularities of the pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.

Proof. Put $\left.S\right|_{T}=\sum c_{i} \tilde{C}_{i}$, where c_{i} 's are positive numbers and \tilde{C}_{i} 's are distinct irreducible and reduced curves on the normal surface T. Suppose that the point p is a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. Then we have

$$
K_{Y}+\frac{1}{n} \mathcal{M}_{Y}+c E=f^{*}\left(K_{X}+\frac{1}{n} \mathcal{M}\right) \sim_{\mathbb{Q}} 0
$$

where c is a positive constant. Therefore, we obtain $\mathcal{M}_{Y}+n c E \sim_{\mathbb{Q}} n S$, and hence

$$
\left.\left(\mathcal{M}_{Y}+n c E\right)\right|_{T} \sim_{\mathbb{Q}} n \sum c_{i} \tilde{C}_{i} .
$$

We may write the left-hand side as

$$
\left.\left(\mathcal{M}_{Y}+n c E\right)\right|_{T}=\sum a_{j} \tilde{D}_{j}+\sum b_{i} \tilde{C}_{i}
$$

where each \tilde{D}_{j} is an irreducible curves on T different from \tilde{C}_{i} and a_{j}, b_{i} are positive rational numbers. Note that $\sum a_{j} \tilde{D}_{j}$ cannot be a zero divisor because \mathcal{M}_{Y} is a mobile linear system. We then obtain

$$
\sum a_{j} \tilde{D}_{j}+\sum_{n c_{i}-b_{i}<0}-\left(n c_{i}-b_{i}\right) \tilde{C}_{i} \sim_{\mathbb{Q}} \sum_{n c_{i}-b_{i}>0}\left(n c_{i}-b_{i}\right) \tilde{C}_{i} .
$$

Therefore,

$$
\left(\sum a_{j} \tilde{D}_{j}+\sum_{n c_{i}-b_{i}<0}-\left(n c_{i}-b_{i}\right) \tilde{C}_{i}\right) \cdot\left(\sum_{n c_{i}-b_{i}>0}\left(n c_{i}-b_{i}\right) \tilde{C}_{i}\right)=\left(\sum_{n c_{i}-b_{i}>0}\left(n c_{i}-b_{i}\right) \tilde{C}_{i}\right)^{2} .
$$

However, since the divisor $\sum \tilde{C}_{i}$ is negative-definite and $\sum_{n c_{i}-b_{i}>0}\left(n c_{i}-b_{i}\right) \tilde{C}_{i}$ cannot be a zero divisor on T, the equality is absurd.

Lemma 3.2.8. Suppose that there is a one-dimensional family of irreducible curves \tilde{C}_{λ} on Y with $E \cdot \tilde{C}_{\lambda}>0$ and $-K_{Y} \cdot \tilde{C}_{\lambda} \leq 0$. Then the singular point p cannot be a center of non-canonical singularities of the log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.

Proof. We have

$$
K_{Y}+\frac{1}{n} \mathcal{M}_{Y}=f^{*}\left(K_{X}+\frac{1}{n} \mathcal{M}\right)+c E
$$

with a negative number c. Suppose that there is a one-dimensional family of curves \tilde{C}_{λ} on Y with $E \cdot \tilde{C}_{\lambda}>0$ and $-K_{Y} \cdot \tilde{C}_{\lambda} \leq 0$. Then for each member \tilde{C}_{λ}, we have

$$
\mathcal{M}_{Y} \cdot \tilde{C}_{\lambda}=-n K_{Y} \cdot \tilde{C}_{\lambda}+c n E \cdot \tilde{C}_{\lambda} \leq c n E \cdot \tilde{C}_{\lambda}<0
$$

and hence the curve \tilde{C}_{λ} is contained in the base locus of the linear system \mathcal{M}_{Y}. This is a contradiction since the linear system \mathcal{M}_{Y} is mobile.

Notice that Lemmas 3.2.4, 3.2.7 and 3.2.8 do not require B^{3} to be non-positive. Therefore, these lemmas can be applied to exclude the singular points with $B^{3}>0$.

For example, the lemma below, which follows from Lemma 3.2.8, excludes all the singular points with $B^{3}>0$, except O_{z} in the family No. 62 , that appear in Theorem 1.1.10. The exception, the singular point O_{z} in the family No. 62 , can be also treated in the same way as Lemma 3.2.9, The only difference is that the variable z plays the role of t in Lemma 3.2.9,

Lemma 3.2.9. Suppose that the hypersurface X is given by a quasi-homogeneous equation

$$
w^{2}+x_{i} t^{k}+w f_{d-a_{4}}\left(x, x_{i}, x_{j}, t\right)+f_{d}\left(x, x_{i}, x_{j}, t\right)=0
$$

of degree d, where one of the variables x_{i} and x_{j} is y and the other is z. Let a_{i} and a_{j} be the weights of the variables x_{i} and x_{j}, respectively. If $2 a_{4}=3 a_{3}+a_{i}$, then the singular point O_{t} cannot be a center of non-canonical singularities of the $\log \operatorname{pair}\left(X, \frac{1}{n} \mathcal{M}\right)$.
Proof. The singular point O_{t} is of type $\frac{1}{a_{3}}\left(1, a_{j}, a_{4}-a_{3}\right)$. Local parameters at O_{t} are induced by x, x_{j}, w with multiplicities $\frac{1}{a_{3}}, \frac{a_{j}}{a_{3}}, \frac{a_{4}-a_{3}}{a_{3}}$.

Let T be the proper transform of the surface $S_{x_{i}}$ on X cut by the equation $x_{i}=0$. Due to the monomial w^{2}, we see that the surface $S_{x_{i}}$ has multiplicity $\frac{2\left(a_{4}-a_{3}\right)}{a_{3}}$ at the point O_{t}. Therefore, the surface T belongs to $\left|a_{i} B-E\right|$ since $2 a_{4}=3 a_{3}+a_{i}$.

Let C_{λ} be the curve on the surface $S_{x_{i}}$ defined by

$$
\left\{\begin{array}{l}
x_{i}=0 \\
x_{j}=\lambda x^{a_{j}}
\end{array}\right.
$$

for a sufficiently general complex number λ. Then the curve C_{λ} is a curve of degree d in $\mathbb{P}\left(1, a_{3}, a_{4}\right)$ defined by the equation

$$
w^{2}+w f_{d-a_{4}}\left(x, 0, \lambda x^{a_{j}}, t\right)+f_{d}\left(x, 0, \lambda x^{a_{j}}, t\right)=0
$$

Then

$$
-K_{Y} \cdot \tilde{C}_{\lambda}=a_{j} B^{2} \cdot\left(a_{i} B-E\right)=a_{1} a_{2} A^{3}-\frac{2 a_{j}\left(a_{4}-a_{3}\right)}{a_{3}^{3}} E^{3}=\frac{2}{a_{3}}-\frac{2}{a_{3}}=0
$$

If the curve \tilde{C}_{λ} is reducible, it consists of two irreducible components that are numerically equivalent since the two components of the curve C_{λ} are symmetric with respect to the biregular quadratic involution of X defined by

$$
[x: y: z: t: w] \mapsto\left[x: y: z: t:-f_{d-a_{4}}(x, y, z, t)-w\right]
$$

Then each component of \tilde{C}_{λ} intersects $-K_{Y}$ trivially. Consequently, Lemma 3.2.8 implies the statement.

3.3 Untwisting singular points

Excluding methods are introduced in the previous section. Now we explain how to deal with singular points of X that require some treatments by birational automorphisms of X. For us to prove Main Theorem, for a given singular point either it should be excluded as a center of non-canonical singularities of the $\log \operatorname{pair}\left(X, \frac{1}{n} \mathcal{M}\right)$ or it should be untwisted as a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. Untwisting is defined as follows:

Definition 3.3.1. Let τ be a birational automorphism of X. Suppose that a singular point p of X is a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. We say that the birational automorphism τ untwists the point p (as a center of non-canonical singularities of the log pair $\left.\left(X, \frac{1}{n} \mathcal{M}\right)\right)$ if

- the birational automorphism τ is not biregular;
- there exists a biregular in codimension one birational automorphism τ_{Y} of Y that fits the commutative diagram

In fact, this is a special case of a Sarkisov link of Type II (cf. [25, Definition 3.1.4]). The reason why such a birational automorphism is said to untwist a singular point is that it improves the singularities of the mobile linear system \mathcal{M}. This improvement results from the following property of such a birational automorphism.

Lemma 3.3.2. Suppose that a singular point p of X is a center of non-canonical singularities of the \log pair $\left(X \frac{1}{n} \mathcal{M}\right)$ and that there exists a birational automorphism τ of X that untwists the point p as a center of non-canonical singularities of the log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. Then $\tau(\mathcal{M}) \subset$ $\left|-n_{\tau} K_{X}\right|$ for some positive integer $n_{\tau}<n$.
Proof. Put $\tau_{Y}=f^{-1} \circ \tau \circ f$. Then τ_{Y} is biregular in codimension one and τ_{Y} is not biregular. In particular, τ_{Y} acts on the Picard group $\operatorname{Pic}(Y)$. Then $\tau_{Y}(B)=B$ since $B=-K_{Y}$. However, $\tau_{Y}(E) \neq E$ since τ_{Y} is biregular in codimension one. Indeed, if $\tau_{Y}(E)=E$, then τ is also biregular in codimension one. Then [23, Proposition 3.5] implies that τ is biregular since $\operatorname{Pic}(X) \cong \mathbb{Z}$.

On the other hand, we have

$$
f^{*}(\mathcal{M})=\mathcal{M}_{Y}+m E,
$$

for some positive rational number m. Furthermore, $m>\frac{n}{r}$ by Theorem 2.2.1. Since τ_{Y} acts on $\operatorname{Pic}(Y)$, there are rational numbers a, b, c, d such that $a, c>0$ and

$$
\left\{\begin{array}{l}
\tau_{Y}(A)=a A-b E, \\
\tau_{Y}(E)=c A-d E
\end{array}\right.
$$

Since $\tau_{Y}(B)=B$, we obtain

$$
A-\frac{1}{r} E=\tau_{Y}\left(A-\frac{1}{r} E\right)=\tau_{Y}(A)-\frac{1}{r} \tau_{Y}(E)=\left(a-\frac{c}{r}\right) A-\left(b-\frac{d}{r}\right) E,
$$

and hence $a-\frac{c}{r}=1$. We then see

$$
\tau_{Y}\left(\mathcal{M}_{Y}\right)=\tau_{Y}(n A-m E)=n \tau_{Y}(A)-m \tau_{Y}(E)=(n a-m c) A-(n b-m d) E .
$$

Since

$$
n a-m c=n a-m(a r-r)=n a-m r(a-1)<n a-n(a-1)=n,
$$

we obtain $\tau(\mathcal{M}) \subset\left|-n_{\tau} K_{X}\right|$ with $n_{\tau}<n$. This proves the statement.
Thus, to complete the proof of Main Theorem after Theorems 2.1.10 and 2.2.4, it is enough to show that every singular point of X either is not a center of non-canonical singularities of the \log pair $\left(X \frac{1}{n} \mathcal{M}\right)$ or can be untwisted by some appropriate birational automorphism of X. This follows from Theorem 1.2 .2 and Lemma 3.3 .2 with induction on n. The appropriate birational automorphisms to untwist singular points are introduce in the following chapter.

Remark 3.3.3. The proof of Lemma 3.3.2 shows that in order to find a birational automorphism of X untwisting the center p, it is enough to find a biregular in codimension one birational automorphism τ_{Y} of Y such that $\tau_{Y}(E) \neq E$. Indeed, this untwisting birational automorphism is defined by $\tau=f \circ \tau_{Y} \circ f^{-1}$.

As in [25], in the case when a singular point of X is untwisted by some birational automorphism of X, it can be untwisted by a very explicit birational involution. Since X has only finitely many singular points, there are finitely many such involutions for a given hypersurface X. These birational automorphisms generate a subgroup, denoted by Γ_{X}, in the birational automorphism group $\operatorname{Bir}(X)$. Using [23, Theorem 4.2] instead of Theorem 1.2.2, we prove

Theorem 3.3.4. Let X be a quasi-smooth hypersurface of degrees d with only terminal singularities in the weighted projective space $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$, where $d=\sum a_{i}$. Then the birational automorphism group of X is generated by the subgroup Γ_{X} and the biregular automorphism group of X.

In the case when X is a general hypersurface in its family, Theorem 3.3.4 is proved in [25] (see [25, Remark 1.4]).

4 Birational involutions

4.1 Quadratic involution

In many cases, explicit birational automorphisms arise from generically 2 -to- 1 rational maps of X onto appropriate 3 -dimensional weighted projective spaces. The birational automorphism constructed by interchanging the two points on a generic fiber of the generically 2-to-1 rational map is called a quadratic involution.

Lemma 4.1.1 ([25, Theorem 4.9]). Suppose that the hypersurface X is given by

$$
\begin{equation*}
x_{i_{3}} x_{i_{4}}^{2}+f_{e} x_{i_{4}}+g_{d}=0, \tag{4.1.2}
\end{equation*}
$$

where $x_{i_{4}}, x_{i_{3}}$ are two of the coordinates and f_{e}, g_{d} are quasi-homogeneous polynomials of degrees e and d not involving $x_{i_{4}}$. In addition, suppose that the polynomial f_{e} is not divisible by $x_{i_{3}}$. Then interchanging the roots of the equation with respect to $x_{i_{4}}$ defines a birational involution $\tau_{O_{x_{i_{4}}}}$ of X. The involution $\tau_{O_{x_{i_{4}}}}$ untwists the point $O_{x_{i_{4}}}$ as a center of non-canonical singularities of the log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.

Proof. If the the polynomial f_{e} is not divisible by $x_{i_{3}}$, the equations $x_{i_{3}}=f_{e}=g_{d}=0$ define a finitely many lines passing through the point $O_{x_{i_{4}}}$. The statement then follows from the proof of [25, Theorem 4.9].

Now we suppose that f_{e} in (4.1.2) is divisible by $x_{i_{3}}$. Then we are able to write $f_{e}=2 x_{i_{3}} g$ for some polynomial g not involving $x_{i_{4}}$. Therefore, we obtain

$$
x_{i_{3}} x_{i_{4}}^{2}+f_{e} x_{i_{4}}+g_{d}=x_{i_{3}}\left(x_{i_{4}}^{2}+2 g x_{i_{4}}\right)+g_{d}=x_{i_{3}}\left(x_{i_{4}}+g\right)^{2}-x_{i_{3}} g^{2}+g_{d}
$$

Using the change of coordinate $x_{i_{4}}+g \mapsto x_{i_{4}}$, we see that the singular point $O_{x_{i_{4}}}$ on the hypersurface of X defined by (4.1.2) with f_{e} divisible by $x_{i_{3}}$ can be excluded by the following lemma.

Lemma 4.1.3. Suppose that the hypersurface X is given by

$$
x_{i_{3}} x_{i_{4}}^{2}+x_{i_{3}} g_{e}\left(x, x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right)+h_{d}\left(x, x_{i_{1}}, x_{i_{2}}\right)=0,
$$

where $x_{i_{k}}$'s are the coordinates of $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$ different from x. If the weights of $x_{i_{1}}, x_{i_{2}}$ are less than the weight of $x_{i_{4}}$, then the singular points $O_{x_{i_{4}}}$ cannot be a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.

Proof. Note that the quasi-homogeneous polynomial h_{d} must be irreducible. Indeed, if it is reducible, then we may write $h_{d}\left(x, x_{i_{1}}, x_{i_{2}}\right)=g_{d_{1}}\left(x, x_{i_{1}}, x_{i_{2}}\right) g_{d_{2}}\left(x, x_{i_{1}}, x_{i_{2}}\right)$ for some nonconstant polynomials $g_{d_{1}}$ and $g_{d_{2}}$. Then, the hypersurface X is not quasi-smooth at the points defined by $x_{i_{3}}=x_{i_{4}}^{2}+g_{e}\left(x, x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right)=g_{d_{1}}\left(x, x_{i_{1}}, x_{i_{2}}\right)=g_{d_{2}}\left(x, x_{i_{1}}, x_{i_{2}}\right)=0$.

Let T be the proper transform on Y of the surface $S_{x_{i_{3}}}$ cut by $x_{i_{3}}=0$. The singular point $O_{x_{i_{4}}}$ is of type $\frac{1}{a_{i_{4}}}\left(1, a_{i_{1}}, a_{i_{2}}\right)$. Since local parameters at $O_{x_{i_{4}}}$ are induced by $x, x_{i_{1}}, x_{i_{2}}$ whose multiplicities are $\frac{1}{a_{i_{4}}}, \frac{a_{i_{1}}}{a_{i_{4}}}, \frac{a_{i_{2}}}{a_{i_{4}}}$, respectively, and the polynomial $h_{d}\left(x, x_{i_{1}}, x_{i_{2}}\right)$ cannot be zero, the surface cut by $x_{i_{3}}=0$ has multiplicity $\frac{d}{a_{i_{4}}}$ at $O_{x_{i_{4}}}$. Therefore, the surface T belongs to $\left|a_{i_{3}} B-2 E\right|$ since $a_{i_{3}}+2 a_{i_{4}}=d$.

Let C_{λ} be the curve on the surface $S_{x_{i_{3}}}$ defined by

$$
\left\{\begin{array}{l}
x_{i_{3}}=0 \\
x_{i_{2}}=\lambda x^{a_{i_{2}}}
\end{array}\right.
$$

for a sufficiently general complex number λ. Then the curve C_{λ} is a curve of degree d in $\mathbb{P}\left(1, a_{i_{1}}, a_{i_{4}}\right)$ defined by equation

$$
h_{d}\left(x, x_{i_{1}}, \lambda x^{a_{i_{2}}}\right)=0
$$

To obtain a one-dimensional family of irreducible curves on Y that is required for Lemma 3.2.8, we claim that every curve on T intersects B non-negatively. To this end, we consider the linear system \mathcal{L} on X given by the monomials $x^{a_{i_{1}}+a_{i_{2}}}, x_{i_{1}} x_{i_{2}}, x^{a_{i_{1}}} x_{i_{2}}, x^{a_{i_{2}}} x_{i_{1}}$. The proper transform of a surface in \mathcal{L} is equivalent to $\left(a_{i_{1}}+a_{i_{2}}\right) B$. The base locus of the proper transform \mathcal{L}_{Y} of the linear system \mathcal{L} consists of the proper transform of the curve cut by $x=x_{i_{1}}=0$ and the proper transform of the curve cut by $x=x_{i_{2}}=0$.

Suppose that we have a curve R on T such that $B \cdot R<0$. Since the linear system \mathcal{L}_{Y} is free outside the proper transforms of the curve cut by $x=x_{i_{1}}=0$ and the curve by $x=x_{i_{2}}=0$, one of the proper transforms must contain the curve R. Therefore, the curve R on the surface T should be either the proper transform \tilde{L}_{24} of the curve L_{24} defined by $x=x_{i_{1}}=0$ and $x_{i_{3}}=0$ or the proper transform \tilde{L}_{14} of the curve L_{14} defined by $x=x_{i_{2}}=0$ and $x_{i_{3}}=0$. However, since $E \cdot \tilde{L}_{24}=\frac{1}{a_{i_{2}}}$ and $E \cdot \tilde{L}_{14}=\frac{1}{a_{i_{1}}}$, we obtain

$$
\begin{aligned}
& B \cdot \tilde{L}_{24}=\left(A-\frac{1}{a_{i_{4}}} E\right) \cdot \tilde{L}_{24}=\frac{1}{a_{i_{2}} a_{i_{4}}}-\frac{1}{a_{i_{4}} a_{i_{2}}}=0 \\
& B \cdot \tilde{L}_{14}=\left(A-\frac{1}{a_{i_{4}}} E\right) \cdot \tilde{L}_{14}=\frac{1}{a_{i_{1}} a_{i_{4}}}-\frac{1}{a_{i_{4}} a_{i_{1}}}=0
\end{aligned}
$$

This verifies the claim. Then from the equation

$$
-K_{Y} \cdot \tilde{C}_{\lambda}=a_{i_{2}} B^{2} \cdot\left(a_{i_{3}} B-2 E\right)=0
$$

we obtain a one-dimensional family of irreducible curves on Y that is required for Lemma 3.2.8. It then follows from Lemma 3.2 .8 that $O_{x_{i_{4}}}$ cannot be a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.

Theorem 4.1.4. Suppose that the weights a_{3}, a_{4} are relatively prime and $2 a_{3}+a_{4}=d$. In addition, the equation of the hypersurface X does not involves the monomial wt ${ }^{2}$. Then the singular point O_{t} cannot be a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$.
Proof. We first note that the singular point O_{t} of the hypersurface X is of type $\frac{1}{a_{3}}\left(1, a_{1}, a_{2}\right)$. The hypersurface X may be assumed to be defined by the equation

$$
\begin{aligned}
& x_{i} t^{3}+t^{2} g_{a_{4}}(x, y, z)+t w g_{a_{3}}(x, y, z)+t g_{a_{3}+a_{4}}(x, y, z)+ \\
& \quad+w^{2} g_{d-2 a_{4}}(x, y, z)+w g_{2 a_{3}}(x, y, z)+g_{d}(x, y, z)=0
\end{aligned}
$$

where x_{i} is either y or z. We let x_{j} be z if x_{i} is y and vice versa. By a suitable coordinate change (if necessary), we may assume that the polynomial $g_{d-2 a_{4}}$ contains the monomial x_{j}.

Suppose that the singular point O_{t} is a center of non-canonical singularities of the log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. Consider the linear system \mathcal{L} on X generated by x^{e} and x_{j}, where e is the weight of x_{j}. The proper transform of each member of \mathcal{L} is \mathbb{Q}-linearly equivalent to $e B$. The base locus of the linear system \mathcal{L} consists of the curve cut by $x=x_{j}=0$. It consists of the curve $L_{t w}$ and its residual curve R. Note that the residual curve R cannot pass through the point O_{t} since we have the monomial $x_{i} t^{3}$. Therefore,

$$
B \cdot \tilde{L}_{t w}=e B^{3}+K_{X} \cdot R=\frac{2 e a_{3}+e a_{4}}{a_{1} a_{2} a_{3} a_{4}}-\frac{e}{a_{1} a_{2} a_{3}}-\frac{3 e a_{3}}{a_{1} a_{2} a_{3} a_{4}}=-\frac{e}{a_{1} a_{2} a_{4}} .
$$

Let T be the proper transform of the surface on X cut by the equation $x_{i}=0$. In addition, let \tilde{S}_{λ} be the proper transform of the surface on X cut by the equation $x_{j}-\lambda x^{e}=0$ for a general constant λ. The intersection 1 -cycle of the surface on X cut by the equation $x_{i}=0$ and the surface on X cut by the equation $x_{j}-\lambda x^{e}=0$ is defined in $\mathbb{P}\left(1, a_{3}, a_{4}\right)$ by the equation

$$
\begin{gathered}
t^{2} g_{a_{4}}\left(x, 0, \lambda x^{e}\right)+t w g_{a_{3}}\left(x, 0, \lambda x^{e}\right)+t g_{a_{3}+a_{4}}\left(x, 0, \lambda x^{e}\right)+ \\
+w^{2} g_{d-2 a_{4}}\left(x, 0, \lambda x^{e}\right)+w g_{2 a_{3}}\left(x, 0, \lambda x^{e}\right)+g_{d}\left(x, 0, \lambda x^{e}\right)=0
\end{gathered}
$$

if $x_{i}=y$,

$$
\begin{gathered}
t^{2} g_{a_{4}}\left(x, \lambda x^{e}, 0\right)+t w g_{a_{3}}\left(x, \lambda x^{e}, 0\right)+t g_{a_{3}+a_{4}}\left(x, \lambda x^{e}, 0\right)+ \\
+w^{2} g_{d-2 a_{4}}\left(x, \lambda x^{e}, 0\right)+w g_{2 a_{3}}\left(x, \lambda x^{e}, 0\right)+g_{d}\left(x, \lambda x^{e}, 0\right)=0
\end{gathered}
$$

if $x_{i}=z$. Since $g_{d-2 a_{4}}$ contains the monomial x_{j}, the equation in both the cases is divisible by x^{e} but not by x^{e+1}. This implies that

$$
T \cdot \tilde{S}_{\lambda}=e \tilde{L}_{t w}+\tilde{R}_{\lambda}=\left(2 a_{3}-a_{4}\right) \tilde{L}_{t w}+\tilde{R}_{\lambda},
$$

where \tilde{R}_{λ} is the residual curve. The multiplicity of the surface cut by $x_{i}=0$ along E is determined by the monomial $w^{2} x_{j}$. It is $\frac{e+2 e^{\prime}}{a_{3}}$, where e^{\prime} is the weight of x_{i}, since the multiplicity of w is $\frac{e^{\prime}}{a_{3}}$ and that of x_{j} is $\frac{e}{a_{3}}$. Therefore, the surface T is equivalent to $e^{\prime} B-E$ since $e+e^{\prime}=a_{1}+a_{2}=a_{3}$. Then

$$
B \cdot \tilde{R}_{\lambda}=e B^{2} \cdot T-\left(2 a_{3}-a_{4}\right) B \cdot \tilde{L}_{t w}=\frac{a_{1} a_{2}+e a_{3}-e a_{4}}{a_{1} a_{2} a_{4}}=0
$$

since $a_{4}=e^{\prime}+a_{3}$ and $e e^{\prime}=a_{1} a_{2}$. We then obtain a contradiction from Lemma 3.2.8.

4.2 Elliptic involution

Another way to obtain an involution is from an elliptic fibration with a section and the group structure on its generic fiber. We can, roughly speaking, construct the involution by sending every point to its inverse point with respect to the group structure. The involution constructed in this way is called an elliptic involution.

Proposition 4.2.1. Let $\pi: W \rightarrow \Sigma$ be an elliptic fibration over a normal surface Σ with a section F. Then there is a birational involution τ_{W} of W such that it induces the elliptic involution with respect to the point $C \cap F$ on a general fiber C.

Proof. Let W_{ζ} be the (scheme) fiber of π over a generic point ζ of Σ. Then W_{ζ} is a smooth geometrically irreducible curve over the rational function field \mathbb{K} of Σ over \mathbb{C}, which is birational to a cubic curve on $\mathbb{P}_{\mathbb{K}}^{2}$. Since F is a section of π, it defines a \mathbb{K}-rational point of the curve W_{ζ}. We denote this point by F_{ζ}. Thus, W_{ζ} is an elliptic curve defined over \mathbb{K}. To be precise, W_{ζ} has a group structure such that the \mathbb{K}-rational point F_{ζ} is its identity and all the group operations are morphisms defined over \mathbb{K} (see, for example, [47, Theorem 3.6 in Chapter III]). This group structure gives an involution $\tau_{W_{\zeta}}$ of W_{ζ} that sends every \mathbb{K}-rational point to its inverse. By construction, the involution $\tau_{W_{\zeta}}$ is a biregular automorphism of the curve W_{ζ} defined over \mathbb{K} that leaves the point F_{ζ} fixed. Since the rational function field of W over \mathbb{C} and the rational function filed of W_{ζ} over \mathbb{K} are naturally isomorphic as \mathbb{C}-algebras, the involution $\tau_{W_{\zeta}}$ defines a \mathbb{C}-algebra involution of the rational function field of W that leaves the subfield \mathbb{K} fixed. Therefore, it induces a birational involution $\tau_{W} \in \operatorname{Bir}(W)$ such that the diagram

commutes.
Taken the Weierstrass equation of an elliptic curve into consideration, an elliptic involution can be also regarded as a quadratic involution. Because its expression in polynomials becomes extremely complicated after weighted blow ups and log flips (see (4.2.11)), it is difficult to see the virtue of an elliptic involution from the point of view of a quadratic involution.

In this section, we deal with the singular point O_{t} on each quasi-smooth hypersurface in the families No. 23, 40, 44, 61, 76, and the singular point O_{z} on each quasi-smooth hypersurface in the families No. 20, 36. Also, the singular points of type $\frac{1}{2}(1,1,1)$ on each quasi-smooth hypersurface in the family No. 7 are treated. These singular points on general hypersurfaces in such families are untwisted by birational involutions induced by the elliptic fibration models in [25, 4.10]. This section deals with these singular points on every quasi-smooth hypersurface in the families mentioned above with the more geometric point of view.

Before we proceed, we divide the family No. 7, quasi-smooth hypersurfaces X_{8} of degree 8 in $\mathbb{P}(1,1,2,2,3)$, into two types.

Proposition 4.2.2. Let X_{8} be a quasi-smooth hypersurface of degree 8 in $\mathbb{P}(1,1,2,2,3)$. Then it may be assumed to be defined by an equation of one of the following forms

Type I:
$t w^{2}+w g_{5}(x, y, z)-z t^{3}-t^{2} g_{4}(x, y, z)-t g_{6}(x, y, z)+g_{8}(x, y, z)=0 ;$
Type II:
$\left(z+f_{2}(x, y)\right) w^{2}+w f_{5}(x, y, z, t)-z t^{3}-t^{2} f_{4}(x, y, z)-t f_{6}(x, y, z)+f_{8}(x, y, z)=0$.
In the latter equation, the quasi-homogeneous polynomial f_{5} must contain either $x t^{2}$ or $y t^{2}$.
Proof. Let $F(x, y, z, t, w)$ be a quasi-homogeneous polynomial of degree 8 that defines the hypersurface X_{8}. The hypersurface X_{8} has exactly four singular points of type $\frac{1}{2}(1,1,1)$. They correspond to the four solutions to the equation $F(0,0, z, t, 0)=0$ and they are located
along the curve $L_{z t}$. Let p be one of the singular points. By a coordinate change, we may assume that p is the point O_{t}. Then the polynomial F does not contain the monomial t^{4}. Therefore, we may write

$$
\begin{aligned}
F(x, y, z, t, w) & =w^{2} A_{2}(x, y, z, t)+w\left(2 t^{2} B_{1}(x, y, z)+2 t B_{3}(x, y, z)+B_{5}(x, y, z)\right)+ \\
& +t^{3} B_{2}(x, y, z)-t^{2} B_{4}(x, y, z)-t B_{6}(x, y, z)+B_{8}(x, y, z),
\end{aligned}
$$

where $A_{i}(x, y, z, t)$ is a quasi-homogeneous polynomial of degree i in x, y, z, t and $B_{j}(x, y, z)$ is a quasi-homogeneous polynomial of degree j in variables x, y, z.

Now we have two kinds of possibility for $A_{2}(x, y, z, t)$. The first possibility is that $A_{2}(x, y, z, t)$ contains the monomial t (this is a general case). In this case, we may assume that $A_{2}(x, y, z, t)=t$ by the coordinate change $A_{2}(x, y, z, t) \mapsto t$. Note that

$$
\begin{gathered}
t\left(w^{2}+2 w t B_{1}(x, y, z)+2 w B_{3}(x, y, z)\right) \\
=t\left(w+t B_{1}(x, y, z)+B_{3}(x, y, z)\right)^{2}-t\left(t B_{1}(x, y, z)+B_{3}(x, y, z)\right)^{2} .
\end{gathered}
$$

By the coordinate change $w+t B_{1}(x, y, z)+B_{3}(x, y, z) \mapsto w$, we may assume that

$$
\begin{aligned}
F(x, y, z, t, w) & =t w^{2}+w B_{5}(x, y, z)+ \\
& +t^{3} B_{2}(x, y, z)-t^{2} B_{4}(x, y, z)-t B_{6}(x, y, z)+B_{8}(x, y, z)
\end{aligned}
$$

The second possibility is that $A_{2}(x, y, z, t)$ does not contain the monomial t (this is a special case). In this case, it must contain the monomial z since X_{8} is quasi-smooth at O_{w}. We may then write $A_{2}(x, y, z, t)=z+f_{2}(x, y)$.

Since X_{8} is quasi-smooth at O_{t}, B_{2} must contain the monomial z. Therefore, by the coordinate change $B_{2}(x, y, z) \mapsto-z$, we see that the quasi-homogeneous polynomial F can be written in either Type I or Type II.

In the equation of Type II, the quasi-homogeneous polynomial f_{5} must contain either $x t^{2}$ or $y t^{2}$. If not, then the hypersurface X_{8} is not quasi-smooth at the point $[0: 0: 0: 1: 1]$.

The hypersurface in the family No. 7 defined by the equation of Type II may have an involution that untwists the singular point O_{t}. Since its construction is quite complicated, we explain the method in a separate section.

First, we consider the following six families and their singular point O_{t}.

- No. 7 (Type I), $X_{8} \subset \mathbb{P}(1,1,2,2,3)$;
- No. 23, $\quad X_{14} \subset \mathbb{P}(1,2,3,4,5)$;
- No. 40, $\quad X_{19} \subset \mathbb{P}(1,3,4,5,7)$;
- No. 44, $\quad X_{20} \subset \mathbb{P}(1,2,5,6,7)$;
- No. 61, $\quad X_{25} \subset \mathbb{P}(1,4,5,7,9)$;
- No. 76, $\quad X_{30} \subset \mathbb{P}(1,5,6,8,11)$.

For these six families, we may assume that the hypersurface X is defined by the equation

$$
\begin{equation*}
t w^{2}+w g_{d-a_{4}}(x, y, z)-x_{i} t^{3}-t^{2} g_{d-2 a_{3}}(x, y, z)-t g_{d-a_{3}}(x, y, z)+g_{d}(x, y, z)=0 \tag{4.2.4}
\end{equation*}
$$

where x_{i} is either y or z.
Put $y=\lambda_{1} x^{a_{1}}$ and $z=\lambda_{2} x^{a_{2}}$. We then consider the curve $C_{\lambda_{1}, \lambda_{2}}$ defined by

$$
\begin{align*}
& t w^{2}+w g_{d-a_{4}}\left(x, \lambda_{1} x^{a_{1}}, \lambda_{2} x^{a_{2}}\right)-\lambda_{i} x^{a_{i}} t^{3} \\
& -t^{2} g_{d-2 a_{3}}\left(x, \lambda_{1} x^{a_{1}}, \lambda_{2} x^{a_{2}}\right)-t g_{d-a_{3}}\left(x, \lambda_{1} x^{a_{1}}, \lambda_{2} x^{a_{2}}\right)+g_{d}\left(x, \lambda_{1} x^{a_{1}}, \lambda_{2} x^{a_{2}}\right)=0, \tag{4.2.5}
\end{align*}
$$

where $i=1$ if $x_{i}=y ; i=2$ if $x_{i}=z$, in $\mathbb{P}\left(1, a_{3}, a_{4}\right)$. From now let x_{j} be the variable such that $\left\{x_{i}, x_{j}\right\}=\{y, z\}$. If $x_{i}=y$, then put $a_{i}=a_{1}$ and $\lambda_{i}=\lambda_{1}$. If $x_{i}=z$, then put $a_{i}=a_{2}$ and $\lambda_{i}=\lambda_{2}$. Also we define a_{j} and λ_{j} in the same manner.

Theorem 4.2.6. Let X be a quasi-smooth hypersurface in the families No. 7 (Type I), 23, 40, 44, 61, 76. If the singular point O_{t} is a center of non-canonical singularities of the log pair ($X, \frac{1}{n} \mathcal{M}$), then it is untwisted by a birational involution.

Proof. Let $\pi: X \rightarrow \mathbb{P}\left(1, a_{1}, a_{2}\right)$ be the rational map induced by

$$
[x: y: z: t: w] \mapsto[x: y: z] .
$$

It is a morphism outside of the point O_{t} and the point O_{w}. Moreover, the map is dominant. Its general fiber is an irreducible curve birational to an elliptic curve. To see this, on the hypersurface X, consider the surface cut by $y=\lambda_{1} x^{a_{1}}$ and the surface cut by $z=\lambda_{2} x^{a_{2}}$, where λ_{1} and λ_{2} are sufficiently general complex numbers. Then the intersection of these two surfaces is the curve $C_{\lambda_{1}, \lambda_{2}}$ defined by (4.2.5). From the equation we can easily see that the curve $C_{\lambda_{1}, \lambda_{2}}$ is irreducible and reduced. Furthermore, plugging $x=1$ into (4.2.5), we see that the curve is birational to an elliptic curve. The curve $C_{\lambda_{1}, \lambda_{2}}$ is a general fiber of the map π.

Let \mathcal{H} be the linear subsystem of $\left|-a_{2} K_{X}\right|$ generated by the monomials of degree a_{2} in the variables x, y, z. Its proper transform \mathcal{H}_{Y} on Y coincides with $\left|-a_{2} K_{Y}\right|$.

Let $g: W \rightarrow Y$ be the weighted blow up at the point over O_{w} with weight $\left(1, a_{1}, a_{2}\right)$ and let F be its exceptional divisor. Let \hat{E} be the proper transform of the exceptional divisor E by the morphism g. Let \mathcal{H}_{W} be the proper transform of the linear system \mathcal{H} by the morphism $f \circ g$. We then see that $\mathcal{H}_{W}=\left|-a_{2} K_{W}\right|$. We also see that $-K_{W}^{3}=0$.

We first claim that the divisor class $-K_{W}$ is nef. Indeed, the base curve of the linear system $\left|-a_{2} K_{W}\right|$ is given by the proper transform of the curve C cut by the equation $x=z=0$ on X. If the curve is irreducible then its proper transform \hat{C} on W intersects $-K_{W}$ trivially since $-K_{W}^{3}=0$. Suppose that the curve C is reducible. It then consists of two irreducible components. Moreover, one of the components must be $L_{y w}$. Note that it passes through the point O_{w}. Its proper transform $\hat{L}_{y w}$ on W passes though the singular point of index a_{1} on the exceptional divisor F. We then obtain

$$
-K_{W} \cdot \hat{L}_{y w}=-K_{X} \cdot L_{y w}-\frac{1}{a_{4}} F \cdot \hat{L}_{y w}=\frac{1}{a_{1} a_{4}}-\frac{1}{a_{4} a_{1}}=0 .
$$

Since $-K_{W} \cdot \hat{C}=0$, the proper transform of the other component of C intersects $-K_{W}$ trivially. Therefore, the divisor class $-K_{W}$ is nef.

The linear system $\left|-m K_{W}\right|$ is free for sufficiently large m by Log Abundance ([37]). Hence, it induces an elliptic fibration $\eta: W \rightarrow \mathbb{P}\left(1, a_{1}, a_{2}\right)$. Moreover, we have proved the existence of a commutative diagram

We immediately see from (4.2.5) that the divisor F is a section of the elliptic fibration η and the divisor \hat{E} is a multi-section of the elliptic fibration η. Therefore, by Proposition 4.2.1, we can construct a birational involution $\tau_{W} \in \operatorname{Bir}(W)$ from the reflection of the generic fiber of η with respect to the section F. The involution τ_{W} is biregular in codimension one because K_{W} is η-nef ([38, Corollary 3.54]). In particular, τ_{W} acts on $\operatorname{Pic}(W)$.

Put $\tau_{Y}=g \circ \tau_{W} \circ g^{-1}$ and $\tau=f \circ \tau_{Y} \circ f^{-1}$.
We have $\tau_{W}(F)=F$ by our construction. Therefore, τ_{Y} is also biregular in codimension one. In order to show that the point O_{t} is untwisted by τ, it is enough to verify $\tau_{Y}(E) \neq E$ by Remark 3.3.3. For this verification, we suppose that $\tau_{Y}(E)=E$ and then we look for a contradiction.

First, note that $\tau_{Y}(E)=E$ immediately implies $\tau_{W}(\hat{E})=\hat{E}$. It also implies that the involution τ is biregular in codimension one. Furthermore, the involutions τ, τ_{Y}, τ_{W} induce the identity maps on the Picard groups of X, Y, W, respectively, since $\tau\left(-K_{X}\right)=-K_{X}$, $\tau_{Y}(E)=E$ and $\tau_{W}(F)=F$. Therefore, it follows from [23, Proposition 2.7] that they are all biregular.

Let $S_{\lambda_{i}}$ be the surface on the hypersurface X cut by the equation $x_{i}=\lambda_{i} x^{a_{i}}$ with a general complex number λ_{i}. It is a normal surface (see Remark 4.2.7 below). However, it is not quasi-smooth possibly at the point O_{t} and the point $O_{x_{j}}$. The surface $S_{\lambda_{i}}$ is τ-invariant by our construction. Moreover, the projection $\pi: X \rightarrow \mathbb{P}\left(1, a_{1}, a_{2}\right)$ induces a rational map $\pi_{\lambda_{i}}: S_{\lambda_{i}} \rightarrow \mathbb{P}\left(1, a_{j}\right) \cong \mathbb{P}^{1}$. The rational map $\pi_{\lambda_{i}}: S_{\lambda_{i}} \rightarrow \mathbb{P}^{1}$ is given by the pencil of the curves on the surface $S_{\lambda_{i}} \subset \mathbb{P}\left(1, a_{j}, a_{3}, a_{4}\right)$ cut by the equations

$$
\delta x^{a_{j}}=\epsilon x_{j}
$$

where $[\delta: \epsilon] \in \mathbb{P}^{1}$. Its base locus is cut out on $S_{\lambda_{i}}$ by $x=x_{j}=0$, which implies that the base locus of the pencil consists of two points O_{t} and O_{w}. The map $\pi_{\lambda_{i}}$ is defined outside of the points O_{w} and O_{t}.

Denote by $\hat{S}_{\lambda_{i}}$ the proper transform of the surface $S_{\lambda_{i}}$ by the birational morphism $f \circ g$. Then $\hat{S}_{\lambda_{i}}$ is a normal surface that belongs to $\left|-a_{i} K_{W}\right|$. Moreover, the morphism $f \circ g$ induces a birational morphism $\gamma: \hat{S}_{\lambda_{i}} \rightarrow S_{\lambda_{i}}$. Furthermore, we have a commutative diagram

where $\hat{\pi}_{\lambda_{i}}$ is the morphism induced by the elliptic fibration $\eta: W \rightarrow \mathbb{P}\left(1, a_{1}, a_{2}\right)$. In particular, a general fiber of $\hat{\pi}_{\lambda_{i}}$ is a smooth elliptic curve.

Let $\sigma: \bar{S}_{\lambda_{i}} \rightarrow \hat{S}_{\lambda_{i}}$ be the minimal resolution of singularities of the normal surface $\hat{S}_{\lambda_{i}}$. Then we have a commutative diagram

where $\bar{\pi}_{\lambda_{i}}=\hat{\pi}_{\lambda_{i}} \circ \sigma$. Then $\bar{\pi}_{\lambda_{i}}$ is also an elliptic fibration.
The surface $\hat{S}_{\lambda_{i}}$ is τ_{W}-invariant by our construction. Let $\hat{\tau}_{\lambda_{i}}$ be the restriction of the involution τ_{W} to the surface $\hat{S}_{\lambda_{i}}$. Then it is a biregular involution of the surface $\hat{S}_{\lambda_{i}}$ since τ_{W} is biregular. Put $\hat{E}_{\lambda_{i}}=\left.\hat{E}\right|_{\hat{S}_{\lambda_{i}}}$ and $F_{\lambda_{i}}=\left.F\right|_{\hat{S}_{\lambda_{i}}}$. Then $\hat{E}_{\lambda_{i}}$ and $F_{\lambda_{i}}$ are reduced $\hat{\tau}_{\lambda_{i}}$-invariant curves. Moreover, the curve ${\stackrel{F}{\lambda_{i}}}$ is irreducible and is a section of the elliptic fibration $\hat{\pi}_{\lambda_{i}}$. The curve $\hat{E}_{\lambda_{i}}$ is a multi-section of the elliptic fibration $\hat{\pi}_{\lambda_{i}}$.

Put $\bar{\tau}_{\lambda_{i}}=\sigma^{-1} \circ \hat{\tau}_{\lambda_{i}} \circ \sigma$. Then $\bar{\tau}_{\lambda_{i}}$ is biregular because $\hat{\tau}_{\lambda_{i}}$ is biregular and σ is the minimal resolution of singularities, i.e., $\bar{S}_{\lambda_{i}}$ is a minimal model over $\hat{S}_{\lambda_{i}}$ ([38, Corollary 3.54]). Let $\bar{E}_{\lambda_{i}}$ and $\bar{F}_{\lambda_{i}}$ be the proper transforms of $\hat{E}_{\lambda_{i}}$ and $\hat{F}_{\lambda_{i}}$ by the birational morphism σ, respectively. These are $(\gamma \circ \sigma)$-exceptional. Denote the other $(\gamma \circ \sigma)$-exceptional curves (if any) by G_{1}, \ldots, G_{r}. Again, $\bar{F}_{\lambda_{i}}$ is a section of the elliptic fibration $\bar{\pi}_{\lambda_{i}}$ and $\bar{E}_{\lambda_{i}}$ is a multi-section of the elliptic fibration $\bar{\pi}_{\lambda_{i}}$.

Let $\bar{C}_{\lambda_{i}}$ be a general fiber of the map $\bar{\pi}_{\lambda_{i}}$. Then $\bar{C}_{\lambda_{i}}$ is $\bar{\tau}_{\lambda_{i}}$-invariant. Furthermore, $\left.\bar{\tau}_{\lambda_{i}}\right|_{\bar{C}_{\lambda_{i}}}$ is given by the reflection with respect to the point $\bar{F}_{\lambda_{i}} \cap \bar{C}_{\lambda_{i}}$. On the other hand, the curve $\bar{E}_{\lambda_{i}}$ is $\bar{\tau}_{\lambda_{i}}$-invariant. Then Lemma 4.2 .8 below implies that the divisor $\bar{E}_{\lambda_{i}}-a_{i} \bar{F}_{\lambda_{i}}$ must be numerically equivalent to a \mathbb{Q}-linear combination of curves on $\bar{S}_{\lambda_{i}}$ that lie in the fibers of $\bar{\pi}_{\lambda_{i}}$.

Let C_{x} be the curve on $S_{\lambda_{i}}$ cut by the equation $x=0$. It is defined by the equation

$$
t w^{2}+w h_{d-a_{4}}\left(x_{j}\right)+h_{d}\left(x_{j}, t\right)=0
$$

in $\mathbb{P}\left(a_{j}, a_{3}, a_{4}\right)$. It can be reducible. We write $C_{x}=\sum_{k=1}^{\ell} m_{k} C_{k}$, where C_{k} 's are the irreducible components of C_{x}. Denote by \hat{C}_{k} be the proper transform of C_{k} by γ. Put $\hat{C}_{x}=\sum_{k=1}^{\ell} m_{k} \hat{C}_{k}$. Then all the curves \hat{C}_{k} lie in the same fiber of the elliptic fibration $\hat{\pi}_{\lambda_{i}}$

Let \bar{C}_{k} be the proper transform of \hat{C}_{k} by σ. Then all the curves \bar{C}_{k} lie in the same fiber of the elliptic fibration $\bar{\pi}_{\lambda_{i}}$. In addition, the fiber containing \bar{C}_{k} 's does not carry any other non- $(\gamma \circ \sigma)$-exceptional curve.

We also claim that every other fiber of $\bar{\pi}_{\lambda_{i}}$ contains exactly one irreducible and reduced curve that is not $(\gamma \circ \sigma)$-exceptional. For this claim, it is enough to show that for a general complex number λ_{i}, the curve $C_{\lambda_{1}, \lambda_{2}}$ is always irreducible and reduced for every value of λ_{j}. Suppose that this is not true. Then, for a general complex number λ_{i} there is a complex number λ_{j} such that the curve $C_{\lambda_{1}, \lambda_{2}}$ is reducible. Therefore there is a one-dimensional family of reducible curves $C_{\lambda_{1}, \lambda_{2}}$ with general λ_{i} and some λ_{j} depending on λ_{i}. Denote the general curve in this one-dimensional family by C. Since the defining equation (4.2.5) contains $t w^{2}$, it cam splits into at most three irreducible components. Furthermore, one of them must be the curve C_{1} defined by either

$$
y-\lambda_{1} x^{a_{1}}=z-\lambda_{2} x^{a_{2}}=w+f_{a_{4}}(x, t)=0
$$

or

$$
y-\lambda_{1} x^{a_{1}}=z-\lambda_{2} x^{a_{2}}=w^{2}+w g_{a_{4}}(x, t)+g_{2 a_{4}}(x, t)=0
$$

for some quasi-homogeneous polynomials $f_{a_{4}}(x, t), g_{a_{4}}(x, t)$ and $g_{2 a_{4}}(x, t)$. We then obtain

$$
\begin{aligned}
B \cdot \tilde{C}_{1} & =\left(A-\frac{1}{a_{3}} E\right) \cdot \tilde{C}_{1} \\
& =-K_{X} \cdot C_{1}-\frac{1}{a_{3}} E \cdot C_{1}, \\
& =\frac{k a_{1} a_{2} a_{4}}{a_{1} a_{2} a_{3} a_{4}}-\frac{k}{a_{4}}=0
\end{aligned}
$$

where $k=1$ for $w+f_{a_{4}}(x, t)=0$ and $k=2$ for $w^{2}+w g_{a_{4}}(x, t)+g_{2 a_{4}}(x, t)=0$. By Lemma 3.2.8, the point O_{t} cannot be a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. Therefore, since O_{t} is a center, every other fiber of $\bar{\pi}_{\lambda_{i}}$ contains exactly one irreducible and reduced curve that is not $(\gamma \circ \sigma)$-exceptional.

Since every fiber of $\bar{\pi}_{\lambda_{i}}$ (with scheme structure) is numerically equivalent to each other and the divisor $\bar{E}_{\lambda_{i}}-a_{i} \bar{F}_{\lambda_{i}}$ is numerically equivalent to a \mathbb{Q}-linear combination of curves that lie in the fibers of $\bar{\pi}_{\lambda_{i}}$, we obtain

$$
\bar{E}_{\lambda_{i}}-a_{i} \bar{F}_{\lambda_{i}} \sim_{\mathbb{Q}} \sum_{k=1}^{\ell} \bar{c}_{k} \bar{C}_{k}+\sum_{k=1}^{r} g_{k} G_{k}
$$

for some rational numbers $\bar{c}_{1}, \ldots, \bar{c}_{\ell}, g_{1}, \ldots, g_{r}$. On the other hand, the intersection form of the curves $\bar{E}_{\lambda_{i}}, \bar{F}_{\lambda_{i}}, G_{1}, \ldots, G_{r}$ is negative-definite since these curves are $\gamma \circ \sigma$-exceptional. This implies

$$
0>\left(\bar{E}_{\lambda_{i}}-a_{i} \bar{F}_{\lambda_{i}}-\sum_{k=1}^{r} g_{k} G_{k}\right)^{2}=\left(\sum_{k=1}^{\ell} \bar{c}_{k} \bar{C}_{k}\right)^{2} .
$$

Therefore, $\bar{c}_{k} \neq 0$ for some k. On the other hand, we have

$$
\sum_{k=1}^{\ell} \bar{c}_{k} C_{k} \sim_{\mathbb{Q}} 0
$$

on the surface $S_{\lambda_{i}}$. In particular, the intersection form of the curve(s) C_{k} 's is degenerate on the surface $S_{\lambda_{i}}$. This however contradicts Lemma 4.2 .9 below.

The obtained contradiction shows that $\tau_{Y}(E) \neq E$. In particular, the involution τ is not biregular. Since the involution τ_{Y} is biregular in codimension one, the involution τ meets the conditions in Definition 3.3.1 Therefore, the birational involution τ untwists the singular point O_{t}.

Remark 4.2.7. Each affine piece of the surface $S_{\lambda_{i}}$ is the quotient of a hypersurface in \mathbb{C}^{3} by a finite group action. Since the surface $S_{\lambda_{i}}$ has only isolated singularities, so does the hypersurface. Therefore, the hypersurface is normal, and hence its quotient by a finite group action is also normal. Consequently, the original surface $S_{\lambda_{i}}$ is normal. For the same reason, a hypersurface in a weighted projective space is normal if it is smooth in codimension 1.

The lemma below originates from Bogomolov and Tschinkel (4, [5).

Lemma 4.2.8. Let Σ be a smooth surface with an elliptic fibration $\pi: \Sigma \rightarrow B$ over a smooth curve B. Let N be a section of π and M be a multi-section of degree $m \geq 1$. Suppose that the surface Σ has an involution τ satisfying the following:
(1) a general fiber E is τ-invariant:
(2) M is τ-invariant:
(3) $\left.\tau\right|_{E}$ is given by the reflection on the elliptic curve E with respect to the point $N \cap E$.

Then the divisor $M-m N$ is numerically equivalent to a \mathbb{Q}-linear combination of curves that lie in the fibres of π.

Proof. The divisor $\left.(M-m N)\right|_{E}$ on the elliptic curve E belongs to $\operatorname{Pic}^{0}(E)$. The conditions (2) and (3) imply that $\tau\left(\left.(M-m N)\right|_{E}\right)=\left.(M-m N)\right|_{E}$. On the other hand, the condition (3) shows $\tau\left(\left.(M-m N)\right|_{E}\right)=-\left.(M-m N)\right|_{E}$. Consequently, the divisor

$$
\left.(M-m N)\right|_{E} \in \operatorname{Pic}^{0}(E)
$$

is 2-torsion. Then [46, Theorem 1.1] verifies the statement.
Lemma 4.2.9. Let $S_{\lambda_{i}}$ be the surface on X cut by the equation $x_{i}=\lambda_{i} x^{a_{i}}$ for a general complex number λ_{i}. Let $C_{x}=\sum_{k=1}^{\ell} m_{k} C_{k}$ be the divisor on $S_{\lambda_{i}}$ cut by the equation $x=0$. Then the intersection form of the curves C_{k} 's on the surface $S_{\lambda_{i}}$ is non-degenerate.

Proof. Suppose that it is not a case. This immediately implies that $\ell \geq 2$. It cannot happen in the families No. 44,61 and 76 since the polynomial g_{d} must contain a power of x_{j}, i.e., the curve C_{x} is irreducible.

The curve C_{x} is defined by

- $t w^{2}+a y^{5} w+y^{4}\left(b t^{2}+c y^{2} t+d y^{4}\right)=0$ in $\mathbb{P}(1,2,3)$ for the family No. 7 (Type I);
- $t w^{2}+a z^{3} w+b z^{2} t^{2}=0$ in $\mathbb{P}(3,4,5)$ for the family No. 23 ;
- $t w^{2}+a y^{4} w+b y^{3} t^{2}=0$ in $\mathbb{P}(3,5,7)$ for the family No. 40 .

The curve C_{x} must consist of two irreducible components C_{1} and C_{2}, i.e., $\ell=2$, except the case when $a=b=d=0$ and $c \neq 0$ in the family No. 7 (Type I). This exceptional case will be considered separately at the end.

By our assumption, the intersection matrix of C_{1} and C_{2} on the surface $S_{\lambda_{i}}$ is singular.
Suppose that the curve C_{x} is reduced. Then

$$
\left(\begin{array}{cc}
C_{1}^{2} & C_{1} \cdot C_{2} \\
C_{1} \cdot C_{2} & C_{2}^{2}
\end{array}\right)=\left(\begin{array}{cc}
C_{x} \cdot C_{1}-C_{1} \cdot C_{2} & C_{1} \cdot C_{2} \\
C_{1} \cdot C_{2} & C_{x} \cdot C_{2}-C_{1} \cdot C_{2}
\end{array}\right)
$$

and hence we have

$$
C_{1} \cdot C_{2}=\frac{\left(C_{x} \cdot C_{1}\right)\left(C_{x} \cdot C_{2}\right)}{C_{x}^{2}}=\frac{2}{a_{j} d} \quad\left(\text { resp. } \frac{a_{3}+a_{4}}{a_{j} a_{3} d}\right)
$$

if $a=0, b \neq 0$ (resp. $a \neq 0, b=0)$. Note that the intersection numbers by the curve C_{x} can be obtained easily because it is in $\left|\mathcal{O}_{S_{\lambda_{i}}}(1)\right|$.

Meanwhile, since the surface $S_{\lambda_{i}}$ is not quasi-smooth at the point O_{t} and possibly at the point $O_{x_{j}}$, we have some difficulty to find the numbers $C_{1} \cdot C_{2}$ without assuming that the matrix is singular. In order to compute the intersection number $C_{1} \cdot C_{2}$ on the surface $S_{\lambda_{i}}$ directly, we consider the divisor C_{t} (resp. C_{w}) cut by the equation $t=0$ (resp. $w=0$) on the surface $S_{\lambda_{i}}$ in case when $a=0$ (resp. $a \neq 0$).

Consider the case when $a=0, b \neq 0$. We may assume that the curve C_{1} is defined by the equation $x=t=0$ in $\mathbb{P}\left(1, a_{j}, a_{3}, a_{4}\right)$. Since the divisor C_{t} contains the curve C_{1}, we can write $C_{t}=m C_{1}+R$, where R is a curve whose support does not contain the curve C_{1}. From the intersection numbers

$$
\left(C_{1}+C_{2}\right) \cdot C_{1}=C_{x} \cdot C_{1}=\frac{1}{a_{j} a_{4}}, \quad\left(m C_{1}+R\right) \cdot C_{1}=C_{t} \cdot C_{1}=\frac{a_{3}}{a_{j} a_{4}}
$$

we obtain

$$
C_{1} \cdot C_{2}=\frac{1}{a_{j} a_{4}}-C_{1}^{2}=\frac{m-a_{3}}{m a_{j} a_{4}}+\frac{1}{m} R \cdot C_{1} \geq \frac{m-a_{3}}{m a_{j} a_{4}}+\frac{1}{m}\left(R \cdot C_{1}\right)_{O_{w}},
$$

where $\left(R \cdot C_{1}\right)_{O_{w}}$ is the local intersection number of the curves C_{1} and R at the point O_{w}. Note that the curves C_{1} and R always meet at the point O_{w} at which the surface $S_{\lambda_{i}}$ is quasi-smooth. They may also intersect at the point $O_{x_{j}}$. However, we do not care about the intersection at the point $O_{x_{j}}$. The local intersection at the point O_{w} will be enough for our purpose.

For the family No. 7 (Type I), we are considering the case when $a=d=0$ and $b \neq 0$. In such a case, if $c \neq 0$, then the curves C_{1} and C_{2} intersect at a smooth point of $S_{\lambda_{i}}$ and hence $C_{1} \cdot C_{2} \geq 1$. If $c=0$, then the conditions imply that the defining equation of X_{8} must contain either $x y^{7}$ or $z y^{6}$. Therefore, we can conclude that $m=1$ or 2 , depending on the existence of the monomials $x y^{7}, x y^{4} w$ in the defining equation of X_{8}, and that the local intersection number $\left(R \cdot C_{1}\right)_{O_{w}}$ is at least $\frac{4}{3}$. For the family No. 23, we see that $m=2$ and $C_{1} \cdot R=\frac{3}{5}$. For the family No. 40 , we can easily see that m can be 1,3 , or 4 , depending on the existence of the monomials $x y^{6}$ and $w y^{3} x^{3}$ in the defining equation, and that the local intersection number $\left(R \cdot C_{1}\right)_{O_{w}}$ is at least $\frac{3}{7}$. In all the cases, we see $C_{1} \cdot C_{2}>\frac{2}{a_{j} d}$. It is a contradiction.

Consider the case when $a \neq 0, b=0$. We may assume that the curve C_{1} is defined by the equation $x=w=0$ in $\mathbb{P}\left(1, a_{j}, a_{3}, a_{4}\right)$. Since we have the monomial of the form $x_{j}^{s} w$ in each defining equation, the surface $S_{\lambda_{i}}$ is quasi-smooth at the point $O_{x_{j}}$. Furthermore, by changing the coordinate w in suitable ways for the hypersurface X, we may assume that we have neither $x y^{6}$ nor $x^{2} y^{4} t$ for the family No. 40 and that we have neither $x^{2} z^{4}$ nor $x z^{3} t$ for the family No. 23 by changing the coordinate function w. For the family No. 7 (Type I), we may assume that none of the monomials $x y^{7}, t y^{6}, x y^{5} t$ appear in the defining equation of X_{8}.

Since the divisor C_{w} contains the curve C_{1}, we can write $C_{w}=m C_{1}+R$, where R is a curve whose support does not contain the curve C_{1}. From the intersection numbers

$$
\left(C_{1}+C_{2}\right) \cdot C_{1}=C_{x} \cdot C_{1}=\frac{1}{a_{j} a_{3}}, \quad\left(m C_{1}+R\right) \cdot C_{1}=C_{w} \cdot C_{1}=\frac{a_{4}}{a_{j} a_{3}}
$$

we obtain

$$
C_{1} \cdot C_{2}=\frac{1}{a_{j} a_{3}}-C_{1}^{2}=\frac{m-a_{4}}{m a_{j} a_{3}}+\frac{1}{m} R \cdot C_{1} \geq \frac{m-a_{4}}{m a_{j} a_{3}}+\frac{1}{m}\left(R \cdot C_{1}\right)_{O_{x_{j}}},
$$

where $\left(R \cdot C_{1}\right)_{O_{x_{j}}}$ is the local intersection number of the curves C_{1} and R at the point $O_{x_{j}}$. Similarly as in the previous case, they may also intersect at the point O_{t}. We do not care about the intersection at the point O_{t}. As before, the local intersection at the point $O_{x_{j}}$ will be big enough.

For the family No. 7 (Type I), we have $b=c=d=0$ and $a \neq 0$. Note that the point O_{y} is a smooth point of the surface $S_{\lambda_{i}}$. We see that m can be 1 or 2 , depending on the existence of the monomial $x y^{3} t^{2}$ in the defining equation, and that the local intersection number $\left(R \cdot C_{1}\right)_{O_{y}}$ is at least 2 . For the family No. 23, we see that $m=2$ and $C_{1} \cdot R=1$. For the family No. 40 , we see that m can be 3 or 4 , depending on the existence of the monomial $x^{3} y^{2} t^{2}$ in the defining equation, and that the local intersection number $\left(R \cdot C_{1}\right)_{O_{y}}$ is at least $\frac{2}{3}$. In all the cases, we see $C_{1} \cdot C_{2}>\frac{a_{3}+a_{4}}{a_{j} a_{3} d}$. Again we have obtained a contradiction.

Suppose that the curve C_{x} is not reduced. Then $C_{x}=C_{1}+2 C_{2}$, where C_{1} is defined by $x=t=0$ and C_{2} is defined by $x=w=0$. We then have

$$
\left(\begin{array}{cc}
C_{1}^{2} & C_{1} \cdot C_{2} \\
C_{1} \cdot C_{2} & C_{2}^{2}
\end{array}\right)=\left(\begin{array}{cc}
C_{x} \cdot C_{1}-2 C_{1} \cdot C_{2} & C_{1} \cdot C_{2} \\
C_{1} \cdot C_{2} & C_{x} \cdot C_{2}-\frac{1}{2} C_{1} \cdot C_{2}
\end{array}\right),
$$

and hence we have

$$
C_{1} \cdot C_{2}=\frac{2\left(C_{x} \cdot C_{1}\right)\left(C_{x} \cdot C_{2}\right)}{C_{x} \cdot\left(C_{1}+4 C_{2}\right)}=\frac{2}{a_{j}\left(a_{3}+4 a_{4}\right)} .
$$

In this case, the curves C_{1} and C_{2} intersect at the point $O_{x_{j}}$. The surface $S_{\lambda_{i}}$ is not quasismooth at the point $O_{x_{j}}$, i.e., the defining equation of X contains the monomial of the form $x_{j}^{s} x_{i}$. If it is quasi-smooth there, then we obtain an absurd identity $C_{1} \cdot C_{2}=\frac{1}{a_{j}}$ from a direct computation. Note that we do not have the monomial of the form $x_{j}^{s} w$. Furthermore, we may assume that we do not have $x y^{6}$ (resp. $x y^{7}$) for the family No. 40 (resp. No. 7) by changing the coordinate function z.

Since the divisor C_{t} contains the curve C_{1}, we can write $C_{t}=m C_{1}+R$, where R is a curve whose support does not contain the curve C_{1}. From the intersection numbers

$$
\left(C_{1}+2 C_{2}\right) \cdot C_{1}=C_{x} \cdot C_{1}=\frac{1}{a_{j} a_{4}}, \quad\left(m C_{1}+R\right) \cdot C_{1}=C_{t} \cdot C_{1}=\frac{a_{3}}{a_{j} a_{4}}
$$

we obtain

$$
C_{1} \cdot C_{2}=\frac{1}{2}\left(\frac{1}{a_{j} a_{4}}-C_{1}^{2}\right)=\frac{1}{2}\left(\frac{m-a_{3}}{m a_{j} a_{4}}+\frac{1}{m} R \cdot C_{1}\right) \geq \frac{1}{2}\left(\frac{m-a_{3}}{m a_{j} a_{4}}+\frac{1}{m}\left(R \cdot C_{1}\right)_{O_{w}}\right),
$$

where $\left(R \cdot C_{1}\right)_{O_{w}}$ is the local intersection number of the curves C_{1} and R at the point O_{w}.
As in the first case, $m=1$ or 2 , depending on the existence of the monomials $x y^{7}, x y^{4} w$ in the defining equation of X_{8}, and $\left(R \cdot C_{1}\right)_{O_{w}} \geq \frac{4}{3}$ for the family No. 7 (Type I). We also obtain $m=2$ and $C_{1} \cdot R=\frac{3}{5}$ for the family No. 23. For the family No. 40, we obtain $m=3$ or 4 , depending on the existence of the monomial $w y^{3} x^{3}$ in the defining equation, and $\left(R \cdot C_{1}\right)_{O_{w}} \geq \frac{3}{7}$. In all the cases, we see $C_{1} \cdot C_{2}>\frac{2}{a_{j}\left(a_{3}+4 a_{4}\right)}$. It is a contradiction again.

We now consider the exceptional case $a=b=d=0$ and $c \neq 0$ in the family No. 7 (Type I). The curve C_{x} is defined by

$$
t\left(w-\alpha_{1} y^{3}\right)\left(w-\alpha_{2} y^{3}\right)=0
$$

in $\mathbb{P}(1,2,3)$. It consists of three irreducible components L, C_{1} and C_{2}. The curve L is defined by $x=t=0$ in $\mathbb{P}(1,1,2,3)$ and the curve C_{k} by

$$
x=w-\alpha_{k} y^{3}=0
$$

in $\mathbb{P}(1,1,2,3)$. The curves L and C_{k} intersect at the point defined by $x=t=w-\alpha_{k} y^{3}=0$. At this point the surface $S_{\lambda_{i}}$ is smooth. We then have

$$
\left(L+C_{1}+C_{2}\right) \cdot L=\frac{1}{3}, \quad\left(L+C_{1}+C_{2}\right) \cdot C_{1}=\left(L+C_{1}+C_{2}\right) \cdot C_{2}=\frac{1}{2}, \quad L \cdot C_{1}=L \cdot C_{2}=1 .
$$

The intersection matrix of the curves L, C_{1} and C_{2} on the surface $S_{\lambda_{i}}$

$$
\left(\begin{array}{ccc}
-\frac{5}{3} & 1 & 1 \\
1 & -\frac{1}{2}-C_{1} \cdot C_{2} & C_{1} \cdot C_{2} \\
1 & C_{1} \cdot C_{2} & -\frac{1}{2}-C_{1} \cdot C_{2}
\end{array}\right)
$$

is non-singular regardless of the value of $C_{1} \cdot C_{2}$. This completes the proof.
Now, we consider the following two families and their singular point O_{z}.

- No. 20, $\quad X_{13} \subset \mathbb{P}(1,1,3,4,5)$;
- No. $36, \quad X_{18} \subset \mathbb{P}(1,1,4,6,7)$.

Before we proceed, we put a remark here. The proof of Theorem 4.2.6 works verbatim to treat these two cases. Indeed, we are able to obtain elliptic fibrations right after taking weighted blow ups at the point O_{z} and at the point O_{w} with the corresponding weights. We however follow another way that has evolved from [25, Section 4.10], instead of applying the same method. This can enhance our understanding of the involutions described in this section with various points of view.

We have two types of hypersurfaces in the family No. 20. One is the hypersurfaces whose defining equations contain the monomial $t z^{3}$ (Type I) and the other is the hypersurfaces not containing the monomial $t z^{3}$ (Type II).

We first consider both X_{13} of Type I in the family No. 20 and X_{18} in the family No. 36 at the same time. Note that the defining equation of X_{18} always contains the monomial $t z^{3}$.

We may then assume that these hypersurfaces X are defined by the equation

$$
\begin{equation*}
z w^{2}+w f_{d-a_{4}}(x, y, t)-t z^{3}-z^{2} f_{d-2 a_{2}}(x, y, t)-z f_{d-a_{2}}(x, y, t)+f_{d}(x, y, t)=0 \tag{4.2.10}
\end{equation*}
$$

We can define an involution τ_{z} of X as follows:

$$
\begin{align*}
& {[x: y: z: t: w] \mapsto} \\
& \quad\left[x: y: \frac{f_{d-a_{4}}^{2}\left(u+f_{d-a_{2}}\right)-f_{d}^{2}}{f_{d-a_{4}} u w+f_{d-a_{4}}^{2} z t+f_{d} u}: t: \frac{-f_{d-a_{4}} u\left(u+f_{d-a_{2}}\right)-f_{d}\left(u w+f_{d-a_{4}} z t\right)}{f_{d-a_{4}} u w+f_{d-a_{4}}^{2} z t+f_{d} u}\right], \tag{4.2.11}
\end{align*}
$$

where $u=w^{2}-t z^{2}-z f_{d-2 a_{2}}-f_{d-a_{2}}$. Indeed, the involution is obtained by the following way. We have a birational map ϕ from X to a hypersurface Z of degree $6 a_{4}$ in $\mathbb{P}\left(1, a_{1}, 2 a_{4}, a_{3}, 3 a_{4}\right)$ defined by

$$
[x: y: z: t: w] \mapsto[x: y: u: t: v],
$$

where $v=u w+f_{d-a_{4}} z t+f_{d-a_{4}} f_{d-2 a_{2}}$. Note that we have

$$
\left(\begin{array}{cc}
f_{d-a_{4}} & u \\
f_{d} & v
\end{array}\right)\binom{w}{z}=-\binom{f_{d}}{f_{d-a_{4}}\left(u+f_{d-a_{2}}\right)} .
$$

The hypersurface Z is defined by the equation

$$
v^{2}-f_{d-a_{4}} f_{d-2 a_{2}} v=u^{3}+u^{2} f_{d-a_{2}}-\left(f_{d-2 a_{2}} f_{d}+f_{d-a_{4}}^{2} t\right) u+\left(-f_{d-a_{4}}^{2} f_{d-a_{2}}+f_{d}^{2}\right) t
$$

Therefore the hypersurface Z has a biregular involution ι defined by

$$
[x: y: u: t: v] \mapsto\left[x: y: u: t: f_{d-a_{4}} f_{d-2 a_{2}}-v\right] .
$$

The birational involution of X is obtained by

$$
\tau_{z}=\phi^{-1} \circ \iota \circ \phi
$$

To see that it is a birational involution in detail, refer to [25, Section 4.10]. However, it can be a biregular automorphism under a certain condition. For example, if the polynomial $f_{d-a_{4}}$ is identically zero, then the involution becomes biregular. Indeed, it is the biregular involution

$$
[x: y: z: t: w] \mapsto[x: y: z: t:-w] .
$$

Moreover, the converse is true.
Lemma 4.2.12. The involution τ_{z} is biregular if and only if the polynomial $f_{d-a_{4}}$ is identically zero.

Proof. Suppose that $f_{d-a_{4}}$ is not a zero polynomial. Consider the surface cut by the equation $u=0$. It is easy to check that on this surface the involution becomes the map

$$
[x: y: z: t: w] \mapsto\left[x: y:-z-\frac{f_{d-2 a_{2}}}{t}: t: w\right] .
$$

Therefore, unless the polynomial $f_{d-2 a_{2}}$ is either identically zero or divisible by t, the involution τ_{t} cannot be biregular since it contracts the curve defined by $u=t=0$ to a point.

If the polynomial $f_{d-2 a_{2}}$ is identically zero, then on the surface cut by $z=0$, the involution becomes the map

$$
[x: y: z: t: w] \mapsto\left[x: y:-\frac{2 f_{d}}{u}: t:-w\right]
$$

and hence the involution τ_{z} cannot be biregular. It contracts the curve defined by $u=z=0$ to a point.

Finally, suppose that the polynomial $f_{d-2 a_{2}}(x, y, t)$ is divisible by t. In this case, we consider the surface cut by the equation $t=0$. On this surface the involution τ_{z} becomes

$$
[x: y: z: t: w] \mapsto\left[x: y:-z-\frac{2 f_{d}}{u}: t:-w\right] .
$$

It shows that the involution τ_{z} cannot be biregular because it contracts the curve defined by $t=u=0$.

Theorem 4.2.13. Let X be a quasi-smooth hypersurface in the families No. 20 (Type I) and 36. If the singular point O_{z} is a center of non-canonical singularities of the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$, then it is untwisted by the birational involution τ_{z}.

Proof. We suppose that $f_{d-a_{4}}$ is identically zero. Then the polynomial f_{d} must be a non-zero irreducible polynomial since X is quasi-smooth.

Set

$$
u=w^{2}-t z^{2}-z f_{d-2 a_{2}}-f_{d-a_{2}}
$$

and then let T be the proper transform of the surface given by the equation $u=0$. We can immediately check that the surface T belongs to the linear system $\left|2 a_{4} B\right|$.

Choose a general point $\left[1: \mu_{1}: \mu_{2}\right]$ on the curve defined by the equation $f_{d}=0$ in $\mathbb{P}\left(1, a_{1}, a_{3}\right)$. Then let $C_{\mu_{1}, \mu_{2}}$ be the curve defined by the equations

$$
u=y-\mu_{1} x^{a_{1}}=t-\mu_{2} x^{a_{3}}=0
$$

in $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$. This curve lies on the hypersurface X by our construction. If the curve is irreducible, then we have

$$
B \cdot \tilde{C}_{\mu_{1}, \mu_{2}}=\left(A-\frac{1}{a_{2}} E\right) \cdot \tilde{C}_{\mu_{1}, \mu_{2}}=\frac{2}{a_{2}}-\frac{1}{a_{2}} E \cdot \tilde{C}_{\mu_{1}, \mu_{2}}=0
$$

since $E \cdot \tilde{C}_{\mu_{1}, \mu_{2}}=2$. If $C_{\mu_{1}, \mu_{2}}$ is reducible, then it can have at most two irreducible components. Furthermore, each component $C_{\mu_{1}, \mu_{2}, i}$ is defined by

$$
w-h(x, z)=y-\mu_{1} x^{a_{1}}=t-\mu_{2} x^{a_{3}}=0
$$

in $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$ for some polynomial h. This shows

$$
B \cdot \tilde{C}_{\mu_{1}, \mu_{2}, i}=\left(A-\frac{1}{a_{2}} E\right) \cdot \tilde{C}_{\mu_{1}, \mu_{2}, i}=\frac{1}{a_{2}}-\frac{1}{a_{2}} E \cdot \tilde{C}_{\mu_{1}, \mu_{2}, i}=0
$$

since $E \cdot \tilde{C}_{\mu_{1}, \mu_{2}, i}=1$.
Since O_{z} is a center, this is a contradiction by Lemma 3.2.8. Therefore, $f_{d-a_{4}}$ is not identically zero, and hence τ_{z} is a non-biregular involution by Lemma 4.2.12,

Note that τ_{z} leaves the point O_{w} fixed. On the threefold W obtained by the weighted blow ups at O_{z} and O_{w} as in the proof of Theorem 4.2.6, the lift τ_{W} of the involution τ_{z} leaves the exceptional divisor over O_{w} fixed. For the same reason as in the proof of Theorem 4.2.6, the involution τ_{W} is biregular in codimension one, so is the lift τ_{Y} of the involution τ_{z} to Y.

Consequently, the involution τ_{z} untwists the singular point O_{z}.
Now we consider X_{13} of Type II, i.e., its defining equation does not contain the monomial $t z^{3}$.

Theorem 4.2.14. Let X_{13} be a quasi-smooth hypersurface of degree 13 in $\mathbb{P}(1,1,3,4,5)$ in the family No. 20 (Type II). Then the singular point O_{z} cannot be a center of non-canonical singularities of the log pair $\left(X_{13}, \frac{1}{n} \mathcal{M}\right)$.

Proof. Since X_{13} is of Type II, we may assume that the hypersurface X_{13} is defined by the equation

$$
z w^{2}+w\left(f_{8}(x, y, t)+a t^{2}\right)-y z^{4}-z^{3} f_{4}(x, y)-z^{2} f_{7}(x, y, t)-z f_{10}(x, y, t)+f_{13}(x, y, t)=0
$$

where a is a constant. Note that the polynomial f_{13} must contain the monomial $x t^{3}$; otherwise X_{13} would not be quasi-smooth.

Let \tilde{S}_{y} be the proper transform of the surface S_{y}. Let \mathcal{L} be the linear system on X_{13} generated by $x^{5}, x t$ and w.

First we consider the case where $a=0$. The base locus of the linear system $\left|-K_{X_{13}}\right|$ consists of the curve cut by $x=y=0$. The curve has two irreducible components. One is the curve $L_{z t}$ and the other is the curve $L_{t w}$. We see that

$$
S \cdot \tilde{S}_{y}=\tilde{L}_{t w}+2 \tilde{L}_{z t}
$$

Note that the curve $L_{t w}$ does not pass through the point O_{z}. We obtain

$$
B \cdot \tilde{L}_{z t}=\frac{1}{2} B \cdot S \cdot \tilde{S}_{y}-\frac{1}{2} A \cdot \tilde{L}_{t w}=\frac{1}{2} A^{3}-\frac{4}{54} E^{3}-\frac{1}{40}=-\frac{1}{4} .
$$

For the proper transform $\tilde{S}_{\lambda, \mu}$ of a general member in \mathcal{L}, we have

$$
\tilde{S}_{y} \cdot \tilde{S}_{\lambda, \mu}=\tilde{L}_{z t}+\tilde{R}_{\lambda, \mu},
$$

where $\tilde{R}_{\lambda, \mu}$ is the residual curve and it sweeps the surface \tilde{S}_{y}. We then obtain

$$
B \cdot \tilde{R}_{\lambda, \mu}=B \cdot \tilde{S}_{y} \cdot \tilde{S}_{\lambda, \mu}-B \cdot \tilde{L}_{z t}=5 A^{3}-\frac{8}{27} E^{3}+\frac{1}{4}=0
$$

It then follows from Lemma 3.2.8 that the singular point O_{z} cannot be a center of non-canonical singularities of the log pair $\left(X_{13}, \frac{1}{n} \mathcal{M}\right)$.

Now we consider the case where $a \neq 0$. By a coordinate change we may assume that $a=1$. The base locus of the linear system $\left|-K_{X_{13}}\right|$ consists of the curve cut by $x=y=0$. The curve has two irreducible components. One is $L_{z t}$ and the other is the curve L defined by

$$
x=y=z w+t^{2}=0 .
$$

The curves \tilde{L} and $\tilde{L}_{z t}$ intersect the exceptional divisor E at a smooth point. We have $S \cdot \tilde{S}_{y}=$ $\tilde{L}_{z t}+\tilde{L}$ and

$$
B \cdot \tilde{L}_{z t}=A \cdot \tilde{L}_{z t}-\frac{1}{3} E \cdot \tilde{L}_{z t}=-\frac{1}{4}, \quad B \cdot \tilde{L}=A \cdot \tilde{L}-\frac{1}{3} E \cdot \tilde{L}=\frac{2}{15}-\frac{1}{3}=-\frac{1}{5} .
$$

For the proper transform $\tilde{S}_{\lambda, \mu}$ of a general member in \mathcal{L}, we have

$$
\tilde{S}_{y} \cdot \tilde{S}_{\lambda, \mu}=\tilde{L}_{z t}+\tilde{R}_{\lambda, \mu},
$$

where $\tilde{R}_{\lambda, \mu}$ is the residual curve and it sweeps the surface \tilde{S}_{y}. Note that the curve $\tilde{R}_{\lambda, \mu}$ does not contain the curve $\tilde{L}_{z t}$ since the defining polynomial of X_{13} contains either $x t^{3}$ or $w t^{2}$. Therefore,

$$
B \cdot \tilde{R}_{\lambda, \mu}=B \cdot \tilde{S}_{y} \cdot \tilde{S}_{\lambda, \mu}-B \cdot \tilde{L}_{z t}=5 A^{3}-\frac{8}{27} E^{3}+\frac{1}{4}=0 .
$$

Then the statement immediately follows from Lemma 3.2.8,

Remark 4.2.15. Note that Theorem 4.2.6 can be proved in the same way that we apply to Theorems 4.2.13. The involution of X for the singular point O_{t} is defined as follows:

$$
\begin{aligned}
& {[x: y: z: t: w] \mapsto} \\
& \quad\left[x: y: z: \frac{g_{d-a_{4}}^{2}\left(v+g_{d-a_{3}}\right)-g_{d}^{2}}{g_{d-a_{4}} v w+g_{d-a_{4}}^{2} x_{i} t+g_{d} v}: \frac{-g_{d-a_{4}} v\left(v+g_{d-a_{3}}\right)-g_{d}\left(v w+g_{d-a_{4}} x_{i} t\right)}{g_{d-a_{4}} v w+g_{d-a_{4}}^{2} x_{i} t+g_{d} v}\right],
\end{aligned}
$$

where $v=w^{2}-x_{i} t^{2}-t g_{d-2 a_{3}}-g_{d-a_{3}}$. This birational involution is also extracted from [25, Section 4.10]. We are immediately able to check that it is biregular if and only if the polynomial $g_{d-a_{4}}$ is identically zero.

4.3 Invisible elliptic involution

In this section we consider the singular point O_{z} on the hypersurfaces of a special type in the family No. 23 and the singular points of type $\frac{1}{2}(1,1,1)$ on the hypersurfaces of Type II in the family No. 7. The method we use here is almost the same as the one for Theorem 4.2.6. In the proof of Theorem 4.2.6, only with the weighted blow ups at the point O_{t} (or O_{z}) and the point O_{w} we can obtain an elliptic fibration with a section. However, in this special cases of the families No. 7 and 23, after these two weighted blow-ups, our elliptic fibrations still remain invisible. When we reach a threefold W with $-K_{W}^{3}=0$, instead of elliptic fibrations, we see several curves that intersect $-K_{W}$ negatively. Eventually, log-flips along these curves reveal elliptic fibrations with sections.

We first consider the singular point O_{z} on the hypersurface of the special type in the family No. 23. In general, every quasi-smooth hypersurface of degree 14 in $\mathbb{P}(1,2,3,4,5)$ can be defined by the equation

$$
\begin{gathered}
\left(t+b y^{2}\right) w^{2}+y\left(t-\alpha_{1} y^{2}\right)\left(t-\alpha_{2} y^{2}\right)\left(t-\alpha_{3} y^{2}\right)+z^{3}\left(a_{1} w+a_{2} y z\right)+c z^{2} t^{2}+ \\
+w f_{9}(x, y, z, t)+f_{14}(x, y, z, t)=0
\end{gathered}
$$

for suitable constants $b, \alpha_{1}, \alpha_{2}, \alpha_{3}$, and suitable polynomials $f_{9}(x, y, z, t), f_{14}(x, y, z, t)$. Here, we will deal with the singular point O_{z} on this hypersurface. However, in the cases when at least one of the constants c, a_{1} is non-zero, the singular point O_{z} can be easily excluded (see the table for the family No. 23 in Section [5.2). For this reason, we consider only the case when $a_{1}=c=0$. In this case, the defining equation must possess the monomial $x t z^{3}$. If not, then the hypersurface is not quasi-smooth at the point defined by $x=y=w=t^{3}+a_{2} z^{4}=0$. Consequently, it is the singular points O_{z} on the hypersurface X_{14} of degree 14 in $\mathbb{P}(1,2,3,4,5)$ defined by the equation
$\left(t+b y^{2}\right) w^{2}+y\left(t-\alpha_{1} y^{2}\right)\left(t-\alpha_{2} y^{2}\right)\left(t-\alpha_{3} y^{2}\right)+z^{4} y+x t z^{3}+w f_{9}(x, y, z, t)+f_{14}(x, y, z, t)=0$,
where f_{9} does not contain z^{3} and f_{14} does not contain $z^{2} t^{2}$, that we should deal with here. By replacing $t-\alpha_{3} y^{2}$ by t, we may assume that X_{14} has a singular point at O_{y} without loss of generality. Note that by a suitable coordinate change with respect to t, we may assume that neither $x^{3} w^{2}$ nor $x y w^{2}$ appears in the defining equation. However we cannot change the coefficient term $\left(t+b y^{2}\right)$ of w^{2} into t by a coordinate change since we have already assumed that O_{y} is a singular point.

Theorem 4.3.1. Suppose that the hypersurface X_{14} of degree 14 in $\mathbb{P}(1,2,3,4,5)$ is defined by the equation

$$
\left(t+b y^{2}\right) w^{2}+y t\left(t-\alpha_{1} y^{2}\right)\left(t-\alpha_{2} y^{2}\right)+z^{4} y+x t z^{3}+w f_{9}(x, y, z, t)+f_{14}(x, y, z, t)=0
$$

as explained just before. If the singular point O_{z} is a center of non-canonical singularities of the log pair $\left(X_{14}, \frac{1}{n} \mathcal{M}\right)$, then there is a birational involution that untwists O_{z}.
Proof. Let \mathcal{H} be the linear subsystem of $\left|-5 K_{X_{14} \mid}\right|$ generated by $x^{5}, x y^{2}, x^{3} y$ and $y z+x t$. Note that the polynomial $y z+x t$ vanishes at the point O_{z} with multiplicity $\frac{5}{3}$ (see Remark 4.3.4 below). Let $\pi: X_{14} \rightarrow \mathbb{P}(1,2,5)$ be the rational map induced by

$$
[x: y: z: t: w] \mapsto[x: y: y z+x t] .
$$

Then π is a morphism outside of the curves $L_{z t}$ and $L_{z w}$. Moreover, the map π is dominant, which implies, in particular, that \mathcal{H} is not composed from a pencil. Furthermore, its general fiber is an irreducible curve that is birational to an elliptic curve. To see this, we put $y=\lambda x^{2}$ and $y z+x t=\mu x^{5}$ with sufficiently general complex numbers λ and μ. On the hypersurface X_{14}, we take the intersection of the surface defined by $y=\lambda x^{2}$ and the surface defined by $y z+x t=\mu x^{5}$. This intersection is the same as the intersection of the surface defined by $y=\lambda x^{2}$ and the reducible surface defined by $x\left(\lambda x z+t-\mu x^{4}\right)=0$. Therefore, the intersection is the 1-cycle

$$
\left(L_{z w}+2 L_{z t}\right)+\left(L_{z w}+C_{\lambda, \mu}\right)=2 L_{z w}+2 L_{z t}+C_{\lambda, \mu}
$$

where the curve $C_{\lambda, \mu}$ is defined by the equation

$$
\begin{align*}
& \left(\mu x^{3}-\lambda z+b \lambda^{2} x^{3}\right) w^{2}+\lambda x^{4}\left(\mu x^{3}-\lambda z\right)\left(\mu x^{3}-\alpha_{1} \lambda^{2} x^{3}-\lambda z\right)\left(\mu x^{3}-\alpha_{2} \lambda^{2} x^{3}-\lambda z\right)+\mu x^{4} z^{3}+ \\
& +\frac{w f_{9}\left(x, \lambda x^{2}, z, \mu x^{4}-\lambda x z\right)+f_{14}\left(x, \lambda x^{2}, z, \mu x^{4}-\lambda x z\right)}{x}=0 \tag{4.3.2}
\end{align*}
$$

in $\mathbb{P}(1,3,5)$. The curve $C_{\lambda, \mu}$ is a general fiber of the map π. Setting $x=1$ in (4.3.2), we consider the curve defined by

$$
\begin{align*}
& \left(\mu+b \lambda^{2}-\lambda z\right) w^{2}+\lambda(\mu-\lambda z)\left(\mu-\alpha_{1} \lambda^{2}-\lambda z\right)\left(\mu-\alpha_{2} \lambda^{2}-\lambda z\right)+ \tag{4.3.3}\\
& +\mu z^{3}+w f_{9}(1, \lambda, z, \mu-\lambda z)+f_{14}(1, \lambda, z, \mu-\lambda z)=0
\end{align*}
$$

in \mathbb{C}^{2}. It is a smooth affine plane cubic curve. Moreover, for a general complex number λ, the curve (4.3.3) is always irreducible and reduced for every value of μ (see Lemma 4.3.5 below).

Let \mathcal{H}_{Y} be the proper transform of the linear system \mathcal{H} by the weighted blow up f. It is the linear system $\left|-5 K_{Y}\right|$ because the linear system \mathcal{H} consists exactly of the members of $\left|-5 K_{X}\right|$ with multiplicity at least $\frac{5}{3}$ at O_{z} (see Remark 4.3.4 below). Let $g: W \rightarrow Y$ be the weighted blow up at the point over O_{w} with weight $(1,2,3)$ and \mathcal{H}_{W} the proper transform of \mathcal{H}_{Y} by the morphism g. Let \hat{E} be the proper transform of E by the weighted blow up g and G be the exceptional divisor of g.

The linear system \mathcal{H}_{W} coincides with the linear system $\left|-5 K_{W}\right|$ since every member in $\left|-5 K_{Y}\right|$ has multiplicity at least 1 at the point corresponding to O_{w} (see Remark 4.3.4 below).

The base locus of the linear system \mathcal{H} is given by the equation $x=y z+x t=0$. Therefore, it consists of $L_{z w}, L_{z t}$ and the curve C cut by the equation $x=z=0$. The curve C may not be irreducible. Indeed, C is irreducible if and only if $b \neq 0$. If $b=0$, then C consists of two irreducible curves $L_{y w}$ and R, where R is an irreducible curve passing through neither the point O_{z} nor the point O_{w}. Let $\hat{L}_{z w}, \hat{L}_{z t}, \hat{L}_{y w}, \hat{R}$ and \hat{C} be the proper transforms of the curves $L_{z w}, L_{z t}, L_{y w}, R$ and C, respectively, by the morphism $f \circ g$. We have

$$
\begin{aligned}
& -K_{W} \cdot \hat{L}_{z w}=-K_{X_{14}} \cdot L_{z w}-\frac{1}{3} \hat{E} \cdot \hat{L}_{z w}-\frac{1}{5} G \cdot \hat{L}_{z w}=-\frac{1}{6} \\
& -K_{W} \cdot \hat{L}_{z t}=-K_{X_{14}} \cdot L_{z t}-\frac{1}{3} \hat{E} \cdot \hat{L}_{z t}=-\frac{1}{4} \\
& -K_{W} \cdot \hat{L}_{y w}=-K_{X_{14}} \cdot L_{y w}-\frac{1}{5} G \cdot \hat{L}_{y w}=\frac{1}{30} \\
& -K_{W} \cdot \hat{R}=-K_{X_{14}} \cdot R>0 ; \quad-K_{W} \cdot \hat{C}=-K_{X_{14}} \cdot C>0 .
\end{aligned}
$$

Therefore, the curves $\hat{L}_{z w}$ and $\hat{L}_{z t}$ are the only curves that intersect $-K_{W}$ negatively. The \log pair $\left(W, \frac{1}{5} \mathcal{H}_{W}\right)$ is canonical, and hence the \log pair $\left(W,\left(\frac{1}{5}+\epsilon\right) \mathcal{H}_{W}\right)$ is Kawamata \log terminal for sufficiently small $\epsilon>0$. Since

$$
K_{W}+\left(\frac{1}{5}+\epsilon\right) \mathcal{H}_{W} \sim_{\mathbb{Q}}-\epsilon K_{W}
$$

the curves $\hat{L}_{z w}$ and $\hat{L}_{z t}$ are the only curves that intersect $K_{W}+\left(\frac{1}{5}+\epsilon\right) \mathcal{H}_{W}$ negatively. Therefore, there is a \log flip $\chi: W \rightarrow U$ along the curves $\hat{L}_{z w}$ and $\left.\hat{L}_{z t}(48]\right)$. Let \check{E} and \check{G} be the proper transforms of the divisors \hat{E} and G, respectively, by χ. The anticanonical divisor $K_{U}+\left(\frac{1}{5}+\epsilon\right) \mathcal{H}_{U}$ is nef, where \mathcal{H}_{U} is the proper transform of \mathcal{H}_{W} by the birational map χ that is an isomorphism in codimension one.

By Log Abundance ([37]), the linear system $\left|-m K_{U}\right|$ is free for sufficiently large m. Hence, it induces a dominant morphism $\eta: U \rightarrow \Sigma$ with connected fibers, where Σ is a normal variety. We claim that Σ is a surface and η is an elliptic fibration. For this claim, let $\hat{C}_{\lambda, \mu}$ be the proper transform of a general fiber $C_{\lambda, \mu}$ of the map π on the threefold W and let $\check{C}_{\lambda, \mu}$ be its proper transform on U. Then

$$
-K_{W} \cdot \hat{C}_{\lambda, \mu}=-10 K_{W}^{3}-2\left(-K_{W}\right) \cdot\left(\hat{L}_{z w}+\hat{L}_{z t}\right)=0
$$

In particular, the curve $\hat{C}_{\lambda, \mu}$ is disjoint from the curves $\hat{L}_{z t}$ and $\hat{L}_{z w}$ because the base locus of the linear system $\left|-5 K_{W}\right|$ contains the curves $\hat{L}_{z t}$ and $\hat{L}_{z w}$. Therefore,

$$
-K_{U} \cdot \check{C}_{\lambda, \mu}=0
$$

It implies that η contracts $\check{C}_{\lambda, \mu}$. Since we already proved that $C_{\lambda, \mu}$ is birational to an elliptic curve and \mathcal{H} is not composed from a pencil, we can see that η is an elliptic fibration. Moreover,
we have proved the existence of a commutative diagram

where θ is a birational map.
We see from (4.3.2) that the divisor \check{G} is a section of the elliptic fibration η and \check{E} is a 2-section of η. Let τ_{U} be the birational involution of the threefold U obtained from the elliptic fibration $\eta: U \rightarrow \Sigma$ with the section \check{G} by Proposition 4.2.1. Then τ_{U} is biregular in codimension one because K_{U} is η-nef by our construction ([38, Corollary 3.54]).

Put $\tau_{W}=\chi^{-1} \circ \tau_{U} \circ \chi, \tau_{Y}=g \circ \tau_{W} \circ g^{-1}$ and $\tau=f \circ \tau_{Y} \circ f^{-1}$.
Since τ_{U} and χ are biregular in codimension one, so is the involution τ_{W}. Moreover, we have $\tau_{W}(G)=G$ since $\tau_{U}(\check{G})=\check{G}$ by our construction. This implies that τ_{Y} is also biregular in codimension one.

In order to see that the point O_{z} is untwisted by τ, we have only to show that the involution τ is not biregular. To prove this, we suppose that τ is biregular and then look for a contradiction. Note that the proof of Lemma 3.3.2 shows that $\tau_{Y}(E)=E$ if τ is biregular. This is a key point from which we are able to derive a contradiction.

Let S_{λ} be the surface on the hypersurface X_{14} cut by the equation $y=\lambda x^{2}$ with a general complex number λ. It follows from the defining equation of the surface S_{λ} that the surface has only isolated singularities. Therefore, it is normal (see Remark 4.2.7). Moreover, the surface S_{λ} is τ-invariant by our construction. Let τ_{λ} be the restriction of τ to the surface S_{λ}. It is a birational involution of the surface S_{λ} since the surface is τ-invariant.

We have a rational map $\pi_{\lambda}: S_{\lambda} \rightarrow \mathbb{P}(1,5) \cong \mathbb{P}^{1}$ induced by the rational map $\pi: X_{14} \rightarrow$ $\mathbb{P}(1,2,5)$. Note that the curves $L_{z t}$ and $L_{z w}$ are contained in S_{λ}. The rational map $\pi_{\lambda}: S_{\lambda} \rightarrow$ \mathbb{P}^{1} is given by the pencil \mathcal{P} of the curves on the surface $S_{\lambda} \subset \mathbb{P}(1,3,4,5)$ cut by the equations

$$
\delta x^{4}=\epsilon(\lambda x z+t)
$$

where $[\delta: \epsilon] \in \mathbb{P}^{1}$. Its base locus is cut out on S_{λ} by $x=t=0$, which implies that the base locus of the pencil \mathcal{P} is the curve $L_{z w}$.

The map π_{λ} is not defined only at the points O_{w} and O_{z}. To see this, plug in $t=\frac{\delta}{\epsilon} x^{4}-\lambda x z$ into the defining equation of the surface S_{λ} (with general $[\delta: \epsilon] \in \mathbb{P}^{1}$), divide the resulting equation by x (removing the base curve $L_{z w}$), and put $x=0$ into the resulting equation in x, z, and w (we know that the base locus of \mathcal{P} is $L_{z w}$). This gives the system of equations $z w^{2}=x=t=0$, which means that the map π_{λ} is not defined only at the points O_{w} and O_{z}.

Let C_{λ} be a general fiber of the map π_{λ}. Then C_{λ} is given by (4.3.2) with a general complex number μ. As shown in the beginning, the fiber C_{λ} is an irreducible curve birational to a smooth elliptic curve. Let $\nu: \breve{C}_{\lambda} \rightarrow C_{\lambda}$ be the normalization of the curve C_{λ}. It follows from
(4.3.2) that $\nu^{-1}\left(O_{w}\right)$ consists of a single point and $\nu^{-1}\left(O_{z}\right)$ consists of two distinct points. Note that we can consider the curves C_{λ} and \breve{C}_{λ} (and the map ν) to be defined over the function field $\mathbb{C}(\mu)$. In this case, $\nu^{-1}\left(O_{z}\right)$ consists of a single point of degree 2, i.e., a point splitting into two points over the algebraic closure of $\mathbb{C}(\mu)$.

Let \hat{S}_{λ} be the proper transform of S_{λ} via $f \circ g$. Put $\hat{E}_{\lambda}=\left.\hat{E}\right|_{\hat{S}_{\lambda}}$ and $\hat{G}_{\lambda}=\left.G\right|_{\hat{S}_{\lambda}}$. Resolving the indeterminacy of the rational map π_{λ} through \hat{S}_{λ}, we obtain an elliptic fibration $\bar{\pi}_{\lambda}: \bar{S}_{\lambda} \rightarrow \mathbb{P}^{1}$. Thus, we have a commutative diagram

where σ is a birational map. Note that there exist exactly two σ-exceptional prime divisors that do not lie in the fibers of $\bar{\pi}_{\lambda}$. One is the proper transform of \hat{E}_{λ} and the other is the proper transform of \hat{G}_{λ}. Let \bar{E}_{λ} and \bar{G}_{λ} be these two exceptional divisors, respectively. Then \bar{G}_{λ} is a section of $\bar{\pi}_{\lambda}$ and \bar{E}_{λ} is a 2-section of $\bar{\pi}_{\lambda}$. Denote the other σ-exceptional curves (if any) by F_{1}, \ldots, F_{r}.

Put $\bar{\tau}_{\lambda}=\sigma^{-1} \circ \tau_{\lambda} \circ \sigma$. Due to [28, Theorem 3.2], we may assume that $\bar{\tau}_{\lambda}$ is biregular and \bar{S}_{λ} is smooth.

Let \bar{C}_{λ} be the proper transform of the curve C_{λ} on \bar{S}_{λ}. Then $\bar{C}_{\lambda} \cong \breve{C}_{\lambda}$, since \bar{C}_{λ} is smooth. Moreover, the curve \bar{C}_{λ} is $\bar{\tau}_{\lambda}$-invariant. Furthermore, $\left.\bar{\tau}_{\lambda}\right|_{\bar{C}_{\lambda}}$ is given by the reflection with respect to the point $\bar{G}_{\lambda} \cap \bar{C}_{\lambda}$. On the other hand, the divisor \bar{E}_{λ} must be $\bar{\tau}_{\lambda}$-invariant since $\tau_{Y}(E)=E$. Therefore, the divisor $\bar{E}_{\lambda}-2 \bar{G}_{\lambda}$ must be numerically equivalent to a \mathbb{Q}-linear combination of curves on \bar{S}_{λ} that lie in the fibers of $\bar{\pi}_{\lambda}$ by Lemma 4.2.8,

Let $\bar{L}_{z t}$ and $\bar{L}_{z w}$ be the proper transforms of the curves $L_{z t}$ and $L_{z w}$ by σ, respectively. Then $\bar{L}_{z t}$ and $\bar{L}_{z w}$ lies in the same fiber of the elliptic fibration $\bar{\pi}_{\lambda}$. In the fiber containing $\bar{L}_{z t}$ and $\bar{L}_{z w}$, the other components are, if any, σ-exceptional since the fiber of π_{λ} over the point $[0: 1]$ consists only of $L_{z t}$ and $L_{z w}$. In addition, we see that every other fiber of $\bar{\pi}_{\lambda}$ contains exactly one irreducible reduced curve that is not σ-exceptional. Indeed, this immediately follows from Lemma 4.3.5 below. Since all fibers of $\bar{\pi}_{\lambda}$ (with scheme structure) are numerically equivalent and the divisor $\bar{E}_{\lambda}-2 \bar{G}_{\lambda}$ is numerically equivalent to a \mathbb{Q}-linear combination of curves that lie in the fibers of $\bar{\pi}_{\lambda}$, we obtain

$$
\bar{E}_{\lambda}-2 \bar{G}_{\lambda} \sim_{\mathbb{Q}} c_{z t} \bar{L}_{z t}+c_{z w} \bar{L}_{z w}+\sum_{i=1}^{r} c_{i} F_{i}
$$

for some rational numbers $c_{z t}, c_{z w}, c_{1}, \ldots, c_{r}$. The intersection form of the curves $\bar{E}_{\lambda}, \bar{G}_{\lambda}$, F_{1}, \ldots, F_{r} is negative-definite since these curves are σ-exceptional. Therefore, $\left(c_{z t}, c_{z w}\right) \neq$ $(0,0)$. On the other hand, we have

$$
0 \sim_{\mathbb{Q}} c_{z t} L_{z t}+c_{z w} L_{z w}
$$

on the surface S_{λ}. In particular, the intersection form of the curves $L_{z w}$ and $L_{z t}$ is degenerate on the surface S_{λ}.

Meanwhile, from the intersection numbers

$$
\left(2 L_{z t}+L_{z w}\right) \cdot L_{z w}=\frac{1}{15}, \quad\left(2 L_{z t}+L_{z w}\right) \cdot L_{z t}=\frac{1}{12}
$$

on the surface S_{λ}, we obtain

$$
\left(\begin{array}{cc}
L_{z w}^{2} & L_{z w} \cdot L_{z t} \\
L_{z w} \cdot L_{z t} & L_{z t}^{2}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{15}-2 L_{z w} \cdot L_{z t} & L_{z w} \cdot L_{z t} \\
L_{z w} \cdot L_{z t} & \frac{1}{24}-\frac{1}{2} L_{z w} \cdot L_{z t}
\end{array}\right)
$$

The curves $L_{z w}$ and $L_{z t}$ intersect only at the point O_{z}. However, the surface S_{λ} is not quasismooth at the point O_{z}. To get the intersection number $L_{z w} \cdot L_{z t}$, we consider the divisor D_{t} on the surface S_{λ} cut by the equation $t=0$. We can immediately see that $D_{t}=2 L_{z w}+R$, where R is the residual curve. The curves $L_{z w}$ and R intersect only at the point O_{w} at which the surface S_{λ} is quasi-smooth. Then we obtain $L_{z w}^{2}=-\frac{4}{15}$ from the intersection numbers

$$
\left(2 L_{z w}+R\right) \cdot L_{z w}=\frac{4}{15}, \quad R \cdot L_{z w}=\frac{4}{5}
$$

Therefore, $L_{z w} \cdot L_{z t}=\frac{1}{6}$ and hence the intersection matrix is non-singular. This is a contradiction. It shows that $\tau_{Y}(E) \neq E$. In particular, the involution τ is not biregular. Since the involution τ_{Y} is biregular in codimension one, the involution τ meets the conditions in Definition 3.3.1. Consequently, the birational involution τ untwists the singular point O_{z}.

Remark 4.3.4. Local parameters at O_{z} are induced by x, t, w whose multiplicities are $\frac{1}{3}, \frac{1}{3}$, and $\frac{2}{3}$. The monomial $z^{4} y$ shows that y vanishes at the point O_{z} with multiplicity at least $\frac{2}{3}$. Furthermore, since

$$
-y=x t+\left(t+b y^{2}\right) w^{2}+y t\left(t-\alpha_{1} y^{2}\right)\left(t-\alpha_{2} y^{2}\right)+w f_{9}(x, y, 1, t)+f_{14}(x, y, 1, t)
$$

around O_{z} and $x t$ vanishes at the point O_{z} with multiplicity $\frac{2}{3}$, the monomial y vanishes at the point O_{z} with multiplicity exactly $\frac{2}{3}$. Then the relation

$$
-(y+x t)=\left(t+b y^{2}\right) w^{2}+y t\left(t-\alpha_{1} y^{2}\right)\left(t-\alpha_{2} y^{2}\right)+w f_{9}(x, y, 1, t)+f_{14}(x, y, 1, t)
$$

around O_{z} shows that $y z+x t$ vanishes at the point O_{z} with multiplicity $\frac{5}{3}$.
The linear system $\left|-5 K_{X}\right|$ is generated by $w, x t, y z, x^{2} z, x y^{2}, x^{3} y$ and x^{5}. First of all, the last three monomials vanish at O_{z} with multiplicity $\frac{5}{3}$. In terms of the local parameters x, t, w, we have

$$
y z=-x t+\text { higher degree terms }
$$

locally around the point O_{z}. Furthermore, for any complex numbers $\alpha, \beta, \delta, \epsilon$, we have

$$
\alpha w+\beta x t+\delta y z+\epsilon x^{2} z=\left(\alpha w+\beta x t-\delta x t+\epsilon x^{2}\right)+\text { higher degree terms }
$$

locally around the point O_{z}. For the monomial $\alpha w+\beta x t+\delta y z+\epsilon x^{2} z$ to have multiplicity bigger than $\frac{2}{3}$ at O_{z}, we must have $\alpha=\epsilon=0$ and $\beta=\delta$. Since $y z+x t$ vanishes at the point O_{z} with multiplicity $\frac{5}{3}$, we see that the linear system \mathcal{H} consists exactly of the members of $\left|-5 K_{X}\right|$ vanishing at O_{z} with multiplicity at least $\frac{5}{3}$.

Meanwhile, the variables x, y, z induce local parameters at the point O_{w} with multiplicities $\frac{1}{5}, \frac{2}{5}, \frac{3}{5}$, respectively. Also, since t vanishes at the point O_{w} with multiplicity at least $\frac{4}{5}$, the polynomial $y z+x t$ vanishes at the point O_{w} with multiplicity 1 . Therefore, every member in \mathcal{H} vanishes at O_{w} with multiplicity at least 1.

Lemma 4.3.5. Under the conditions of Theorem 4.3.1, for a general complex number λ, the curve (4.3.2) is irreducible and reduced for every complex number μ.

Proof. Suppose that for a general complex number λ there is always μ such that the curve $C_{\lambda, \mu}$ is reducible. There is then a one-dimensional family of reducible curves $C_{\lambda, \mu}$ given by (4.3.2) with a general complex number λ and a complex number μ depending on λ. Denote a general curve in this one-dimensional family by C.

Since (4.3.2) always contains the monomial $z w^{2}$, the curve C must have an irreducible component C_{1} that is defined by either

$$
y-\lambda x=t-\mu x^{4}+\lambda x z=w+h_{5}(x, z)=0
$$

or

$$
y-\lambda x=t-\mu x^{4}+\lambda x z=w^{2}+w g_{5}(x, z)+g_{10}(x, z)=0 .
$$

Then

$$
-K_{Y} \cdot \tilde{C}_{1}=-K_{X_{14}} \cdot C_{1}-\frac{1}{3} E \cdot \tilde{C}_{1}=\left\{\begin{array}{l}
\frac{1 \cdot 2 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}-\frac{1}{3}=0 \text { for the former case } \\
\frac{1 \cdot 2 \cdot 4 \cdot 2 \cdot 5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}-\frac{2}{3}=0 \text { for the latter case }
\end{array}\right.
$$

and $\tilde{C}_{1} \cdot E>0$. By Lemma 3.2.8, the point O_{z} cannot be a center of non-canonical singularities of the log pair $\left(X_{14}, \frac{1}{n} \mathcal{M}\right)$. This contradiction proves the statement.

Now we go back to the hypersurfaces in the family No. 7 described in the previous section. The hypersurface X_{8} of Type II is defined in $\mathbb{P}(1,1,2,2,3)$ by the equation of the type

$$
\begin{equation*}
\left(z+f_{2}(x, y)\right) w^{2}+w f_{5}(x, y, z, t)-z t^{3}-t^{2} f_{4}(x, y, z)-t f_{6}(x, y, z)+f_{8}(x, y, z)=0 \tag{4.3.6}
\end{equation*}
$$

Since f_{5} must contain either $x t^{2}$ or $y t^{2}$, we write $f_{5}(x, y, z, t)=g_{5}(x, y, z, t)+a_{1} x t^{2}+a_{2} y t^{2}$. Furthermore, we may assume that $a_{1}=1$ and $a_{2}=0$ by a suitable coordinate change.

By coordinate change $z+f_{2}(x, y) \mapsto z$, we may assume that our hypersurface X_{8} is defined by

$$
\begin{equation*}
z w^{2}+w f_{5}(x, y, z, t)-\left(z-f_{2}(x, y)\right) t^{3}-t^{2} f_{4}(x, y, z)-t f_{6}(x, y, z)+f_{8}(x, y, z)=0 \tag{4.3.7}
\end{equation*}
$$

This assumption will help us understand, without any loss of generality, the intersection of the surface cut by $y=\lambda x$ and the surface cut by $z=\mu x^{2}$, where λ and μ are constants.

On the hypersurface X_{8}, consider the surface cut by $y=\lambda x$ and the surface cut by $z=\mu x^{2}$. Then the intersection of these two surfaces is the 1-cycle $L_{t w}+C_{\lambda, \mu}$, where the curve $C_{\lambda, \mu}$ is defined by the equation

$$
\begin{align*}
& \mu x w^{2}+w t^{2}-\left(\mu-f_{2}(1, \lambda)\right) x t^{3}+ \\
& +\frac{w g_{5}\left(x, \lambda x, \mu x^{2}, t\right)-t^{2} f_{4}\left(x, \lambda x, \mu x^{2}\right)-t f_{6}\left(x, \lambda x, \mu x^{2}\right)+f_{8}\left(x, \lambda x, \mu x^{2}\right)}{x}=0 \tag{4.3.8}
\end{align*}
$$

in $\mathbb{P}(1,2,3)$. For sufficiently general complex numbers λ and μ the curve $C_{\lambda, \mu}$ is birational to an elliptic curve. To figure this out, we plug in $x=1$ into (4.3.8) so that we could see that the curve is birational to a double cover of \mathbb{C} ramified at four distinct points.

Let \mathcal{H} be the linear subsystem of $\left|-2 K_{X_{8}}\right|$ generated by $x^{2}, x y, y^{2}$ and z. Let $\pi: X_{8} \rightarrow$ $\mathbb{P}(1,1,2)$ be the rational map induced by

$$
[x: y: z: t: w] \mapsto[x: y: z]
$$

It is a morphism outside of the curve $L_{t w}$. Moreover, the map is dominant. The curve $C_{\lambda, \mu}$ is a fiber of the map π. Its general fiber is an irreducible curve birational to an elliptic curve since the curve $C_{\lambda, \mu}$ with sufficiently general complex numbers λ and μ is birational to an elliptic curve.

Lemma 4.3.9. Suppose that the hypersurface X_{8} in the family No. 7 is defined by (4.3.7). If the singular point O_{t} is a center of non-canonical singularities of the log pair $\left(X_{8}, \frac{1}{n} \mathcal{M}\right)$, then for a general complex number λ, the curve $C_{\lambda, \mu}$ is always irreducible for every value of μ.

Proof. Suppose that for a general complex number λ there is always μ such that the curve $C_{\lambda, \mu}$ is reducible. Since the base locus of \mathcal{H} consists of the curve $L_{t w}$, there is a one-dimensional family of reducible curves $C_{\lambda, \mu}$ given by (4.3.8) with a general complex number λ and a complex number μ depending on λ. Denote a general curve in this one-dimensional family by C.

We claim that the curve C always has an irreducible component C_{1} defined by

$$
y-\lambda x=z-\mu x^{2}=w-h_{3}(x, t)=0
$$

for some polynomial h_{3}. To prove the claim, write $g_{5}(x, y, z, t)=f_{3}(x, y, z) t+f_{5}(x, y, z)$, set $x=1$ for (4.3.8), and then obtain

$$
\begin{aligned}
& \mu w^{2}+w\left(t^{2}+f_{3}(1, \lambda, \mu) t+f_{5}(1, \lambda, \mu)\right)- \\
& -\left(\mu-f_{2}(1, \lambda)\right) t^{3}-f_{4}(1, \lambda, \mu) t^{2}-f_{6}(1, \lambda, \mu) t+f_{8}(1, \lambda, \mu)=0
\end{aligned}
$$

Suppose that the claim is not a case. Then we must have $\mu=0$ and the polynomial

$$
\left.w\left(t^{2}+f_{3}(1, \lambda, 0) t+f_{5}(1, \lambda, 0)\right)+f_{2}(1, \lambda)\right) t^{3}-f_{4}(1, \lambda, 0) t^{2}-f_{6}(1, \lambda, 0) t+f_{8}(1, \lambda, 0)
$$

must be reducible. Since λ is general, this implies that

$$
w f_{5}(x, y, 0, t)+f_{2}(x, y) t^{3}-t^{2} f_{4}(x, y, 0)-t f_{6}(x, y, 0)+f_{8}(x, y, 0)=A(x, y, t, w) B(x, y, t, w)
$$

for some non-constant polynomials $A(x, y, t, w)$ and $B(x, y, t, w)$. Since we may write

$$
\begin{gathered}
z w^{2}+w f_{5}(x, y, z, t)-\left(z-f_{2}(x, y)\right) t^{3}-t^{2} f_{4}(x, y, z)-t f_{6}(x, y, z)+f_{8}(x, y, z) \\
=z H(x, y, z, t, w)+A(x, y, t, w) B(x, y, t, w)
\end{gathered}
$$

for some non-constant polynomial $H(x, y, z, t, w)$, the hypersurface X_{8} is not quasi-smooth at the points defined by $z=H(x, y, z, t, w)=A(x, y, t, w)=B(x, y, t, w)=0$. This is a contradiction. Consequently, the reducible curve C splits into an irreducible curve C_{1} defined by

$$
y-\lambda x=z-\mu x^{2}=w-h_{3}(x, t)=0
$$

for some polynomial h_{3} and the curve C_{2} (possibly reducible) defined by

$$
y-\lambda x=z-\mu x^{2}=t^{2}-h_{4}(x, t, w)=0
$$

for some polynomial h_{4}.
Note that C_{1} passes through the point O_{t} but C_{2} does not. Then $-K_{Y} \cdot \tilde{C}_{1}=0$ and $\tilde{C}_{1} \cdot E>0$. By Lemma 3.2.8, the point O_{t} cannot be a center of non-canonical singularities of the log pair $\left(X_{8}, \frac{1}{n} \mathcal{M}\right)$. This contradicts our condition. Therefore, for a general complex number λ, the curve $C_{\lambda, \mu}$ is always irreducible for every value of μ.

For a general complex number λ, the curve $C_{\lambda, \mu}$ is always reduced for every value of μ. Indeed, if the curve is not reduced, then the proof shows that $\mu \neq 0$. Then the equation for the curve must contain $x w^{2}$ and $w t^{2}$. Hence, it must split into the form $\left(t^{2}+x w+\cdots\right)(w+\cdots)$. The polynomial of the type $\left(t^{2}+x w+\cdots\right)$ cannot be a square. Therefore, $C_{\lambda, \mu}$ is always reduced. Moreover, for a general complex number λ, the curve $L_{t w}$ cannot be an irreducible component of the curve $C_{\lambda, \mu}$ for every value of μ.

Theorem 4.3.10. Suppose that the hypersurface X_{8} in the family No. 7 is defined by (4.3.7). If the singular point O_{t} is a center of non-canonical singularities of the log pair $\left(X_{8}, \frac{1}{n} \mathcal{M}\right)$, then there is a birational involution that untwists the singular point O_{t}.

Proof. Let $g: Z \rightarrow Y$ be the weighted blow up at the point over O_{w} with weight $(1,1,2)$ and let F be its exceptional divisor. The divisor F contains a singular point of Z that is of type $\frac{1}{2}(1,1,1)$. Let $h: W \rightarrow Z$ be the blow up at this singular point with the exceptional divisor G. Let $\hat{L}_{t w}$ and $\breve{L}_{t w}$ be the proper transforms of the curve $L_{t w}$ by the morphism $f \circ g \circ h$ and by the morphism $f \circ g$, respectively. Also, let \hat{E} and \hat{F} be the proper transforms of the exceptional divisors E and F by the morphism $g \circ h$ and by the morphism h, respectively.

Let \mathcal{H}_{Y} and \mathcal{H}_{W} be the proper transforms of the linear system \mathcal{H} by the morphism f and by the morphism $f \circ g \circ h$, respectively. We then see that $\mathcal{H}_{Y}=\left|-2 K_{Y}\right|$ and $\mathcal{H}_{W}=\left|-2 K_{W}\right|$. The base locus of the linear system \mathcal{H} consists of the single curve $L_{t w}$. We have

$$
-K_{W} \cdot \hat{L}_{t w}=-K_{X_{8}} \cdot L_{t w}-\frac{1}{2} \hat{E} \cdot \hat{L}_{t w}-\frac{1}{3} F \cdot \breve{L}_{t w}-\frac{1}{2} G \cdot \hat{L}_{t w}=-1 .
$$

Therefore, the curve $\hat{L}_{t w}$ is the only curve that intersects $-K_{W}$ negatively.
By the same procedure as in the proof of Theorem4.3.1, we construct a \log flip $\chi: W \rightarrow U$ along the curve $\hat{L}_{t w}$ and a dominant morphism η of U into a normal variety Σ with connected fibers by the base-point-free linear system $\left|-m K_{U}\right|$ for sufficiently large m.

Let \check{E}, \check{F} and \check{G} be the proper transforms of the divisors \hat{E}, \hat{F} and G, respectively, by χ. Let $\hat{C}_{\lambda, \mu}$ be the proper transform of a general fiber $C_{\lambda, \mu}$ of the map π on W and let $\check{C}_{\lambda, \mu}$ be its proper transform on U. We then see

$$
-K_{W} \cdot \hat{C}_{\lambda, \mu}=-2 K_{W}^{3}-\left(-K_{W}\right) \cdot \hat{L}_{t w}=0
$$

By the same reason as in the proof of Theorem 4.3.1, we see that η is an elliptic fibration and
we obtain the following commutative diagram:

where θ is a birational map.
It follows from (4.3.8) that the divisors \check{E} and \check{G} are sections of the elliptic fibration η. Let τ_{U} be the birational involution of the threefold U that is induced by the reflection of the general fiber of η with respect to the section \check{G}. Then τ_{U} is biregular in codimension one because K_{U} is η-nef by our construction ([38, Corollary 3.54]).

Put $\tau_{W}=\chi^{-1} \circ \tau_{U} \circ \chi, \tau_{Y}=(g \circ h) \circ \tau_{W} \circ(g \circ h)^{-1}$ and $\tau=f \circ \tau_{Y} \circ f^{-1}$ as before. Then τ_{W} is also biregular in codimension one since χ is a log flip. Moreover, we have $\tau_{W}(G)=G$ since $\tau_{U}(\check{G})=\check{G}$ by our construction. The image $\tau_{U}(\check{F})$ is an irreducible surface since τ_{U} is biregular in codimension one. The map $\pi \circ f \circ g$ sends F to the curve in $\mathbb{P}(1,1,2)$ defined by $z=0$ and the \log flip χ changes nothing on the intersection of G and \hat{F}. Therefore, the morphism η contracts \check{F} to a curve and the image $\tau_{U}(\check{F})$ lies over this curve. Since \check{F} intersects with the section \check{G} along a curve and $\tau_{U}(\check{F})$ intersects with the section \check{G} along the curve, $\tau_{U}(\check{F})=\check{F}$ and $\tau_{W}(\hat{F})=\hat{F}$. Consequently, τ_{Y} is biregular in codimension one.

We claim that the point O_{t} is untwisted by τ. For us to prove the claim, it is enough to show that $\tau_{Y}(E) \neq E$ due to Remark 3.3.3. For this end, we suppose that $\tau_{Y}(E)=E$ and look for a contradiction.

Let S_{λ} be the surface on the hypersurface X_{8} cut by the equation $y=\lambda x$ with a general complex number λ. It is a $K 3$ surface with only cyclic du Val singularities. The point O_{t} is a A_{1} singular point of S_{λ} and the point O_{w} is a A_{2} singular point of S_{λ}. Let τ_{λ} be the restriction of τ to the surface S_{λ}. It is a birational involution of the surface S_{λ} since the surface is τ-invariant by our construction.

The projection $\pi: X_{8} \rightarrow \mathbb{P}(1,1,2)$ induces a rational map $\pi_{\lambda}: S_{\lambda} \rightarrow \mathbb{P}(1,2) \cong \mathbb{P}^{1}$. The rational map $\pi_{\lambda}: S_{\lambda} \rightarrow \mathbb{P}^{1}$ is given by the pencil of the curves on the surface $S_{\lambda} \subset \mathbb{P}(1,2,2,3)$ cut by the equations

$$
\delta x^{2}=\epsilon z
$$

where $[\delta: \epsilon] \in \mathbb{P}^{1}$. Its base locus is cut out on S_{λ} by $x=z=0$. Therefore, the base locus is the curve $L_{t w}$. We can easily see from (4.3.8) that the map π_{λ} is not defined only at the points O_{w} and O_{t}.

Let \hat{S}_{λ} be the proper transform of S_{λ} via $f \circ g \circ h$ and put $\hat{E}_{\lambda}=\left.\hat{E}\right|_{\hat{S}_{\lambda}}$ and $\hat{G}_{\lambda}=\left.G\right|_{\hat{S}_{\lambda}}$ as in the proof of Theorem 4.3.1. Resolving the indeterminacy of the rational map π_{λ} through \hat{S}_{λ},
we obtain an elliptic fibration $\bar{\pi}_{\lambda}: \bar{S}_{\lambda} \rightarrow \mathbb{P}^{1}$. Thus, we have a commutative diagram

where σ is a birational morphism. There exist exactly two σ-exceptional prime divisors that do not lie in the fibers of $\bar{\pi}_{\lambda}$. One is the proper transform of \hat{E}_{λ} and the other is the proper transform of \hat{G}_{λ}. Let \bar{E}_{λ} and \bar{G}_{λ} be these two exceptional divisors, respectively. Then \bar{E}_{λ} and \bar{G}_{λ} are sections of $\bar{\pi}_{\lambda}$. Denote the other σ-exceptional curves (if any) by F_{1}, \ldots, F_{r}.

Put $\bar{\tau}_{\lambda}=\sigma^{-1} \circ \tau_{\lambda} \circ \sigma$. We may assume that $\bar{\tau}_{\lambda}$ is biregular and \bar{S}_{λ} is smooth by [28, Theorem 3.2].

By the same argument as in the proof of Theorem 4.3.1, the divisor $\bar{E}_{\lambda}-\bar{G}_{\lambda}$ is numerically equivalent to a \mathbb{Q}-linear combination of curves on \bar{S}_{λ} that lie in the fibers of $\bar{\pi}_{\lambda}$. Observe that we use the assumption $\tau_{Y}(E)=E$ at this step.

Note that the equation $x=0$ cuts out S_{λ} into a curve that splits as a union $L_{t w}+C_{x}$, where C_{x} is the curve defined by

$$
x=w^{2}-t^{3}+a z t^{2}+b z^{2} t+c z^{3}=0
$$

for some constants a, b, c in $\mathbb{P}(1,2,2,3)$. The curve C_{x} is irreducible and reduced.
Let $\bar{L}_{t w}$ and \bar{C}_{x} be the proper transforms of the curves $L_{t w}$ and C_{x} by σ, respectively. Then $\bar{L}_{t w}$ and \bar{C}_{x} lie in the same fiber of the elliptic fibration $\bar{\pi}_{\lambda}$ and they are the only non-σ-exceptional curves in this fiber. Moreover, every other fiber of $\bar{\pi}_{\lambda}$ contains exactly one irreducible and reduced curve that is not σ-exceptional because for a general complex number λ, the curve $C_{\lambda, \mu}$ is always irreducible and reduced for every value of μ by Lemma 4.3.9, Therefore, as before, we are able to obtain

$$
\bar{E}_{\lambda}-\bar{G}_{\lambda} \sim_{\mathbb{Q}} c_{t w} \bar{L}_{t w}+c_{x} \bar{C}_{x}+\sum_{i=1}^{r} c_{i} F_{i}
$$

for some rational numbers $c_{t w}, c_{x}, c_{1}, \ldots, c_{r}$. The intersection form of the curves $\bar{E}_{\lambda}, \bar{G}_{\lambda}$, F_{1}, \ldots, F_{r} is negative-definite since these curves are σ-exceptional. Therefore, $\left(c_{t w}, c_{x}\right) \neq(0,0)$. On the other hand, we have

$$
0 \sim_{\mathbb{Q}} c_{t w} L_{t w}+c_{x} C_{x}
$$

on the surface S_{λ}, and hence the intersection form of the curves $L_{t w}$ and C_{x} is degenerate on the surface S_{λ}.

However, from the intersection numbers

$$
\left(L_{t w}+C_{x}\right) \cdot L_{t w}=\frac{1}{6}, \quad\left(L_{t w}+C_{x}\right)^{2}=\frac{2}{3}, \quad L_{t w} \cdot C_{x}=1
$$

on the surface S_{λ}, we obtain

$$
\left(\begin{array}{cc}
L_{t w}^{2} & L_{t w} \cdot C_{x} \\
L_{t w} \cdot C_{x} & C_{x}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{5}{6} & 1 \\
1 & -\frac{1}{2}
\end{array}\right) .
$$

This is a contradiction. The obtained contradiction verifies that $\tau_{Y}(E) \neq E$. This completes the proof.

5 Proof of Main Theorem

5.1 How to read the tables

The remaining job is to exclude or untwist all the singular points on quasi-smooth hypersurfaces in the 95 families. To execute this crucial job, we need to know how to read the tables in the next section. They carry all the information for excluding and untwisting the singular points.

For each family we present a table that carries

- the entry number (the underlined entry number means that the family corresponds to Theorem 1.1.10, i.e., birationally super-rigid family),
- the intersection number of the anticanonical divisor, i.e., $-K_{X}^{3}=A^{3}$,
- a defining equation of the hypersurface X,
- its singularities,
- the sign of B^{3},
- the linear system on Y containing the key surface T in the applied method,
- a defining equation for the surface $f(T)$ or generators of a linear system that contains $f(T)$ as a general member,
- terms that determine the multiplicity of the surface $f(T)$ at the given singular point.

When the table carries only a monomial or a binomial, instead of B^{3}, the linear system, the surface T and the vanishing order for the corresponding singular point(s), we apply the methods below with the squared symbols to the corresponding singular points. The monomial or the binomial plays an essential role in defining the involution untwisting the singular point.

The table shows which method is applied to each of the singular points by the symbols (D), $(\square),(5),(\pm),(\square), \tau, \tau_{1}, \boxed{\epsilon}, \epsilon_{1}, \epsilon_{2}, \square$ and ι_{1}. The following explain the method corresponding to each of the symbols.
(b) : Apply Lemma 3.2.2,

The condition $T \cdot \Gamma \leq 0$ can be easily checked by the items in the table (see Remark 3.2.3). The condition on the 1-cycle Γ can be immediately checked. This can be done on the hypersurface X even though the cycle lies on the threefold Y. Indeed, in the cases where this method is applied, the surface T is given in such a way that the 1-cycle Γ has no component on the exceptional divisor E.
(1) : Apply Lemma 3.2.4,

The divisor T is given as the proper transform of a general member of the linear system generated by the monomial(s) in the slot for the item T of the table. Using Lemma 3.2.6 we check that the given divisor T is nef. The non-positivity of $T \cdot S \cdot B$ can be immediately verified from the items in the table and the positivity of $T \cdot S \cdot A$ is always guaranteed (see Remark 3.2.5).

(5) : Apply Lemma 3.2.7.

We take a general member H in the linear system generated by the polynomials given in the slot for the item T in the table. We can easily show that the surface H is normal by checking that it has only isolated singularities. The surface T is given as the proper transform of the surface H by the morphism f. The divisor on T cut out by the surface S is a reducible curve. We check that this reducible curve forms a negative-definite divisor on the normal surface T.
(f) : Apply Lemma 3.2.8.

We find a 1-dimensional family of irreducible curves \tilde{C}_{λ} such that $-K_{Y} \cdot \tilde{C}_{\lambda} \leq 0$. We can find this family on the surface T that is given as the proper transform of a general member of the linear system generated by the polynomial(s) provided in the slot for the item T of the table.
(D) : Apply Lemma 3.2.9,

If the singular point O_{t} satisfies the conditions of Lemma 3.2.9, we can always find a 1dimensional family of irreducible curves \tilde{C}_{λ} on the given surface T such that $-K_{Y} \cdot \tilde{C}_{\lambda} \leq 0$, so that we could immediately exclude the singular point O_{t}.

As we see, the circled methods are applied to exclude singular points on X. The squared symbols below are the methods with which we can untwist the corresponding singular point if it is a center of non-canonical singularities of the \log pair.

τ : Apply Lemma 4.1.1 and Lemma 4.1.3

The given monomial in the table is the monomial $x_{i_{3}} x_{i_{4}}^{2}$ in Lemma4.1.1 and Lemma 4.1.3 that plays a central role in defining the involution. If the hypersurface X is defined by the equation as in Lemma 4.1.1, the involution given by the quadratic equation is birational and untwists the given singular point. If the hypersurface X is defined by the equation as in Lemma 4.1.3, the involution given by the quadratic equation is biregular. In such a case, Lemma 4.1.3 excludes the corresponding singular point. Note that both the cases can always happen.
τ_{1} : Apply Lemma 4.1.1, Lemma 4.1.3 and Theorem 4.1.4
This method is basically the same as the method τ. The difference is that we may have no $x_{i_{3}} x_{i_{4}}^{2}$ in the defining equation. Such cases occur only when the corresponding singular point is O_{t} and $x_{i_{3}} x_{i_{4}}^{2}=w t^{2}$. In cases, Theorem 4.1.4 excludes the singular point O_{t}. These three cases can always occur, i.e., the case when the defining equation has the monomial $w t^{2}$ with f_{e} not divisible by w, the case when the defining equation has the monomial $w t^{2}$ with f_{e} divisible by w and the case when the defining equation does not have the monomial $w t^{2}$.
€ : Apply Theorem 4.2.6
This is for the singular point O_{t} of quasi-smooth hypersurfaces in the families No. 7 (Type I), $23,40,44,61$ and 76 . The given binomial in the table is the binomial $t w^{2}-x_{i} t^{3}$ in (4.2.4) that plays a central role in defining the involution. The singular point O_{t} may not be a center of non-canonical singularities of the log pair in some situation. However, if it is a center, then it can be untwisted by an elliptic involution.
ϵ_{1} : Apply Theorem 4.2.13,
This is for the singular point O_{z} of quasi-smooth hypersurfaces in the family No. 36 .
ϵ_{2} : Apply Theorem 4.2.13 and Theorem 4.2.14
This is for the singular point O_{z} of quasi-smooth hypersurfaces in the family No. 20 .
\square : Apply Theorem 4.3.10
This is for the singular points of type $\frac{1}{2}(1,1,1)$ on quasi-smooth hypersurfaces of Type II in the family No. 7.
$\boxed{\square 1}$: Apply Theorem 4.3.1
This is for the singular point O_{z} of the special hypersurfaces in the family No. 23 described in Section 4.3,

In each table, we present a defining equation of the hypersurface in the family. For this we use the following notations and conventions.

- The Roman alphabets a, b, c, d, e with numeric subscripts or without subscripts are constants.
- The Greek alphabets α, β with numeric subscripts or without subscripts are constants.
- The same Roman alphabets with distinct numeric subscripts, e.g., a_{1}, a_{2}, a_{3}, in an equation are constants one of which is not zero.
- The same Greek alphabets with distinct numeric subscripts, e.g., $\alpha_{1}, \alpha_{2}, \alpha_{3}$, in an equation are distinct constants.
- The singularity types are often given as a form $\frac{1}{r}\left(w_{x_{k_{1}}}^{1}, w_{x_{k_{2}}}^{2}, w_{x_{k_{3}}}^{3}\right)$, where the subscript $x_{k_{i}}$ is the homogeneous coordinate function which induces a local parameter corresponding to the weight $w_{x_{k_{i}}}^{i}$.

For each family, the defining equation of the hypersurface X must satisfies the following rules in order to be quasi-smooth (see [29] for more detail).

- If $a_{i}>1$, it is relatively prime to the other weights and it divides d, then $x_{i}^{\frac{d}{a_{i}}}$ must appear in the defining equation.
- If $a_{i}>1$, it is relatively prime to the other weights but it does not divide d, then $x_{i}^{\frac{d-a_{j}}{a_{i}}} x_{j}$ for some j must appear in the defining equation.
- If a_{i} and a_{j} are not relatively prime, then a reduce polynomial of degree d in x_{i} and x_{j} must appear in the defining equation.

In each table, the defining equation is written in the form

$$
\text { key-monomial part }+w f_{d-a_{4}}(x, y, z, t)+f_{d}(x, y, z, t) \quad \text { if } d<3 a_{4} ;
$$

$$
\text { key-monomial part }+w^{2} f_{d-2 a_{4}}+w f_{d-a_{4}}(x, y, z, t)+f_{d}(x, y, z, t) \quad \text { if } d=3 a_{4},
$$

where key-monomial part consists of the monomials that are required for quasi-smoothness and necessary for our methods of excluding or untwisting the singularities. If necessary, we expand $f_{d}(x, y, z, t)$ with respect to the variable t, i.e., instead of $f_{d}(x, y, z, t)$, we write

$$
g_{d-a_{3} m}(x, y, z) t^{m}+g_{d-a_{3} m+a_{3}}(x, y, z) t^{m-1}+\cdots+g_{d}(x, y, z)
$$

Note that we do not put all the monomials required for quasi-smoothness in the key-monomial part. We put only some of them that play roles for our methods of excluding or untwisting the singularities on the given hypersurface. To simplify the key monomial part as much as possible without loss of generality, we apply suitable coordinate changes, if necessary. It will not be too complicated to check that the given quasi-homogeneous polynomial represents every quasi-smooth hypersurface in the family.

5.2 The tables

To prove Main Theorem, we suppose that a given quasi-smooth hypersurface X from the 95 families has a mobile linear system \mathcal{M} in $\left|-n K_{X}\right|$ for some positive integer n such that the \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$ is not canonical. Therefore, we have a center of non-canonical singularities of the pair $\left(X, \frac{1}{n} \mathcal{M}\right)$. Theorems 2.1.10 and 2.2.4 show that if there is a center on X, then it must be a singular point.

In this section, we exclude or untwist every singular point on a given quasi-smooth hypersurface in each of the 95 families. To be precise, we prove

Theorem 5.2.1. If a singular point on X is a center of non-canonical singularities of the log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$, then it can be untwisted by a birational involution of X.

By verifying this theorem, we obtain a complete proof of Main Theorem from Theorem 1.2.2,
Proof. The proof is given mainly by the tables. Following the instruction in Section 5.1 with the extra explanation (if necessary) provided right after the table, we prove Theorem 5.2.1 for each family.

No. 2: $X_{5} \subset \mathbb{P}(1,1,1,1,2)$ $t w^{2}+w f_{3}(x, y, z, t)+f_{5}(x, y, z, t)$	$A^{3}=5 / 2$				
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{2}(1,1,1) \square \tau$	$t w^{2}$				

No. 4: $X_{6} \subset \mathbb{P}(1,1,1,2,2)$ $\left(t-\alpha_{1} w\right)\left(t-\alpha_{2} w\right)\left(t-\alpha_{3} w\right)+w f_{4}(x, y, z, t)+f_{6}(x, y, z, t)$					
Singularity		B^{3}	Linear system	Surface T	Vanishing order
$O_{t} O_{w}=3 \times \frac{1}{2}(1,1,1) \boxed{\tau}$	$t w^{2}$				
Condition					

- We may assume that $\alpha_{1}=0$. To see how to treat the singular points of type $\frac{1}{2}(1,1,1)$, we
have only to consider the singular point O_{w}. The other points can be dealt with in the same way.

No. 5: $X_{7} \subset \mathbb{P}(1,1,1,2,3)$$A^{3}=7 / 6$$z w^{2}+w f_{4}(x, y, z, t)+f_{7}(x, y, z, t)$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{3}(1,1,2) \underline{\tau}$	$z w^{2}$				
$O_{t}=\frac{1}{2}(1,1,1) \quad \tau_{1}$	$w t^{2}$				

No. 6: $X_{8} \subset \mathbb{P}(1,1,1,2,4)$ $\left(w-\alpha_{1} t^{2}\right)\left(w-\alpha_{2} t^{2}\right)+w f_{4}(x, y, z, t)+f_{8}(x, y, z, t)=0$				$A^{3}=1$	
Singularity		B^{3}	Linear system	Surface T	Vanishing order
$O_{t} O_{w}=2 \times \frac{1}{2}(1,1,1) \tau \tau$	$w t^{2}$				Condition

- We may assume that $\alpha_{1}=0$. To see how to treat the singular points of type $\frac{1}{2}(1,1,1)$, we have only to consider the singular point O_{t}. The other point can be dealt with in the same way. After we set $\alpha_{1}=0$, by a suitable coordinate change with respect to w, we may assume that the monomials of types $t^{3} g_{2}(x, y, z), t^{2} g_{4}(x, y, z)$ do not appear in the defining equation.

- For the singular points of type $\frac{1}{2}(1,1,1)$ we have only to consider one of them. The others can be untwisted or excluded in the same way. The singular point to be considered here may be assumed to be the point O_{t} by a suitable coordinate change.

No. 8: $X_{9} \subset \mathbb{P}(1,1,1,3,4)$	$A^{3}=3 / 4$							
$z w^{2}+w f_{5}(x, y, z, t)+f_{9}(x, y, z, t)$		\quad	Singularity	B^{3}	Linear system			
:---:	:---:	:---:	:---:	:---:	:---:			
Surface T	Vanishing order	Condition						
$O_{w}=\frac{1}{4}(1,1,3) \boxed{\tau}$	$z w^{2}$							

$\begin{aligned} & \text { No. 9: } X_{9} \subset \mathbb{P}(1,1,2,3 \text {, } \\ & \left(w-\alpha_{1} t\right)\left(w-\alpha_{2} t\right)(w- \\ & f_{9}(x, y, z, t) \end{aligned}$		$t_{1} t+a,$	$+w^{2} f_{3}(x,$	$+w f_{6}(x$	$t)+\quad A^{3}=1 / 2$
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{z}=\frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)$ (b)	0	B	y	y	$a_{1} \neq 0$
$O_{z}=\frac{1}{2}\left(1_{x}, 1_{t}, 1_{w}\right)$ (b)	0	$B-E$	y	w^{3}	$a_{1}=0$
$O_{t} O_{w}=3 \times \frac{1}{3}(1,1,2) \square \tau$					

We may assume that neither $z^{3} w$ nor $x z^{4}$ appears in the defining equation of X_{9}.

- If $a_{1} \neq 0$, then the 1-cycle Γ for the singular point O_{z} is irreducible.
- Suppose that $a_{1}=0$. Then $a_{2} \neq 0$. Then the 1-cycle Γ consists of three irreducible curves $\tilde{C}_{i}, i=1,2,3$, each of which is the proper transform of the curve defined by

$$
x=y=w-\alpha_{i} t=0 .
$$

One can easily check that

$$
B \cdot \tilde{C}_{i}=-\frac{1}{3}, \quad E \cdot \tilde{C}_{i}=1
$$

for each i. Therefore, these three curves are numerically equivalent to each other.

- For the singular points of type $\frac{1}{3}(1,1,2)$ we may assume that $\alpha_{3}=0$ and we have only to consider the singular point O_{t}. The others can be untwisted or excluded in the same way. Note that if $\alpha_{3}=0$ then we may assume that $w t^{2}$ is the only monomial in the defining equation of X_{9} divisible by t^{2}.

No. 10: $X_{10} \subset \mathbb{P}(1,1,1,3,5)$ $w^{2}+z t^{3}+w f_{5}(x, y, z, t)+f_{10}(x, y, z, t)$$\quad A^{3}=2 / 3$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{3}\left(1_{x}, 1_{y}, 2_{w}\right)(\square$	+	$B-E$	z	w^{2}	

No. 11: $X_{10} \subset \mathbb{P}(1,1,2,2,5)$	$A^{3}=1 / 2$
$w^{2}+\prod_{i=1}^{5}\left(t-\alpha_{i} z\right)+w f_{5}(x, y, z, t)+f_{10}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{z} O_{t}=5 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)$ (b)	0	B	y	y	

- The curve defined by $x=y=0$ is irreducible since the defining polynomial of X_{10} contains the monomial w^{2} and a reduced polynomial $\prod_{i=1}^{5}\left(t-\alpha_{i} z\right)$ of degree 10 . Therefore, the 1-cycle Γ is irreducible.

$\begin{array}{ll} \hline \text { No. 12: } X_{10} \subset \mathbb{P}(1,1,2,3,4) & A^{3}=5 / 12 \\ z\left(w-\alpha_{1} z^{2}\right)\left(w-\alpha_{2} z^{2}\right)+t^{2}\left(a_{1} w+a_{2} y t\right)+c z^{2} t^{2}+w f_{6}(x, y, z, t)+f_{10}(x, y, z, t) & \end{array}$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{4}(1,1,3) \quad \tau$	$z w^{2}$				
$O_{t}=\frac{1}{3}(1,1,2) \tau_{1}$	$w t^{2}$				
$O_{z} O_{w}=2 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)$ (b)	-	B	y	y	$c \neq 0, a_{1} \neq 0$
$O_{z} O_{w}=2 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)$ (${ }^{\text {S }}$	-	B	x, y	x, y	$c \neq 0, a_{1}=0$
$O_{z} O_{w}=2 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)(\oplus$	-	B	x, y	x, y	$c=0$

By a coordinate change we assume that $\alpha_{1}=0$. Furthermore we may assume that the monomials $z^{3} x t, z^{3} y t, z^{4} x^{2}, z^{4} x y, z^{4} y^{2}$ do not appear in the defining equation by changing the coordinate w in an appropriate way. We may also assume that $x t^{3}$ is not contained in f_{10}.

- For the singular points of type $\frac{1}{2}(1,1,1)$ with $c \neq 0$ and $a_{1} \neq 0$ the 1 -cycle Γ is irreducible due to the monomials $z w^{2}, t^{2} w$ and $z^{2} t^{2}$.
- For the singular points of type $\frac{1}{2}(1,1,1)$ with $c \neq 0$ and $a_{1}=0$ choose a general surface H in $\left|-K_{X_{10}}\right|$ and then let T be the proper transform of the surface H. The surface H is a K3 surface only with du Val singularities. The intersection of T with the surface S gives us a divisor consisting of two irreducible curves on the normal surface T. One is the proper transform of the curve $L_{t w}$. The other is the proper transform of the curve C defined by

$$
x=y=w^{2}-\alpha_{2} z^{2} w+c z t^{2}=0
$$

in $\mathbb{P}(1,1,2,3,4)$. Since we have

$$
\tilde{L}_{t w}^{2}=-\frac{7}{12}, \quad \tilde{L}_{t w} \cdot \tilde{C}=\frac{2}{3}, \quad \tilde{C}^{2}=-\frac{5}{6}
$$

the curves $\tilde{L}_{t w}$ and \tilde{C} are negative-definite.
We remark here that the surface obtained from T by contracting the two curves $\tilde{L}_{t w}$ and \tilde{C} is a K 3 surface only with one E_{8} singular point. Indeed, the surface T has one A_{1} singular point on \tilde{C}, one A_{3} singular point on $\tilde{L}_{t w}$ and the curves \tilde{C}, $\tilde{L}_{t w}$ intersect at one A_{2} singular point tangentially on an orbifold chart. Therefore, on the minimal resolution of the surface T, the proper transforms of the curves $\tilde{C}, \tilde{L}_{t w}$ with the exceptional curves over three du Val points form the configuration of the -2 -curves for an E_{8} singular point.

- For the singular points of type $\frac{1}{2}(1,1,1)$ with $c=0$ we may assume that $\alpha_{1}=0$ and we have only to consider the point O_{z}. The other singular point can be treated in the same way by a suitable coordinate change. The quasi-smoothness implies that $a_{1}=0$ and $a_{2} \neq 0$. Let $Z_{\lambda, \mu}$ be the curve on X_{10} cut out by

$$
\left\{\begin{array}{l}
y=\lambda x, \\
w=\mu x^{4}
\end{array}\right.
$$

for some sufficiently general complex numbers λ and μ. Then $Z_{\lambda, \mu}=L_{z t}+C_{\lambda, \mu}$, where $C_{\lambda, \mu}$ is an irreducible and reduced curve whose normalisation is an elliptic curve. Indeed, the curve $C_{\lambda, \mu}$ is defined by

$$
y-\lambda x=w-\mu x^{4}=\mu^{2} x^{7} z-\alpha_{2} \mu x^{3} z^{3}+\lambda a_{2} t^{3}+\mu x^{3} f_{6}(x, \lambda x, z, t)+f_{10}(x, \lambda x, z, t)=0 .
$$

Then

$$
\left\{\begin{array}{l}
-K_{Y} \cdot\left(\tilde{L}_{z t}+\tilde{C}_{\lambda, \mu}\right)=4 B^{3}=-\frac{1}{3} \\
-K_{Y} \cdot \tilde{L}_{z t}=-K_{X} \cdot L_{z t}-\frac{1}{2} E \cdot \tilde{L}_{z t}=-\frac{1}{3}
\end{array}\right.
$$

and hence $-K_{Y} \cdot \tilde{C}_{\lambda, \mu}=0$.

No. 13: $X_{11} \subset \mathbb{P}(1,1,2,3,5)$	$A^{3}=11 / 30$
$y w^{2}+t^{2}\left(a_{1} w+a_{2} z t\right)+z^{3}\left(b_{1} w+b_{2} z t+b_{3} x z^{2}+b_{4} y z^{2}\right)+w f_{6}(x, y, z, t)+f_{11}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{5}(1,2,3) \quad \boxed{\tau}$	$y w^{2}$				
$O_{t}=\frac{1}{3}(1,1,2) \quad \tau_{1}$	$w t^{2}$				
$O_{z}=\frac{1}{2}(1,1,1)$ (b)	-	B	y	y	$\begin{gathered} a_{1} \neq 0, b_{1} \neq 0 \\ a_{1} b_{2}-a_{2} b_{1} \neq 0 \\ \hline \end{gathered}$
$O_{z}=\frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)\left({ }^{\text {S }}\right.$	-	B	x, y	x, y	$\begin{gathered} a_{1} \neq 0, b_{1} \neq 0 \\ a_{1} b_{2}-a_{2} b_{1}=0 \end{gathered}$
$O_{z}=\frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right) \oplus$	-	B	x, y	x, y	$\begin{gathered} a_{1} \neq 0 \\ b_{1}=0, b_{2} \neq 0 \end{gathered}$
$O_{z}=\frac{1}{2}(1,1,1) \oplus($	-	B	y	y	$\begin{gathered} a_{1} \neq 0 \\ b_{1}=0, b_{2}=0 \end{gathered}$
$O_{z}=\frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)\left({ }^{\text {(}}\right.$	-	B	x, y	x, y	$\begin{aligned} & a_{1}=0 \\ & b_{1} \neq 0 \end{aligned}$
$O_{z}=\frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right) \oplus$	-	B	x, y	x, y	$\begin{gathered} a_{1}=0 \\ b_{1}=0, b_{2} \neq 0 \end{gathered}$
$O_{z}=\frac{1}{2}(1,1,1) \oplus$	-	B	y	y	$b_{1}=0, b_{2}=0$

To exclude the singular point O_{z} we first suppose that $a_{1} \neq 0$. We may then assume that $a_{1}=1$ and $a_{2}=0$.

- The conditions $b_{1} \neq 0$ and $a_{1} b_{2}-a_{2} b_{1} \neq 0$ imply that both b_{1} and b_{2} are non-zero. In such a case the 1 -cycle Γ is irreducible since we have the monomials $t^{2} w, z^{3} w$ and $z^{4} t$.
- The conditions $b_{1} \neq 0$ and $a_{1} b_{2}-a_{2} b_{1}=0$ imply that $b_{1} \neq 0$ and $b_{2}=0$. In such a case we take a general surface H from the pencil $\left|-K_{X_{11}}\right|$ and then let T be the proper transform of the surface. The intersection of T with the surface S defines a divisor consisting of two irreducible curves on the normal surface T. One is the proper transform of the curve $L_{z t}$ on H. The other is the proper transform of the curve C defined by

$$
x=y=t^{2}+b_{1} z^{3}=0
$$

in $\mathbb{P}(1,1,2,3,5)$. Since

$$
\tilde{L}_{z t}^{2}=-\frac{4}{3}, \quad \tilde{L}_{z t} \cdot \tilde{C}=1, \quad \tilde{C}^{2}=-\frac{4}{5}
$$

the curves $\tilde{L}_{z t}$ and \tilde{C} on the normal surface T are negative-definite.

- In the case when $b_{1}=0$ and $b_{2} \neq 0$ we may assume that $b_{2}=1, b_{3}=b_{4}=0$ by a suitable coordinate change. Let $Z_{\lambda, \mu}$ be the curve on X_{11} cut out by

$$
\left\{\begin{array}{l}
y=\lambda x \\
t=\mu x^{3}
\end{array}\right.
$$

for some sufficiently general complex numbers λ and μ. Then $Z_{\lambda, \mu}=L_{z w}+C_{\lambda, \mu}$, where $C_{\lambda, \mu}$ is an irreducible and reduced curve. Then

$$
\left\{\begin{array}{l}
-K_{Y} \cdot\left(\tilde{L}_{z w}+\tilde{C}_{\lambda, \mu}\right)=3 B^{3}=-\frac{2}{5} \\
-K_{Y} \cdot \tilde{L}_{z w}=-K_{X} \cdot L_{z w}-\frac{1}{2} E \cdot \tilde{L}_{z w}=-\frac{2}{5}
\end{array}\right.
$$

and hence $-K_{Y} \cdot \tilde{C}_{\lambda, \mu}=0$.

- In the case when $b_{1}=b_{2}=0$, we must have $b_{3} \neq 0$ since X_{11} is quaisy-smooth. We may assume that $b_{3}=1$ and $b_{4}=0$ by a suitable coordinate change. Let Z_{λ} be the curve on the surface S_{x} defined by

$$
\left\{\begin{array}{l}
x=0 \\
t=\lambda y^{3}
\end{array}\right.
$$

for a sufficiently general complex number λ. Then $Z_{\lambda}=L_{z w}+C_{\lambda}$, where C_{λ} is an irreducible and reduced curve. Then

$$
\left\{\begin{array}{l}
-K_{Y} \cdot\left(\tilde{L}_{z w}+\tilde{C}_{\lambda}\right)=(B-E)(3 B+E) B=-\frac{2}{5} \\
-K_{Y} \cdot \tilde{L}_{z w}=-K_{X} \cdot L_{z w}-\frac{1}{2} E \cdot \tilde{L}_{z w}=-\frac{2}{5}
\end{array}\right.
$$

and hence $-K_{Y} \cdot \tilde{C}_{\lambda}=0$.
Now we suppose that $a_{1}=0$. Then $a_{2} \neq 0$, so that we could assume that $a_{2}=1$.

- Suppose that $b_{1} \neq 0$. Then by a suitable coordinate change we may assume that $b_{1}=1$ and $b_{2}=0$. We take a general surface H from the pencil $\left|-K_{X_{11}}\right|$ and then let T be the proper transform of the surface. The intersection of T with S gives us a divisor consisting of two irreducible curves on T. One is the proper transform of the curve $L_{t w}$ on H. The other is the proper transform of the curve C defined by

$$
x=y=t^{3}+z^{2} w=0
$$

in $\mathbb{P}(1,1,2,3,5)$. Since

$$
\tilde{L}_{t w}^{2}=-\frac{8}{15}, \quad \tilde{L}_{t w} \cdot \tilde{C}=\frac{3}{5}, \quad \tilde{C}^{2}=-\frac{4}{5}
$$

the curves $\tilde{L}_{t w}$ and \tilde{C} form a negative-definite divisor on the normal surface T.

- We suppose that $b_{1}=0$ and $b_{2} \neq 0$. We then let $Z_{\lambda, \mu}$ be the curve on X_{11} cut out by

$$
\left\{\begin{array}{l}
y=\lambda x \\
t=\mu x^{3}
\end{array}\right.
$$

for some sufficiently general complex numbers λ and μ. Then $Z_{\lambda, \mu}=L_{z w}+C_{\lambda, \mu}$, where $C_{\lambda, \mu}$ is an irreducible and reduced curve. We have

$$
\left\{\begin{array}{l}
-K_{Y} \cdot\left(\tilde{L}_{z w}+\tilde{C}_{\lambda, \mu}\right)=3 B^{3}=-\frac{2}{5} \\
-K_{Y} \cdot \tilde{L}_{z w}=-K_{X} \cdot L_{z w}-\frac{1}{2} E \cdot \tilde{L}_{z w}=-\frac{2}{5}
\end{array}\right.
$$

and hence $-K_{Y} \cdot \tilde{C}_{\lambda, \mu}=0$.

- Finally, we suppose that $b_{1}=0$ and $b_{2}=0$. Then b_{3} must be non-zero since X_{11} is quasismooth. We may assume that $b_{3}=1$ and $b_{4}=0$ by a suitable coordinate change. Let Z_{λ} be the curve on the surface S defined by

$$
\left\{\begin{array}{l}
x=0, \\
t=\lambda y^{3}
\end{array}\right.
$$

for a sufficiently general complex number λ. Then $Z_{\lambda}=L_{z w}+C_{\lambda}$, where C_{λ} is an irreducible and reduced curve. We have

$$
\left\{\begin{array}{l}
-K_{Y} \cdot\left(\tilde{L}_{z w}+\tilde{C}_{\lambda}\right)=(B-E)(3 B+E) B=-\frac{2}{5} \\
-K_{Y} \cdot \tilde{L}_{z w}=-K_{X} \cdot L_{z w}-\frac{1}{2} E \cdot \tilde{L}_{z w}=-\frac{2}{5}
\end{array}\right.
$$

and hence $-K_{Y} \cdot \tilde{C}_{\lambda}=0$.

No. 14: $w^{2}+t^{3}+w f_{6}(x, y, z, t)+f_{12}(x, y, z, t)$					
Singularity		B^{3}	Linear system	Surface T	Vanishing order
$O_{t} O_{w}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{z}\right)$ (b)	0	B	y	y	Condition

- The curve defined by $x=y=0$ is irreducible because we have the monomials w^{2} and t^{3} in the quasi-homogenous polynomial defining X_{12}. Therefore, the 1-cycle Γ is irreducible.

No. 15: $X_{12} \subset \mathbb{P}(1,1,2,3,6)$
$A^{3}=1 / 3$
$\left(w-\alpha_{1} z^{3}\right)\left(w-\alpha_{2} z^{3}\right)+t^{2} w+w f_{6}(x, y, z, t)+t g_{9}(x, y, z)+g_{12}(x, y, z)$

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition

$O_{t} O_{w}=2 \times \frac{1}{3}(1,1,2) \boxed{\tau}$	$w t^{2}$				
$O_{z} O_{w}=2 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)$ ©	-	B	y	y	$\alpha_{1} \alpha_{2} \neq 0$
$O_{z} O_{w}=2 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)(\mathrm{S}$	-	B	x, y	x, y	$\alpha_{1} \alpha_{2}=0$

- To see how to deal with the singular points of type $\frac{1}{3}(1,1,2)$ we have only to consider the singular point O_{t}. The other point can be treated in the same way after a suitable coordinate change.
- The 1-cycle Γ for each singular point of type $\frac{1}{2}(1,1,1)$ with $\alpha_{1} \alpha_{2} \neq 0$ is irreducible since $\left(w-\alpha_{1} z^{3}\right)\left(w-\alpha_{2} z^{3}\right)+t^{2} w$ is irreducible.
- For the singular points of type $\frac{1}{2}(1,1,1)$ with $\alpha_{1} \alpha_{2}=0$, we suppose that $\alpha_{2}=0$. Then $\alpha_{1} \neq 0$. We take a general surface H from the pencil $\left|-K_{X_{12}}\right|$. The intersection of its proper transform T and the surface S defines a divisor consisting of two irreducible curves on the normal surface T. One is the proper transform of the curve $L_{z t}$. The other is the proper transform of the curve C defined by

$$
x=y=w-\alpha_{1} z^{3}+t^{2}=0
$$

From the intersection numbers

$$
\left(\tilde{L}_{z t}+\tilde{C}\right) \cdot \tilde{L}_{z t}=-K_{Y} \cdot \tilde{L}_{z t}=-\frac{1}{3}, \quad\left(\tilde{L}_{z t}+\tilde{C}\right)^{2}=B^{3}=-\frac{1}{6}
$$

on the surface T, we obtain

$$
\tilde{L}_{z t}^{2}=-\frac{1}{3}-\tilde{L}_{z t} \cdot \tilde{C}, \quad \tilde{C}^{2}=\frac{1}{6}-\tilde{L}_{z t} \cdot \tilde{C}
$$

With these intersection numbers we see that the matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{z t}^{2} & \tilde{L}_{z t} \cdot \tilde{C} \\
\tilde{L}_{z t} \cdot \tilde{C} & \tilde{C}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{3}-\tilde{L}_{z t} \cdot \tilde{C} & \tilde{L}_{z t} \cdot \tilde{C} \\
\tilde{L}_{z t} \cdot \tilde{C} & \frac{1}{6}-\tilde{L}_{z t} \cdot \tilde{C}
\end{array}\right)
$$

is negative-definite since $\tilde{L}_{z t} \cdot \tilde{C}=1$.

| No. 16: $X_{12} \subset \mathbb{P}(1,1,2,4,5)$ | $A^{3}=3 / 10$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $z w^{2}+\left(t-\alpha_{1} z^{2}\right)\left(t-\alpha_{2} z^{2}\right)\left(t-\alpha_{3} z^{2}\right)+w f_{7}(x, y, z, t)+f_{12}(x, y, z, t)$ | |

- The 1 -cycle Γ for each singular point of type $\frac{1}{2}(1,1,1)$ is irreducible due to $z w^{2}$ and t^{3}.

No. 17: $X_{12} \subset \mathbb{P}(1,1,3,4,4)$

$\mid\left(t-\alpha_{1} w\right)\left(t-\alpha_{2} w\right)\left(t-\alpha_{3} w\right)+z^{4}+w f_{8}(x, y, z, t)+f_{12}(x, y, z, t)$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t} O_{w}=3 \times \frac{1}{4}(1,1,3) \boxed{\tau}$	$t w^{2}$				

- To see how to deal with the singular points of type $\frac{1}{4}(1,1,3)$ we may assume that $\alpha_{1}=0$. We then consider the singular point O_{w}. The other points can be treated in the same way.

No. 18: $X_{12} \subset \mathbb{P}(1,2,2,3,5)$ $y w^{2}+t^{4}+\prod_{i=1}^{6}\left(y-\alpha_{i} z\right)+w f_{7}(x, y, z, t)+f_{12}(x, y, z, t)$		$A^{3}=1 / 5$			
Singularity		B^{3}	Linear system	Surface T	Vanishing order
$O_{w}=\frac{1}{5}(1,2,3) \boxed{\tau}$	$y w^{2}$				
$O_{y} O_{z}=6 \times \frac{1}{2}\left(1_{x}, 1_{t}, 1_{w}\right)$ (b)	-	$2 B$	$y-\alpha_{i} z$	$z w^{2}$	

- The 1-cycle Γ for each singular point of type $\frac{1}{2}(1,1,1)$ is irreducible due to $y w^{2}$ and t^{4}.

No. 19: $X_{12} \subset \mathbb{P}(1,2,3,3,4)$	$A^{3}=1 / 6$
$\left(w-\alpha_{1} y^{2}\right)\left(w-\alpha_{2} y^{2}\right)\left(w-\alpha_{3} y^{2}\right)+\left(z-\beta_{1} t\right)\left(z-\beta_{2} t\right)\left(z-\beta_{3} t\right)\left(z-\beta_{4} t\right)+w^{2} f_{4}(x, y, z, t)+$	
$w f_{8}(x, y, z, t)+f_{12}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{y} O_{w}=3 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{t}\right)$ (n	-	$3 B+E$	$x y, z, t$	$x y, z, t$	
$O_{z} O_{t}=4 \times \frac{1}{3}\left(1_{x}, 2_{y}, 1_{w}\right)$ (b)	0	$2 B$	y	y	

- The divisor T for each singular point of type $\frac{1}{2}(1,1,1)$ is nef since the linear system generated by $x y, z, t$ has no base curve.
- The 1-cycle Γ for each singular point of type $\frac{1}{3}(1,2,1)$ is irreducible since the curve cut by $x=y=0$ is irreducible.

No. 20: $X_{13} \subset \mathbb{P}(1,1,3,4,5)$	$A^{3}=13 / 60$
$z w^{2}+t^{2}\left(a_{1} w+a_{2} y t\right)-z^{3}\left(b_{1} t+b_{2} y z+b_{3} x z\right)+w f_{8}(x, y, z, t)+f_{13}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order
$O_{w}=\frac{1}{5}(1,1,4) \boxed{\tau}$	$z w^{2}$	Condition		
$O_{t}=\frac{1}{4}(1,1,3) \boxed{\tau_{1}}$	$w t^{2}$			
$O_{z}=\frac{1}{3}(1,1,2) \boxed{\epsilon}$	$z w^{2}-t z^{3}$			

No. 21: $X_{14} \subset \mathbb{P}(1,1,2,4,7)$

$$
A^{3}=1 / 4
$$

$w^{2}+z\left(t-\alpha_{1} z^{2}\right)\left(t-\alpha_{2} z^{2}\right)\left(t-\alpha_{3} z^{2}\right)+w f_{7}(x, y, z, t)+f_{14}(x, y, z, t)$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{4}\left(1_{x}, 1_{y}, 3_{w}\right) @$	+	$2 B-E$	z	w^{2}	
$O_{z} O_{t}=3 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)$ (b)	-	B	y	y	

- The curve defined by $x=y=0$ is irreducible, and hence the 1 -cycle Γ for the singularities of type $\frac{1}{2}(1,1,1)$ is irreducible.

No. 22: $X_{14} \subset \mathbb{P}(1,2,2,3,7)$
$w^{2}+z t^{4}+h_{14}(y, z)+w f_{7}(x, y, z, t)+t^{3} g_{5}(x, y, z)+t^{2} g_{8}(x, y, z)+t g_{11}(x, y, z)+$
$g_{14}(x, y, z)$

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{3}\left(1_{x}, 2_{y}, 1_{w}\right)$ (b)	0	$2 B$	y	y	
$O_{y} O_{z}=7 \times \frac{1}{2}\left(1_{x}, 1_{t}, 1_{w}\right)$ (b)	-	$2 B$	$y-\alpha_{i} z$	w^{2}	

Note that the homogenous polynomial h_{14} cannot be divisible by z since the hypersurface X_{14} is quasi-smooth. Therefore, we may write

$$
h_{14}(y, z)=\prod_{i=1}^{7}\left(y-\alpha_{i} z\right)
$$

- The curve defined by $x=y=0$ is irreducible because we have the monomials w^{2} and $z t^{4}$.
- The curves defined by $x=y-\alpha_{i} z=0$ are also irreducible for the same reason. Therefore, the 1-cycle Γ for each singular point is irreducible.

$\begin{aligned} & \text { No. 23: } X_{14} \subset \mathbb{P}(1,2,3,4,5) \quad A^{3}=7 / 60 \\ & \left(t+b y^{2}\right) w^{2}+y\left(t-\alpha_{1} y^{2}\right)\left(t-\alpha_{2} y^{2}\right)\left(t-\alpha_{3} y^{2}\right)+z^{3}\left(a_{1} w+a_{2} y z\right)+c z^{2} t^{2}+w f_{9}(x, y, z, t)+ \\ & f_{14}(x, y, z, t) \end{aligned}$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{5}(1,2,3) \quad \square$	$t w^{2}$				
$O_{t}=\frac{1}{4}(1,3,1) \boxed{\epsilon}$	$t w^{2}+y t^{3}$				
$O_{z}=\frac{1}{3}\left(1_{x}, 2_{y}, 1_{t}\right)$ (b)	-	$2 B$	y	y	$c \neq 0, a_{1} \neq 0$
$O_{z}=\frac{1}{3}\left(1_{x}, 1_{t}, 2_{w}\right)$ (S)	-	$2 B$	x^{2}, y	$x^{2}, z^{2} t^{2}$	$c \neq 0, a_{1}=0$
$O_{z}=\frac{1}{3}\left(1_{x}, 2_{y}, 1_{t}\right)$ (f)	-	$2 B$	y	y	$c=0, a_{1} \neq 0$
$O_{z}=\frac{1}{3}\left(1_{x}, 1_{t}, 2_{w}\right) \quad \iota 1$					$c=0, a_{1}=0$
$O_{y} O_{t}=3 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{w}\right)$ (1)	-	$3 B+E$	$x y, z$	$x y, z$	$b \neq 0$
$O_{y} O_{t}=3 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{w}\right)($ S	-	$3 B+E$	$x^{3}, x y, z$	$x y, z$	$b=0$

- For the singular point O_{z} with $c \neq 0$ and $a_{1} \neq 0$ the 1 -cycle Γ is irreducible due to the
monomials $t w^{2}, z^{3} w$ and $z^{2} t^{2}$.
- For the singular point O_{z} with $c \neq 0$ and $a_{1}=0$ we may assume that $a_{2}=1$ and $c=1$. We take a general surface H from the pencil $\left|-2 K_{X_{14}}\right|$ and then let T be the proper transform of the surface. The surface H is normal. However, it is not quasi-smooth at the points O_{z} and O_{t}. The intersection of T with the surface S defines a divisor consisting of two irreducible curves on the normal surface T. One is the proper transform of the curve $L_{z w}$ on H. The other is the proper transform of the curve C defined by

$$
x=y=w^{2}+z^{2} t=0
$$

in $\mathbb{P}(1,2,3,4,5)$. From the intersection numbers

$$
\left(\tilde{L}_{z w}+\tilde{C}\right) \cdot \tilde{L}_{z w}=-K_{Y} \cdot \tilde{L}_{z w}=-\frac{1}{10}, \quad\left(\tilde{L}_{z w}+\tilde{C}\right)^{2}=2 B^{3}=-\frac{1}{10}
$$

on the surface T, we obtain

$$
\tilde{L}_{z w}^{2}=-\frac{1}{10}-\tilde{L}_{z w} \cdot \tilde{C}, \quad \tilde{C}^{2}=-\tilde{L}_{z w} \cdot \tilde{C}
$$

With these intersection numbers we see that the matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{z w}^{2} & \tilde{L}_{z w} \cdot \tilde{C} \\
\tilde{L}_{z w} \cdot \tilde{C} & \tilde{C}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{10}-\tilde{L}_{z w} \cdot \tilde{C} & \tilde{L}_{z w} \cdot \tilde{C} \\
\tilde{L}_{z w} \cdot \tilde{C} & -\tilde{L}_{z w} \cdot \tilde{C}
\end{array}\right)
$$

is negative-definite since $\tilde{L}_{z w} \cdot \tilde{C}$ is positive.

- For the singular point O_{z} with $c=0$ and $a_{1} \neq 0$ we may assume that $a_{1}=1$ and $a_{2}=0$. Furthermore, we may also assume that f_{14} does not contain the monomial $x z^{3} t$ by changing the coordinate w in a suitable way. We then consider the surface S_{w} cut by the equation $w=0$. Let Z_{λ} be the curve on the surface S_{w} defined by

$$
\left\{\begin{array}{l}
w=0 \\
y=\lambda x^{2}
\end{array}\right.
$$

for a sufficiently general complex number λ. Then $Z_{\lambda}=2 L_{z t}+C_{\lambda}$, where C_{λ} is an irreducible and reduced curve. We have

$$
\left\{\begin{array}{l}
-K_{Y} \cdot\left(2 \tilde{L}_{z t}+\tilde{C}_{\lambda}\right)=10 B^{3}=-\frac{1}{2} \\
-K_{Y} \cdot \tilde{L}_{z t}=-K_{X} \cdot L_{z t}-\frac{1}{3} E \cdot \tilde{L}_{z t}=-\frac{1}{4}
\end{array}\right.
$$

and hence $-K_{Y} \cdot \tilde{C}_{\lambda}=0$.

- For the singular point O_{z} with $c=0$ and $a_{1}=0$ we observe that f_{14} must contain the monomial $x z^{3} t$ for X_{14} to be quasi-smooth (see right before Theorem 4.3.1). We may assume that $a_{2}=1$ and that the coefficient of $x z^{3} t$ in f_{14} is 1 . Then Theorem 4.3.1 untwists the singular point O_{z}.

For the singular points of type $\frac{1}{2}(1,1,1)$ we may assume that $\alpha_{3}=0$ and we have only to consider the singular point O_{y}. The other singular points can be treated in the same way after suitable coordinate changes.

- For the singular point O_{y} with $b \neq 0$ consider the linear system generated by $x y$ and z on X_{14}. Its base curves are defined by $x=z=0$ and $y=z=0$. The curve defined by $y=z=0$ does not pass through the singular point O_{y}. The curve defined by $x=z=0$ is irreducible. Indeed, the curve is defined by

$$
x=z=\left(t+b y^{2}\right) w^{2}+y t\left(t-\alpha_{1} y^{2}\right)\left(t-\alpha_{2} y^{2}\right)=0
$$

Moreover, its proper transform is equivalent to the 1 -cycle defined by $(3 B+E) \cdot B$. Therefore, the divisor T is nef since $(3 B+E)^{2} \cdot B>0$.

- For the singular point O_{y} with $b=0$ we take a general member H in the linear system generated by $x^{3}, x y$ and z. Note that the defining equation of X_{14} must contain either $y^{3} z w$ or $x y^{4} w$. The surface H is a normal surface of degree 14 in $\mathbb{P}(1,2,4,5)$ that is smooth at the point $x=t=w^{2}+\alpha_{1} \alpha_{2} y^{5}=0$. Let T be the proper transform of the surface H. The intersection of T with the surface S defines a divisor consisting of two irreducible curves on the normal surface T. One is the proper transform of the curve $L_{y w}$ and the other is the proper transform of the curve C defined by

$$
x=z=w^{2}+y\left(t-\alpha_{1} y^{2}\right)\left(t-\alpha_{2} y^{2}\right)=0 .
$$

From the intersection numbers

$$
\left(\tilde{L}_{y w}+\tilde{C}\right) \cdot \tilde{L}_{y w}=-K_{Y} \cdot \tilde{L}_{y w}=-\frac{2}{5}, \quad\left(\tilde{L}_{y w}+\tilde{C}\right)^{2}=B^{2} \cdot(3 B+E)=-\frac{3}{20}
$$

on the surface T, we obtain

$$
\tilde{L}_{y w}^{2}=-\frac{2}{5}-\tilde{L}_{y w} \cdot \tilde{C}, \quad \tilde{C}^{2}=\frac{1}{4}-\tilde{L}_{y w} \cdot \tilde{C}
$$

With these intersection numbers we see that the matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{y w}^{2} & \tilde{L}_{y w} \cdot \tilde{C} \\
\tilde{L}_{y w} \cdot \tilde{C} & \tilde{C}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{2}{5}-\tilde{L}_{y w} \cdot \tilde{C} & \tilde{L}_{y w} \cdot \tilde{C} \\
\tilde{L}_{y w} \cdot \tilde{C} & \frac{1}{4}-\tilde{L}_{y w} \cdot \tilde{C}
\end{array}\right)
$$

is negative-definite since the curves $L_{y w}$ and the curve C intersect at the smooth point of H defined by $x=z=t=w^{2}+\alpha_{1} \alpha_{2} y^{5}=0$.

No. 24: $X_{15} \subset \mathbb{P}(1,1,2,5,7)$ $y w^{2}+t^{3}+z^{4}\left(a_{1} w+a_{2} z t+a_{3} x z^{3}+a_{4} y z^{3}\right)+w f_{8}(x, y, z, t)+f_{15}(x, y, z, t)$	$A^{3}=3 / 14$					
Singularity		B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{7}(1,2,5) \boxed{\tau}$	$y w^{2}$					y
$O_{z}=\frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)(\square)$	-	B	y	$a_{1} \neq 0$		
$O_{z}=\frac{1}{2}(1,1,1)(\mathbb{D}$	-	B	y	y	$a_{1}=0, a_{2}=0$	
$O_{z}=\frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)(\mathbb{S}$	-	B	x, y	x, y	$a_{1}=0, a_{2} \neq 0$	

Since X_{15} is quasi-smooth, one of the constants a_{1}, a_{2}, a_{3} must be non-zero.

- The 1-cycle Γ for the singular point O_{z} with $a_{1} \neq 0$ is irreducible since we have t^{3} and $z^{4} w$.
- The 1-cycle Γ for the singular point O_{z} with $a_{1}=a_{2}=0$ is also irreducible even though it is not reduced.
- For the singular point O_{z} with $a_{1}=0$ and $a_{2} \neq 0$ we may assume that $a_{2}=1$ and $a_{3}=a_{4}=0$. Choose a general member H in the linear system $\left|-K_{15}\right|$ and then take the intersection of its proper transform T with S. This gives us a divisor consisting of two irreducible curves on the normal surface T. One is the proper transform of the curve $L_{z w}$. The other is the proper transform of the curve C defined by

$$
x=y=t^{2}+z^{5}=0
$$

The curves $L_{z w}$ and C intersect at the point O_{w}. From the intersection numbers

$$
\left(\tilde{L}_{z w}+\tilde{C}\right) \cdot \tilde{L}_{z w}=-K_{Y} \cdot \tilde{L}_{z w}=-\frac{3}{7}, \quad\left(\tilde{L}_{z w}+\tilde{C}\right)^{2}=B^{3}=-\frac{2}{7}
$$

on the surface T, we obtain

$$
\tilde{L}_{z w}^{2}=-\frac{3}{7}-\tilde{L}_{z w} \cdot \tilde{C}, \quad \tilde{C}^{2}=\frac{1}{7}-\tilde{L}_{z w} \cdot \tilde{C}
$$

With these intersection numbers we see that the matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{z w}^{2} & \tilde{L}_{z w} \cdot \tilde{C} \\
\tilde{L}_{z w} \cdot \tilde{C} & \tilde{C}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{3}{7}-\tilde{L}_{z w} \cdot \tilde{C} & \tilde{L}_{z w} \cdot \tilde{C} \\
\tilde{L}_{z w} \cdot \tilde{C} & \frac{1}{7}-\tilde{L}_{z w} \cdot \tilde{C}
\end{array}\right)
$$

is negative-definite since $\tilde{L}_{z w} \cdot \tilde{C}=\frac{5}{7}$.

No. 25: $X_{15} \subset \mathbb{P}(1,1,3,4,7)$	$A^{3}=5 / 28$
$y w^{2}+t^{2}\left(a_{1} w+a_{2} z t\right)+z^{5}+w f_{8}(x, y, z, t)+f_{15}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order
$O_{w}=\frac{1}{7}(1,3,4) \boxed{\tau}$	$y w^{2}$			Condition
$O_{t}=\frac{1}{4}(1,1,3) \boxed{\tau_{1}}$	$w t^{2}$			

No. 26: $X_{15} \subset \mathbb{P}(1,1,3,5,6)$	$A^{3}=1 / 6$				
$z w^{2}+t^{3}+z^{5}+w f_{9}(x, y, z, t)+f_{15}(x, y, z, t)$					
Singularity		B^{3}	Linear system	Surface T	Vanishing order
$O_{w}=\frac{1}{6}(1,1,5) \boxed{\tau}$	$z w^{2}$				
$O_{z} O_{w}=2 \times \frac{1}{3}\left(1_{x}, 1_{y}, 2_{t}\right)$ (b)	0	B	y	y	

- The 1-cycle Γ for each singular point of type $\frac{1}{3}(1,1,2)$ is irreducible since we have the monomials $z w^{2}$ and t^{3}.

$\begin{aligned} & \text { No. 27: } X_{15} \subset \mathbb{P}(1,2,3,5,5) \\ & \left(w-\alpha_{1} t\right)\left(w-\alpha_{2} t\right)\left(w-\alpha_{3} t\right)+y^{5}\left(a_{1} w+a_{2} y z+a_{3} x y^{2}\right)+w^{2} f_{5}(x, y, z, t)+ \\ & w f_{10}(x, y, z, t)+f_{15}(x, y, z, t) \end{aligned}$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t} O_{w}=3 \times \frac{1}{5}(1,2,3) \boxed{\tau}$	$w t^{2}$				
$O_{y}=\frac{1}{2}(1,1,1)$ (n)	-	$5 B+2 E$	t	t	

We may assume that $\alpha_{3}=0$, i.e., the hypersurface X_{15} has a singular point of type $\frac{1}{5}(1,2,3)$ at the point O_{t}.

- To see how to treat the singular points of type $\frac{1}{5}(1,2,3)$ we have only to consider the singular point O_{t}. The others can be dealt with in the same way.
- For the singular point O_{y} we consider the linear system $\left|-5 K_{X_{15}}\right|$. Every member in the linear system passes through the point O_{y}. It has no base curve. Since the proper transform of a general member in $\left|-5 K_{X_{15}}\right|$ belongs to the linear system $|5 B+2 E|$, the divisor T is nef.

$\begin{array}{\|l} \hline \text { No. 28: } X_{15} \subset \mathbb{P}(1,3,3,4,5) \\ w^{3}+z t^{3}+h_{15}(y, z)+w^{2} f_{5}(x, y, z, t)+w f_{10}(x, y, z, t)+t^{2} g_{7}(x, y, z)+g_{11}(x, y, z)+ \\ g_{15}(x, y, z) \end{array}$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=1 \times \frac{1}{4}\left(1_{x}, 3_{y}, 1_{w}\right)$ (b)	0	$3 B$	y	y	
$O_{y} O_{z}=5 \times \frac{1}{3}\left(1_{x}, 1_{t}, 2_{w}\right)$ (b)	-	$3 B$	$y-\alpha_{i} z$	$t^{3} z$	

Note that the homogenous polynomial h_{15} cannot be divisible by z since the hypersurface X_{15} is quasi-smooth. Therefore, we may write

$$
h_{15}(y, z)=\prod_{i=1}^{5}\left(y-\alpha_{i} z\right)
$$

- The curve defined by $x=y=0$ is irreducible because we have the monomials w^{3} and $z t^{3}$.
- The curves defined by $x=y-\alpha_{i} z=0$ are also irreducible for the same reason. Therefore, the 1-cycle Γ for each singular point is irreducible.

No. 29: $X_{16} \subset \mathbb{P}(1,1,2,5,8)$	$A^{3}=1 / 5$
$\left(w-\alpha_{1} z^{4}\right)\left(w-\alpha_{2} z^{4}\right)+y t^{3}+a z^{3} t^{2}+w f_{8}(x, y, z, t)+t^{2} g_{6}(x, y, z)+t g_{11}(x, y, z)+$	
$g_{16}(x, y, z)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{5}\left(1_{x}, 2_{z}, 3_{w}\right)(\mathbb{D}$	+	$B-E$	y	w^{2}	
$O_{z} O_{w}=2 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)($ ®	-	B	y	y	$a \neq 0$
$O_{z} O_{w}=2 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)($ ©	-	B	x, y	x, y	$a=0$

- If the constant a is non-zero, then the 1 -cycle Γ for each singular point of type $\frac{1}{2}(1,1,1)$ is irreducible.
- Suppose that $a=0$. We have only to consider one of the singular points of type $\frac{1}{2}(1,1,1)$. The other singular point can be excluded in the same way. Moreover, we may assume that the singular point is located at the point O_{z}, i.e., $\alpha_{1}=0$, by a suitable coordinate change.

We take a general surface H from the pencil $\left|-K_{X_{16}}\right|$. It is a K3 surface only with du Val singularities. Let T be the proper transform of the surface. The intersection of T with the surface S gives us a divisor consisting of two irreducible curves on the normal surface T. One is the proper transform $\tilde{L}_{z t}$. The other is the proper transform \tilde{C} of the curve C defined by

$$
x=y=w-\alpha_{2} z^{4}=0
$$

From the intersection numbers

$$
\left(\tilde{L}_{z t}+\tilde{C}\right) \cdot \tilde{L}_{z t}=-K_{Y} \cdot \tilde{L}_{z t}=-\frac{2}{5}, \quad\left(\tilde{L}_{z t}+\tilde{C}\right)^{2}=B^{3}=-\frac{3}{10}
$$

on the surface T, we obtain

$$
\tilde{L}_{z t}^{2}=-\frac{2}{5}-\tilde{L}_{z t} \cdot \tilde{C}, \quad \tilde{C}^{2}=\frac{1}{10}-\tilde{L}_{z t} \cdot \tilde{C}
$$

With these intersection numbers we see that the matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{z t}^{2} & \tilde{L}_{z t} \cdot \tilde{C} \\
\tilde{L}_{z t} \cdot \tilde{C} & \tilde{C}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{2}{5}-\tilde{L}_{z t} \cdot \tilde{C} & \tilde{L}_{z t} \cdot \tilde{C} \\
\tilde{L}_{z t} \cdot \tilde{C} & \frac{1}{10}-\tilde{L}_{z t} \cdot \tilde{C}
\end{array}\right)
$$

is negative-definite since $\tilde{L}_{y w} \cdot \tilde{C}=\frac{4}{5}$.

$\begin{array}{lc} \text { No. 30: } X_{16} \subset \mathbb{P}(1,1,3,4,8) & A^{3}=1 / 6 \\ \left(w-\alpha_{1} t^{2}\right)\left(w-\alpha_{2} t^{2}\right)+z^{4}\left(a_{1} t+a_{2} y z\right)+w f_{8}(x, y, z, t)+f_{16}(x, y, z, t) & \end{array}$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t} O_{w}=2 \times \frac{1}{4}(1,1,3) \square \tau$	$w t^{2}$				
$O_{z}=\frac{1}{3}\left(1_{x}, 1_{y}, 2_{w}\right)$ (b)	0	B	y	y	$a_{1} \neq 0$
$O_{z}=\frac{1}{3}\left(1_{x}, 1_{t}, 2_{w}\right)$ (b)	0	$B-E$	y	w^{2}	$a_{1}=0$

- We may assume that $\alpha_{1}=0$. To see how to treat the singular points of type $\frac{1}{4}(1,1,3)$, we have only to consider the singular point O_{t}. The other point can be treated in the same way.
- The 1 -cycle Γ for the singular point O_{z} with $a_{1} \neq 0$ is irreducible due to w^{2} and $z^{4} t$.
- The 1-cycle Γ for the singular point O_{z} with $a_{1}=0$ consists of the proper transforms of the curves defined by

$$
x=y=w-\alpha_{1} t^{2}=0
$$

and

$$
x=y=w-\alpha_{2} t^{2}=0 .
$$

These two irreducible components are symmetric with respect to the biregular involution of X_{16}. Consequently, the components of Γ are numerically equivalent to each other.

No. 31: $X_{16} \subset \mathbb{P}(1,1,4,5,6)$	$A^{3}=2 / 15$
$z w^{2}+t^{2}\left(a_{1} w+a_{2} y t\right)+z^{4}+w f_{10}(x, y, z, t)+f_{16}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition	
$O_{w}=\frac{1}{6}(1,1,5) \llbracket \tau$	$z w^{2}$					
$O_{t}=\frac{1}{5}(1,1,4) \tau_{1}$	$w t^{2}$					y
$O_{z} O_{w}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)$ (b)	-	B	y	$a_{1} \neq 0$		
$O_{z} O_{w}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)($ ©	-	B	x, y	x, y	$a_{1}=0$	

- If $a_{1} \neq 0$, the 1 -cycle Γ for the singular point of type $\frac{1}{2}(1,1,1)$ is irreducible due to the monomials z^{4} and $t^{2} w$.
- Suppose $a_{1}=0$. Choose a general member H in the linear system $\left|-K_{X}\right|$. Then it is a normal K3 surface of degree 16 in $\mathbb{P}(1,4,5,6)$. Let T be the proper transform of the surface H. The intersection of T with the surface S defines a divisor consisting of two irreducible curves $\tilde{L}_{t w}$ and \tilde{C} on the normal surface T. The curve \tilde{C} is the proper transform of the curve C defined by

$$
x=y=w^{2}+z^{3}=0 .
$$

On the surface T, we have

$$
\tilde{L}_{t w} \cdot \tilde{C}=L_{t w} \cdot C=\frac{2}{5}
$$

From the intersections

$$
\left(\tilde{L}_{t w}+\tilde{C}\right) \cdot \tilde{L}_{t w}=-K_{Y} \cdot \tilde{L}_{t w}=\frac{1}{30}, \quad\left(\tilde{L}_{t w}+\tilde{C}\right)^{2}=B^{3}=-\frac{11}{30}
$$

on the surface T, we obtain

$$
\tilde{L}_{t w}^{2}=-\frac{11}{30}, \quad \tilde{C}^{2}=-\frac{4}{5} .
$$

The intersection matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{t w}^{2} & \tilde{L}_{t w} \cdot \tilde{C} \\
\tilde{L}_{t w} \cdot \tilde{C} & \tilde{C}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{11}{30} & \frac{2}{5} \\
\frac{2}{5} & -\frac{4}{5}
\end{array}\right)
$$

is negative-definite.

No. 32: $X_{16} \subset \mathbb{P}(1,2,3,4,7)$
$A^{3}=2 / 21$
$y w^{2}+\prod_{i=1}^{4}\left(t-\alpha_{i} y^{2}\right)+z^{3}\left(a_{1} w+a_{2} t z+a_{3} x z^{2}\right)+w f_{9}(x, y, z, t)+f_{16}(x, y, z, t)$

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{7}(1,3,4)$ 讴	$y w^{2}$				
$O_{z}=\frac{1}{3}\left(1_{x}, 2_{y}, 1_{t}\right)$ (b)	-	$2 B$	y	y	$a_{1} \neq 0$
$O_{z}=\frac{1}{3}\left(1_{x}, 2_{y}, 1_{w}\right)$ (${ }^{\text {(}}$	-	$2 B$	x^{2}, y	x^{2}, y	$a_{1}=0, a_{2} \neq 0$
$O_{z}=\frac{1}{3}\left(2_{y}, 1_{t}, 1_{w}\right)$ (b)	-	$2 B$	y	y	$a_{1}=a_{2}=0$
$O_{y} O_{t}=4 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{w}\right)($ (1)	-	$3 B+E$	$x y, z$	$x y, z$	

- The 1-cycle Γ for the singular point O_{z} with $a_{1} \neq 0$ is irreducible due to t^{4} and $z^{3} w$.
- For the singular point O_{z} with $a_{1}=0$ and $a_{2} \neq 0$ we may assume that $a_{3}=0$. The curve $L_{z w}$ is contained in X_{16} because $a_{1}=0$. Let $Z_{\lambda, \mu}$ be the curve on X_{16} cut out by

$$
\left\{\begin{array}{l}
y=\lambda x^{2} \\
t=\mu x^{4}
\end{array}\right.
$$

for some sufficiently general complex numbers λ and μ. Then $Z_{\lambda, \mu}=2 L_{z w}+C_{\lambda, \mu}$, where $C_{\lambda, \mu}$ is an irreducible and reduced curve. We have

$$
\left\{\begin{array}{l}
-K_{Y} \cdot\left(2 \tilde{L}_{z w}+\tilde{C}_{\lambda, \mu}\right)=8 B^{3}=-\frac{4}{7} \\
-K_{Y} \cdot \tilde{L}_{z w}=-K_{X} \cdot L_{z w}-\frac{1}{3} E \cdot \tilde{L}_{z w}=-\frac{2}{7}
\end{array}\right.
$$

and hence $-K_{Y} \cdot \tilde{C}_{\lambda, \mu}=0$.

- The 1-cycle Γ for the singular point O_{z} with $a_{1}=a_{2}=0$ is irreducible even though it is non-reduced.
- For the singular points of type $\frac{1}{2}(1,1,1)$, consider the linear system generated by $x y$ and z. Its base curves are defined by $x=z=0$ and $y=z=0$. The curve defined by $y=z=0$ does not pass through any singular point of type $\frac{1}{2}(1,1,1)$. The curve defined by $x=z=0$ is irreducible because of the monomial $y w^{2}$ and t^{4}. Since its proper transform is the 1 -cycle defined by $(3 B+E) \cdot B$ and $(3 B+E)^{2} \cdot B>0$, the divisor T is nef.

$\begin{aligned} & \text { No. 33: } X_{17} \subset \mathbb{P}(1,2,3,5,7) \\ & \left(d x^{3}+e x y+z\right) w^{2}+t^{2}\left(a_{1} w+a_{2} y t\right)+z^{4}\left(b_{1} t+b_{2} y z\right)+y^{5}\left(c_{1} w+c_{2} y t+c_{3} y^{2} z+\right. \\ & \left.c_{4} y^{3} x\right)+w f_{10}(x, y, z, t)+f_{17}(x, y, z, t) \end{aligned}$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{7}(1,2,5) \quad \boxed{\tau}$	$z w^{2}$				
$O_{t}=\frac{1}{5}(1,2,3) \quad \tau_{1}$	$w t^{2}$				
$O_{z}=\frac{1}{3}\left(1_{x}, 2_{y}, 1_{w}\right)$ (b)	-	$2 B$	y	y	$a_{1} \neq 0, b_{1} \neq 0$

$O_{z}=\frac{1}{3}\left(1_{x}, 2_{y}, 1_{w}\right)$ (S	-	$2 B$	x^{2}, y	x^{2}, y	$a_{1}=0, b_{1} \neq 0$
$O_{z}=\frac{1}{3}\left(1_{x}, 2_{t}, 1_{w}\right)$ (S)	-	$2 B$	x^{2}, y	$x^{2}, z w^{2}$	$b_{1}=0$
$O_{y}=\frac{1}{2}\left(1_{x}, 1_{z}, 1_{t}\right)$ (1)	-	$5 B+2 E$	t	t	$c_{1} \neq 0$
$O_{y}=\frac{1}{2}\left(1_{x}, 1_{z}, 1_{w}\right)\left({ }^{\text {S }}\right.$	-	$5 B+E$	x^{5}, t	$x^{5}, z w^{2}$	$c_{1}=0, c_{2} \neq 0$
$O_{y}=\frac{1}{2}\left(1_{x}, 1_{t}, 1_{w}\right)$ (S)	-	$3 B$	x^{3}, z	$x^{3}, y t^{3}, t^{2} w$	$\begin{gathered} c_{1}=c_{2}=0 \\ c_{3} \neq 0 \end{gathered}$
$O_{y}=\frac{1}{2}\left(1_{z}, 1_{t}, 1_{w}\right)$ (n)	-	$7 B+3 E$	w	w	$c_{1}=c_{2}=c_{3}=0$

- The 1-cycle Γ for the singular point O_{z} with $a_{1} \neq 0$ and $b_{1} \neq 0$ is irreducible since we have the monomials $t^{2} w, z^{4} t$ and $z w^{2}$.

For the singular point O_{z} with $a_{1} b_{1}=0$ choose a general member H in the linear system $\left|-2 K_{X_{17}}\right|$. Then it is a normal surface of degree 17 in $\mathbb{P}(1,3,5,7)$. Let T be the proper transform of the divisor H. The curve \tilde{D} on T cut out by the surface S is the proper transform of the curve cut by the equations $x=y=0$.

- Suppose that $b_{1} \neq 0$ and $a_{1}=0$. Then $a_{2} \neq 0$. The curve \tilde{D} then consists of two irreducible curves $\tilde{L}_{t w}$ and \tilde{C}_{1}. The curve \tilde{C}_{1} is the proper transform of the curve C_{1} defined by

$$
x=y=w^{2}+b_{1} z^{3} t=0 .
$$

Note that the curve $L_{t w}$ and C_{1} intersect at the point O_{t}. The surface H is not quasi-smooth at the point O_{t}. We also consider the divisor D_{z} on H cut by the equation $z=0$. We easily see that $D_{z}=2 L_{t w}+R$, where R is a curve whose support does not contain $L_{t w}$. The curves R and $L_{t w}$ intersect at the point O_{w}. The surface H is quasi-smooth at the point O_{w}. Then we have $\tilde{L}_{t w} \cdot \tilde{R}=\frac{3}{7}$. From the intersection

$$
\left(2 \tilde{L}_{t w}+\tilde{R}\right) \cdot \tilde{L}_{t w}=3 A \cdot \tilde{L}_{t w}=\frac{3}{35}
$$

we obtain $\tilde{L}_{t w}^{2}=-\frac{6}{35}$. From the intersections

$$
\left(\tilde{L}_{t w}+\tilde{C}_{1}\right) \cdot \tilde{L}_{t w}=-K_{Y} \cdot \tilde{L}_{t w}=\frac{1}{35}, \quad\left(\tilde{L}_{t w}+\tilde{C}_{1}\right)^{2}=2 B^{3}=-\frac{6}{35}
$$

on the surface T, we obtain

$$
\tilde{L}_{t w}^{2}=-\frac{6}{35}, \quad \tilde{L}_{t w} \cdot \tilde{C}_{1}=\frac{1}{5}, \quad \tilde{C}_{1}^{2}=-\frac{2}{5} .
$$

The intersection matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{t w}^{2} & \tilde{L}_{t w} \cdot \tilde{C}_{1} \\
\tilde{L}_{t w} \cdot \tilde{C}_{1} & \tilde{C}_{1}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{6}{35} & \frac{1}{5} \\
\frac{1}{5} & -\frac{2}{5}
\end{array}\right)
$$

is negative-definite.

- Suppose that $b_{1}=0$ and $a_{1} \neq 0$. Then $b_{2} \neq 0$. The curve \tilde{D} consists of two irreducible curves $\tilde{L}_{z t}$ and \tilde{C}_{2}. The curve \tilde{C}_{2} is the proper transform of the curve C_{2} defined by $x=y=$ $z w+a_{1} t^{2}=0$. From the intersections

$$
\left(\tilde{L}_{z t}+\tilde{C}_{2}\right) \cdot \tilde{L}_{z t}=-K_{Y} \cdot \tilde{L}_{z t}=-\frac{1}{10}, \quad\left(\tilde{L}_{z t}+\tilde{C}_{2}\right)^{2}=2 B^{3}=-\frac{6}{35}
$$

on the surface T, we obtain

$$
\tilde{L}_{z t}^{2}=-\frac{1}{10}-\tilde{L}_{z t} \cdot \tilde{C}_{2}, \quad \tilde{C}_{2}^{2}=-\frac{1}{14}-\tilde{L}_{z t} \cdot \tilde{C}_{2} .
$$

With these intersection numbers we see that the matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{z t}^{2} & \tilde{L}_{z t} \cdot \tilde{C}_{2} \\
\tilde{L}_{z t} \cdot \tilde{C}_{2} & \tilde{C}_{2}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{10}-\tilde{L}_{z t} \cdot \tilde{C}_{2} & \tilde{L}_{z t} \cdot \tilde{C}_{2} \\
\tilde{L}_{z t} \cdot \tilde{C}_{2} & -\frac{1}{14}-\tilde{L}_{z t} \cdot \tilde{C}_{2}
\end{array}\right)
$$

is negative-definite since $\tilde{L}_{z t} \cdot \tilde{C}_{2}$ is non-negative.
Suppose that $b_{1}=0$ and $a_{1}=0$. We then have $b_{2} \neq 0$ and $a_{2} \neq 0$. Furthermore, the defining equation of X_{17} must contain $x z^{2} t$; otherwise X_{17} would not be quasi-smooth at the point $x=y=w=a_{2} t^{3}+b_{2} z^{5}=0$. Note that the presence of $x z^{2} t$ implies the normality of the surfaces H and T. The curve \tilde{D} consists of two irreducible curves $\tilde{L}_{t w}$ and $\tilde{L}_{z t}$. Indeed, $\tilde{D}=\tilde{L}_{t w}+2 \tilde{L}_{z t}$. The curves $L_{t w}$ and $L_{z t}$ intersect at the point O_{t}. The surface H is not quasi-smooth at the point O_{t}. We consider the divisor D_{z} on H cut by the equation $z=0$. We easily see that $D_{z}=2 L_{t w}+R$, where R is a curve whose support does not contain $L_{t w}$. The curves R and $L_{t w}$ intersect at the point O_{w}. The surface H is quasi-smooth at the point O_{w}. Then we have $\tilde{L}_{t w} \cdot \tilde{R}=\frac{3}{7}$. From the intersection

$$
\left(2 \tilde{L}_{t w}+\tilde{R}\right) \cdot \tilde{L}_{t w}=3 A \cdot \tilde{L}_{t w}=\frac{3}{35}
$$

we obtain $\tilde{L}_{t w}^{2}=-\frac{6}{35}$. From the intersections

$$
\left(\tilde{L}_{t w}+2 \tilde{L}_{z t}\right) \cdot \tilde{L}_{t w}=-K_{Y} \cdot \tilde{L}_{t w}=\frac{1}{35}, \quad\left(\tilde{L}_{t w}+2 \tilde{L}_{z t}\right)^{2}=2 B^{3}=-\frac{6}{35}
$$

on the surface T, we obtain

$$
\tilde{L}_{t w}^{2}=-\frac{6}{35}, \quad \tilde{L}_{t w} \cdot \tilde{L}_{z t}=\frac{1}{10}, \quad \tilde{L}_{z t}^{2}=-\frac{1}{10} .
$$

Therefore, the curves $\tilde{L}_{t w}$ and $\tilde{L}_{z t}$ form a negative-definite divisor on T.

- For the singular point O_{y} with $c_{1} \neq 0$ we consider the linear system $\left|-5 K_{X_{17}}\right|$. Every member in the linear system passes through the point O_{y}. The base locus of $\left|-5 K_{X_{17}}\right|$ is the union of the loci defined by $x=t=y=0$ and $x=t=z=0$. It is a 0 -dimensional locus. Since the proper transform of a general member in $\left|-5 K_{X_{15}}\right|$ belongs to the linear system $|5 B+2 E|$, the divisor T is nef.
- For the singular point O_{y} with $c_{1}=0$ and $c_{2} \neq 0$ we may assume that $c_{2}=1$ and $c_{3}=c_{4}=0$ by a coordinate change. Choose a general member H in the linear system generated by x^{5} and t. Then it is a normal surface of degree 17 in $\mathbb{P}(1,2,3,7)$. Let T be the proper transform of the surface H. The intersection of T with the surface S gives us a divisor consisting of two curves $\tilde{L}_{y w}$ and \tilde{C}. The curve \tilde{C} is the proper transform of the curve C defined by

$$
x=t=w^{2}+b_{2} y z^{4}+a w y^{2} z+b y^{4} z^{2}=0,
$$

where a and b are constants.

Suppose that $b_{2} \neq 0$. Then the curve \tilde{C} is irreducible. From the intersection numbers

$$
\begin{aligned}
& \left(\tilde{L}_{y w}+\tilde{C}\right) \cdot \tilde{L}_{y w}=-K_{Y} \cdot \tilde{L}_{y w}=-\frac{3}{7} \\
& \left(\tilde{L}_{y w}+\tilde{C}\right)^{2}=B^{2} \cdot(5 B+E)=-\frac{23}{21}
\end{aligned}
$$

on the surface T, we obtain

$$
\tilde{L}_{y w}^{2}=-\frac{3}{7}-\tilde{L}_{y w} \cdot \tilde{C}, \quad \tilde{C}^{2}=-\frac{2}{3}-\tilde{L}_{y w} \cdot \tilde{C}
$$

With these intersection numbers we see that the matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{y w}^{2} & \tilde{L}_{y w} \cdot \tilde{C} \\
\tilde{L}_{y w} \cdot \tilde{C} & \tilde{C}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{3}{7}-\tilde{L}_{y w} \cdot \tilde{C} & \tilde{L}_{y w} \cdot \tilde{C} \\
\tilde{L}_{y w} \cdot \tilde{C} & -\frac{2}{3}-\tilde{L}_{y w} \cdot \tilde{C}
\end{array}\right)
$$

is negative-definite since $\tilde{L}_{y w} \cdot \tilde{C}$ is non-negative.
Suppose that $b_{2}=0$. The curve C then consists of two irreducible curves C_{1} and C_{2} defined by

$$
x=t=w-\alpha_{1} y^{2} z=0
$$

and

$$
x=t=w-\alpha_{2} y^{2} z=0,
$$

respectively. Therefore, the curve \tilde{C} consists of their proper transforms \tilde{C}_{1} and \tilde{C}_{2}. From the intersections

$$
\begin{gathered}
\left(\tilde{L}_{y w}+\tilde{C}_{1}+\tilde{C}_{2}\right) \cdot \tilde{L}_{y w}=-K_{Y} \cdot \tilde{L}_{y w}=-\frac{3}{7} \\
\left(\tilde{L}_{y w}+\tilde{C}_{1}+\tilde{C}_{2}\right) \cdot \tilde{C}_{1}=-K_{Y} \cdot \tilde{C}_{1}=-\frac{1}{3}, \quad\left(\tilde{L}_{y w}+\tilde{C}_{1}+\tilde{C}_{2}\right) \cdot \tilde{C}_{2}=-K_{Y} \cdot \tilde{C}_{2}=-\frac{1}{3}
\end{gathered}
$$

on the surface T, we obtain the intersection matrix of the curves $\tilde{L}_{y w}, \tilde{C}_{1}$ and \tilde{C}_{2}

$$
\left(\begin{array}{ccc}
-\frac{3}{7}-\tilde{L}_{y w} \cdot \tilde{C}_{1}-\tilde{L}_{y w} \cdot \tilde{C}_{2} & \tilde{L}_{y w} \cdot \tilde{C}_{1} & \tilde{L}_{y w} \cdot \tilde{C}_{2} \\
\tilde{L}_{y w} \cdot \tilde{C}_{1} & -\frac{1}{3}-\tilde{L}_{y w} \cdot \tilde{C}_{1}-\tilde{C}_{1} \cdot \tilde{C}_{2} & \tilde{C}_{1} \cdot \tilde{C}_{2} \\
\tilde{L}_{y w} \cdot \tilde{C}_{2} & \tilde{C}_{1} \cdot \tilde{C}_{2} & -\frac{1}{3}-\tilde{L}_{z w} \cdot \tilde{C}_{2}-\tilde{C}_{1} \cdot \tilde{C}_{2}
\end{array}\right) .
$$

It is easy to check that it is negative-definite since $\tilde{L}_{y w} \cdot \tilde{C}_{1}, \tilde{L}_{y w} \cdot \tilde{C}_{2}$ and $\tilde{C}_{1} \cdot \tilde{C}_{2}$ are nonnegative.

- For the singular point O_{y} with $c_{1}=c_{2}=0$ and $c_{3} \neq 0$ we may assume that $c_{3}=1$ and $c_{4}=0$ by a coordinate change. Note that in such a case, we must have the monomial $x y w^{2}$, i.e., $e \neq 0$: otherwise the hypersurface X_{17} is not quasi-smooth at the point defined by $x=z=t=w^{2}+y^{7}=0$.
Choose a general member H in the linear system generated by x^{3} and z. Then it is a normal surface of degree 17 in $\mathbb{P}(1,2,5,7)$. Let D be the curve on H cut out by the equation $x=0$. Let T be the proper transform of the surface H. Then T is normal and the curve \tilde{D} is cut out by the surface S.

Suppose that $a_{1} \neq 0$. We may then assume that $a_{1}=1$ and $a_{2}=0$ by a coordinate change. The curve \tilde{D} then consists of two irreducible curves $\tilde{L}_{y w}$ and $\tilde{L}_{y t}$. From the intersection numbers

$$
\left(2 \tilde{L}_{y w}+\tilde{L}_{y t}\right) \cdot \tilde{L}_{y w}=-K_{Y} \cdot \tilde{L}_{y w}=-\frac{3}{7}, \quad\left(2 \tilde{L}_{y w}+\tilde{L}_{y t}\right)^{2}=3 B^{3}=-\frac{44}{35}
$$

on the surface T, we obtain

$$
\tilde{L}_{y w}^{2}=-\frac{3}{14}-\frac{1}{2} \tilde{L}_{y w} \cdot \tilde{L}_{y t}, \quad \tilde{L}_{y t}^{2}=-\frac{2}{5}-2 \tilde{L}_{y w} \cdot \tilde{L}_{y t}
$$

With these intersection numbers we see that the matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{y w}^{2} & \tilde{L}_{y w} \cdot \tilde{L}_{y t} \\
\tilde{L}_{y w} \cdot \tilde{L}_{y t} & \tilde{L}_{y t}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{3}{14}-\frac{1}{2} \tilde{L}_{y w} \cdot \tilde{L}_{y t} & \tilde{L}_{y w} \cdot \tilde{L}_{y t} \\
\tilde{L}_{y w} \cdot \tilde{L}_{y t} & -\frac{2}{5}-2 \tilde{L}_{y w} \cdot \tilde{L}_{y t}
\end{array}\right)
$$

is negative-definite since $\tilde{L}_{y w} \cdot \tilde{L}_{y t}$ is non-negative.
Suppose that $a_{1}=0$. By changing the coordinate y, we may assume that the defining equation of X_{17} does not contain the monomial $x^{2} t^{3}$. The curve D consists of two irreducible curves $L_{y w}$ and $L_{t w}$. In fact, we have $\tilde{D}=3 \tilde{L}_{y w}+\tilde{L}_{t w}$. Since the curve $L_{y w}$ passes through the point O_{y} but the curve $L_{t w}$ does not, we have

$$
L_{y w} \cdot L_{t w}=\tilde{L}_{y w} \cdot \tilde{L}_{t w}, \quad L_{t w}^{2}=\tilde{L}_{t w}^{2} .
$$

We also have

$$
\left(3 \tilde{L}_{y w}+\tilde{L}_{t w}\right) \cdot \tilde{L}_{y w}=-K_{Y} \cdot \tilde{L}_{y w}=-\frac{3}{7}, \quad\left(3 L_{y w}+L_{t w}\right) \cdot L_{t w}=-K_{X_{17}} \cdot L_{t w}=\frac{1}{35} .
$$

To compute $L_{y w} \cdot L_{t w}$, we consider the divisor D_{y} on H given by the equation $y=0$. Since the defining equation of X_{17} does not contain the monomial $x^{2} t^{3}$, we have $D_{y}=3 L_{t w}+R$, where R is a curve whose support does not contain the curve $L_{t w}$. Note that R meets $L_{t w}$ only at the point O_{t}. Moreover, we can easily see that $L_{t w} \cdot R=\frac{2}{5}$ since H is quasi-smooth at the point O_{t}. Then the intersection

$$
\left(3 L_{t w}+R\right) \cdot L_{t w}=-2 K_{X_{17}} \cdot L_{t w}=\frac{2}{35}
$$

implies that $L_{t w}^{2}=-\frac{4}{35}$. This gives a negative-definite matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{y w}^{2} & \tilde{L}_{y w} \cdot \tilde{L}_{t w} \\
\tilde{L}_{y w} \cdot \tilde{L}_{t w} & \tilde{L}_{t w}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{10}{63} & \frac{1}{21} \\
\frac{1}{21} & -\frac{4}{35}
\end{array}\right) .
$$

- For the singular point O_{y} with $c_{1}=c_{2}=c_{3}=0$, we consider linear system $\left|-7 K_{X_{17}}\right|$. Every member in the linear system passes through the point O_{y}. The proper transform of a general member in $\left|-7 K_{X_{17}}\right|$ belongs to the linear system $|7 B+3 E|$. The base locus of the linear system $\left|-7 K_{X_{17}}\right|$ possibly contains only the curve $L_{y z}$ and the curve $L_{z t}$. If they are contained in X_{17}, we see

$$
(7 B+3 E) \cdot \tilde{L}_{y z}=-7 K_{X_{17}} \cdot L_{y z}-\frac{1}{2} E \cdot \tilde{L}_{y z}=\frac{2}{3}, \quad(7 B+3 E) \cdot \tilde{L}_{z t}=-7 K_{X_{17}} \cdot L_{z t}=\frac{7}{15} .
$$

Therefore, T is nef.

No. 34: $X_{18} \subset \mathbb{P}(1,1,2,6,9)$	$A^{3}=1 / 6$				
$w^{2}+t^{3}+w f_{9}(x, y, z, t)+f_{18}(x, y, z, t)$					
Singularity		B^{3}	Linear system	Surface T	Vanishing order
$O_{t} O_{w}=1 \times \frac{1}{3}\left(1_{x}, 1_{y}, 2_{z}\right)$ (b)	0	B	y	y	Condition
$O_{z} O_{t}=3 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)$ (b)	-	B	y	y	

- The curve defined by $x=y=0$ is always irreducible since we have the monomials w^{2} and t^{3}. Therefore, the 1-cycle Γ for each singular point is irreducible.

No. 35: $X_{18} \subset \mathbb{P}(1,1,3,5,9)$	$A^{3}=2 / 15$				
$w^{2}+z t^{3}+w f_{9}(x, y, z, t)+f_{18}(x, y, z, t)$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{5}\left(1_{x}, 1_{y}, 4_{w}\right)$ (D)	+	$3 B-E$	z	w^{2}	
$O_{z} O_{w}=2 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)$ (b)	-	B	y	y	

- The 1-cycle Γ for the singular points of type $\frac{1}{2}(1,1,1)$ is irreducible since we have w^{2} and $z t^{3}$.

No. 36: $X_{18} \subset \mathbb{P}(1,1,4,6,7)$$A^{3}=3 / 28$$z w^{2}+t^{3}-z^{3} t+w f_{11}(x, y, z, t)+f_{18}(x, y, z, t)$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{7}(1,1,6) \quad \boxed{ }$	$z w^{2}$				
$O_{z}=\frac{1}{4}(1,1,3) \epsilon_{1}$	$z w^{2}-z^{3} t$				
$O_{z} O_{t}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)$ (D)	-	B	y	y	

- The 1 -cycle Γ for the singular point of type $\frac{1}{2}(1,1,1)$ is irreducible because of the monomials $z w^{2}$ and t^{3}.

No. 37: $X_{18} \subset \mathbb{P}(1,2,3,4,9)$												
$\begin{array}{l}\left(w-\beta_{1} z^{3}\right)\left(w-\beta_{2} z^{3}\right)+y \prod_{i=1}^{4}\left(t-\alpha_{i} y^{2}\right)+a t^{3} z^{2}+w f_{9}(x, y, z, t)+t^{3} g_{6}(x, y, z)+ \\ t^{2} g_{10}(x, y, z)+t g_{14}(x, y, z)+g_{18}(x, y, z)\end{array}$												
Singularity								B^{3}	$\begin{array}{c}\text { Linear } \\ \text { system }\end{array}$	Surface T	$\begin{array}{c}\text { Vanishing } \\ \text { order }\end{array}$	Condition
$O_{t}=\frac{1}{4}\left(1_{x}, 3_{z}, 1_{w}\right)$ (b)	0	$2 B$	y	w^{2}								

- For the singular point O_{t}, the 1-cycle Γ can be reducible. In case, we see that Γ consists of the proper transforms of the curves defined by $x=y=w-\beta_{1} z^{3}=0$ and $x=y=w-\beta_{2} z^{3}=$ 0 . These two irreducible components are symmetric with respect to the biregular involution of X_{18}. In addition, the point O_{t} is the intersection point of these two curves. Consequently, the components of Γ are numerically equivalent to each other.
- For each singular point of type $\frac{1}{3}(1,2,1)$, the 1 -cycle Γ is irreducible if the constant a is not zero.
- Suppose that the constant a is zero. We have only to consider one of the singular points of type $\frac{1}{3}(1,2,1)$. The other singular point can be excluded in the same way. We put $\beta_{1}=0$ and consider the singular point O_{z}. We may also assume that the defining equation of X_{18} contains neither $x z^{3} t^{2}$ nor $x^{2} z^{4} t$ by changing the coordinate w.
We take a general surface H from the pencil $\left|-2 K_{X_{18}}\right|$ and then let T be the proper transform of the surface. Note that the surface H is normal. However, it is not quasi-smooth at the point O_{t}. The intersection of T with the surface S gives us a divisor consisting of two irreducible curves on the normal surface T. They are the proper transforms $\tilde{L}_{z t}$ and \tilde{C} of the curve $L_{z t}$ and the curve C defined by

$$
x=y=w-\beta_{2} z^{3}=0,
$$

respectively. From the intersection numbers

$$
\left(\tilde{L}_{z t}+\tilde{C}\right) \cdot \tilde{L}_{z t}=-K_{Y} \cdot \tilde{L}_{z t}=-\frac{1}{4}, \quad\left(\tilde{L}_{z t}+\tilde{C}\right)^{2}=2 B^{3}=-\frac{1}{6}
$$

on the surface T, we obtain

$$
\tilde{L}_{z t}^{2}=-\frac{1}{4}-\tilde{L}_{z t} \cdot \tilde{C}, \quad \tilde{C}^{2}=\frac{1}{12}-\tilde{L}_{z t} \cdot \tilde{C}
$$

To compute the intersection number $\tilde{L}_{z t} \cdot \tilde{C}$, we consider the divisor D_{w} on H cut by the equation $w=0$. We easily see that $D_{w}=2 L_{z t}+R$, where R is a curve whose support does not contain $L_{z t}$. The curve R and $L_{z t}$ intersects at the point O_{z}. Let \tilde{R} be the proper transform of R. Then we have $\tilde{L}_{z t} \cdot \tilde{R}=0$ since they are disconnected on T. From the intersection

$$
\left(2 \tilde{L}_{z t}+\tilde{R}\right) \cdot \tilde{L}_{z t}=(9 B+E) \cdot \tilde{L}_{z t}=-\frac{5}{4}
$$

we obtain $\tilde{L}_{z t}^{2}=-\frac{5}{8}$. Therefore, $\tilde{L}_{z t} \cdot \tilde{C}=\frac{3}{8}$ and $\tilde{C}^{2}=-\frac{7}{24}$. With these intersection numbers we see that the matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{z t}^{2} & \tilde{L}_{z t} \cdot \tilde{C} \\
\tilde{L}_{z t} \cdot \tilde{C} & \tilde{C}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{5}{8} & \frac{3}{8} \\
\frac{3}{8} & -\frac{7}{24}
\end{array}\right)
$$

is negative-definite.

- For each singular point of type $\frac{1}{2}(1,1,1)$, the 1 -cycle Γ may be reducible. In case, it consists of the proper transforms of the curves defined by

$$
x=t-\alpha_{i} y^{2}=w+b y^{3} z+c z^{3}=0
$$

and

$$
x=t-\alpha_{i} y^{2}=w+d y^{3} z+e z^{3}=0
$$

where b, c, d, e are constants. These two irreducible components are also symmetric with respect to the biregular involution of X_{18}. In addition, the singular point is the intersection point of these two curves. Therefore, the components of Γ are numerically equivalent.

No. 38: $X_{18} \subset \mathbb{P}(1,2,3,5,8)$	$A^{3}=3 / 40$
$y w^{2}+t^{2}\left(a_{1} w+a_{2} z t\right)+z^{6}+y^{9}+w f_{10}(x, y, z, t)+f_{18}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{8}(1,3,5) \boxed{ }$	$y w^{2}$				
$O_{t}=\frac{1}{5}(1,2,3) \boxed{\tau_{1}}$	$w t^{2}$				
$O_{y} O_{w}=2 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{t}\right)$ (n	-	$5 B+2 E$	t	t	

- For the singular points of type $\frac{1}{2}(1,1,1)$ we consider the linear system $\left|-5 K_{X_{18}}\right|$. Every member of the linear system passes through the singular points of type $\frac{1}{2}(1,1,1)$ and the base locus of the linear system contains no curves. Since the proper transform of a general member in $\left|-5 K_{X_{18}}\right|$ belongs to the linear system $|5 B+2 E|$, the divisor T is nef.

$\begin{aligned} & \text { No. 39: } X_{18} \subset \mathbb{P}(1,3,4,5, \\ & \left(w-\alpha_{1} y^{2}\right)\left(w-\alpha_{2} y^{2}\right)(w- \\ & w f_{12}(x, y, z, t)+t^{2} g_{8}(x, y, z \end{aligned}$		$\begin{aligned} & y t^{3}+z^{3} \\ & (x, y, z) \end{aligned}$	$\begin{aligned} & a t^{2} z^{2}+b y \\ & 8(x, y, z) \end{aligned}$	$+w^{2} f_{6}$	$\begin{aligned} & A^{3}=1 / 20 \\ & + \end{aligned}$
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{5}\left(1_{x}, 4_{z}, 1_{w}\right)$ (b)	0	$3 B$	y	w^{3}	
$O_{z}=\frac{1}{4}\left(1_{x}, 3_{y}, 1_{t}\right)$ (b)	-	$3 B$	y	y	$a \neq 0$
$O_{z}=\frac{1}{4}\left(1_{x}, 3_{y}, 1_{t}\right)$ (s)	-	$3 B$	x^{3}, y	x^{3}, y	$a=0$
$O_{z} O_{w}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)(1)$	-	$5 B+2 E$	t	t	
$O_{y} O_{w}=3 \times \frac{1}{3}\left(1_{x}, 1_{z}, 2_{t}\right)(1)$	-	$5 B+E$	t	t	$b \neq 0$
$O_{y} O_{w}=3 \times \frac{1}{3}\left(1_{x}, 1_{z}, 2_{t}\right)($ S	-	$5 B+E$	$x^{5}, x z, t$	t	$b=0$

- For the singular point O_{t}, the 1-cycle Γ may be reducible. However, in case, it consists of two irreducible components. One is the proper transform $\tilde{L}_{z t}$ of the curve $L_{z t}$ and the other is the proper transform \tilde{C} of the curve defined by

$$
x=y=w^{2}+z^{3}=0
$$

We can easily check that

$$
E \cdot \tilde{C}=2 E \cdot \tilde{L}_{z t}=\frac{1}{2}, \quad B \cdot \tilde{C}=2 B \cdot \tilde{L}_{z t}=0
$$

Therefore, the irreducible curves $\tilde{L}_{z t}$ and \tilde{C} are numerically proportional on Y.

- The 1-cycle Γ for the singular point O_{z} with $a \neq 0$ is irreducible due to w^{3} and $t^{2} z^{2}$.
- For the singular point O_{z} with $a=0$ we may assume that the defining equation of X_{18} contains neither $x z^{3} t$ nor $x^{2} z^{4}$ by changing the coordinate w.

We take a general surface H from the pencil $\left|-3 K_{X_{18}}\right|$ and then let T be the proper transform of the surface. Note that the surface H is normal. However, it is not quasi-smooth at the point O_{t}. The intersection of T with the surface S gives us a divisor consisting of two irreducible curves $\tilde{L}_{z t}$ and \tilde{C} on the normal surface T. The curve \tilde{C} is the proper transform of the curve C defined by

$$
x=y=w^{2}+z^{3}=0 .
$$

From the intersection numbers

$$
\left(\tilde{L}_{z t}+\tilde{C}\right) \cdot \tilde{L}_{z t}=-K_{Y} \cdot \tilde{L}_{z t}=-\frac{1}{5}, \quad\left(\tilde{L}_{z t}+\tilde{C}\right)^{2}=3 B^{3}=-\frac{1}{10}
$$

on the surface T, we obtain

$$
\tilde{L}_{z t}^{2}=-\frac{1}{5}-\tilde{L}_{z t} \cdot \tilde{C}, \quad \tilde{C}^{2}=\frac{1}{10}-\tilde{L}_{z t} \cdot \tilde{C} .
$$

Therefore,

$$
\left(3 \tilde{L}_{z t}+\tilde{R}\right) \cdot \tilde{L}_{z t}=-6 K_{Y} \cdot \tilde{L}_{z t}=-\frac{6}{5}
$$

we obtain $\tilde{L}_{z t}^{2}=-\frac{2}{5}$. With these intersection numbers we see

$$
\left(\begin{array}{cc}
\tilde{L}_{z t}^{2} & \tilde{L}_{z t} \cdot \tilde{C} \\
\tilde{L}_{z t} \cdot \tilde{C} & \tilde{C}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{5}-\tilde{L}_{z t} \cdot \tilde{C} & \tilde{L}_{z t} \cdot \tilde{C} \\
\tilde{L}_{z t} \cdot \tilde{C} & \frac{1}{10}-\tilde{L}_{z t} \cdot \tilde{C}
\end{array}\right) .
$$

To compute the intersection number $\tilde{L}_{z t} \cdot \tilde{C}$, we take the divisor D_{w} on H cut by the equation $w=0$. This divisor can be written as $D_{w}=3 L_{z t}+R$, where R is a curve whose support does not contain $L_{z t}$. The curve R and $L_{z t}$ intersects at the point O_{z}. Let \tilde{R} be the proper transform of R. We have $\tilde{L}_{z t} \cdot \tilde{R}=0$ since they are disconnected on T. From the intersection

$$
\left(3 \tilde{L}_{z t}+\tilde{R}\right) \cdot \tilde{L}_{z t}=-6 K_{Y} \cdot \tilde{L}_{z t}=-\frac{6}{5}
$$

we obtain $\tilde{L}_{z t}^{2}=-\frac{2}{5}$. Therefore, $\tilde{L}_{z t} \cdot \tilde{C}=\frac{1}{5}$. This shows that the matrix is negative-definite.

- For the singular point of type $\frac{1}{2}(1,1,1)$ we consider the linear system generated by x^{15}, y^{5} and t^{3} on the hypersurface X_{18}. Its base locus is cut out by $x=y=t=0$. Since we have the monomial $z^{3} w$, the base locus does not contain curves. Therefore the proper transform of a general member in the linear system is nef by Lemma 3.2.6 and it belongs to $|15 B+6 E|$. Consequently, the surface T is nef since $3 T \sim_{\mathbb{Q}} 15 B+6 E$.

For the singular points of type $\frac{1}{3}(1,1,2)$ we may assume that $\alpha_{1}=0$ and consider the singular point O_{y}. The other points can be dealt with in the same way. Since $\alpha_{1}=0$, the defining equation of X_{18} does not contain the monomial y^{6}. We may also assume that it does not contain the monomials $x^{6} y^{4}, x^{3} y^{5}, x^{2} y^{4} z$ and $x y^{4} t$ by changing the coordinate w.

- For the singular point O_{y} with $b \neq 0$ we consider the linear system generated by x^{30}, t^{5} and w^{6} on the hypersurface X_{18}. Its base locus is cut out by $x=t=w=0$. Since $b \neq 0$, its base locus does not contain curves, and hence the proper transform of a general member in the linear system is nef by Lemma 3.2.6. It belongs to $|30 B+6 E|$. Consequently, the surface T is nef since $6 T \sim_{\mathbb{Q}} 30 B+6 E$.
- For the singular point O_{y} with $b=0$ we take a general surface H from the linear system generated by $x^{5}, x z$ and t. Then H is normal. Moreover, the surface H is smooth at the point $x=t=w=z^{3}+\alpha_{1} \alpha_{2} y^{4}=0$. Indeed, the defining equation of X_{18} must contain at least one of the monomials $x z^{2} y^{3}, t y^{3} z$; otherwise X_{18} would be singular at the point $x=t=w=z^{3}+\alpha_{1} \alpha_{2} y^{4}=0$. Plugging in $t=\lambda x z+\mu x^{5}$ with general complex numbers λ and μ into the defining equation of X_{18}, we obtain the defining equation of H in $\mathbb{P}(1,3,4,6)$. It must contain the monomial $x z^{2} y^{3}$. Therefore, the surface H is smooth at the point $x=t=w=z^{3}+\alpha_{1} \alpha_{2} y^{4}=0$
Let T be the proper transform of the surface H. The intersection of T with the surface S defines a divisor consisting of two irreducible curves $\tilde{L}_{y z}$ and \tilde{C} on the normal surface T. The curve \tilde{C} is the proper transform of the curve C defined by

$$
x=t=z^{3}+\left(w-\alpha_{2} y^{2}\right)\left(w-\alpha_{3} y^{2}\right)=0 .
$$

The curves $L_{y z}$ and C intersect at the point defined by $x=t=w=z^{3}+\alpha_{1} \alpha_{2} y^{4}=0$. From the intersection numbers

$$
\left(\tilde{L}_{y z}+\tilde{C}\right) \cdot \tilde{L}_{y z}=-K_{Y} \cdot \tilde{L}_{y z}=-\frac{1}{4}, \quad\left(\tilde{L}_{y z}+\tilde{C}\right)^{2}=B^{2} \cdot(5 B+E)=-\frac{1}{12}
$$

on the surface T, we obtain

$$
\tilde{L}_{y z}^{2}=-\frac{1}{4}-\tilde{L}_{y z} \cdot \tilde{C}, \quad \tilde{C}^{2}=\frac{1}{6}-\tilde{L}_{y z} \cdot \tilde{C}
$$

With these intersection numbers we see that the matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{y z}^{2} & \tilde{L}_{y z} \cdot \tilde{C} \\
\tilde{L}_{y z} \cdot \tilde{C} & \tilde{C}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{4}-\tilde{L}_{y z} \cdot \tilde{C} & \tilde{L}_{y z} \cdot \tilde{C} \\
\tilde{L}_{y z} \cdot \tilde{C} & \frac{1}{6}-\tilde{L}_{y z} \cdot \tilde{C}
\end{array}\right)
$$

is negative-definite since $\tilde{L}_{y z}$ and \tilde{C} intersect at a smooth point of the surface T.

$\begin{aligned} & \text { No. 40: } X_{19} \subset \mathbb{P}(1,3,4,5,7) \quad A^{3}=19 / 420 \\ & t w^{2}-z t^{3}+z^{3}\left(a_{1} w+a_{2} y z\right)+y^{4}\left(b_{1} w+b_{2} y z+b_{3} y^{2} x\right)+a y^{2} z^{2} t+b y^{3} t^{2}+w f_{12}(x, y, z, t)+ \\ & f_{19}(x, y, z, t) \end{aligned}$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{7}(1,3,4) \quad \square$	$t w^{2}$				
$O_{t}=\frac{1}{5}(1,3,2) \quad \epsilon$	$t w^{2}-z t^{3}$				
$O_{z}=\frac{1}{4}\left(1_{x}, 3_{y}, 1_{t}\right)$ (b)	-	$3 B$	y	$z t^{3}$	$a_{1} \neq 0$
$O_{z}=\frac{1}{4}\left(1_{x}, 1_{t}, 3_{w}\right)$ (5)	-	$3 B$	x^{3}, z	$x^{3}, z t^{3}$	$a_{1}=0$

$O_{y}=\frac{1}{3}\left(1_{x}, 1_{z}, 2_{t}\right)$ (b)	-	$7 B+E$	w	$y^{3} t^{2}$	$b_{1} \neq 0, b \neq 0$ $a_{2} \neq 0$
$O_{y}=\frac{1}{3}\left(1_{x}, 1_{z}, 2_{t}\right) ®$	-	$7 B+E$	x^{7}, w	$y^{3} t^{2}$	$b_{1} \neq 0, b \neq 0$ $a_{2}=0$
$O_{y}=\frac{1}{3}\left(1_{x}, 1_{z}, 2_{t}\right)$ ©	-	$7 B+E$	x^{7}, w	$z^{4} y$	$b_{1} \neq 0, b=0$ $a_{2} \neq 0$
$O_{y}=\frac{1}{3}\left(1_{x}, 1_{z}, 2_{t}\right)$ (S	-	$7 B$	x^{7}, w	$x^{7}, z t^{3}$	$b_{1} \neq 0, b=0$ $a_{2}=0$
$O_{y}=\frac{1}{3}\left(1_{x}, 2_{t}, 1_{w}\right)$ (S	-	$4 B$	x^{4}, z	$x^{4}, t w^{2}$	$b_{1}=0, b_{2} \neq 0$
$O_{y}=\frac{1}{3}\left(1_{z}, 2_{t}, 1_{w}\right)$ (n)	-	$7 B+2 E$	w	w	$b_{1}=0, b_{2}=0$

- The 1-cycle Γ for the singular point O_{z} with $a_{1} \neq 0$ is irreducible due to the monomials $t w^{2}, z t^{3}$ and $z^{3} w$.
- For the singular point O_{z} with $a_{1}=0$ we choose a general member H in the linear system $\left|-3 K_{X_{19}}\right|$. Then it is a normal surface of degree 19 in $\mathbb{P}(1,4,5,7)$. Let T be the proper transform of the divisor H. The intersection of T with the surface S defines a divisor consisting of two irreducible curves $\tilde{L}_{z w}$ and \tilde{C}. The curve \tilde{C} is the proper transform of the curve C defined by

$$
x=y=w^{2}-z t^{2}=0
$$

From the intersection

$$
\left(\tilde{L}_{z w}+\tilde{C}\right) \cdot \tilde{L}_{z w}=-K_{Y} \cdot \tilde{L}_{z w}=-\frac{1}{21}, \quad\left(\tilde{L}_{z w}+\tilde{C}\right)^{2}=3 B^{3}=-\frac{4}{35}
$$

on the surface T, we obtain

$$
\tilde{L}_{z w}^{2}=-\frac{1}{21}-\tilde{L}_{z w} \cdot \tilde{C}, \quad \tilde{C}^{2}=-\frac{1}{15}-\tilde{L}_{z w} \cdot \tilde{C}
$$

With these intersection numbers we see that the matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{z w}^{2} & \tilde{L}_{z w} \cdot \tilde{C} \\
\tilde{L}_{z w} \cdot \tilde{C} & \tilde{C}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{21}-\tilde{L}_{z w} \cdot \tilde{C} & \tilde{L}_{z w} \cdot \tilde{C} \\
\tilde{L}_{z w} \cdot \tilde{C} & -\frac{1}{15}-\tilde{L}_{z w} \cdot \tilde{C}
\end{array}\right)
$$

is negative-definite since $\tilde{L}_{z w} \cdot \tilde{C}$ is non-negative number.
Consider the singular point O_{y} with $b_{1} \neq 0$. In this case, we may assume that $b_{1}=1$ and $b_{2}=b_{3}=0$ by a suitable coordinate change.

- For the singular point O_{y} with $b_{1} \neq 0, b \neq 0$ and $a_{2} \neq 0$ the 1 -cycle Γ is irreducible because of the monomials $z t^{3}, y z^{4}$ and $y^{3} t^{2}$.
- For the singular point O_{y} with $b_{1} \neq 0, b \neq 0$ and $a_{2}=0$ we may assume that the monomial $x y^{2} z^{3}$ does not appear in f_{19} by changing the coordinate w in a suitable way. We must then have $a \neq 0$; otherwise the hypersurface would not be quasi-smooth at the point defined by

$$
x=t=w=a_{1} z^{3}+y^{4}=0
$$

Take a general member H in the linear system generated by x^{7} and w. Then it is a normal surface of degree 19 in $\mathbb{P}(1,3,4,5)$. Let T be the proper transform of the divisor H. The
intersection of T with the surface S gives us a divisor consisting of two irreducible curves $\tilde{L}_{y z}$ and \tilde{C}_{1}. The curve \tilde{C}_{1} is the proper transform of the curve C_{1} defined by $x=w=$ $-z t^{2}+a y^{2} z^{2}+b y^{3} t=0$. From the intersection

$$
\left(\tilde{L}_{y z}+\tilde{C}_{1}\right) \cdot \tilde{L}_{y z}=-K_{Y} \cdot \tilde{L}_{y z}=-\frac{1}{4}, \quad\left(\tilde{L}_{y z}+\tilde{C}_{1}\right)^{2}=B^{2} \cdot(7 B+E)=-\frac{7}{20}
$$

on the surface T, we obtain

$$
\tilde{L}_{y z}^{2}=-\frac{1}{4}-\tilde{L}_{y z} \cdot \tilde{C}_{1}, \quad \tilde{C}_{1}^{2}=-\frac{1}{10}-\tilde{L}_{y z} \cdot \tilde{C}_{1} .
$$

With these intersection numbers we see that the matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{y z}^{2} & \tilde{L}_{y z} \cdot \tilde{C}_{1} \\
\tilde{L}_{y z} \cdot \tilde{C}_{1} & \tilde{C}_{1}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{4}-\tilde{L}_{y z} \cdot \tilde{C}_{1} & \tilde{L}_{y z} \cdot \tilde{C}_{1} \\
\tilde{L}_{y z} \cdot \tilde{C}_{1} & -\frac{1}{10}-\tilde{L}_{y z} \cdot \tilde{C}_{1}
\end{array}\right)
$$

is negative-definite since $\tilde{L}_{y z} \cdot \tilde{C}_{1}$ is non-negative number.

- For the singular point O_{y} with $b_{1} \neq 0, b=0$ and $a_{2} \neq 0$, we do the same as in the case where $b_{1} \neq 0, b \neq 0$ and $a_{2}=0$. The difference is that the intersection of T with the surface S gives us a divisor consisting of two irreducible curves $\tilde{L}_{y t}$ and \tilde{C}_{2}. The curve \tilde{C}_{2} is the proper transform of the curve C_{2} defined by $x=w=-t^{3}+a_{2} y z^{3}+a y^{2} z t=0$. From the intersections

$$
\left(\tilde{L}_{y t}+\tilde{C}_{2}\right) \cdot \tilde{L}_{y t}=-K_{Y} \cdot \tilde{L}_{y t}=-\frac{1}{10}, \quad\left(\tilde{L}_{y t}+\tilde{C}_{2}\right)^{2}=B^{2} \cdot(7 B+E)=-\frac{7}{20}
$$

on the surface T, we obtain

$$
\tilde{L}_{y t}^{2}=-\frac{1}{10}-\tilde{L}_{y t} \cdot \tilde{C}_{2}, \quad \tilde{C}_{2}^{2}=-\frac{1}{4}-\tilde{L}_{y t} \cdot \tilde{C}_{2} .
$$

This shows $\tilde{L}_{y t}$ and \tilde{C}_{2} forms a negative-definite divisor on T.

- For the singular point O_{y} with $b_{1} \neq 0, b=0$ and $a_{2}=0$ we may assume that the monomial $x y^{2} z^{3}$ does not appear in f_{19} by changing the coordinate w in a suitable way. We must then have $a \neq 0$; otherwise the hypersurface would not be quasi-smooth at the point defined by $x=t=w=a_{1} z^{3}+y^{4}=0$.
We do the same as the previous case. In this case, we obtain a divisor consisting of three irreducible curves $\tilde{L}_{y z}, \tilde{L}_{y t}$ and \tilde{C}_{3}. The curve \tilde{C}_{3} is the proper transform of the curve C_{3} defined by $x=w=-t^{2}+a y^{2} z=0$. From the intersections

$$
\begin{aligned}
& \left(\tilde{L}_{y z}+\tilde{L}_{y t}+\tilde{C}_{3}\right) \cdot \tilde{L}_{y z}=-K_{Y} \cdot \tilde{L}_{y z}=-\frac{1}{4}, \\
& \left(\tilde{L}_{y z}+\tilde{L}_{y t}+\tilde{C}_{3}\right) \cdot \tilde{L}_{y t}=-K_{Y} \cdot \tilde{L}_{y t}=-\frac{1}{10}, \\
& \left(\tilde{L}_{y z}+\tilde{L}_{y t}+\tilde{C}_{3}\right) \cdot \tilde{C}_{3}=-K_{Y} \cdot \tilde{C}_{3}=-\frac{1}{6} .
\end{aligned}
$$

on the surface T, we obtain the intersection matrix of the curves $\tilde{L}_{y z}, \tilde{L}_{y t}$ and \tilde{C}_{3}

$$
\left(\begin{array}{ccc}
-\frac{1}{4}-\tilde{L}_{y z} \cdot \tilde{L}_{y t}-\tilde{L}_{y z} \cdot \tilde{C}_{3} & \tilde{L}_{y z} \cdot \tilde{L}_{y t} & \tilde{L}_{y z} \cdot \tilde{C}_{3} \\
\tilde{L}_{y z} \cdot \tilde{L}_{y t} & -\frac{1}{10}-\tilde{L}_{y z} \cdot \tilde{L}_{y t}-\tilde{L}_{y t} \cdot \tilde{C}_{3} & \tilde{L}_{y t} \cdot \tilde{C}_{3} \\
\tilde{L}_{y z} \cdot \tilde{C}_{3} & \tilde{L}_{y t} \cdot \tilde{C}_{3} & -\frac{1}{6}-\tilde{L}_{y z} \cdot \tilde{C}_{3}-\tilde{L}_{y t} \cdot \tilde{C}_{3}
\end{array}\right) .
$$

It is easy to check that it is negative-definite since $\tilde{L}_{y z} \cdot \tilde{L}_{y t}, \tilde{L}_{y z} \cdot \tilde{C}_{3}$ and $\tilde{L}_{y t} \cdot \tilde{C}_{3}$ are nonnegative numbers.

- For the singular point O_{y} with $b_{1}=0$ and $b_{2} \neq 0$ we may put $b_{2}=1$ by a coordinate change. Choose a general member H in the pencil on X_{19} generated by x^{4} and z. Then it is a normal surface of degree 19 in $\mathbb{P}(1,3,5,7)$. Let T be the proper transform of the divisor H. The surface S cuts out the surface T into a divisor \tilde{D}.
We suppose that $b \neq 0$. The divisor \tilde{D} then consists of two irreducible curves $\tilde{L}_{y w}$ and \tilde{C}. The curve \tilde{C} is the proper transform of the curve C defined by

$$
x=z=w^{2}+b y^{3} t=0 .
$$

From the intersections

$$
\left(\tilde{L}_{y w}+\tilde{C}\right) \cdot \tilde{L}_{y w}=-K_{Y} \cdot \tilde{L}_{y w}=-\frac{2}{7}, \quad\left(\tilde{L}_{y w}+\tilde{C}\right)^{2}=4 B^{3}=-\frac{17}{35}
$$

on the surface T, we obtain

$$
\tilde{L}_{y w}^{2}=-\frac{2}{7}-\tilde{L}_{y w} \cdot \tilde{C}, \quad \tilde{C}^{2}=-\frac{1}{5}-\tilde{L}_{y w} \cdot \tilde{C} .
$$

With these intersection numbers we see that the matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{y w}^{2} & \tilde{L}_{y w} \cdot \tilde{C} \\
\tilde{L}_{y w} \cdot \tilde{C} & \tilde{C}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{2}{7}-\tilde{L}_{y w} \cdot \tilde{C} & \tilde{L}_{y w} \cdot \tilde{C} \\
\tilde{L}_{y w} \cdot \tilde{C} & -\frac{1}{5}-\tilde{L}_{y w} \cdot \tilde{C}
\end{array}\right)
$$

is negative-definite since $\tilde{L}_{y w} \cdot \tilde{C}$ is non-negative number.
We now suppose that $b=0$. The divisor \tilde{D} then consists of two irreducible curves $\tilde{L}_{y w}$ and $\tilde{L}_{y t}$. From the intersection

$$
\left(\tilde{L}_{y w}+2 \tilde{L}_{y t}\right) \cdot \tilde{L}_{y w}=-K_{Y} \cdot \tilde{L}_{y w}=-\frac{2}{7}, \quad\left(\tilde{L}_{y w}+2 \tilde{L}_{y t}\right)^{2}=4 B^{3}=-\frac{17}{35}
$$

on the surface T, we obtain

$$
\tilde{L}_{y w}^{2}=-\frac{2}{7}-2 \tilde{L}_{y w} \cdot \tilde{L}_{y t}, \quad \tilde{L}_{y t}^{2}=-\frac{1}{20}-\frac{1}{2} \tilde{L}_{y w} \cdot \tilde{L}_{y t} .
$$

This again shows that $\tilde{L}_{y w}$ and $\tilde{L}_{y t}$ form a negative-definite divisor on T.

- For the singular point O_{y} with $b_{1}=b_{2}=0$ we consider the linear system generated by z^{35}, t^{28} and w^{20} on the hypersurface X_{19}. Its base locus is cut out by $z=t=w=0$. Since we have the monomial $x y^{6}$, the base locus does not contain curves. Therefore the proper transform of a general member in the linear system is nef by Lemma 3.2.6. It belongs to $|140 B+40 E|$. Consequently, the surface T is nef since $20 T \sim_{\mathbb{Q}} 140 B+40 E$.

No. 41: $X_{20} \subset \mathbb{P}(1,1,4,5,10)$ $\left(w-\alpha_{1} t^{2}\right)\left(w-\alpha_{2} t^{2}\right)+z^{5}+w f_{10}(x, y, z, t)+f_{20}(x, y, z, t)$	$A^{3}=1 / 10$				
Singularity		B^{3}	Linear system	Surface T	Vanishing order
$O_{t} O_{w}=2 \times \frac{1}{5}(1,1,4)[\tau$	Condition				
$O_{z} O_{w}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)$ (b)	-	B	$y t^{2}$	y	

- We may assume that $\alpha_{1}=0$. To see how to treat the singular points of type $\frac{1}{5}(1,1,4)$, we have only to consider the singular point O_{t}. The other point can be untwisted or excluded in the same way.
- The 1 -cycle Γ for the singular point of type $\frac{1}{2}(1,1,1)$ is irreducible because of the monomial w^{2} and z^{5}.

$\begin{array}{ll} \hline \text { No. 42: } X_{20} \subset \mathbb{P}(1,2,3,5,10) & A^{3}=1 / 15 \\ \left(w-\alpha_{1} y^{5}\right)\left(w-\alpha_{2} y^{5}\right)+w t^{2}+z^{5}\left(a_{1} t+a_{2} y z\right)+w f_{10}(x, y, z, t)+f_{20}(x, y, z, t) & \\ \hline \end{array}$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{z}=\frac{1}{3}\left(1_{x}, 2_{y}, 1_{w}\right)$ (b)	-	$2 B$	y	y	$a_{1} \neq 0$
$O_{z}=\frac{1}{3}\left(1_{x}, 2_{t}, 1_{w}\right)$ (b)	-	$2 B$	y	w^{2}	$a_{1}=0$
$O_{t} O_{w}=2 \times \frac{1}{5}(1,2,3) \square \tau$	$w t^{2}$				
$O_{y} O_{w}=2 \times \frac{1}{2}(1,1,1)(\square)$	-	$5 B+2 E$	t	t	

- The 1-cycle Γ for the singular point O_{z} with $a_{1} \neq 0$ is irreducible due to w^{2} and $z^{5} t$.
- The 1-cycle Γ for the singular point O_{z} with $a_{1}=0$ consists of the proper transforms of the curve $L_{z t}$ and the curve defined by

$$
x=y=w+t^{2}=0
$$

These two irreducible components are symmetric with respect to the biregular involution of X_{20}. Consequently the components of Γ are numerically equivalent to each other.

- By changing the coordinate w we may assume that t^{4} is not in the polynomial f_{20}. To see how to untwist or exclude the singular points of type $\frac{1}{5}(1,2,3)$ we have only to consider the singular point O_{t}. The other point can be treated in the same way.
- For the singular points of type $\frac{1}{2}(1,1,1)$, we consider the linear system $\left|-5 K_{X_{20}}\right|$. Every member of the linear system passes through the singular points of type $\frac{1}{2}(1,1,1)$ and the base locus of the linear system contains no curves. Since the proper transform of a general member in $\left|-5 K_{X_{20}}\right|$ belongs to the linear system $|5 B+2 E|$, the divisor T is nef.

No. 43: $X_{20} \subset \mathbb{P}(1,2,4,5,9)$	$A^{3}=1 / 18$
$y w^{2}+t^{4}+\prod_{i=1}^{5}\left(z-\alpha_{i} y^{2}\right)+w f_{11}(x, y, z, t)+f_{20}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{9}(1,4,5)[\tau$	$y w^{2}$				
$O_{y} O_{z}=5 \times \frac{1}{2}\left(1_{x}, 1_{t}, 1_{w}\right)$ (D)	-	$4 B+E$	$z-\alpha_{i} y^{2}$	$y w^{2}$	

- The 1-cycles Γ for the singular points of type $\frac{1}{2}(1,1,1)$ are irreducible due to the monomials $y w^{2}$ and t^{4}.

No. 44: $X_{20} \subset \mathbb{P}(1,2,5,6,7)$ $t w^{2}+y\left(t-\alpha_{1} y^{3}\right)\left(t-\alpha_{2} y^{3}\right)\left(t-\alpha_{3} y^{3}\right)+z^{4}+w f_{14}(x, y, z, t)+f_{20}(x, y, z, t)$	$A^{3}=1 / 21$				
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{7}(1,2,5) \boxed{\tau}$	$t w^{2}$				
$O_{t}=\frac{1}{6}(1,5,1)[\epsilon$	$t w^{2}-y t^{3}$				
$O_{y} O_{t}=3 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{w}\right) \llbracket$	-	$7 B+3 E$	w	w	

- Consider the linear system generated by x^{35}, z^{7} and w^{5}. Since the defining equation of X_{20} contains $y t^{3}$, the base locus of the linear system contains no curve. Therefore, the proper transform of a general member in this linear system is nef. Since it belongs to $|35 B+15 E|$, the surface T is nef.

No. 45: $X_{20} \subset \mathbb{P}(1,3,4,5,8)$
$A^{3}=1 / 24$
$z\left(w-\alpha_{1} z^{2}\right)\left(w-\alpha_{2} z^{2}\right)+t^{4}+y^{4}\left(a_{1} w+a_{2} y t\right)+w f_{12}(x, y, z, t)+f_{20}(x, y, z, t)$

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{8}(1,3,5) \boxed{\tau}$	$z w^{2}$				
$O_{y}=\frac{1}{3}\left(1_{x}, 1_{z}, 2_{t}\right)(\square$	-	$4 B+E$	z	z	
$O_{z} O_{w}=2 \times \frac{1}{4}\left(1_{x}, 3_{y}, 1_{t}\right)$ (D)	-	$3 B$	y	y	

- For the singular point O_{y} we consider the linear system generated by x^{40}, z^{10}, t^{8} and w^{5} on the hypersurface X_{20}. Its base locus does not contain curves. Therefore the proper transform of a general member in the linear system is nef by Lemma3.3.6. The proper transform belongs to $|40 B+10 E|$. Consequently, the surface T is nef since $10 T \sim_{\mathbb{Q}} 40 B+10 E$.
- The 1-cycles Γ for the singular points of type $\frac{1}{4}(1,3,1)$ are irreducible due to the monomials $z w^{2}$ and t^{4}.

$\begin{aligned} & \hline \text { No. 46: } X_{21} \subset \mathbb{P}(1 \\ & y w^{2}+t^{3}+z^{7}+w f \end{aligned}$		x, y, z			$A^{3}=1 / 10$
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{10}(1,3,7) \boxed{\tau}$	$y w^{2}$				

$\begin{array}{ll} \hline \text { No. } 47: X_{21} \subset \mathbb{P}(1,1,5,7,8) & A^{3}=3 / 40 \\ z w^{2}+t^{3}+y z^{4}+w f_{13}(x, y, z, t)+f_{21}(x, y, z, t) & \\ \hline \end{array}$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{8}(1,1,7) \tau$	$z w^{2}$				
$O_{z}=\frac{1}{5}\left(1_{x}, 2_{t}, 3_{w}\right) \oplus$	+	$B-E$	9	t^{3}	

- For the singular point O_{z}, let C_{λ} be the curve on the surface S_{y} defined by

$$
\left\{\begin{array}{l}
y=0 \\
w=\lambda x^{8}
\end{array}\right.
$$

for a sufficiently general complex number λ. We then have

$$
-K_{Y} \cdot \tilde{C}_{\lambda}=(B-E) \cdot(8 B+E) \cdot B=0
$$

Consider the linear system generated by $x^{72}, y^{9} t^{9}$ and $y^{8} w^{8}$. Its base curve is defined by $x=y=0$. It is an irreducible curve because we have the monomials $z w^{2}$ and t^{3}. The proper transform of a general member of the linear system is equivalent to $72 B$. The only curve that intersects the divisor B negatively is the proper transform of the irreducible curve defined by $x=y=0$. It is not on the surface T. Therefore, if the curve \tilde{C}_{λ} is reducible, each component of the curve \tilde{C}_{λ} intersects B trivially.

$\begin{array}{ll} \hline \text { No. 48: } X_{21} \subset \mathbb{P}(1,2,3,7,9) & A^{3}=1 / 18 \\ z w^{2}+t^{3}+z^{7}+y^{6}\left(a_{1} w+a_{2} y t+a_{3} y^{3} z+a_{4} x y^{4}\right)+w f_{12}(x, y, z, t)+f_{21}(x, y, z, t) \end{array}$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{9}(1,2,7) \square \square$	$z w^{2}$				
$O_{y}=\frac{1}{2}(1,1,1)$ (1)	-	$9 B+4 E$	$w+y t$	w or $y t$	
$O_{z} O_{w}=2 \times \frac{1}{3}\left(1_{x}, 2_{y}, 1_{t}\right)$ (b)	-	$2 B$	y	y	

- For the singular point O_{y} we consider the linear system $\left|-9 K_{X_{24}}\right|$. Every member of the linear system passes through the singular point O_{y} and its base locus contains no curves. Since the proper transform of a general member in $\left|-9 K_{X_{24}}\right|$ belongs to the linear system $|9 B+4 E|$, the divisor T is nef.
- The 1 -cycles Γ for the singular points of type $\frac{1}{3}(1,2,1)$ are irreducible because of the monomials $z w^{2}$ and t^{3}.

$\begin{array}{lc} \hline \text { No. 49: } X_{21} \subset \mathbb{P}(1,3,5,6,7) & A^{3}=1 / 30 \\ w^{3}+y t^{3}+z^{3}\left(a_{1} t+a_{2} x z\right)+w^{2} f_{7}(x, y, z, t)+w f_{14}(x, y, z, t)+f_{21}(x, y, z, t) & \end{array}$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{6}\left(1_{x}, 5_{z}, 1_{w}\right)$ (b)	0	$3 B$	y	w^{3}	
$O_{z}=\frac{1}{5}\left(1_{x}, 3_{y}, 2_{w}\right)$ (b)	0	$3 B$	y	y	$a_{1} \neq 0$
$O_{z}=\frac{1}{5}\left(3_{y}, 1_{t}, 2_{w}\right)$ (b)	0	$3 B$	y	y	$a_{1}=0$
$O_{y} O_{t}=3 \times \frac{1}{3}\left(1_{x}, 2_{z}, 1_{w}\right)(\square)$	-	$5 B+E$	$x^{2} y, z$	$x^{2} y, z$	

- For the singular points of types $\frac{1}{6}(1,5,1)$ and $\frac{1}{5}(1,3,2)$, the 1 -cycle Γ is the proper transform of the curve defined by

$$
x=y=w^{3}+a_{1} z^{3} t=0 .
$$

It is irreducible even though it can be non-reduced.

- For the singular points of type $\frac{1}{3}(1,2,1)$, consider the linear system on X_{21} generated by $x^{2} y$ and z. Its base curves are defined by $x=z=0$ and $y=z=0$. The curve defined by $x=z=0$ is irreducible because of the monomials w^{3} and $y t^{3}$. For its proper transform \tilde{C}, we have $T \cdot \tilde{C}=\frac{1}{6}$. Therefore, the divisor T is nef since the curve defined by $y=z=0$ does not pass through any singular point of type $\frac{1}{3}(1,2,1)$.

No. 50: $X_{22} \subset \mathbb{P}(1,1,3,7,11)$		$A^{3}=2 / 21$			
$w^{2}+y t^{3}+z^{5}\left(a_{1} t+a_{2} x z^{2}+a_{3} y z^{2}\right)+w f_{11}(x, y, z, t)+f_{22}(x, y, z, t)$					
Singularity		B^{3}	Linear system	Surface T	Vanishing order

- If $a_{1}=0$, then $a_{2} \neq 0$: otherwise the hypersurface X_{22} would be singular at the point defined by $x=y=w=0$ and $t^{3}+a_{3} z^{7}=0$.
- If $a_{1} \neq 0$, the 1-cycle Γ for the singular point O_{z} is irreducible because of the monomials w^{2} and $z^{5} t$. If $a_{1}=0$, the 1-cycle Γ for the singular point O_{z} is still irreducible even though it is not reduced.

No. 51: $X_{22} \subset \mathbb{P}(1,1,4,6,11)$					
$w^{2}+z t^{3}+z^{4} t+w f_{11}(x, y, z, t)+f_{22}(x, y, z, t)$	$A^{3}=1 / 12$				
Singularity		B^{3}	Linear system	Surface T	Vanishing order
$O_{t}=\frac{1}{6}\left(1_{x}, 1_{y}, 5_{w}\right)(D$	+	$4 B-E$	z	Condition	
$O_{z}=\frac{1}{4}\left(1_{x}, 1_{y}, 3_{w}\right)(\square$	0	B	x, y	x, y	
$O_{z} O_{t}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)$ (b)	-	B	y	y	

- For the singular point O_{z}, we can easily see that the surface T is nef since the base locus of the linear system $\left|-K_{X_{22}}\right|$ is the irreducible curve cut by $x=y=0$ and $B^{3}=0$.
- For the singular point of type $\frac{1}{2}(1,1,1)$, the intersection Γ is irreducible since we have the monomials $w^{2}, z^{4} t$, and $z t^{3}$.

No. 52: $X_{22} \subset \mathbb{P}(1,2,4,5,11)$	$A^{3}=1 / 20$				
$w^{2}+y t^{4}+y \prod_{i=1}^{5}\left(z-\alpha_{i} y^{2}\right)+w f_{11}(x, y, z, t)+f_{22}(x, y, z, t)$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{5}\left(1_{x}, 4_{z}, 1_{w}\right)$ (b)	0	$4 B$	z	z	
$O_{z}=\frac{1}{4}\left(1_{x}, 1_{t}, 3_{w}\right)$ (n)	-	$5 B+E$	$x z, t$	$x z, t$	

$O_{y} O_{z}=5 \times \frac{1}{2}\left(1_{x}, 1_{t}, 1_{w}\right)$ (b)	-	$4 B+E$	$z-\alpha_{i} y^{2}$	w^{2}	

- For the singular points of types $\frac{1}{5}(1,4,1)$ and $\frac{1}{2}(1,1,1)$, the 1 -cycle Γ is always irreducible because the defining polynomial of X_{22} contains the monomials w^{2} and $y t^{4}$.
- For the singular point O_{z}, consider the linear system on X_{22} generated by $x z$ and t. Its base curves are defined by $x=t=0$ and $z=t=0$. The curve defined by $x=t=0$ is irreducible because of the monomials w^{2} and $y z^{5}$. Its proper transform intersects the divisor T positively. Since the curve defined by $z=t=0$ does not pass through the singular point O_{z}, its proper transform also intersects T positively. Therefore, the divisor T is nef.

No. 53: $X_{24} \subset \mathbb{P}(1,1,3,8,12)$	$A^{3}=1 / 12$				
$w^{2}+t^{3}+z^{8}+w f_{12}(x, y, z, t)+f_{24}(x, y, z, t)$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t} O_{w}=1 \times \frac{1}{4}\left(1_{x}, 1_{y}, 3_{z}\right)$ (D	0	B	y	y	
$O_{z} O_{w}=2 \times \frac{1}{3}\left(1_{x}, 1_{y}, 2_{t}\right)$ (b)	-	B	y	y	

- The 1-cycle Γ for each singular point is irreducible because of the monomials w^{2} and t^{3}.

No. 54: $X_{24} \subset \mathbb{P}(1,1,6,8,9)$
$A^{3}=1 / 18$
$z w^{2}+t^{3}+z^{4}+w f_{15}(x, y, z, t)+f_{24}(x, y, z, t)$

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{9}(1,1,8) \boxed{\tau}$	$z w^{2}$				
$O_{z} O_{w}=1 \times \frac{1}{3}\left(1_{x}, 1_{y}, 2_{t}\right)$ (b)	-	B	y	y	
$O_{z} O_{t}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)$ (b)	-	B	y	y	

- The 1 -cycles Γ for the singular points of types $\frac{1}{3}(1,1,2)$ and $\frac{1}{2}(1,1,1)$ are irreducible since we have the monomials z^{4} and t^{3}.

$\left(w-\alpha_{1} y^{6}\right)\left(w-\alpha_{2} y^{6}\right)+z t^{3}+w f_{12}(x, y, z, t)+f_{24}(x, y, z, t)$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{7}\left(1_{x}, 2_{y}, 5_{w}\right)$ (D)	+	$3 B-E$	z	w^{2}	
$O_{z} O_{w}=2 \times \frac{1}{3}\left(1_{x}, 2_{y}, 1_{t}\right)$ (b)	-	$2 B$	y	y	
$O_{y} O_{w}=2 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{t}\right)(\mathrm{n})$	-	$7 B+3 E$	$\begin{gathered} x y^{3}, y^{2} z \\ t \end{gathered}$	$x y^{3}, y^{2} z$	

- The 1-cycle Γ for each singular point of type $\frac{1}{3}(1,2,1)$ is irreducible because of the monomials w^{2} and $z t^{3}$.
- For each singular point of type $\frac{1}{2}(1,1,1)$, the divisor T is nef. Indeed, the base curve of the linear system on X_{24} generated by $x y^{3}, y^{2} z$ and t is cut out by $y=t=0$. It does not passes through any singular point of type $\frac{1}{2}(1,1,1)$. Therefore, the surface T must be nef.

No. 56: $X_{24} \subset \mathbb{P}(1,2,3,8,11)$ $y w^{2}+t^{3}+z^{8}+y^{12}+w f_{13}(x, y, z, t)+f_{24}(x, y, z, t)$	$A^{3}=1 / 22$				
Singularity		B^{3}	Linear system	Surface T	Vanishing order
$O_{w}=\frac{1}{11}(1,3,8) \boxed{\tau}$	$y w^{2}$				
$O_{y} O_{t}=3 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{w}\right)$ (D)	-	$3 B+E$	z	z	

- The 1-cycle Γ for each singular point of type $\frac{1}{2}(1,1,1)$ is irreducible due to the monomials $y w^{2}$ and t^{3}.

No. 57: $\left(w-\alpha_{1} y^{4}\right)\left(w-\alpha_{2} y^{4}\right)+z t^{4}+z^{6}+w f_{12}(x, y, z, t)+f_{24}(x, y, z, t)$							$A^{3}=1 / 30$
Singularity		B^{3}	Linear system	Surface T	Vanishing order		
$O_{t}=\frac{1}{5}\left(1_{x}, 3_{y}, 2_{w}\right)$ (b)	0	$3 B$	y	y	Condition		
$O_{z} O_{w}=2 \times \frac{1}{4}\left(1_{x}, 3_{y}, 1_{t}\right)$ (b)	-	$3 B$	y	y			
$O_{y} O_{w}=2 \times \frac{1}{3}\left(1_{x}, 1_{z}, 2_{t}\right)(\mathbb{D}$	-	$4 B+E$	z	z			

- The cycles Γ for the singular points of types $\frac{1}{5}(1,3,2)$ and $\frac{1}{4}(1,3,1)$ are irreducible because of the monomials w^{2} and $z t^{4}$.
- For each singular point of type $\frac{1}{3}(1,1,2)$ we consider the linear system generated by x^{20}, z^{5} and t^{4} on the hypersurface X_{24}. Its base locus is cut out by $x=z=t=0$. Since the defining equation of X_{24} contains the monomial $w y^{4}$, its base locus does not contain any curves. Therefore the proper transform of a general member in the linear system is nef by Lemma 3.2.6. The proper transform belongs to $|20 B+5 E|$. Consequently, the surface T is nef since $5 T \sim_{\mathbb{Q}} 20 B+5 E$.

No. 58: $X_{24} \subset \mathbb{P}(1,3,4,7,10)$	$A^{3}=1 / 35$
$z w^{2}+t^{2}\left(a_{1} w+a_{2} y t\right)+z^{6}+y^{8}+w f_{14}(x, y, z, t)+f_{24}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{10}(1,3,7) \boxed{\tau}$	$z w^{2}$				
$O_{t}=\frac{1}{7}(1,3,4) \boxed{\tau_{1}}$	$t^{2} w$				
$O_{z} O_{w}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)$ (I)	-	$7 B+3 E$	t	t	

- For the singular point of type $\frac{1}{2}(1,1,1)$, we consider the linear system $\left|-7 K_{X_{24}}\right|$. Every member of the linear system passes through the singular point of type $\frac{1}{2}(1,1,1)$ and its base
locus contains no curves. Since the proper transform of a general member in $\left|-7 K_{X_{24}}\right|$ belongs to the linear system $|7 B+3 E|$, the divisor T is nef.

| No. 59: $X_{24} \subset \mathbb{P}(1,3,6,7,8)$ | $A^{3}=1 / 42$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $w^{3}+y t^{3}+\prod_{i=1}^{4}\left(z-\alpha_{i} y^{2}\right)+w^{2} f_{8}(x, y, z, t)+w f_{16}(x, y, z, t)+f_{24}(x, y, z, t)$ | |

- The 1-cycle Γ for each singular point is irreducible due to the monomials w^{3}, z^{4} and $y t^{3}$.

$\begin{array}{lr} \text { No. 60: } X_{24} \subset \mathbb{P}(1,4,5,6,9) & A^{3}=1 / 45 \\ t w^{2}+\left(t^{2}-\alpha_{1} y^{3}\right)\left(t^{2}-\alpha_{2} y^{3}\right)+z^{3}\left(a_{1} w+a_{2} y z\right)+w f_{15}(x, y, z, t)+f_{24}(x, y, z, t) & \end{array}$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{9}(1,4,5) \triangle \tau$	$t w^{2}$				
$O_{z}=\frac{1}{5}\left(1_{x}, 4_{y}, 1_{t}\right)$ (b)	-	$4 B$	y	y	$a_{1} \neq 0$
$O_{z}=\frac{1}{5}\left(1_{x}, 1_{t}, 4_{w}\right)$ (b)	-	$4 B$	y	t^{4}	$a_{1}=0$
$O_{t} O_{w}=1 \times \frac{1}{3}\left(1_{x}, 1_{y}, 2_{z}\right)$ (b)	-	$5 B+E$	z	z	
$O_{y} O_{t}=2 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{w}\right)$ (n)	-	$5 B+2 E$	$x y, z$	$x y, z$	

- The 1-cycle Γ for the singular point O_{z} with $a_{1} \neq 0$ is irreducible due to the monomials t^{4} and $z^{3} w$.
- The 1-cycle Γ for the singular point O_{z} with $a_{\sim}=0$ has two irreducible components. One is $\tilde{L}_{z w}$ and the other is the proper transform \tilde{C} of the curve defined by

$$
x=y=w^{2}+t^{3}=0
$$

Then we see that

$$
E \cdot \tilde{C}=3 E \cdot \tilde{L}_{z w}, \quad B \cdot \tilde{C}=3 B \cdot \tilde{L}_{z w}
$$

Therefore these two components are numerically proportional on Y.

- The 1-cycle Γ for the singular point of type $\frac{1}{3}(1,1,2)$ is irreducible since we have terms $t w^{2}$ and $\left(t^{2}-\alpha_{1} y^{3}\right)\left(t^{2}-\alpha_{2} y^{3}\right)$. Note that the constants α_{i} 's cannot be zero.
- For the singular points of type $\frac{1}{2}(1,1,1)$, we consider the linear system generated by $x y$ and z on X_{24}. Its base curves are defined by $x=z=0$ and $y=z=0$. The curve defined by $y=z=0$ passes though no singular point of type $\frac{1}{2}(1,1,1)$. The curve defined by $x=z=0$ is irreducible. Moreover, its proper transform is the 1-cycle defined by $(5 B+2 E) \cdot B$. Consequently, the divisor T is nef since $(5 B+2 E)^{2} \cdot B>0$.

No. 61: $X_{25} \subset \mathbb{P}(1,4,5,7,9)$
$A^{3}=5 / 252$
$t w^{2}-y t^{3}+z^{5}+y^{4}\left(a_{1} w+a_{2} y z+a_{3} x y^{2}\right)+w f_{16}(x, y, z, t)+f_{25}(x, y, z, t)$

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition	
$O_{w}=\frac{1}{9}(1,4,5) \boxed{\tau}$	$t w^{2}$					
$O_{t}=\frac{1}{7}(1,5,2) \boxed{\epsilon}$	$t w^{2}-y t^{3}$				z^{5}	$a_{1} \neq 0$
$O_{y}=\frac{1}{4}\left(1_{x}, 1_{z}, 3_{t}\right)$ (b)	-	$9 B+E$	w	z^{5}	$a_{1}=0, a_{2} \neq 0$	
$O_{y}=\frac{1}{4}\left(1_{x}, 3_{t}, 1_{w}\right)$ (S	-	$5 B$	x^{5}, z	$x^{5}, t w^{2}$	$a_{1}=a_{2}=0$	
$O_{y}=\frac{1}{4}\left(1_{z}, 3_{t}, 1_{w}\right)$ (b)	-	$7 B+E$	t	t		

- If $a_{1} \neq 0$, the 1 -cycle Γ for the singular point O_{y} is irreducible due to the monomials $y t^{3}$ and z^{5}.
- If $a_{1}=a_{2}=0$, the 1-cycle Γ for the singular point O_{y} is irreducible even though it is not reduced.
- Now we suppose that $a_{1}=0$ and $a_{2} \neq 0$. Then we may assume that $a_{2}=1$ and $a_{3}=0$. We take a surface H cut by an equation $z=\lambda x^{5}$ with a general complex number λ and then let T be the proper transform of the surface. The surface H is normal but it is not quasi-smooth at the point O_{y}.
The intersection of T with the surface S gives us a divisor consisting of two irreducible curves on the normal surface T. One is the proper transform of the curve $L_{y w}$. The other is the proper transform of the curve C defined by

$$
x=z=w^{2}-y t^{2}=0 .
$$

From the intersection numbers

$$
\left(\tilde{L}_{y w}+\tilde{C}\right) \cdot \tilde{L}_{y w}=-K_{Y} \cdot \tilde{L}_{y w}=-\frac{2}{9}, \quad\left(\tilde{L}_{y w}+\tilde{C}\right)^{2}=5 B^{3}=-\frac{20}{63}
$$

on the surface T, we obtain

$$
\tilde{L}_{y w}^{2}=-\frac{2}{9}-\tilde{L}_{y w} \cdot \tilde{C}, \quad \tilde{C}^{2}=-\frac{2}{21}-\tilde{L}_{y w} \cdot \tilde{C} .
$$

With these intersection numbers we see that the matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{y w}^{2} & \tilde{L}_{y w} \cdot \tilde{C} \\
\tilde{L}_{y w} \cdot \tilde{C} & \tilde{C}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{2}{9}-\tilde{L}_{y w} \cdot \tilde{C} & \tilde{L}_{y w} \cdot \tilde{C} \\
\tilde{L}_{y w} \cdot \tilde{C} & -\frac{2}{21}-\tilde{L}_{y w} \cdot \tilde{C}
\end{array}\right)
$$

is negative-definite since $\tilde{L}_{z w} \cdot \tilde{C}$ is positive.

No. 62: $X_{26} \subset \mathbb{P}(1,1,5,7,13)$	$A^{3}=2 / 35$
$w^{2}+z t^{3}+y z^{5}+w f_{13}(x, y, z, t)+f_{26}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{7}\left(1_{x}, 1_{y}, 6_{w}\right) ®$	+	$5 B-E$	z	w^{2}	
$O_{z}=\frac{1}{5}\left(1_{x}, 2_{t}, 3_{w}\right) \oplus(\mp)$	+	$B-E$	y	w^{2}	

- For the singular point O_{z}, let C_{λ} be the curve on the surface S_{y} defined by

$$
\left\{\begin{array}{l}
y=0 \\
t=\lambda x^{7}
\end{array}\right.
$$

for a sufficiently general complex number λ. Then

$$
-K_{Y} \cdot \tilde{C}_{\lambda}=(B-E)(7 B+E) B=0
$$

If the curve \tilde{C}_{λ} is reducible, it consists of two irreducible components that are numerically equivalent to each other since the two components of the curve C_{λ} are symmetric with respect to the biregular quadratic involution of X_{26}. Then each component of \tilde{C}_{λ} intersects $-K_{Y}$ trivially.

$w^{2}+y\left(t-\alpha_{1} y^{4}\right)\left(t-\alpha_{2} y^{4}\right)\left(t-\alpha_{3} y^{4}\right)+z^{6}\left(a_{1} t+a_{2} y z^{2}\right)+w f_{13}(x, y, z, t)+f_{26}(x, y, z, t)$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{8}\left(1_{x}, 3_{z}, 5_{w}\right)$ (D)	+	$2 B-E$	y	w^{2}	
$O_{z}=\frac{1}{3}\left(1_{x}, 2_{y}, 1_{w}\right)$ (b)	-	$2 B$	y	y	$a_{1} \neq 0$
$O_{z}=\frac{1}{3}\left(1_{x}, 2_{t}, 1_{w}\right)$ (b)	-	$2 B$	y	w^{2}	$a_{1}=0$
$O_{y} O_{t}=3 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{w}\right)$ (b)	-	$3 B+E$	z	z	

- For each of the singular points of types $\frac{1}{3}(1,2,1)$ and $\frac{1}{2}(1,1,1)$, the 1 -cycle Γ is always irreducible because of the monomials $w^{2}, y t^{3}$ and $z^{6} t$ even though it is possibly non-reduced.

No. 64: $X_{26} \subset \mathbb{P}(1,2,5,6,13)$	$A^{3}=1 / 30$
$w^{2}+y \prod_{i=1}^{4}\left(t-\alpha_{i} y^{3}\right)+z^{4}\left(a_{1} t+a_{2} x\right)+w f_{13}(x, y, z, t)+f_{26}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{6}\left(1_{x}, 5_{z}, 1_{w}\right)$ (b)	0	$2 B$	y	w^{2}	
$O_{z}=\frac{1}{5}\left(1_{x}, 2_{y}, 3_{w}\right)$ (b)	0	$2 B$	y	y	$a_{1} \neq 0$
$O_{z}=\frac{1}{5}\left(2_{y}, 1_{t}, 3_{w}\right)$ ©	0	$2 B$	y	y	$a_{1}=0$
$O_{y} O_{t}=4 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{w}\right)$ (b)	-	$6 B+2 E$	$t-\alpha_{i} y^{3}$	w^{2}	

- For each of the singular points the 1 -cycle Γ is irreducible due to the monomials w^{2} and $z^{4} t$. In particular, if $a_{1}=0$, then the 1-cycle Γ is $2 L_{z t}$.

| No. 65: $X_{27} \subset \mathbb{P}(1,2,5,9,11)$
 $z w^{2}+t^{3}+y z^{5}+y^{8}\left(a_{1} w+a_{2} y t+a_{3} y^{3} z+a_{4} x y^{5}\right)+w f_{16}(x, y, z, t)+f_{27}(x, y, z, t)$
 Singularity B^{3} Linear
 system Surface T Vanishing
 order Condition | |
| :---: | :---: | :---: | :---: | :---: |

$O_{w}=\frac{1}{11}(1,2,9) \boxed{\tau}$	$z w^{2}$				
$O_{z}=\frac{1}{5}\left(1_{x}, 4_{t}, 1_{w}\right)$ (b)	-	$2 B$	y	$z w^{2}$	
$O_{y}=\frac{1}{2}(1,1,1)(\square$	-	$11 B+5 E$	$w+x y^{5}$	$x y^{5}$ or w	

- The 1-cycle Γ for the singular point O_{z} is irreducible due to the monomials $z w^{2}$ and t^{3}
- For the singular point O_{y}, we consider the linear system $\left|-11 K_{X_{27}}\right|$. Note that every member of the linear system passes through the point O_{y} and the base locus of the linear system contains no curves. Since the proper transform of a general member in $\left|-11 K_{X_{27}}\right|$ belongs to the linear system $|11 B+5 E|$, the divisor T is nef.

No. 66: $X_{27} \subset \mathbb{P}(1,5,6,7,9)$	$A^{3}=1 / 70$
$w^{3}+z t^{3}+z^{3} w+y^{4} t+a y^{3} z^{2}+w^{2} f_{9}(x, y, z, t)+w f_{18}(x, y, z, t)+f_{27}(x, y, z, t)$	

Singularity	B^{3}	$\begin{aligned} & \hline \hline \text { Linear } \\ & \text { system } \end{aligned}$	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{7}\left(1_{x}, 5_{y}, 2_{w}\right)$ (b)	0	$5 B$	y	y	
$O_{z}=\frac{1}{6}\left(1_{x}, 5_{y}, 1_{t}\right)$ (b)	-	$5 B$	y	y	
$O_{y}=\frac{1}{5}\left(1_{x}, 1_{z}, 4_{w}\right)$ (1)	-	$7 B+E$	t	$y^{3} z^{2}$	$a \neq 0$
$O_{y}=\frac{1}{5}\left(1_{x}, 1_{z}, 4_{w}\right)$ (${ }^{\text {S }}$	-	$7 B$	x^{7}, t	$x^{7}, w z^{3}$	$a=0$
$O_{z} O_{w}=1 \times \frac{1}{3}\left(1_{x}, 2_{y}, 1_{t}\right)$ (b)	-	$5 B+E$	y	y	

We may assume that the polynomial f_{27} contains neither $x y^{4} z$ nor $x^{2} y^{5}$ by changing the coordinate t in an appropriate way.

- For the singular points except the point O_{y}, the 1 -cycles Γ are always irreducible because of the monomials $w^{3}, z t^{3}$ and $z^{3} w$.
- For the singular point O_{y} with $a \neq 0$, we consider the linear system generated by $x^{2} y, x z$ and t. Its base curve C is cut out by $x=t=0$. It is irreducible because of the monomials w^{3} and $y^{3} z^{2}$. Since we have $T \cdot \tilde{C}=(7 B+E)^{2} \cdot B=\frac{1}{2}$, the divisor T is nef.
- For the singular point O_{y} with $a=0$, we take a general member H in the linear system generated by x^{7} and t. Then it is a normal surface of degree 27 in $\mathbb{P}(1,5,6,9)$. Let T be the proper transform of the surface H. The intersection of T with the surface S gives us a divisor consisting of two irreducible curves $\tilde{L}_{y z}$ and \tilde{C} on the normal surface T. The curve \tilde{C} is the proper transform of the curve C defined by

$$
x=t=w^{2}+z^{3}=0 .
$$

From the intersection numbers

$$
\left(\tilde{L}_{y z}+\tilde{C}\right) \cdot \tilde{L}_{y z}=-K_{Y} \cdot \tilde{L}_{y z}=-\frac{1}{6}, \quad\left(\tilde{L}_{y z}+\tilde{C}\right)^{2}=7 B^{3}=-\frac{1}{4}
$$

on the surface T, we obtain

$$
\tilde{L}_{y z}^{2}=-\frac{1}{6}-\tilde{L}_{y z} \cdot \tilde{C}, \quad \tilde{C}^{2}=-\frac{1}{12}-\tilde{L}_{y z} \cdot \tilde{C}
$$

With these intersection numbers we see that the matrix

$$
\left(\begin{array}{cc}
\tilde{L}_{y z}^{2} & \tilde{L}_{y z} \cdot \tilde{C} \\
\tilde{L}_{y z} \cdot \tilde{C} & \tilde{C}^{2}
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{6}-\tilde{L}_{y z} \cdot \tilde{C} & \tilde{L}_{y z} \cdot \tilde{C} \\
\tilde{L}_{y z} \cdot \tilde{C} & -\frac{1}{12}-\tilde{L}_{y z} \cdot \tilde{C}
\end{array}\right)
$$

is negative-definite since $\tilde{L}_{y z} \cdot \tilde{C}$ is non-negative.

No. 67: $X_{28} \subset \mathbb{P}(1,1,4,9,14)$	$A^{3}=1 / 18$
$w^{2}+y t^{3}+z^{7}+w f_{14}(x, y, z, t)+f_{28}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{9}\left(1_{x}, 4_{z}, 5_{w}\right)(D$	+	$B-E$	y	w^{2}	
$O_{z} O_{w}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)$ (b)	-	B	y	y	

- The 1 -cycle Γ for the singular point of type $\frac{1}{2}(1,1,1)$ is irreducible since we have the monomials w^{2} and z^{7}.

$\begin{array}{lc} \hline \text { No. 68: } X_{28} \subset \mathbb{P}(1,3,4,7,14) & A^{3}=1 / 42 \\ \left(w-\alpha_{1} t^{2}\right)\left(w-\alpha_{2} t^{2}\right)+z^{7}+y^{7}\left(a_{1} t+a_{2} x y^{2}\right)+w f_{14}(x, y, z, t)+f_{28}(x, y, z, t) & \end{array}$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{y}=\frac{1}{3}\left(1_{x}, 1_{z}, 2_{w}\right)$ (b)	-	$7 B+E$	t	w^{2}	$a_{1} \neq 0$
$O_{y}=\frac{1}{3}\left(1_{z}, 1_{t}, 2_{w}\right)$ (b)	-	$4 B+E$	z	z	$a_{1}=0$
$O_{t} O_{w}=2 \times \frac{1}{7}(1,3,4)[\tau$	$w t^{2}$				
$O_{z} O_{w}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)$ (b)	-	$3 B+E$	y	y	

- For the singular point O_{y} with $a_{1} \neq 0$ the 1 -cycle Γ is irreducible because of the monomials w^{2} and z^{7}.
- The 1-cycle Γ for the singular point O_{y} with $a_{1}=0$ consists of two irreducible curves. These are the proper transforms of the curves defined by $x=z=w-\alpha_{i} t^{2}=0$. Since these two curves on X_{28} are interchanged by the automorphism defined by

$$
[x, y, z, t, w] \mapsto\left[x, y, z, t,\left(\alpha_{1}+\alpha_{2}\right) t^{2}-f_{14}-w\right],
$$

their proper transforms are numerically equivalent on Y.

- To see how to deal with the singular points of type $\frac{1}{7}(1,3,4)$ we may assume that $\alpha_{1}=0$ and we have only to consider the singular point O_{t}. The other point can be treated in the same way.
- The 1-cycle Γ for the singular point of type $\frac{1}{2}(1,1,1)$ is irreducible due to the monomials w^{2} and z^{7}.

No. 69: $X_{28} \subset \mathbb{P}(1,4,6,7,11)$
$A^{3}=1 / 66$
$z w^{2}+t^{4}+y\left(z^{2}-\alpha_{1} y^{3}\right)\left(z^{2}-\alpha_{2} y^{3}\right)+w f_{17}(x, y, z, t)+f_{28}(x, y, z, t)$

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{11}(1,4,7) \boxed{\tau}$	$z w^{2}$				
$O_{z}=\frac{1}{6}\left(1_{x}, 1_{t}, 5_{w}\right)$ (D)	-	$4 B$	y	t^{4}	
$O_{y} O_{z}=2 \times \frac{1}{2}\left(1_{x}, 1_{t}, 1_{w}\right) ®(\square)$	-	$11 B+5 E$	$x y z, y t, w$	$x y z, y t, w$	

- The 1-cycle Γ for the singular point O_{z} is irreducible due to the monomials $z w^{2}$ and t^{4}.
- For the singular points of type $\frac{1}{2}(1,1,1)$ consider the linear system generated by $x y z, y t$ and w. Since the base curves of the linear system pass through no singular points of type $\frac{1}{2}(1,1,1)$ the divisor T is nef.

No. 70: $X_{30} \subset \mathbb{P}(1,1,4,10,15)$	$A^{3}=1 / 20$
$w^{2}+t^{3}+z^{5} t+w f_{15}(x, y, z, t)+f_{30}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{z}=\frac{1}{4}\left(1_{x}, 1_{y}, 3_{w}\right)$ (D)	-	B	y	y	
$O_{t} O_{w}=1 \times \frac{1}{5}\left(1_{x}, 1_{y}, 4_{z}\right)$ (D)	0	B	y	y	
$O_{z} O_{t}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)$ (b)	-	B	y	y	

- For each singular point the 1 -cycle Γ is irreducible due to the monomials w^{2} and t^{3}.

No. 71: $w^{2}+z t^{3}+w f_{15}(x, y, z, t)+f_{30}(x, y, z, t)$	$A^{3}=1 / 24$				
Singularity		B^{3}	Linear system	Surface T	Vanishing order
$O_{t}=\frac{1}{8}\left(1_{x}, 1_{y}, 7_{w}\right) \mathbb{D}$	+	$6 B-E$	z	Condition	
$O_{z} O_{w}=1 \times \frac{1}{3}\left(1_{x}, 1_{y}, 2_{t}\right)$ (b)	-	B	y	w^{2}	
$O_{z} O_{t}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)$ DD	-	B	y	y	

- For the singular points of types $\frac{1}{2}(1,1,1)$ and $\frac{1}{3}(1,1,2)$, the 1 -cycles Γ are irreducible because of w^{2} and $t^{3} z$.

No. 72: $X_{30} \subset \mathbb{P}(1,2,3,10,15)$	$A^{3}=1 / 30$				
$w^{2}+t^{3}+z^{10}+y^{15}+w f_{15}(x, y, z, t)+f_{30}(x, y, z, t)$					
Singularity		B^{3}	Linear system	Surface T	Vanishing order
$O_{t} O_{w}=1 \times \frac{1}{5}\left(1_{x}, 2_{y}, 3_{z}\right)$ ©	0	$2 B$	y	y	
$O_{z} O_{w}=2 \times \frac{1}{3}\left(1_{x}, 2_{y}, 1_{t}\right)$ (b)	-	$2 B$	y	y	
$O_{y} O_{t}=3 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{w}\right)$ (b)	-	$3 B+E$	z	z	

- For each singular point the 1 -cycle Γ is irreducible due to the monomials w^{2} and t^{3}.

$\begin{array}{ll} \text { No. 73: } X_{30} \subset \mathbb{P}(1,2,6,7,15) & A^{3}=1 / 42 \\ w^{2}+y t^{4}+\prod_{i=1}^{5}\left(z-\alpha_{i} y^{3}\right)+w f_{15}(x, y, z, t)+f_{30}(x, y, z, t) & \end{array}$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{7}\left(1_{x}, 6_{z}, 1_{w}\right)$ (b)	0	$2 B$	y	w^{2}	
$O_{z} O_{w}=1 \times \frac{1}{3}\left(1_{x}, 2_{y}, 1_{t}\right)$ (b)	-	$2 B$	y	y	
$O_{y} O_{z}=5 \times \frac{1}{2}\left(1_{x}, 1_{t}, 1_{w}\right)$ (b)	-	$6 B+2 E$	$z-\alpha_{i} y^{3}$	w^{2}	

- For each singular point the 1 -cycle Γ is irreducible due to the monomials w^{2}, z^{5} and $y t^{4}$.

No. 74: $X_{30} \subset \mathbb{P}(1,3,4,10,13)$
$A^{3}=1 / 52$
$z w^{2}+t^{3}+z^{5} t+y^{10}+w f_{17}(x, y, z, t)+f_{30}(x, y, z, t)$

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{13}(1,3,7) \bar{\tau}$	$z w^{2}$				
$O_{z}=\frac{1}{4}\left(1_{x}, 3_{y}, 1_{w}\right)$ (b)	-	$3 B$	y	y	
$O_{z} O_{t}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)$ (b)	-	$3 B+E$	y	y	

- The 1 -cycles Γ for the singular points of types $\frac{1}{2}(1,1,1)$ and $\frac{1}{4}(1,3,1)$ are irreducible because of the monomials $z w^{2}, t^{3}$ and $z^{5} t$.

No. 75: $w^{2}+t^{5}+z^{6}+y^{6} t+w f_{15}(x, y, z, t)+f_{30}(x, y, z, t)$	$A^{3}=1 / 60$				
Singularity		B^{3}	Linear system	Surface T	Vanishing order
$O_{y}=\frac{1}{4}\left(1_{x}, 1_{z}, 3_{w}\right)$ (®)	-	$5 B+E$	$x y, z$	$x y, z$	Condition
$O_{t} O_{w}=1 \times \frac{1}{3}\left(1_{x}, 1_{y}, 2_{z}\right)$ (D)	-	$5 B+E$	z	z	
$O_{z} O_{w}=2 \times \frac{1}{5}\left(1_{x}, 4_{y}, 1_{t}\right)$ (D)	-	$4 B$	y	y	
$O_{y} O_{t}=2 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{w}\right)$ (D)	-	$5 B+2 E$	z	z	

- For the singular point O_{y}, consider the linear system generated by $x y$ and z. Its base curves are defined by $x=z=0$ and $y=z=0$. The curve defined by $y=z=0$ does not pass through the point O_{y}. The curve defined by $x=z=0$ is irreducible. Moreover, its proper transform is the 1-cycle defined by $(5 B+E) \cdot B$. Consequently, the divisor T is nef since $(5 B+E)^{2} \cdot B>0$.
- For the other singular points we immediately see that the 1 -cycles Γ are irreducible due to the monomials w^{2} and t^{5}.

No. 76: $X_{30} \subset \mathbb{P}(1,5,6,8,11)$ $t w^{2}+z t^{3}+z^{5}+y^{5}+w f_{19}(x, y, z, t)+f_{30}(x, y, z, t)$	$A^{3}=1 / 88$				
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{11}(1,5,6) \square \tau$	$t w^{2}$				
$O_{t}=\frac{1}{8}(1,5,3) \boxed{\epsilon}$	$t w^{2}-z t^{3}$				
$O_{z} O_{t}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)(D)$	-	$5 B+2 E$	y	y	

- The 1 -cycle Γ for the singular point of type $\frac{1}{2}(1,1,1)$ is irreducible because of the monomials $t w^{2}$ and z^{5}.

No. 77: $X_{32} \subset \mathbb{P}(1,2,5,9,16)$	$A^{3}=1 / 45$
$w^{2}+z t^{3}+y z^{6}+w f_{16}(x, y, z, t)+f_{32}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{9}\left(1_{x}, 2_{y}, 7_{w}\right)$ (®	+	$5 B-E$	z	w^{2}	
$O_{z}=\frac{1}{5}\left(1_{x}, 4_{t}, 1_{w}\right)$ (D)	-	$2 B$	y	w^{2}	
$O_{y} O_{w}=2 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{t}\right)(1)$	-	$9 B+4 E$	$x y^{4}, y^{2} z$,	$x y^{4}, y^{2} z$,	

- For the singular point O_{z}, the 1-cycle Γ is irreducible due to the monomials w^{2} and $z t^{3}$.
- For the singular points of type $\frac{1}{2}(1,1,1)$, we consider the linear system generated by $x y^{4}$, $y^{2} z$ and t on X_{32}. Its base curve is defined by $y=t=0$. The curve defined by $y=t=0$ passes though no singular point of type $\frac{1}{2}(1,1,1)$. Consequently, the divisor T is nef.

No. 78: $X_{32} \subset \mathbb{P}(1,4,5,7,16)$	$A^{3}=1 / 70$
$w^{2}+y t^{4}+z^{5} t+w f_{16}(x, y, z, t)+f_{32}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{7}\left(1_{x}, 5_{z}, 2_{w}\right)$ (b)	0	$4 B$	y	w^{2}	
$O_{z}=\frac{1}{5}\left(1_{x}, 4_{y}, 1_{w}\right)$ (D)	-	$4 B$	y	y	
$O_{y} O_{w}=2 \times \frac{1}{4}\left(1_{x}, 1_{z}, 3_{t}\right)$ (I)	-	$5 B+E$	$x y, z$	$x y, z$	

- For the singular points other than those of type $\frac{1}{4}(1,1,3)$, the 1 -cycles Γ are always irreducible due to the monomials w^{2} and $z^{5} t$.
- For the singular points of type $\frac{1}{4}(1,1,3)$, we consider the linear system generated by $x y$ and z on X_{32}. Its base curves are defined by $x=z=0$ and $y=z=0$. The curve defined by $y=z=0$ passes though no singular point of type $\frac{1}{4}(1,1,3)$. The curve defined by $x=z=0$ is irreducible because of the monomials w^{2} and $y t^{4}$. Its proper transform is the 1-cycle defined by $(5 B+E) \cdot B$. Therefore, the divisor T is nef since $(5 B+E)^{2} \cdot B>0$.

No. 79: $X_{33} \subset \mathbb{P}(1,3,5,11,14)$
$A^{3}=1 / 70$
$z w^{2}+t^{3}+y z^{6}+y^{11}+w f_{19}(x, y, z, t)+f_{33}(x, y, z, t)$

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{w}=\frac{1}{14}(1,3,11) \boxed{\tau}$	$z w^{2}$				
$O_{z}=\frac{1}{5}\left(1_{x}, 1_{t}, 4_{w}\right)$ (D)	-	$3 B$	y	t^{3}	

- The 1-cycle Γ for the singular point O_{z} is irreducible because of the monomials $z w^{2}$ and t^{3}.

$\begin{aligned} & \hline \text { No. 80: } X_{34} \subset \mathbb{P}(1,3,4,1 \\ & w^{2}+z t^{3}+z^{6} t+y^{8}\left(a_{1} t\right. \\ & t g_{24}(x, y, z)+g_{34}(x, y, z) \\ & \hline \end{aligned}$		$\left.a_{3} x y^{4}\right)$	$w f_{17}(x, y,$	$t)+t^{2} g_{14}($	$\begin{aligned} & A^{3}=1 / 60 \\ & + \\ & \hline \end{aligned}$
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{10}\left(1_{x}, 3_{y}, 7_{w}\right)$ (D)	+	$4 B-E$	z	w^{2}	
$O_{z}=\frac{1}{4}\left(1_{x}, 3_{y}, 1_{w}\right)$ (b)	-	$3 B$	y	y	
$O_{y}=\frac{1}{3}\left(1_{x}, 1_{z}, 2_{w}\right)$ (1)	-	$4 B+E$	z	z	$a_{1} \neq 0$
$O_{y}=\frac{1}{3}\left(1_{x}, 1_{t}, 2_{w}\right)$ (b)	-	$4 B$	z	w^{2}	$a_{1}=0, a_{2} \neq 0$
$O_{y}=\frac{1}{3}\left(1_{z}, 1_{t}, 2_{w}\right)$ (b)	-	$4 B+E$	z	z	$a_{1}=a_{2}=0$
$O_{z} O_{t}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)$ (b)	-	$3 B+E$	y	y	

- For each of the singular points to which the method (D) is applied, the 1 -cycle Γ is always irreducible even though it is possibly non-reduced.
- For the singular point O_{y} with $a_{1} \neq 0$, we consider the linear system generated by $x y$ and z on X_{34}. Its base curves are defined by $x=z=0$ and $y=z=0$. The curve defined by $y=z=0$ does not pass through the point O_{y}. The curve defined by $x=z=0$ is irreducible because of the monomials w^{2} and $y^{8} t$. Its proper transform is the 1-cycle defined by $(4 B+E) \cdot B$, and hence it intersects T positively. Consequently, the divisor T is nef.

No. 81: $X_{34} \subset \mathbb{P}(1,4,6,7,17)$	$A^{3}=1 / 84$
$w^{2}+z t^{4}+y z^{5}+y^{7} z+w f_{17}(x, y, z, t)+f_{34}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{7}\left(1_{x}, 4_{y}, 3_{w}\right)$ (b)	0	$6 B$	z	w^{2}	
$O_{z}=\frac{1}{6}\left(1_{x}, 1_{t}, 5_{w}\right)$ (D)	-	$4 B$	y	$z t^{4}$	
$O_{y}=\frac{1}{4}\left(1_{x}, 3_{t}, 1_{w}\right)$ (b)	-	$7 B+E$	t	t	
$O_{y} O_{z}=2 \times \frac{1}{2}\left(1_{x}, 1_{t}, 1_{w}\right)$ (ID	-	$7 B+3 E$	$x z, t$	$x z, t$	

- The 1-cycle Γ for the singular point O_{t} is irreducible due to the monomials w^{2} and $y^{5} t^{2}$ even though it can be non-reduced.
- For the singular point O_{z}, the 1-cycle Γ is irreducible due to the monomials w^{2} and $z t^{4}$.
- For the singular point O_{y}, the 1-cycle Γ is irreducible due to the monomials $w^{2}, y z^{5}$ and $y^{7} z$
- For the singular points of type $\frac{1}{2}(1,1,1)$, we consider the linear system generated by $x z$ and t on X_{34}. Its base curves are defined by $x=t=0$ and $z=t=0$. The curve defined by $z=t=0$ passes though no singular point of type $\frac{1}{2}(1,1,1)$. The curve defined by $x=t=0$ is irreducible due to the monomials $w^{2}, y z^{5}$ and $y^{7} z$. Its proper transform is equivalent to the 1-cycle defined by $(7 B+3 E) \cdot B$ that intersects T positively. Therefore, the divisor T is nef.

No. 82: $X_{36} \subset \mathbb{P}(1,1,5,12,18)$					$A^{3}=1 / 30$
$w^{2}+t^{3}+y z^{7}+w f_{18}(x, y, z, t)+f_{36}(x, y, z, t)$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{z}=\frac{1}{5}\left(1_{x}, 2_{t}, 3_{w}\right) \oplus$	0	$B-E$	y	w^{2}	
$O_{t} O_{w}=1 \times \frac{1}{6}\left(1_{x}, 1_{y}, 5_{z}\right)$ (b)	0	B	y	y	

- For the singular point O_{z}, let C_{λ} be the curve on the surface S_{y} cut by $t=\lambda x^{12}$ for a general complex number λ. Then

$$
-K_{Y} \cdot \tilde{C}_{\lambda}=(B-E)(12 B+2 E) B=0
$$

If the curve \tilde{C}_{λ} is reducible, it consists of two irreducible components. Because these two components are symmetric with respect to the biregular quadratic involution of X_{36}, they must be numerically equivalent to each other. Therefore, each component of \tilde{C}_{λ} intersects $-K_{Y}$ trivially.

- For the singular point of type $\frac{1}{6}(1,1,5)$, the 1 -cycle Γ is irreducible due to w^{2} and t^{3}.

No. 83: $X_{36} \subset \mathbb{P}(1,3,4,11,18)$ $\left(w-\alpha_{1} y^{6}\right)\left(w-\alpha_{2} y^{6}\right)+y t^{3}+z^{9}+w f_{18}(x, y, z, t)+f_{36}(x, y, z, t)$							$A^{3}=1 / 66$
Singularity		B^{3}	Linear system	Surface T	Vanishing order		
$O_{t}=\frac{1}{11}\left(1_{x}, 4_{z}, 7_{w}\right)(\square$	+	$3 B-E$	y	Condition			
$O_{z} O_{w}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{t}\right)(D)$	-	$3 B+E$	y	w^{2}			
$O_{y} O_{w}=2 \times \frac{1}{3}\left(1_{x}, 1_{z}, 2_{t}\right)(D)$	-	$18 B+4 E$	$w-\alpha_{i} y^{6}$	$y t^{3}$			

- For each of the singular points corresponding to the method (D), the 1-cycle Γ is irreducible since we have the monomials $w^{2}, y t^{3}$, and z^{9}.

No. 84: $X_{36} \subset \mathbb{P}(1,7,8,9,12)$
$A^{3}=1 / 168$
$w^{3}+t^{4}+z^{3} w+y^{4}\left(a_{1} z+a_{2} x y\right)+w^{2} f_{12}(x, y, z, t)+w f_{24}(x, y, z, t)+f_{36}(x, y, z, t)$

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{z}=\frac{1}{8}\left(1_{x}, 7_{y}, 1_{t}\right)$ (b)	-	$7 B$	y	y	
$O_{y}=\frac{1}{7}\left(1_{x}, 2_{t}, 5_{w}\right)$ (b)	-	$8 B$	z	t^{4}	$a_{1} \neq 0$
$O_{y}=\frac{1}{7}\left(1_{z}, 2_{t}, 5_{w}\right)$ (b)	-	$12 B+E$	w	w	$a_{1}=0$
$O_{t} O_{w}=1 \times \frac{1}{3}\left(1_{x}, 1_{y}, 2_{z}\right)$ (b)	-	$8 B+2 E$	z	z	
$O_{z} O_{w}=1 \times \frac{1}{4}\left(1_{x}, 3_{y}, 1_{t}\right)$ (b)	-	$7 B+E$	y	y	

- For each singular point the 1-cycle Γ is always irreducible because of the monomials w^{3} and t^{4}. In particular, the intersection Γ for the singular point O_{y} with $a_{1}=0$ is irreducible even though it is non-reduced.

$\begin{array}{lc} \text { No. 85: } X_{38} \subset \mathbb{P}(1,3,5,11,19) & A^{3}=2 / 165 \\ w^{2}+z t^{3}+y z^{7}+y^{9}\left(a_{1} t+a_{2} y^{2} z\right)+w f_{19}(x, y, z, t)+f_{38}(x, y, z, t) & \end{array}$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{11}\left(1_{x}, 3_{y}, 8_{w}\right)$ (D)	+	$5 B-E$	z	w^{2}	
$O_{z}=\frac{1}{5}\left(1_{x}, 1_{t}, 4_{w}\right)$ (b)	-	$3 B$	y	$z t^{3}$	
$O_{y}=\frac{1}{3}\left(1_{x}, 2_{z}, 1_{w}\right)$ (b)	-	$5 B+E$	z	z	$a_{1} \neq 0$
$O_{y}=\frac{1}{3}\left(1_{x}, 2_{t}, 1_{w}\right)$ (b)	-	$5 B+E$	z	w^{2}	$a_{1}=0$

- For the singular point O_{z}, the 1-cycle Γ is irreducible because of the monomials w^{2} and $z t^{3}$.
- For the singular point O_{y}, the 1-cycle Γ is irreducible because of the monomials w^{2} and $y^{9} t$. Note that in case when $a_{1}=0$ the 1 -cycle Γ is still irreducible but non-reduced.

No. 86: $X_{38} \subset \mathbb{P}(1,5,6,8,19)$	$A^{3}=1 / 120$				
$w^{2}+z t^{4}+z^{5} t+y^{6} t+w f_{19}(x, y, z, t)+f_{38}(x, y, z, t)$					
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{8}\left(1_{x}, 5_{y}, 3_{w}\right)$ (b)	0	$5 B$	y	y	
$O_{z}=\frac{1}{6}\left(1_{x}, 5_{y}, 1_{w}\right)$ (b)	-	$5 B$	y	y	
$O_{y}=\frac{1}{5}\left(1_{x}, 1_{z}, 4_{w}\right)($ n	-	$6 B+E$	$x y, z$	$x y, z$	
$O_{z} O_{t}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)$ (b)	-	$5 B+2 E$	y	y	

- For the singular points except the point O_{y}, the 1-cycles Γ are always irreducible because of the monomials $w^{2}, z t^{4}$ and $z^{5} t$.
- For the singularity O_{y}, we consider the linear system generated by $x y$ and z on X_{38}. Its base curves are defined by $x=z=0$ and $y=z=0$. The curve defined by $y=z=0$ does not pass though the singular point O_{y}. The curve defined by $x=z=0$ is irreducible because of the monomials w^{2} and $y^{6} t$. The proper transform is equivalent to the 1 -cycle defined by
$(6 B+E) \cdot B$ and $(6 B+E)^{2} \cdot B>0$. Therefore, the divisor T is nef.

$\text { No. 87: } X_{40} \subset \mathbb{P}(1,5,7,8,20)$					$A^{3}=1 / 140$
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{z}=\frac{1}{7}\left(1_{x}, 1_{t}, 6_{w}\right)$ (b)	-	5B	y	t^{5}	
$O_{t} O_{w}=1 \times \frac{1}{4}\left(1_{x}, 1_{y}, 3_{z}\right)$ (b)	-	$7 B+E$	z	z	
$O_{y} O_{w}=2 \times \frac{1}{5}\left(1_{x}, 2_{z}, 3_{t}\right)$ (1)	-	$7 B+E$	$x^{2} y, z$	$x^{2} y, z$	

- The irreducibility of the 1-cycle Γ can be immediately checked for each singular point corresponding to the method (b) since we have the monomials w^{2} and t^{5}.
- For the singular points of type $\frac{1}{5}(1,2,3)$, we consider the linear system generated by $x^{2} y$ and z on X_{40}. Its base curves are defined by $x=z=0$ and $y=z=0$. The curve defined by $y=z=0$ passes though no singular points of type $\frac{1}{5}(1,2,3)$. The curve defined by $x=z=0$ is irreducible because of the monomials w^{2} and t^{5}. Its proper transform is equivalent to the 1 -cycle defined by $(7 B+E) \cdot B$. Consequently, the divisor T is nef since $(7 B+E)^{2} \cdot B>0$.

No. 88: $X_{42} \subset \mathbb{P}(1,1,6,14,21)$	$A^{3}=1 / 42$
$w^{2}+t^{3}+z^{7}+w f_{21}(x, y, z, t)+f_{42}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t} O_{w}=1 \times \frac{1}{7}\left(1_{x}, 1_{y}, 6_{z}\right)$ (b)	0	B	y	y	
$O_{z} O_{w}=1 \times \frac{1}{3}\left(1_{x}, 1_{y}, 2_{t}\right)$ (b)	-	B	y	y	
$O_{z} O_{t}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)$ (b)	-	B	y	y	

- For each singular point the 1-cycle Γ is irreducible due to the monomials w^{2}, t^{3}, and z^{7}.

No. 89: $X_{42} \subset \mathbb{P}(1,2,5,14,21)$ $w^{2}+t^{3}+y z^{8}+y^{21}+w f_{21}(x, y, z, t)+f_{42}(x, y, z, t)$							$A^{3}=1 / 70$
Singularity		B^{3}	Linear system	Surface T	Vanishing order		
$O_{z}=\frac{1}{5}\left(1_{x}, 4_{t}, 1_{w}\right)$ (b)	-	$2 B$	y	Condition			
$O_{t} O_{w}=1 \times \frac{1}{7}\left(1_{x}, 2_{y}, 5_{z}\right)(D)$	0	$2 B$	y	w^{2}			
$O_{y} O_{t}=3 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{w}\right)$ (b)	-	$5 B+2 E$	z	z			

- For each singular point the 1-cycle Γ is irreducible because of the monomials w^{2} and t^{3}.

No. 90: $X_{42} \subset \mathbb{P}(1,3,4,14,21)$	$A^{3}=1 / 84$
$\left(w-\alpha_{1} y^{7}\right)\left(w-\alpha_{2} y^{7}\right)+t^{3}+z^{7} t+w f_{21}(x, y, z, t)+f_{42}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{z}=\frac{1}{4}\left(1_{x}, 3_{y}, 1_{w}\right)$ (b)	-	$3 B$	y	y	
$O_{t} O_{w}=1 \times \frac{1}{7}\left(1_{x}, 3_{y}, 4_{z}\right)$ (D)	0	$3 B$	y	y	
$O_{y} O_{w}=2 \times \frac{1}{3}\left(1_{x}, 1_{z}, 2_{t}\right)$ ®	-	$4 B+E$	$x y, z$	$x y, z$	
$O_{z} O_{t}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)$ (D)	-	$3 B+E$	y	y	

- For the singular points other than those of type $\frac{1}{3}(1,1,2)$, the 1 -cycle Γ is irreducible since we have monomials w^{2}, t^{3}, and $z^{7} t$.
- For the singular points of type $\frac{1}{3}(1,1,2)$, consider the linear system generated by $x y$ and z on X_{42}. Its base curves are defined by $x=z=0$ and $y=z=0$. The curve defined by $y=z=0$ passes through no singular points of type $\frac{1}{3}(1,1,2)$. The curve defined by $x=z=0$ is irreducible because of the monomials w^{2} and t^{3}. Its proper transform is equivalent to the 1 -cycle defined by $(4 B+E) \cdot B$ and $(4 B+E)^{2} \cdot B>0$. Therefore, the divisor T is nef.

No. 91: $X_{44} \subset \mathbb{P}(1,4,5,13,22)$					$A^{3}=1 / 130$
Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{t}=\frac{1}{13}\left(1_{x}, 4_{y}, 9_{w}\right)$ (D)	+	$5 B-E$	z	w^{2}	
$O_{z}=\frac{1}{5}\left(1_{x}, 3_{t}, 2_{w}\right)$ (b)	-	$4 B$	y	w^{2}	
$O_{y} O_{w}=1 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{t}\right)$ (b)	-	$5 B+2 E$	z	z	

- For each singular point the 1 -cycle Γ is irreducible due to the monomials w^{2}, y^{11}, and $z t^{3}$.

No. 92: $X_{48} \subset \mathbb{P}(1,3,5,16,24)$	$A^{3}=1 / 120$				
$w^{2}+t^{3}+y z^{9}+y^{16}+w f_{24}(x, y, z, t)+f_{48}(x, y, z, t)$					
Singularity		B^{3}	Linear system	Surface T	Vanishing order
$O_{z}=\frac{1}{5}\left(1_{x}, 1_{t}, 4_{w}\right)$ (b)	-	$3 B$	y	t^{3}	
$O_{t} O_{w}=1 \times \frac{1}{8}\left(1_{x}, 3_{y}, 5_{z}\right)$ (b)	0	$3 B$	y	y	
$O_{y} O_{w}=2 \times \frac{1}{3}\left(1_{x}, 2_{z}, 1_{t}\right)$ (b)	-	$5 B+E$	z	z	

- For each singular point the 1 -cycle Γ is irreducible due to the monomials w^{2} and t^{3}.

No. 93: $X_{50} \subset \mathbb{P}(1,7,8,10,25)$					
$w^{2}+t^{5}+z^{5} t+y^{6}\left(a_{1} z+a_{2} x y\right)+w f_{25}(x, y, z, t)+f_{50}(x, y, z, t)$	$A^{3}=1 / 280$				
Singularity		B^{3}	Linear system	Surface T	Vanishing order
$O_{z}=\frac{1}{8}\left(1_{x}, 7_{y}, 1_{w}\right)$ (b)	-	$7 B$	y	y	Condition

$O_{y}=\frac{1}{7}\left(1_{x}, 3_{t}, 4_{w}\right)$ (b)	-	$8 B$	z	w^{2}	$a_{1} \neq 0$
$O_{y}=\frac{1}{7}\left(1_{z}, 3_{t}, 4_{w}\right)$ (b)	-	$10 B+E$	t	t	$a_{1}=0$
$O_{t} O_{w}=1 \times \frac{1}{5}\left(1_{x}, 2_{y}, 3_{z}\right)$ (b)	-	$8 B+E$	z	z	
$O_{z} O_{t}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)$ (b)	-	$7 B+3 E$	y	y	

- For each singular point the 1-cycle Γ is always irreducible because of the monomials w^{2} and t^{5}. In particular, the 1-cycle Γ for the singular point O_{y} with $a_{1}=0$ is irreducible even though it is non-reduced.

No. 94: $X_{54} \subset \mathbb{P}(1,4,5,18,27)$	$A^{3}=1 / 180$
$w^{2}+t^{3}+y z^{10}+y^{9} t+w f_{27}(x, y, z, t)+f_{54}(x, y, z, t)$	

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{z}=\frac{1}{5}\left(1_{x}, 3_{t}, 2_{w}\right)$ ©	-	$4 B$	y	w^{2}	
$O_{y}=\frac{1}{4}\left(1_{x}, 1_{z}, 3_{w}\right)$ (b	-	$18 B+3 E$	t	w^{2}	
$O_{t} O_{w}=1 \times \frac{1}{9}\left(1_{x}, 4_{y}, 5_{z}\right)$ (D)	0	$4 B$	y	y	
$O_{y} O_{t}=1 \times \frac{1}{2}\left(1_{x}, 1_{z}, 1_{w}\right)$ (b)	-	$5 B+2 E$	z	z	

- For each singular point the 1 -cycle Γ is irreducible due to the monomials w^{2}, t^{3} and $y z^{10}$.

No. 95: $X_{66} \subset \mathbb{P}(1,5,6,22,33) \quad A^{3}=1 / 330$ $w^{2}+t^{3}+z^{11}+y^{12}\left(a_{1} z+a_{2} x y\right)+w f_{33}(x, y, z, t)+f_{66}(x, y, z, t)$

Singularity	B^{3}	Linear system	Surface T	Vanishing order	Condition
$O_{y}=\frac{1}{5}\left(1_{x}, 2_{t}, 3_{w}\right)$ ®D	-	$6 B$	z	w^{2}	$a_{1} \neq 0$
$O_{y}=\frac{1}{5}\left(1_{z}, 2_{t}, 3_{w}\right)$ ®	-	$6 B+E$	z	z	$a_{1}=0$
$O_{t} O_{w}=1 \times \frac{1}{1}\left(1_{x}, 5_{y}, 6_{z}\right)$ (D)	0	$5 B$	y	y	
$O_{z} O_{w}=1 \times \frac{1}{3}\left(1_{x}, 2_{y}, 1_{t}\right)$ DD	-	$5 B+E$	y	y	
$O_{z} O_{t}=1 \times \frac{1}{2}\left(1_{x}, 1_{y}, 1_{w}\right)$ DD	-	$5 B+2 E$	y	y	

- The 1-cycle Γ for each singular point is irreducible because of the monomials w^{2} and t^{3}.

6 Epilogue

Open problems

Let X be a quasi-smooth hypersurface of degrees d with only terminal singularities in weighted projective space $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$, where $d=\sum a_{i}$. In Main Theorem, we prove that X is birationally rigid. In particular, X is non-rational. Moreover, the proof also explicitly describes the generators of the group of birational automorphisms $\operatorname{Bir}(X)$ modulo subgroup of biregular automorphisms $\operatorname{Aut}(X)$ (see Theorem [3.3.4). Furthermore, Theorem 1.1.10 says that $\operatorname{Bir}(X)=\operatorname{Aut}(X)$ for those families in the list of Fletcher and Reid with entry numbers No. 1, 3, 10, 11, 14, 19, 21, 22, 28, 29, 34, 35, 37, 39, 49, 50, 51, 52, 53, 55, 57, 59, 62, 63, 64, $66,67,70,71,72,73,75,77,78,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94$ and 95. Of course, some quasi-smooth threefolds in other families may also be birationally super-rigid.

Explicit birational involutions play a key role in the proof of Main Theorem. In many cases, they arise from generically 2-to-1 rational maps of X to suitable 3-dimensional weighted projective spaces (quadratic involutions). However, in some cases they arise from rational maps of X to suitable 2-dimensional weighted projective spaces whose general fibers are birational to smooth elliptic curves (elliptic involutions). Moreover, we often use such elliptic rational fibrations in order to exclude some singular points of X as centers of non-canonical singularities of any \log pair $\left(X, \frac{1}{n} \mathcal{M}\right)$, where \mathcal{M} is a mobile linear subsystem in $\left|-n K_{X}\right|$. The latter is done using Corollary 2.2 .2 or Lemma 3.2.8. A similar role in the proof of Main Theorem is played by so-called Halphen pencils on X, i.e., pencils whose general members are irreducible surfaces of Kodaira dimension zero. Implicitly Halphen pencils appear almost every time when we apply Lemmas 3.2 .2 and 3.2.7. This leads us to three problems that are closely related to Main Theorem. They are
(1) to find relations between generators of the birational automorphism group $\operatorname{Bir}(X)$;
(2) to describe birational transformations of X into elliptic fibrations;
(3) to classify Halphen pencils on X.

While proving Main Theorem, we noticed many interesting Halphen pencils on X even though we did not mention them explicitly in the proofs. We also observed that their general members are K3 surfaces. This gives an evidence for

Conjecture 6.1. Every Halphen pencil on X is a pencil of $K 3$ surfaces.
We do not know any deep reason why this conjecture should be true. When X is a general threefold in its family, Conjecture 6.1 was proved in [14].

The original proof of Theorem 1.1.3 given by Iskovskikh and Manin in [33 holds in arbitrary characteristic. This also follows from [44]. The short proof of Theorem 1.1.3 given by Corti in [24] holds only in characteristic zero. For some families in the list of Fletcher and Reid, the proof of Main Theorem requires vanishing type results and, thus, is valid only in characteristic zero. This suggests the birational rigidity problem of X and problems (1), (2) and (3) over an algebraically closed field of positive characteristic. For double covers of \mathbb{P}^{3} ramified along smooth sextic surfaces, this was done in [13] and [15], which revealed special phenomenon of small characteristics (see [13, Example 1.5]).

General vs. special

The first three problems listed in the previous section are solved in the case when X is a general hypersurface in its family. This is done in [6, [7], [12] and [14]. In many cases, the same methods can be applied regardless of the assumption that X is general. For example, we proved in 12 that a general hypersurface in the families No. $3,60,75,83,87,93$ cannot have a birational transformation to an elliptic fibration. We are able to prove that it is also true for every quasi-smooth hypersurface in the families No. $3,75,83,87,93$, using the methods given in this paper. However, in the family No. 60 , it is no longer true for an arbitrary quasi-smooth hypersurface.

Example 6.2. Let X_{24} be a quasi-smooth hypersurface in the family No. 60. Suppose, in addition, that X_{24} contains the curve $L_{z w}$. We may then assume that it is defined by the equation

$$
\begin{aligned}
& w^{2} t+w\left(a t^{2} x^{3}+t g_{9}(x, y, z)+g_{15}(x, y, z)\right)+ \\
& t^{4}+t^{3} h_{6}(x, y, z)+t^{2} h_{12}(x, y, z)+t h_{18}(x, y, z)+h_{24}(x, y, z)=0
\end{aligned}
$$

in $\mathbb{P}(1,4,5,6,9)$. For the hypersurface X_{24} to be quasi-smooth at the point O_{z}, the polynomial h_{24} must contain the monomial $y z^{4}$. For the hypersurface X_{24} to contain the curve $L_{z w}$, the polynomial g_{15} does not contain the monomial z^{3}.

Consider the projection $\pi: X_{24} \rightarrow \mathbb{P}(1,4,6)$. Its general fiber is an irreducible curve birational to an elliptic curve. To see this, on the hypersurface X_{24}, consider the surface cut by $y=\lambda x^{4}$ and the surface cut by $t=\mu x^{6}$, where λ and μ are sufficiently general complex numbers. Then the intersection of these two surfaces is the 1 -cycle $4 L_{z w}+C_{\lambda, \mu}$, where $C_{\lambda, \mu}$ is a curve defined by the equation

$$
\begin{gathered}
\lambda w^{2} x^{2}+w\left(\mu^{2} x^{11} g_{0}+\mu x^{2} g_{9}\left(x, \lambda x^{4}, z\right)+\frac{g_{15}\left(x, \lambda x^{4}, z\right)}{x^{4}}\right)+ \\
\mu^{4} x^{20}+\mu^{3} x^{14} h_{6}\left(x, \lambda x^{4}, z\right)+\mu^{2} x^{8} h_{12}\left(x, \lambda x^{4}, z\right)+\mu x^{2} h_{18}\left(x, \lambda x^{4}, z\right)+\frac{h_{24}\left(x, \lambda x^{4}, z\right)}{x^{4}}=0
\end{gathered}
$$

in $\mathbb{P}(1,5,9)$. Plugging $x=1$ into the equation, we see that the curve $C_{\lambda, \mu}$ is birational to a double cover of \mathbb{C} ramified at four distinct points.

In some of the 95 families of Reid and Fletcher, special quasi-smooth hypersurfaces may have simpler geometry than their general representatives.

Example 6.3. Let X_{5} be a quasi-smooth hypersurface in $\mathbb{P}(1,1,1,1,2)$ (the family No. 2). The hypersurface X_{5} can be given by

$$
t w^{2}+w f_{3}(x, y, z, t)+f_{5}(x, y, z, t)=0 .
$$

The natural projection $X_{5} \rightarrow \mathbb{P}^{3}$ is a generically double cover. Therefore, it induces a birational involution of X_{5}, denoted by τ. By Theorem 3.3.4, the birational automorphism group $\operatorname{Bir}(X)$ is generated by the biregular automorphism group $\operatorname{Aut}(X)$ and the involution τ. By Main Theorem, the hypersurface X_{5} is birationally rigid. Moreover, if the hypersurface X_{5} is general, then it is not birationally super-rigid, i.e., $\operatorname{Bir}(X) \neq \operatorname{Aut}(X)$. However, in a
special case, the involution τ can be biregular, and hence the hypersurface X_{5} is birationally super-rigid. To be precise, the involution τ is biregular if and only if the coefficient polynomial f_{3} of w is a zero polynomial. Thus, the hypersurface X_{5} is birationally super-rigid if and only if f_{3} is a zero polynomial.

However, this is not always the case, i.e., special quasi-smooth hypersurfaces usually have more complicated geometry than their general representatives. Here we provide three illustrating examples.

Example 6.4. Let X_{4} be a smooth quartic threefold in \mathbb{P}^{4} (the family No. 1). From Theorem 1.1 .3 we know that every smooth quartic hypersurface in \mathbb{P}^{4} admits no non-biregular birational automorphisms. Moreover, it was proved in [6] that every rational map $\rho: X_{4} \rightarrow \mathbb{P}^{2}$ whose general fiber is birational to a smooth elliptic curve fits a commutative diagram

where π is a linear projection from a line and σ is a birational map. Furthermore, it was proved in [14] that every Halphen pencil on X_{4} is contained in $\left|-K_{X_{4}}\right|$ provided that X_{4} satisfies some generality assumptions. Earlier, Iskovskikh pointed out in 32 that this is no longer true for an arbitrary smooth quartic hypersurface in \mathbb{P}^{4}. Indeed, a special smooth quartic hypersurface in \mathbb{P}^{4} may have a Halphen pencil contained in $\left|-2 K_{X_{4}}\right|$. The complete classification of Halphen pencils on X_{4} was obtained in [11].

Example 6.5 (For details see the proof of Theorem4.3.1). Let X_{14} be a quasi-smooth hypersurface in $\mathbb{P}(1,2,3,4,5)$ (the family No. 23). If X_{14} is a general such hypersurface, then there exists an exact sequence of groups

$$
1 \longrightarrow \Gamma_{X_{14}} \longrightarrow \operatorname{Bir}\left(X_{14}\right) \longrightarrow \operatorname{Aut}\left(X_{14}\right) \longrightarrow 1
$$

where $\Gamma_{X_{14}}$ is a free product of two birational involutions constructed in Section 4.2. This follows from [12, Lemma 4.2] (cf. Theorem 3.3.4). Moreover, let $\rho: X_{14} \rightarrow \mathbb{P}^{2}$ be a rational map whose general fiber is birational to a smooth elliptic curve. If X_{14} is general, then there exists a commutative diagram

where ϕ is the natural projection and σ is some birational map. Suppose now that X_{14} is defined by the equation

$$
\left(t+b y^{2}\right) w^{2}+y t\left(t-\alpha_{1} y^{2}\right)\left(t-\alpha_{2} y^{2}\right)+z^{4} y+x t z^{3}+x f_{13}(x, y, z, t, w)+y g_{12}(y, z, t, w)=0
$$

Then none of these assertions are true. Indeed, let \mathcal{H} be the linear subsystem of $\left|-5 K_{X_{14}}\right|$ generated by $x^{5}, x y^{2}, x^{3} y$ and $y z+x t$. Let $\pi: X_{14} \rightarrow \mathbb{P}(1,2,5)$ be the rational map induced by

$$
[x: y: z: t: w] \mapsto[x: y: y z+x t]
$$

Then π is dominant and its general fiber is birational to an elliptic curve . Let $f: Y \rightarrow X_{14}$ be the weighted blow up at the point O_{z} with weight $(1,1,2)$. Denote by E its exceptional surface. Let $g: W \rightarrow Y$ be the weighted blow up at the point over O_{w} with weight $(1,2,3)$. Denote by G be its exceptional divisor. Denote by $\hat{L}_{z w}, \hat{L}_{z t}$ and $\hat{L}_{y w}$ the proper transforms of the curves $L_{z w}, L_{z t}$ and $L_{y w}$ by the morphism $f \circ g$. Then the curves $\hat{L}_{z w}$ and $\hat{L}_{z t}$ are the only curves that intersect $-K_{W}$ negatively. Moreover, there is an anti-flip $\chi: W \rightarrow U$ along the curves $\hat{L}_{z w}$ and $\hat{L}_{z t}$ (see the proof of Theorem 4.3.1). Let \check{E} and \check{G} be the proper transforms on U of the divisors E and G, respectively. For $m \gg 0$, the linear system $\left|-m K_{U}\right|$ is free and gives an elliptic fibration $\eta: U \rightarrow \Sigma$, where Σ is a normal surface. Furthermore, there exist a commutative diagram

where θ is a birational map. The divisor \check{G} is a section of the elliptic fibration η and \check{E} is a 2 -section of η. Let τ_{U} be a birational involution of the threefold U that is induced by the reflection of the general fiber of η with respect to the section \check{G}. The involution τ_{U} induces a birational involution of X_{14}. This new involution is not biregular and not contained in the subgroup of the birational automorphism group $\operatorname{Bir}\left(X_{14}\right)$ generated by two birational involutions constructed in Section 4.2.
Example 6.6. Let X_{17} be a quasi-smooth hypersurface in $\mathbb{P}(1,2,3,5,7)$ (the family No. 33). Then it can be given by the quasi-homogenous polynomial equation

$$
\begin{gathered}
\left(d x^{3}+e x y+z\right) w^{2}+t^{2}\left(a_{1} w+a_{2} y t\right)+z^{4}\left(b_{1} t+b_{2} y z\right)+ \\
y^{5}\left(c_{1} w+c_{2} y t+c_{3} y^{2} z+c_{4} y^{3} x\right)+w f_{10}(x, y, z, t)+f_{17}(x, y, z, t)=0 .
\end{gathered}
$$

The pencil $\left|-2 K_{X_{17}}\right|$ is a Halphen pencil. Moreover, if the defining equation of X_{17} is sufficiently general, then this is the only Halphen pencil on X_{17} (see [14, Corollary 1.1]). Suppose that $c_{1}=c_{2}=0$ and $c_{3} \neq 0$. Then we may assume that $c_{3}=1$ and $c_{4}=0$ by a coordinate change. Here we encounter an extra Halphen pencil. Indeed, the pencil on X_{17} cut out by $\lambda x^{3}+\mu z=0$, where $[\lambda: \mu] \in \mathbb{P}^{1}$, is a Halphen pencil contained in $\left|-3 K_{X_{17}}\right|$ and different from the Halphen pencil $\left|-2 K_{X_{17}}\right|$.

Calabi problem

In many applications it is useful to measure how singular effective \mathbb{Q}-divisors D equivalent to $-K_{X}$ can be. A possible measurement is given by the so-called α-invariant of the Fano hypersurface X. It is defined by the number

$$
\alpha(X)=\sup \left\{\begin{array}{l|l}
\lambda \in \mathbb{Q} & \begin{array}{l}
\text { the log pair }(X, \lambda D) \text { is Kawamata log terminal } \\
\text { for every effective } \mathbb{Q} \text {-divisor } D \sim_{\mathbb{Q}}-K_{X} .
\end{array}
\end{array}\right\} .
$$

If X is a general hypersurface in its family, then $\alpha(X)=1$ by [8, Theorem 1.3] and [9, Theorem 1.15] except the case when X belongs to the families No. 1, 2, 3, 4 or 5 . If X is a general quartic threefold in \mathbb{P}^{3} (the family No. 1), we have $\alpha(X) \geq \frac{7}{9}$ by [16, Theorem 1.1.6]. If X is a double cover of \mathbb{P}^{3} ramified along smooth sextic surface (the family No. 3), then all possible values of $\alpha(X)$ are found in [16, Theorem 1.1.5]. For general threefolds in the families No. 2, 4 and 5, the bound $\alpha(X)>\frac{3}{4}$ proved in [8] and [10]. In particular, we have

Corollary 6.7. Let X be a quasi-smooth hypersurface of degrees d with only terminal singularities in the weighted projective space $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$, where $d=\sum a_{i}$. Suppose that X is a general hypersurface in this family. Then $\alpha(X)>\frac{3}{4}$.

Similarly, we can define the α-invariant of any Fano variety with at most Kawamata log terminal singularities. This invariant has been studied intensively by many people who used different notations for it. The notation $\alpha(X)$ is due to Tian who defined the α-invariant in a different way (see [49]). However, his definition coincides with the one we just gave (see [17, Theorem A.3]).

Tian proved in [49] that a smooth Fano variety of dimension n whose α-invariant is greater than $\frac{n}{n+1}$ admits a Kähler-Einstein metric. This result was generalized for Fano varieties with quotient singularities by Demailly and Kollár (see [26, Criterion 6.4]). Thus, Corollary 6.7 implies

Theorem 6.8. Let X be a quasi-smooth hypersurface of degrees d with only terminal singularities in the weighted projective space $\mathbb{P}\left(1, a_{1}, a_{2}, a_{3}, a_{4}\right)$, where $d=\sum a_{i}$. Suppose that X is a general hypersurface in this family. Then X is admits an orbifold Kähler-Einstein metric.

Recently, Chen, Donaldson and Sun and independently Tian proved that a smooth Fano variety admits a Kähler-Einstein metric if and only if it is K-stable (see [19], [20], [21], [22] and [50]). Earlier Odaka and Okada proved that birationally super-rigid smooth Fano varieties with base-point-free anticanonical linear systems must be slope-stable (see [40]). Furthermore, Odaka and Sano proved that Fano varieties of dimension n with at most log terminal singularities whose α-invariants are greater than $\frac{n}{n+1}$ must be K-stable (see [40). These results suggest that every quasi-smooth hypersurface in the 95 families of Fletcher and Reid should admit an orbifold Kähler-Einstein metric.

Using methods we developed in the proof of Main Theorem, it is possible to explicitly describe all quasi-smooth hypersurfaces in the 95 families of Fletcher and Reid whose α invariants are greater than $\frac{3}{4}$. All of them must admit orbifold Kähler-Einstein metrics by [26, Criterion 6.4].

The α-invariants can be applied to the non-rationality problem on products of Fano varieties. In particular, we can apply [8, Theorem 6.5] to quasi-smooth hypersurfaces in the 95 families of Fletcher and Reid whose α-invariants are 1 .

Arithmetics

As it was pointed out by Pukhlikov and Tschinkel, the problem (1) is closely related to the problem of potential density of rational points on X in the case when X is defined over a number field. For example, if $\operatorname{Bir}(X)$ is infinite, then we are able to show that X contains infinitely many rational surfaces. It implies the potential density of rational points on X.

The papers [4], [5], 30] use birational transformations into elliptic fibrations in order to prove the potential density on all smooth Fano threefolds possibly except double covers of \mathbb{P}^{3} ramified along smooth sextic surfaces (the family No. 3 in the list of Fletcher and Reid).

If X is defined over a number field, it seems likely that the set of rational points on X is potentially dense. For every smooth quartic threefold in \mathbb{P}^{4} (the family No. 1), this was proved by Harris and Tschinkel in [30]. For general Fano hypersurfaces in the families No. 2, 4, 5, 6, $7,9,11,12,13,15,17,19,20,23,25,27,30,31,33,36,38,40,41,42,44,58,61,68$ and 76 , this was proved in [12] and [15]. Despite many attempts, this problem is still open for double covers of \mathbb{P}^{3} ramified along smooth sextic surfaces.

The methods we use in the proof of Main Theorem can be applied to prove the potential density of rational points on the quasi-smooth hypersurfaces in some families in the list of Fletcher and Reid. In fact, for some families we can use our methods to prove the density of rational points on X (see [12, Page 84 and Section 5]).

Fano threefold complete intersections

In 2013 and 2014, after the present paper was announced on ArXiv, new results on the birational rigidity of Fano threefold complete intersections were introduced ([1], [41). Like the 95 families of Fano threefold hypersurfaces, it is well known that there are 85 families of Fano threefold complete intersections of codimension 2 ([29, Table 6]). In addition, it is also known that there is only one family of Fano threefold complete intersections of codimension 3, i.e., complete intersections of three quadrics in \mathbb{P}^{6}. There is no Fano threefold complete intersections of codimensions 4 and higher ([18]). The lists of Fano threefold complete intersections in [29, Tables 5, 6, and 7] are proved to be complete ([18]). In 1996, a general member in the family of complete intersections of quadrics and cubics in \mathbb{P}^{5} is proved to be birationally rigid ([34). In 2013, Odaka announced that general members in 19 families out of the 85 families of Fano threefold complete intersections of codimension 2 are birationally rigid and that general members in the other 64 families are not birationally rigid ([41). After Odaka, a proof of the birational rigidity of quasi-smooth complete intersections in the 19 families (except the family of smooth complete intersections of quadrics and cubics in \mathbb{P}^{5}) is announced by Ahmadinezhad and Zucconi ($\mathbb{1}$).

References

[1] H. Ahmadinezhad, F. Zucconi, Birational rigidity of Fano 3-folds and Mori dream spaces, arXiv:1407.3724.
[2] A. Beauville, Non-rationality of the symmetric sextic Fano threefold, Geometry and arithmetic, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich (2012), 57-60.
[3] C. Birkar, P. Cascini, C. Hacon, J. McKernan, Existence of minimal models for varieties of \log general type, J. Amer. Math. Soc. 23 (2010), 405-468.
[4] F. Bogomolov, Yu. Tschinkel, On the density of rational points on elliptic fibrations, J. Reine Angew. Math., 511 (1999), 87-93.
[5] F. Bogomolov, Yu. Tschinkel, Density of rational points on elliptic K3 surfaces, Asian J. Math. 4 (2000), 351-368.
[6] I. Cheltsov, Log models of birationally rigid varieties, J. Math. Sci. (New York) 102 (2000), 3843-3875.
[7] I. Cheltsov, Elliptic structures on weighted three-dimensional Fano hypersurfaces, Izv. Math., 71 (2007) 765-862.
[8] I. Cheltsov, Fano varieties with many selfmaps, Adv. Math. 217 (2008), 97-124.
[9] I. Cheltsov, Log canonical thresholds of Fano threefold hypersurfaces, Izv. Math., 73 (2009) 727-795.
[10] I. Cheltsov, Extremal metrics on two Fano manifolds, Sb. Math. 200 (2009), 95-132.
[11] I. Cheltsov, I. Karzhemanov, Halphen pencils on quartic threefolds, Adv. Math. 223 (2010), 594-618.
[12] I. Cheltsov, J. Park, Weighted Fano threefold hypersurfaces, J. Reine Angew. Math., 600 (2006), 81-116.
[13] I. Cheltsov, J. Park, Two remarks on sextic double solids, J. Number Theory 122 (2007), 1-12.
[14] I. Cheltsov, J. Park, Halphen Pencils on weighted Fano threefold hypersurfaces, Cent. Eur. J. of Math., 7 (2009), 1-45.
[15] I. Cheltsov, J. Park, Sextic double solids, Cohomological and geometric approaches to rationality problems, Progr. Math. 282, Birkhäuser Boston, Inc., Boston, MA (2010), 75-132.
[16] I. Cheltsov, J. Park, J. Won, Log canonical thresholds of certain Fano hypersurfaces, Math. Z. 276 (2014), no. 1-2, 51-79.
[17] I. Cheltsov, C. Shramov, Log canonical thresholds of smooth Fano threefolds (with an appendix by Jean-Pierre Demailly), Russian Math. Surveys 63 (2008), 73-180.
[18] J.-J. Chen, J. Chen and M. Chen, On quasismooth weighted complete intersections, J. Algebraic Geom. 20 (2011), 239-262.
[19] X.-X. Chen, S. Donaldson, S. Sun, Kähler-Einstein metrics and stability, Int. Math. Res. Not. 2014, no. 8, 2119-2125.
[20] X.-X. Chen, S. Donaldson, S. Sun, Kähler-Einstein metrics on Fano manifolds, I: approximation of metrics with cone singularities, preprint, arXiv:1211.4566 (2012).
[21] X.-X. Chen, S. Donaldson, S. Sun, Kähler-Einstein metrics on Fano manifolds, II: limits with cone angle less than 2π, to appear in J. Amer. Math. Soc..
[22] X.-X. Chen, S. Donaldson, S. Sun, Kähler-Einstein metrics on Fano manifolds, III: limits as cone angle approaches 2π and completion of the main proof, to appear in J. Amer. Math. Soc..
[23] A. Corti, Factorizing birational maps of threefolds after Sarkisov, J. of Algebraic Geom. 4 (1995), 223-254.
[24] A. Corti, Singularities of linear systems and 3-fold birational geometry, L.M.S. Lecture Note Series 281 (2000), 259-312.
[25] A. Corti, A. Pukhlikov, M. Reid, Fano 3-fold hypersurfaces, L.M.S. Lecture Note Series 281 (2000), 175-258.
[26] J.-P.Demailly, J.Kollár, Semi-continuity of complex singularity exponents and KählerEinstein metrics on Fano orbifolds, Ann. Sci. École Norm. Sup. 34 (2001), 525-556.
[27] T. de Fernex, Birationally rigid hypersurfaces, Invent. Math. 192 (2013), 533-566.
[28] T. de Fernex, L. Ein, Resolution of indeterminacy of pairs, Algebraic geometry, 165-177, de Gruyter, Berlin, 2002.
[29] A. Fletcher, Working with weighted complete intersections, L.M.S. Lecture Note Series 281 (2000), 101-173.
[30] J. Harris, Yu. Tschinkel, Rational points on quartics, Duke Math. J. 104 (2000), 477-500.
[31] V. Iskovskikh, Birational automorphisms of three-dimensional algebraic varieties, Current problems in mathematics 12, 159-236, VINITI, Moscow, 1979.
[32] V. Iskovskikh, Birational rigidity of Fano hypersurfaces in the framework of Mori theory, Russian Math. Surveys 56 (2001) 207-291.
[33] V. Iskovskikh, Yu. Manin, Three-dimensional quartics and counterexamples to the L̈̈oth problem, Mat. Sb. 86 (1971), 140-166.
[34] V. Iskovskikh, A. Pukhlikov, Birational automorphisms of multidimensional algebraic manifolds, J. Math. Sci. 82 (1996) 3528-3613.
[35] Y. Kawamata, Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces, Ann. of Math. (2) 127 (1988), no. 1, 93-163.
[36] Y. Kawamata, Divisorial contractions to 3-dimensional terminal quotient singularities, Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin (1996), 241-246.
[37] S. Keel, K. Matsuki, J. McKernan, Log abundance theorem for threefolds, Duke Math. J. 75 (1994), 99-119.
[38] J. Kollár, S. Mori, Birational geometry of algebraic varieties, Cambridge University Press (1998).
[39] Yu. Odaka, T. Okada, Birational superrigidity and slope stability of Fano manifolds, Math. Z. 275 (2013), no. 3-4, 1109-1119.
[40] Yu. Odaka, Yu. Sano, Alpha invariant and K-stability of \mathbb{Q}-Fano varieties, Adv. Math. 229 (2012), 2818-2834.
[41] T. Okada, Birational Mori fiber structures of \mathbb{Q}-Fano 3-fold weighted complete intersections, to apear in Proc. Lond. Math. Soc..
[42] Yu. Prokhorov, Lectures on complements on log surfaces, MSJ Memoirs, 10, Mathematical Society of Japan, Tokyo, 2001. viii+130 pp.
[43] Yu. Prokhorov, Simple finite subgroups of the Cremona group of rank 3, J. Algebraic Geom. 21 (2012), 563-600.
[44] A. Pukhlikov, Birational automorphisms of Fano hypersurfaces, Invent. Math. 134 (1998), no. 2, 401-426.
[45] M. Reid, Canonical 3-folds, Journées de Géometrie Algébrique d'Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, pp. 273-310, Sijthoff \& Noordhoff, Alphen aan den Rijn-Germantown, Md., 1980.
[46] T. Shioda, On elliptic modular surfaces, J. Math. Soc. Japan, 24 (1972), no. 1, 20-59.
[47] J. Silverman, The arithmetic of elliptic curves, Second edition. Graduate Texts in Mathematics 106. Springer, Dordrecht, 2009.
[48] V. Shokurov, 3-fold log flips, Russian Acad. Sci. Izv. Math. 40 (1993), no. 1, 105-203.
[49] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $c_{1}(M)>0$, Invent. Math. 89 (1987), 225-246.
[50] G. Tian, K-stability and Kähler-Einstein metrics, preprint, arXiv:1211.4669 (2012).

Ivan Cheltsov

School of Mathematics, The University of Edinburgh
Edinburgh, EH9 3JZ, UK
I.Cheltsov@ed.ac.uk

Jihun Park
Center for Geometry and Physics, Institute for Basic Science (IBS)
77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 790-784, Korea.
Department of Mathematics, POSTECH
77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 790-784, Korea.
wlog@postech.ac.kr

