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MULTI-RECURRENCE AND VAN DER WAERDEN SYSTEMS

DOMINIK KWIETNIAK, JIAN LI, PIOTR OPROCHA, AND XIANGDONG YE

ABSTRACT. We explore recurrence properties arising from dynamical approach to the
van der Waerden Theorem and similar combinatorial problems. We describe relations
between these properties and study their consequences for dynamics. In particular, we
present a measure-theoretical analog of a result of Glasneron multi-transitivity of topo-
logically weakly mixing minimal maps. We also obtain a dynamical proof of the existence
of aC-set with zero Banach density.

1. INTRODUCTION

We study multiple-recurrence properties of dynamical systems on compact metric spac-
es. We use topological dynamics to characterize selected classes of subsets ofN (e.g. IP-
sets, C-sets, etc.) and to gain a better understanding of some classes of transitive systems.
The idea goes back to the work of Furstenberg in the 1970s.

Our starting point is the following result published in [35].

Van der Waerden Theorem. If N is partitioned into finitely many subsets, then one of
these sets contains arithmetic progressions of arbitrary finite length.

In 1978, Furstenberg and Weiss [14] obtained a dynamical proof of the van der Waerden
Theorem. They proved the Topological Multiple Recurrence Theorem and showed that it
is equivalent to the van der Waerden Theorem. “Equivalent” means here that any of these
results may be proved by assuming the other is true.

Topological Multiple Recurrence Theorem.Let(X,T) be a compact dynamical system.
Then there exists a point x∈ X such that for any d∈ N there is a strictly increasing
sequence{nk}

∞
k=1 in N with Tinkx→ x as k→ ∞ for every i= 1,2, . . . ,d.

We call a pointx ∈ X fulfilling the conclusion of the topological multiple recurrence
theorem amulti-recurrent point. In Section 3 we show that the set of all multi-recurrent
points is aGδ subset ofX; it is a residual set if(X,T) is minimal; and when(X,T) is
distal or uniformly rigid, then every point is multi-recurrent. We also provide an example
of a substitution subshift with minimal points which are notmulti-recurrent. Then we
prove that multi-recurrent points can be lifted through a distal extension but this does not
need to hold for a proximal extension (we strongly believe that it can not be lifted by
weakly mixing extension, but we do not have an example at thismoment). Using ergodic
theory we show that the collection of multi-recurrent points which return to any of their

Date: September 5, 2016.
2010Mathematics Subject Classification.37B20, 37B05, 37A25, 05D10.
Key words and phrases.Multi-recurrent points, van der Waerden systems, MultipleRecurrence Theo-

rem, multiple IP-recurrent property, multi-non-wandering points.
Corresponding author: Jian Li (lijian09@mail.ustc.edu.cn).

1

http://arxiv.org/abs/1501.01491v3


2 DOMINIK KWIETNIAK, JIAN LI, PIOTR OPROCHA, AND XIANGDONG YE

neighborhoods with positive upper density has full measurefor every invariant measure.
If the invariant measure is weakly mixing and fully supported then for almost everyx∈ X
and everyd ≥ 1 the diagonald-tuple (x,x, . . . ,x) has a dense orbit under the action of
T×T2× ·· ·×Td, which can be viewed as a measure-theoretical version of a result of
Glasner on topological weakly mixing minimal maps [16].

Let us mention another equivalent version of the Topological Multiple Recurrence
Theorem which shows the relationship between these resultsand Furstenberg’s Multiple
Recurrence Theorem for measure preserving systems (the so-called “ergodic Szemerédi
Theorem”). It also comes from [14, Theorem 1.5]. For a short and elegant proof see [15,
Theorem 1.56].

Topological Multiple Recurrence Theorem II. If a dynamical system(X,T) is minimal,
then for any d∈ N and any non-empty open subset U of X, there exists a positive integer
n≥ 1 with

U ∩T−nU ∩T−2nU ∩· · ·∩T−dnU 6= /0.

Inspired by this result, we introduce a new class of dynamical systems, which we call
van der Waerden systems, that is systems(X,T) such that for every non-empty open
subsetU of X and for everyd ∈ N there exists ann∈ N such that

U ∩T−nU ∩T−2nU ∩· · ·∩T−dnU 6= /0

and we will study their basic properties in Section 4. By the second variant of Topological
Multiple Recurrence Theorem every minimal system is a van der Waerden system and it
is also not hard to see that(X,T) is a van der Waerden system if and only if its multi-
recurrent points are dense inX.

A generalization of van der Waerden Theorem is Szemerédi’sTheorem [34], proved in
1975.

Szemeŕedi Theorem. If F ⊂ N has positive upper density, then it contains arithmetic
progressions of arbitrary finite length.

Two years later, in 1977, Furstenberg presented a new proof of Szemerédi Theorem
using dynamical systems approach. Furstenberg’s proof is based on the equivalence of
Szemerédi Theorem and the following Multiple Recurrence Theorem (see [11]).

Multiple Recurrence Theorem. If (X,B,µ) is a probability space and T is a measure
preserving transformation of(X,B,µ), then for any d∈N and any set A∈B with µ(A)>
0, there exists an integers n≥ 1 with

µ(A∩T−nA∩· · ·T−2nA∩· · ·∩T−dnA)> 0.

It follows that every compact dynamical system with a fully supported invariant mea-
sure is a van der Waerden system. We examine whether the converse is true. It turns
out that there exists a topologically strongly mixing system which is a van der Waerden
system, but the only invariant measure is a point mass on a fixed point, see Remark 5.6.
We also provide an example of a strongly mixing system which is not a van der Waerden
system.

While we were preparing this paper we found a work of Host et al. [20] which studies
closely related problems, but from a different point of viewwhich emphasises the con-
nection between recurrence properties and associatedsets of (multiple) recurrence(see
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[20, Definitions 2.1 & 2.9]). Here we focus on recurrence of a single point in a concrete
dynamical systems, and this complements the approach of [20].

Our study of van der Waerden systems leads naturally toAP-recurrent points. We say
that a pointx is AP-recurrent if for every neighborhoodU of x the set of return times
of x to U contains arithmetic progressions of arbitrary finite length. It is clear that every
multi-recurrent point isAP-recurrent, but the converse is not true. It is a consequence
of the following characterization: a point isAP-recurrent if and only if the closure of its
orbit is a van der Waerden system. A nice property ofAP-recurrent points is that they can
be lifted through factor maps.

In [12], Furstenberg defined central subsets ofN in terms of some notions from topo-
logical dynamics. He showed that any finite partition ofN must contain a central set in
one of its cells and proved the following Central Sets Theorem [12, Proposition 8.21].

Central Sets Theorem.Let C be a central set ofN. Let d∈N and for each i∈{1,2, . . . ,d},

let{p(i)n }
∞
n=1 be a sequence inZ. Then there exist a sequence{an}

∞
n=1 inN and a sequence

{Hn}
∞
n=1 of finite subsets ofN such that

(1) for every n∈ N, maxHn < minHn+1 and
(2) for every finite subset F ofN and every i∈ {1,2, . . . ,d},

∑
n∈F

(

an+ ∑
j∈Hn

p(i)j

)

∈C.

Central Sets Theorem has very strong combinatorial consequences, such as Rado’s
Theorem [32]. The authors in [8] proved a stronger version ofthe Central Sets Theorem
valid for an arbitrary semigroupSand proposed to call a subset ofSa C-set if it satisfies
the conclusion of this version of the Central Sets Theorem. Adynamical characterization
of C-sets was obtained in [27] by introducing a class of dynamical systems satisfying
the multiple IP-recurrence property. Note that C-sets considered in [27] are subsets of
Z, however Neil Hindman pointed out to the second author of this paper that a similar
characterization also holds for C-sets inN. 1 A dynamical characterization of C-sets in
an arbitrary semigroupS is provided in [24] .

We study the multiple IP-recurrence property in Section 5. We show that every transi-
tive system with the multiple IP-recurrence property is either equicontinuous or sensitive.
This result generalizes theorems of Akin, Auslander and Berg [1] and Glasner and Weiss
[18]. We also provide an example of a strongly mixing system which is a van der Waerden
system but does not have the multiple IP-recurrence property. We characterize bounded
density shifts with the multiple IP-recurrent property. Combining this result with the dy-
namical characterization ofC-sets we obtain a dynamical proof of the main result of [19]:
there is aC-set inN with zero Banach density.

As seen above, the notion of a multi-recurrent point, which is parallel to the notion
of a recurrent point provides some insight to the theory of dynamical systems. In the
same spirit we define the notion of a multi-non-wandering point parallel to the classical
notion of a non-wandering point. In section 6, we study the relations between multi-non-
wandering points and the sets containing arithmetic progressions of arbitrary finite length.
In particular, we provide a link between multi-non-wandering sets andAP-recurrence.

1See also the review of [27] by N. Hindman in MathSciNet, MR2890544.
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By what we said above, it is easy to see that a transitive van der Waerden system can
be viewed as a generalization of anE-system (transitive system with a full supported
invariant measure). In a transitive van der Waerden system each transitive point isAP-
recurrent, and the set of multi-recurrent points is dense. Note that for anE-system, the
return time set of a transitive point to its neighborhood haspositive upper Banach density
and at the same time, the set of recurrent points with positive lower density of return time
sets is dense. For anM-system (transitive system with a dense set of minimal points), this
can be explained using piecewise syndetic sets and syndeticsets.

2. PRELIMINARIES

In this section, we present basic notations, definitions andresults.

2.1. Subsets of positive integers.Denote byN (Z+ andZ, respectively) the set of all
positive integers (nonnegative integers and integers, respectively).

A Furstenberg familyor simply afamilyonN is any collectionF of subsets ofN which
is hereditary upwards, i.e. ifA ∈ F andA⊂ B⊂ N thenB ∈ F. A dual family for F,
denoted byF∗, consists of sets that meet every element ofF, i.e. A∈ F∗ provided that
N\A 6∈ F. Clearly,F∗∗ = F.

Given a sequence{pi}
∞
i=1 in N, define the set of finite sums of{pi}

∞
i=1 as

FS{pi}
∞
i=1 =

{

∑
i∈α

pi : α is a non-empty finite subset ofN
}

.

We say that a subsetF of N is

(1) anIP-setif there exists a sequence{pi}
∞
i=1⊂ N such thatFS{pi}

∞
i=1⊂ F;

(2) anAP-setif it contains arbitrarily long arithmetic progressions, that is, for every
d ≥ 1, there area,n∈ N such that{a,a+n, . . . ,a+dn} ⊂ F. The family of all
AP-sets is denoted byAP;

(3) thick if it contains arbitrarily long blocks of consecutive integers, that is, for every
d≥ 1 there isn∈ N such that{n,n+1, . . . ,n+d} ⊂ F ;

(4) syndeticif it has bounded gaps, that is, for someN ∈ N and everyk∈ N we have
{k,k+1, . . . ,k+N}∩F 6= /0;

(5) co-finiteit it has finite complement, i.e.N\F is finite.
(6) anIP∗-set(AP∗-set, respectively) if it has non-empty intersection with everyIP-

set (AP-set, respectively), that is it belongs to an appropriate dual family.

It is easy to see that a subsetF of N is syndetic if and only if it has non-empty intersec-
tion with every thick set, i.e. is in the family dual to all thick sets. Every thick set is an
IP-set, hence every IP∗-set is syndetic.

A family F has theRamsey propertyif F ∈ F andF = F1∪F2 imply that Fi ∈ F for
somei ∈ {1,2}. It is not hard to see that the van der Waerden theorem is equivalent to the
fact that the familyAP has the Ramsey property.

Let F be a subset ofZ+. Define theupper densityd(F) of F by

d(F) = limsup
n→∞

#(F ∩ [0,n−1])
n

,
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where #(·) is the number of elements of a set. Similarly,d(F), thelower densityof F , is
defined by

d(F) = lim inf
n→∞

#(F ∩ [0,n−1])
n

.

Theupper Banach density BD∗(F) andlower Banach density BD∗(F) are defined by

BD∗(F) = limsup
N−M→∞

#(F ∩ [M,N])

N−M+1
, BD∗(F) = lim inf

N−M→∞

#(F ∩ [M,N])

N−M+1
.

2.2. Topological dynamics. By a (topological) dynamical systemwe mean a pair(X,T)
consisting of a compact metric space(X,ρ) and a continuous mapT : X → X. If X
is a singleton, then we say that(X,T) is trivial . If K ⊂ X is a nonempty closed sub-
set satisfyingT(K) ⊂ K, then we say that(K,T) is a subsystemof (X,T) and (X,T)
is minimal if it has no proper subsystems. The(positive) orbit of x under Tis the set
Orb(x,T) = {Tnx: n∈ Z+}. Clearly,

(

Orb(x,T),T
)

is a subsystem of(X,T) and(X,T)

is minimal if Orb(x,T) = X for everyx∈ X.
We say that a pointx∈ X is

(1) minimal, if x belongs to some minimal subsystem of(X,T);
(2) recurrent, if lim inf n→∞ ρ(Tnx,x) = 0;
(3) transitive, if Orb(x,T) = X.

For a pointx∈ X and subsetsU,V ⊂ X, we define the following sets oftransfer times:

N(U,V) = {n∈ N : TnU ∩V 6= /0}= {n∈ N : U ∩T−nV 6= /0},

N(x,U) = {n∈ N : Tnx∈U}.

To emphasize that we are calculating the above sets using transformationT we will some-
times writeNT(x,U) andNT(U,V).

We say that a dynamical system(X,T) is

(1) transitiveif N(U,V) 6= /0 for every two non-empty open subsetsU andV of X;
(2) totally transitiveif (X,Tn) is transitive for everyn∈ N;
(3) (topologically) weakly mixingif the product system(X×X,T×T) is transitive;
(4) (topologically) strongly mixingif for every two non-empty open subsetsU andV

of X, the set of transfer timesN(U,V) is cofinite.

Denote by Tran(X,T) the set of all transitive points of(X,T). It is easy to see that if
a dynamical system(X,T) is transitive then Tran(X,T) is a denseGδ subset ofX. It is
also clear that a dynamical system(X,T) is minimal if and only if Tran(X,T) = X, and a
pointx∈ X is minimal if and only if

(

Orb(x,T),T
)

is a minimal system.
The following characterizations of recurrent points and minimal points are well-known

(see, e.g., [12]).

Lemma 2.1. Let (X,T) be a dynamical system. A point x∈ X is

(1) recurrent if and only if for every open neighborhood U of x theset N(x,U) con-
tains an IP-set;

(2) minimal if and only if for every open neighborhood U of x the set N(x,U) is
syndetic.
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A dynamical system(X,T) is equicontinuousif for every ε > 0 there is aδ > 0 such
that if x,y ∈ X with ρ(x,y) < δ thenρ(Tnx,Tny) < ε for n= 0,1,2, . . . . A point x ∈ X
is equicontinuousif for every ε > 0 there is aδ > 0 such that for everyy ∈ X with
ρ(x,y)< δ , ρ(Tnx,Tny)< ε for all n∈ Z+. By compactness,(X,T) is equicontinuous if
and only if every point inX is equicontinuous.

We say that a dynamical system(X,T) hassensitive dependence on initial condition
or briefly (X,T) is sensitiveif there exists aδ > 0 such that for everyx ∈ X and every
neighborhoodU of x there existy∈U andn∈ N such thatρ(Tnx,Tny)> δ .

A transitive system isalmost equicontinuousif there is at least one equicontinuous
point. It is known that if(X,T) is almost equicontinuous then the set of equicontinuous
points coincides with the set of all transitive points and additionally (X,T) is uniformly
rigid, that is for everyε > 0 there exists ann∈ N such thatρ(Tnx,x) < ε for all x∈ X.
We also have the following dichotomy: if a dynamical system(X,T) is transitive, then it
is either almost equicontinuous or sensitive. See [1, 18] for proofs and more details.

A pair (x,y) ∈ X2 is proximal if lim inf n→∞ ρ(Tnx,Tny) = 0, anddistal if it is not
proximal, that is liminfn→∞ ρ(Tnx,Tny) > 0. A pointx is distal if (x,y) is distal for any
y∈Orb(x,T) with y 6= x. If every point inX is distal then we say that(X,T) is distal.

Let (X,T) and (Y,S) be two dynamical systems. If there is a continuous surjection
π : X→Y with π ◦T = S◦π , then we say thatπ is a factor map, the system(Y,S) is a
factor of (X,T) or (X,T) is anextensionof (Y,S).

A factor mapπ : X→Y is:

(1) proximalif (x1,x2) ∈ X2 is proximal providedπ(x1) = π(x2);
(2) distal if (x1,x2) ∈ X2 is distal providedπ(x1) = π(x2) with x1 6= x2;
(3) almost one-to-oneif there exists a residual subsetG of X such thatπ−1(π(x)) =
{x} for anyx∈G.

Let M(X) be the set of Borel probability measures onX. We are interested in those
members ofM(X) that are invariant measures forT. Therefore, denote byM(X,T)
the set consisting of allµ ∈ M(X) making T a measure-preserving transformation of
(X,B(X),µ), whereB(X) is the Borelσ -algebra ofX. By the Krylov-Bogolyubov The-
orem,M(X,T) is nonempty.

Thesupportof a measureµ ∈M(X), denoted by supp(µ), is the smallest closed subset
C of X such thatµ(C) = 1. We say that a measure hasfull supportor is fully supportedif
supp(µ) = X. We say that(X,T) is anE-systemif it is transitive and admits aT-invariant
Borel probability measure with full support.

2.3. Symbolic dynamics. Below we have collected some basic facts from symbolic dy-
namics. The standard reference here is the book of Lind and Marcus [29].

Let {0,1}Z+ be the space of infinite sequence of symbols in{0,1} indexed by the non-
negative integers. Equip{0,1} with the discrete topology and{0,1}Z+ with the product
topology. The space{0,1}Z+ is compact and metrizable. A compatible metricρ is given
by

ρ(x,y) =

{

0, x= y,

2−J(x,y), x 6= y,

whereJ(x,y) = min{i ∈ Z+ : xi 6= yi}.
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A word of lengthn is a sequencew= w1w2 . . .wn ∈ {0,1}n and itslengthis denoted by
|w|= n. Theconcatenationof wordsw= w1w2 . . .wn andv= v1v2 . . .vm is the wordwv=
w1w2 . . .wnv1v2 . . .vm. If u is a word andn∈N, thenun is the concatenation ofn copies of
u andu∞ is the sequence in{0,1}Z+ obtained by infinite concatenation of the wordu. We
say that a wordu= u1u2 . . .uk appears inx= (xi) ∈ {0,1}Z+ at positiont if xt+ j−1 = u j

for j = 1,2, . . . ,k. For x∈ {0,1}Z+ andi, j ∈ Z+, i ≤ j write x[i, j ] = xixi+1 . . .x j . Words
x[i, j) andx(i, j ], x(i, j) are defined in the same way.

The shift mapσ : {0,1}Z+ → {0,1}Z+ is defined byσ(x)n = xn+1 for n ∈ Z+. It is
clear thatσ is a continuous surjection. The dynamical system({0,1}Z+,σ) is called the
full shift. If X is non-empty, closed andσ -invariant (i.e.σ(X)⊂ X), then(X,σ) is called
asubshift.

Given any collectionF of words over{0,1}, we define asubshift specified byF, de-
noted byXF, as the set of all sequences from{0,1}Z+ which do not contain any words
from F. We say thatF is a collection offorbidden words for XF as words fromF are
forbidden to occur inXF.

A cylinder in {0,1}Z+ is any set[u] = {x ∈ X : x0x1 . . .xn−1 = u}, whereu is a word
of lengthn. Note that the family of cylinders in{0,1}Z+ is a base of the topology of
{0,1}Z+. Let X be a subshift of{0,1}Z+. The language of X, denotedL(X), consists of
all words that can appear in somex∈ X, i.e.L(X) = {x[i, j ] : x∈ X, i ≤ j}.

For every wordu∈ L(X), let [u]X = X∩ [u]. Then{[u]X : u∈ L(X)} forms a base of
the topology ofX. Let F = {0,1}∗ \L(X), where{0,1}∗ is the collection of all finite
words over{0,1}. ThenX = XF, that is,F is the set of forbidden words forX.

Remark 2.2. In some examples we will consider sequences indexed by positive inte-
gersN instead ofZ+. That is, we identify{0,1}N with {0,1}Z+. It will simplify some
calculations.

3. MULTI -RECURRENT POINTS

3.1. Definition and basic properties.

Definition 3.1. Let (X,T) be a dynamical system. A pointx∈ X is calledmulti-recurrent
if for every d ≥ 1 there exists a strictly increasing sequence{nk}

∞
k=1 in N such that for

eachi = 1,2, . . . ,d we haveT inkx→ x ask→ ∞.

In other words, a pointx∈ X is multi-recurrent if and only if for everyd≥ 1 the point
(x, . . . ,x) ∈ Xd is recurrent forT ×T2× ·· ·×Td. Equivalently,x is multi-recurrent if
and only if for everyd ≥ 1 and every neighborhoodU of x there existsk ∈ N such that
k,2k, . . . ,dk∈ N(x,U).

While we do not need such generality in the present paper, observe that Definition 3.1
can be stated forZd-actions in a similar manner. A proof of the following observation is
straightforward, thus we leave it to the reader.

Lemma 3.2. Let (X,T) be a dynamical system and x∈ X. Then the following conditions
are equivalent:

(1) x is a multi-recurrent point of(X,T);
(2) x is a multi-recurrent point of(X,Tn) for some n∈ N;
(3) x is a multi-recurrent point of(X,Tn) for any n∈ N.
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The following fact implies that every dynamical system contains a multi-recurrent
point, because every dynamical system has a minimal subsystem. Note that Lemma
3.3 can also be deduced from properties of sets of multiple recurrence provided by [20,
Lemma 2.5]. Results in [20] allow further analysis of returntimes of multi-recurrent
points.

Lemma 3.3. Let (X,T) be a dynamical system.

(1) The set of all multi-recurrent points of(X,T) is a Gδ subset of X.
(2) If (X,T) is minimal, then the set of all multi-recurrent points is residual in X.

Proof. (1): Givend≥ 1, let

Rd =
{

y∈ X : ∃n≥ 1 such thatρ(y,T iny)< 1
d for i = 0,1, . . . ,d}.

It is clear that everyRd is open, henceR=
⋂∞

d=1Rd is aGδ subset ofX. It is easy to see
thatR=

⋂∞
d=1Rd is the set of all multi-recurrent points.

(2): If (X,T) is minimal, then it follows from the Topological Multiple Recurrence
Theorem II thatRd is dense inX for everyd≥ 1. ThusR=

⋂∞
d=1Rd is residual inX. �

Lemma 3.4. If a dynamical system(X,T) is uniformly rigid, then every point in X is
multi-recurrent.

Proof. Fix d≥ 1. Since(X,T) is uniformly rigid, for everyε > 0 there existsn∈ N such
thatρ(Tnx,x) < ε/d for all x∈ X. Then

ρ(x,Tnx)< ε/d, ρ(Tnx,T2nx) < ε/d, . . . ,ρ(T(d−1)nx,Tdnx)< ε/d,

which shows that the diameter of{x,Tnx,T2nx, . . . ,Tdnx} is less thanε. It follows that
(x, . . . ,x) ∈ Xd is recurrent forT ×T2× ·· ·×Td. But d is arbitrary, hencex is multi-
recurrent. �

Remark 3.5. It is shown in [12, Proposition 9.16] that if a point is distalthen it is multi-
recurrent. In particular, in a distal system every point is multi-recurrent.

Remark 3.6. Notice that there exist minimal as well as non-minimal weakly mixing and
uniformly rigid systems (see, respectively, [17] and [10]). By Lemma 3.4, every point in
those systems is multi-recurrent. None of these examples can be a subshift. Furthermore,
a non-trivial strongly mixing dynamical system can never beuniformly rigid by [17].

One of the referees of this paper, motivated by the above remark, suggested the follow-
ing problem.

Question 3.7. Is there a non-trivial weakly mixing subshift or any mixing dynamical
system for which each point is multi-recurrent? Can such a system be minimal?

In [36] it is proved that if each pair in a dynamical(X,T) is positively recurrent un-
der T ×T, then it has zero topological entropy (it is also a consequence of a result in
[6]). Distal or uniformly rigid systems are examples of pointwise multi-recurrent systems
which have zero topological entorpy. But pointwise multi-recurrence does not imply zero
topological entropy in general as shown below.
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Remark 3.8. A dynamical system(X,T) is multi-minimal if for every d ≥ 1 (Xd,T ×
T2×·· ·×Td) is minimal [30]. Clearly, every point in a multi-minimal system is multi-
recurrent. Note that by the proof of [23, Proposition 3.5] there exists a multi-minimal
system with positive topological entropy.

The existence of a system constructed in the following theorem is probably a folklore,
but we were unable to find it in the literature.

Theorem 3.9. For every d≥ 1, there is a minimal point x in the full shift({0,1}Z+,σ)
such that(x,x, . . . ,x) ∈ Xd is recurrent underσ ×σ2×·· ·×σd and(x,x, . . . ,x) ∈ Xd+1

is not recurrent underσ ×σ2×·· ·×σd×σd+1.

Proof. First we consider the cased = 1 and then the general case. Ford = 1, we define
the local rule of a substitution by

τ : 1−→ 1101,

0−→ 0101,

and then extend it to all finite words over{0,1} putting inductivelyτ(uv) = τ(u)τ(v). Let
x= (xi)

∞
i=0 = limk→∞ τk(1)0∞ be a fixed point ofτ. It is easy to check thatx∈ {0,1}Z+

is a minimal point.
We claim thatxi = 1 if and only if i = 0 or i = 4m(2n+1) for somen,m∈ Z+. It will

follow that xi = 0 if and only if i = 2 ·4m(2n+1) for somen,m∈ Z+.
These conditions are clearly true fori = 0,1,2,3. Now fix anyi ≥ 0 and assume that

our claim holds fori. We will show that the claim also holds for 4i,4i +1,4i +2,4i +3.
We have two cases to consider.

If xi = 1, then by the claimi = 4m(2n+1) for somem,n∈ Z+. By the definition of
substitutionx[4i,4i+3] = τ(xi) = τ(1), so

• x4i = 1 and 4i = 4m+1(2n+1);
• x4i+1 = 1 and 4i +1= 4m+1(2n+1)+1= 2(2 ·4m(2n+1))+1;
• x4i+2 = 0 and 4i +2= 4m+1(2n+1)+2= 2(2 ·4m(2n+1)+1);
• x4i+3 = 1 and 4i +3= 4m+1(2n+1)+3= 2(2 ·4m(2n+1)+1)+1.

If xi = 0, theni = 2 ·4m ·n for somem,n∈ Z+. Thenx[4i,4i+3] = τ(0) and we have:

• x4i = 0 and 4i = 2 ·4m+1 ·n;
• x4i+1 = 1 and 4i +1= 2 ·4m+1 ·n+1= 2(4m+1 ·n)+1;
• x4i+2 = 0 and 4i +2= 2 ·4m+1 ·n+2= 2(4m+1 ·n+1);
• x4i+3 = 1 and 4i +3= 2 ·4m+1 ·n+3= 2(4m+1 ·n+1)+1.

This ends the proof of the claim.
The pointx is minimal, hence it is recurrent underσ . By the claim, it is clear that if

i ∈N andxi = 1 thenx2i = 0. So(x,x) is not recurrent underσ×σ2, because it will never
return to[1]× [1].

For the cased ≥ 2, we extend the above idea. We define a local rule of a substitution
by

τ : 1−→ 1a1 . . .a(d+1)2−1,

0−→ 0a1 . . .a(d+1)2−1,
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wherea j = 0 for j ≡ 0 mod(d+1) anda j = 1 otherwise. Letx= limk→∞ τk(1)0∞ be a
fixed point ofτ. As above,x is a minimal point.

For everyk ∈ N, x can be expressed asx= [τk(1)]d+1τk(0) . . . , so(x,x, . . . ,x) ∈ Xd is
recurrent underσ ×σ2×·· ·×σd. Analogously to the cased = 1, we prove that ifj ∈ N

andx j = 1 thenx(d+1) j = 0. The details are left to the reader. So(x,x, . . . ,x) ∈ Xd+1 is
not recurrent underσ ×σ2×·· ·×σd×σd+1. �

3.2. Multi-recurrent points and factor maps. Let π : (X,T)→ (Y,S) be a factor map.
It is well known that ify∈Y is a recurrent point ofS, then there is a recurrent pointx∈ X
of T with π(x)= y. In this subsection we investigate if this result holds for multi-recurrent
points. It turns out that it is still the case for distal extensions but may fail for proximal
extensions.

Proposition 3.10.Let π : (X,T)→ (Y,S) be a factor map.

(1) If x ∈ X is multi-recurrent, then so isπ(x).
(2) If y ∈Y is multi-recurrent andπ−1(y) consists of a single point x, then x is also

multi-recurrent.

Proof. (1): It is a direct consequence of continuity ofπ .
(2): Sinceπ−1(y) = {x}, for every neighborhoodU of x there exists a neighborhood

V of y such thatπ−1(V) ⊂U . ThereforeN(y,V) ⊂ N(x,U). It follows that if y is multi-
recurrent, then so isx. �

By Remark 3.5 every distal system is multi-recurrent. In particular, every equicontin-
uous system is multi-recurrent. Therefore the projection of minimal dynamical system
onto its maximal equicontinuous factor maps every point onto a multi-recurrent point. It
turns out that the system presented in Theorem 3.9 is a proximal extension of its maximal
equicontinuous factor and there is a fiber not containing anymulti-recurrent points.

Proposition 3.11.There exist two dynamical systems(X,T) and(Y,S), a proximal factor
mapπ : (X,T)→ (Y,S) and a point y∈Y which is multi-recurrent butπ−1(y) does not
contain any multi-recurrent points.

Proof. Let τ be a local rule of a substitution defined by

τ : 1−→ 1101,

0−→ 0101,

i.e. τ is the substitution from the proof of Theorem 3.9. Letx = limn→∞ τn(1)0∞ and
z= limn→∞ τn(0)0∞ be fixed points ofτ. Let X = Orb(x,σ). ThenX is a minimal set and
z∈ X.

Observe thatz0 = 0, zk = 1 for k = 4m(2n+1) andzk = 0 for k = 2 ·4m(2n+1). In
particular one haszi = xi for i > 0 (see the proof of Theorem 3.9). Note that ifzj = 0 for
some j > 0 thenz2 j = 1 and if zj = 1 thenz2 j = 0. Neither(x,x) nor (z,z) is recurrent
underσ ×σ2.

Denotekn = |τn(1)| = 4n and observe that position of 11 uniquely identifies position
of τ(1) in x = τ(x). By the same argumentτ(1)τ(1) identifies uniquely beginning of
τ2(1) in x, etc. In other words, blocksτn(0) andτn(1) form a code for everyn≥ 1 and
hence there is a unique decomposition ofx into blocks from{τn(0),τn(1)}. But X is the
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closure of the orbit ofx which yields that for anyv∈ X and anyn≥ 1 there is a uniquely
determined infinite concatenation{w(n)}∞

j=1 of blocks over{τn(0),τn(1)} and a blockun

of length 0≤ |un|< kn such thatv= unw(n)
1 w(n)

2 w(n)
3 · · · .

With everyn associate a natural projectionξn : Zkn+1→ Zkn, ξn(x) = x(modkn). Then
we obtain a well defined inverse limit

Y = lim←−(Zkn,ξn) = {( j1, j2, . . .) : ξn( jn+1) = jn} ⊂∏Zkn

Addition in Y is coordinatewise, modulokn on each coordinaten. Endowed with the
product topology over the discrete topologies inZkn spaceY becomes a topological group
satisfying the four properties characterizing odometers (see [9]). LetS: Y→Y be defined
by S( j1, j2, . . .) = ( j1+1, j2+1, . . .). ThenY = Orb((0,0, . . .),S) and(Y,S) is a minimal
dynamical system (an odometer).

With everyv∈ X we can associate a sequencej(v) = ( j(v)1 , j(v)2 , . . .) ∈Y given by j(v)n =

kn−|un| (modkn). This way we obtain a natural factor mapπ : (X,σ)→ (Y,S), v 7→ j(v).
Note that ifπ(u) = π(u′) then for everyn≥ 1 takingk = |τn+1(0)| − jn+1 provides a
decompositionσk(u),σk(u′) ∈ {τn(0),τn(1)}Z+ which in turn implies thatu,u′ share
arbitrarily long common word of symbols (e.g.τn(0)), and as a consequenceu,u′ form a
proximal pair. This proves thatπ is a proximal extension. Denotey= π(x).

To finish the proof observe that ifu∈ X andπ(u)n = 0 thenu∈ {τn
2(0),τ

n
2(1)}

Z+ by
the definition ofπ . But if τn(0) is a prefix ofu (the same forτn(1) andπ(u)n+1 = 0
then τn+1(0) must be a prefix ofu (resp. τn+1(1) is a prefix). Therefore, if we put
y = (0,0,0, . . .) thenπ−1(y) = {x,z} and every point in(Y,S) is multi-recurrent (it is a
distal system and so Remark 3.5 applies). �

To prove that multi-recurrent points can be lifted by distalextensions, we apply the
theory of enveloping semigroup. Let(X,T) be a dynamical system. EndowXX with the
product topology. By the Tychonoff theorem,XX is a compact Hausdorff space. The
enveloping semigroupof (X,T), denoted byE(X,T), is defined as the closure of the set
{Tn : n∈ Z+} in XX. We refer the reader to the book [3] for more details (see also[2]).

Theorem 3.12.Let π : (X,T)→ (Y,S) be a factor map, let d≥ 1 and assume that y∈Y
is recurrent under S×S2×·· ·×Sd . If x ∈ π−1(y) is such that the pair(x,z) is distal for
any z∈ π−1(y) with z 6= x, then x is recurrent under T×T2×·· ·×Td. In particular, if y
is multi-recurrent then so is x.

Proof. Let πd = π×π×·· ·×π : (Xd,T×T2×·· ·×Td)→ (Yd,S×S2×·· ·×Sd). Then
πd is a factor map. There exists a unique onto homomorphismθ : E(Xd,T×T2×·· ·×
Td)→ E(Yd,S×S2×·· ·×Sd) such thatπd(pz) = θ(p)πd(z) for anyp∈E(Xd,T× . . .×
Td) andz∈ Xd (see Theorem 3.7 in [3]). Since(y, . . . ,y) is recurrent under the action of
S×S2×·· ·×Sd, by [2, Proposition 2.4] there is an idempotentu∈E(Yd,S×S2×·· ·×Sd)
such thatu(y, . . . ,y) = (y, . . . ,y). If we denoteJ = θ−1(u) then clearly it is a closed
subsemigroup ofE(Xd,T×T2×·· ·×Td) and so by Ellis-Numakura Lemma there is an
idempotentv∈ J.

Observe that

πd(v(x, . . . ,x)) = θ(v)πd(x, . . . ,x) = u(y, . . . ,y) = (y, . . . ,y),
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hence each coordinate ofv(x, . . . ,x) belongs toπ−1(y). Furthermore, sincev is an idempo-
tent, we havev(v(x, . . . ,x)) = v(x, . . . ,x), thus again by [2, Proposition 2.4] we obtain that
v(x, . . . ,x) and(x, . . . ,x) are proximal underT×T2×·· ·×Td, and therefore each coordi-
nate ofv(x, . . . ,x) is proximal withx (under the action ofT). But the pair(x,z) is distal for
anyz∈ π−1(y) with z 6= x, which immediately implies thatv(x, . . . ,x) = (x, . . . ,x). Sincev
is an idempotent, it is equivalent to say that(x, . . . ,x) is recurrent underT×T2×·· ·×Td

which ends the proof. �

Corollary 3.13. Letπ : (X,T)→ (Y,S) be a factor map. Ifπ is distal, then a point x∈ X
is multi-recurrent if and only if so isπ(x).

3.3. The measure of multi-recurrent points. It follows from the Poincaré recurrence
theorem that almost every point is recurrent for any invariant measure (see [12, Theorem
3.3]). A similar connection holds between multi-recurrentpoints and multiple recurrence
in ergodic theory.

Theorem 3.14.Let (X,T) be a dynamical system andµ be a T-invariant Borel probabil-
ity measure on X. Thenµ-almost every point of X is multi-recurrent for T .

Proof. Choose a countable base{Bi}
∞
i=1 for topology ofX. For everyi ∈ N, let

Ai =
∞
⋃

d=1

(

Bi \
∞
⋃

n=1

Bi ∩T−nBi ∩T−2nBi ∩· · ·∩T−dnBi

)

.

Note that a pointx is not multi-recurrent if and only if there existd≥ 1 andi ∈N such that
x∈ Bi but x 6∈ Bi ∩T−nBi ∩· · ·∩T−dnBi for all n∈ N. Therefore

⋃∞
i=1Ai is the collection

of non-multi-recurrent points of(X,T). By the Multiple Recurrence Theorem,µ(Ai) = 0
for everyi ≥ 1. Thenµ(

⋃∞
i=1Ai) = 0. �

Corollary 3.15. If a dynamical system(X,T) admits an ergodic invariant Borel proba-
bility measureµ with full support, then there exists a dense Gδ subset X0 of X with full
µ-measure such that every point in X0 is both transitive and multi-recurrent.

Proof. Sinceµ is ergodic, then the set of all transitive points is a denseGδ subset ofX
and has fullµ-measure. By Lemma 3.3 and Theorem 3.14, the set of all multi-recurrent
point is also a denseGδ subsets ofX and has fullµ-measure. Then the intersection of
those two sets is as required. �

Using results on multiple recurrence developed by Furstenberg in [11], we strengthen
Theorem 3.14 as follows.

Theorem 3.16.Let(X,T) be a dynamical system. For every T-invariant Borel probability
measureµ on X, there exists a Borel subset X0 of X with µ(X0) = 1 such that for every
x∈ X0, every d∈ N and every neighborhood U of x the set NT×T2×...×Td((x, . . . ,x),U ×
·· ·×U) has positive upper density.

Proof. For everyd ∈ N and everyδ > 0, letAd,δ be the collection of all pointsx∈ X for
which there exists a neighborhoodU of x with diam(U)< δ such that the set

NT×T2×...×Td((x, . . . ,x),U×·· ·×U)

has positive upper density.
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Let µ be an ergodicT-invariant Borel probability measure onX. We are going to
show thatµ(Ad,δ ) = 1 for everyd ∈ N and everyδ > 0. First we show thatAd,δ is
Borel measurable. To this end, for everyt > 0 and everyn,m∈ N, let Ad,δ (t,n,m) be
the collection of all pointsx ∈ X such that there exists an neighborhoodU of x with
diam(U)< δ satisfying

1
n

#
(

NT×T2×...×Td((x, . . . ,x),U×·· ·×U)∩ [0,n−1]
)

> t− 1
m.

It is clear thatAδ (t,n,m) is an open subset ofX and

Ad,δ =
∞
⋃

k=1

∞
⋂

m=1

∞
⋃

n=m

Ad,δ (
1
k ,n,m).

It follows thatAd,δ is Borel measurable.
If µ(Ad,δ )< 1, then we can choose a Borel subsetB⊂ X \Aδ with diam(B)< δ/3 and

µ(B)> 0. For anyx∈ X, let

g(x) = limsup
N→∞

1
N

N−1

∑
i=0

1B∩T−iB∩···∩T−idB(x).

Theng is also Borel measurable and 0≤ g(x)≤ 1 for anyx∈X. By the Fatou lemma and
[12, Theorem 7.14], we have

∫

X
g(x)dµ(x) ≥ limsup

N→∞

1
N

∫

X

N−1

∑
i=0

1B∩T−iB∩···∩T−idB(x)dµ(x)

≥ lim inf
N→∞

1
N

N−1

∑
i=0

µ(B∩T−iB∩· · ·∩T−idB)> 0.

Clearly g(x) = 0 for anyx 6∈ B, hence there exists somex ∈ B such thatg(x) > 0. Let
U = B(x, 2

3δ ). ThenB⊂U and the upper density ofNT×T2×···×Td((x, . . . ,x),U×·· ·×U)
is not less thang(x). We obtain thatx∈ Ad,δ , which is a contradiction.

Thereforeµ(Ad,δ ) = 1 for every ergodic measureµ, everyd ∈ N and everyδ > 0. Let

X0 =
∞
⋂

d=1

∞
⋂

k=1

Ad, 1
k
.

Thenµ(X0) = 1 for every ergodic measure, and by the ergodic decomposition the same
holds for anyT-invariant measure. ThereforeX0 is as required. �

Remark 3.17. Assume that pointwise convergence of multiple averages holds forµ, that
is, for everyd ∈ N and f1, f2, . . . , fd ∈ L∞(µ),

1
N

N−1

∑
n=0

f1(T
nx) f2(T

2nx) · · · fd(T
dnx) convergesµ a.e..

Then the proof of Theorem 3.16 can be modified by replacing limsup in the definition of
g by liminf, and the modified proof yields that for everyx ∈ X0, everyd ∈ N and every
neighborhoodU of x the setNT×T2×...×Td((x, . . . ,x),U×·· ·×U) has positive lower den-
sity. Unfortunately, the pointwise convergence of multiple averages for general ergodic
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measures is still an open problem. It was proved recently that the pointwise convergence
of multiple averages holds for distal measures (see [22]).

Glasner proved in [16] that if a minimal system(X,T) is topologically weakly mix-
ing, then there is a denseGδ subsetX0 such that for eachx ∈ X0, the orbit of(x, . . . ,x)
is dense inXd underT ×T2× . . .×Td. Below we present an analogous result for sys-
tems possessing a fully weakly mixing invariant measure. Note that Lehrer [25] proved a
variant of the Jewett-Krieger theorem, which implies that there are topologically weakly
mixing minimal systems without weakly mixing invariant measures. Therefore our result
complements Glasner’s theorem.

Theorem 3.18.Let (X,T) be a dynamical system. If there exists a weakly mixing, fully
supported T-invariant Borel probability measureµ on X, then there exists a Borel subset
X0 of X withµ(X0) = 1 such that for every x∈X0, every d∈N, and every non-empty open
subsets U1,U2, . . . ,Ud of X the set

NT×T2×...×Td

(

(x,x, . . . ,x),U1×U2×·· ·×Ud
)

has positive upper density.

Proof. For everyd∈N and everyδ > 0, letAd,δ be the collection of all pointsx∈X such
that there exists an open cover{Ui}

ℓ
i=1 of X with diam(Ui) < δ for i = 1, . . . , ℓ and such

that for everyα ∈ {1,2, . . . , ℓ}d the setNT×T2×...×Td((x,x, . . . ,x),Uα(1)×Uα(2)× ·· · ×
Uα(d)) has positive upper density.

Following the same lines as in the proof of Theorem 3.16 we obtain thatAd,δ is Borel
measurable. We are going to show thatµ(Ad,δ ) = 1.

If µ(Ad,δ )< 1, there exists a Borel setW0⊂X\Aδ with diam(W0)< δ/2 andµ(W0)>

0. Fix an open cover{Ui}
p
i=1 of X with diam(Ui) < δ for i = 1, . . . , ℓ. Enumerate

{1,2, . . . , p}d as{α1,α2, . . . ,αk} with k= pd.
First note thatµ(U j)> 0 for i = 1,2, . . . , ℓ sinceµ has the full support. For everyx∈X,

let

g1(x) = limsup
N→∞

1
N

N−1

∑
l=0

1W0∩T−lUα1(1)
∩...∩T−ldUα1(d)

(x).

Theng1 is also Borel measurable and 0≤ g1(x) ≤ 1 for anyx ∈ X. The measureµ is
weakly mixing, hence we can apply [11, Theorem 2.2] obtaining that

lim
N→∞

1
N

N

∑
l=1

1W0∩T−lUα1(1)
∩...∩T−ldUα1(d)

(x) = 1W0(x)
d

∏
l=1

µ(Uα1(l))

in L2(X). In particular
∫

X g1(x)dµ > 0. Clearlyg1(x) = 0 for anyx 6∈W0. Then there
exists a Borel setW1 ⊂W0 with µ(W1) > 0 andg1(x) > 0 for anyx∈W1. Note that for
everyx∈W1 the upper density ofNT×T2×...×Td((x,x, . . . ,x),Uα1(1)×Uα1(2)×·· ·×Uα1(d))
is not less thang1(x).

Working by induction, for everyi = 1,2, . . . ,k, we can construct a Borel setWi ⊂Wi−1
with µ(Wi) > 0 such that for everyx ∈Wi the setNT×T2×...×Td((x,x, . . . ,x),Uαi(1) ×
Uαi(2)×·· ·×Uαi(d)) has positive upper density. This implies that for everyx ∈Wk and
everyα ∈ {1,2, . . . , ℓ}d the setNT×T2×...×Td((x,x, . . . ,x),Uα(1)×Uα(2)×·· ·×Uα(d)) has
positive upper density. ThenWk⊂ Ad,δ , which is a contradiction, henceµ(Ad,δ ) = 1.
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To finish the proof, it is enough to put

X0 =
∞
⋂

d=1

∞
⋂

k=1

Ad, 1
k
.

sinceµ(X0) = 1 andX0 is as required. �

Remark 3.19. One can modify the proof of Theorem 3.18, by replacingAd,δ by A′d,δ
defined as the collection of all pointsx∈ X such that there exists an open cover{Ui}

ℓ
i=1

of X with diam(Ui)< δ for i = 1, . . . , ℓ for which the set

NT×T2×...×Td((x,x, . . . ,x),Uα(1)×Uα(2)×·· ·×Uα(d))

is not empty for everyα ∈ {1,2, . . . , ℓ}d. Then one obtains thatA′d,δ is a dense open
subset ofX and

X′0 =
∞
⋂

d=1

∞
⋂

k=1

A′
d, 1

k

is a denseGδ subset ofX with full µ-measure. Moreover, for everyd ∈ N and every
x∈X′0, the orbit of(x,x, . . . ,x) is dense inXd underT×T2× . . .×Td. Since(Xd,T×T2×

. . .×Td) is an E-system, by [21, Lemma 3.6] we know that for everyx∈ X′0, everyd ∈ N

and every non-empty open subsetsU1,U2, . . . ,Ud of X the setNT×T2×...×Td((x,x, . . . ,x),
U1×U2×·· ·×Ud) has positive upper Banach density, but we cannot conclude that it has
positive upper density. On the other hand, we do not know whether the setX0 constructed
in Theorem 3.18 is residual.

4. VAN DER WAERDEN SYSTEMS ANDAP-RECURRENT POINTS

In this section we introduce the concept of a van der Waerden system. We explore how
this notion relates to the behaviour of multi-recurrent points andAP-recurrent points.

Definition 4.1. We say that a dynamical system(X,T) is avan der Waerden systemif it
satisfies the topological multiple recurrence property, that is for every non-empty open set
U ⊂ X and everyd ∈ N there exists ann∈ N such that

U ∩T−nU ∩T−2nU ∩· · ·∩T−dnU 6= /0.

By the Topological Multiple Recurrence Theorem, we know that every minimal system
is a van der Waerden system. It follows from the ergodic Multiple Recurrence Theorem
that every E-system is a van der Waerden system.

It is easy to see that if(X,T) is a van der Waerden system, then the relationR=
⋂∞

d=1Rd
is residual, where

Rd =
{

y∈ X : ∃n≥ 1 such thatρ(y,T iny)< 1
d for i = 0,1, . . . ,d}.

As a corollary, we obtain the following (cf. Lemma 3.3).

Lemma 4.2. A dynamical system(X,T) is a van der Waerden system if and only if it has
a dense set of multi-recurrent points.

By Lemmas 4.2 and 3.2, we have the following result.

Proposition 4.3. Let (X,T) be a dynamical system. Then the following conditions are
equivalent:



16 DOMINIK KWIETNIAK, JIAN LI, PIOTR OPROCHA, AND XIANGDONG YE

(1) (X,T) is a van der Waerden system;
(2) (X,Tn) is a van der Waerden system for some n∈ N;
(3) (X,Tn) is a van der Waerden system for any n∈ N.

Lemma 3.4 implies that every point in a uniformly rigid system is multi-recurrent.
Then by Lemma 4.2 every uniformly rigid system is a van der Waerden system. By [1,
18], every almost equicontinuous system is uniformly rigid. We have just proved the
following.

Proposition 4.4. Every almost equicontinuous system is also a van der Waerdensystem.

Moothathu introduced∆-transitive systems in [30]. Recall that a dynamical system
(X,T) is ∆-transitiveif for every d ∈ N there existsx∈ X such that the diagonald-tuple
(x,x, . . . ,x) has a dense orbit under the action ofT×T2×·· ·×Td.

Proposition 4.5. If a dynamical system(X,T) is ∆-transitive, then it is a van der Waerden
system.

Proof. LetU be a non-empty open subset ofX and fix anyd∈N. There existsx∈X such
that diagonald-tuple(x,x, . . . ,x) has a dense orbit under the action ofT×T2×·· ·×Td.
Then there existsn∈ N such thatTnx∈U,T2nx∈U, . . . ,Tdnx∈U and thus

Tnx∈U ∩T−nU ∩· · ·∩T−(d−1)nU.

This shows that(X,T) is a van der Waerden system. �

By Proposition 3.11, multi-recurrent points may not be lifted through factor maps.
To remove this disadvantage, we introduce the following slightly weaker notion ofAP-
recurrentpoint. As we will see later, it is possible to characterize van der Waerden sys-
tems throughAP-recurrent points.

Definition 4.6. A point x ∈ X is AP-recurrent if N(x,U) is an AP-set for every open
neighborhoodU of x .

Remark 4.7. It is clear that every multi-recurrent point isAP-recurrent and everyAP-
recurrent point is recurrent. The notion ofAP-recurrent points can be seen as an inter-
mediate notion of recurrence. By Proposition 4.14, every minimal point isAP-recurrent
since minimal systems are van der Wearden systems. But by Theorem 3.9 there exist some
minimal points which are not multi-recurrent. Those minimal points areAP-recurrent but
not multi-recurrent. Every transitive point of the dynamical system presented in the proof
of Proposition 4.17 is notAP-recurrent. So those transitive points are recurrent but not
AP-recurrent.

Lemma 4.8. Let (X,T) be a dynamical system.

(1) The collection of allAP-recurrent points of(X,T) is a Gδ subset of X.
(2) (X,T) is a van der Waerden system if and only if it has a dense set ofAP-recurrent

points.

Proof. (1): Givend≥ 1, let

Qd =
{

y∈ X : ∃n,a≥ 1 such thatρ(y,T in+ay)< 1
d for i = 0,1, . . . ,d}.
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It is clear that everyQd is open, henceQ=
⋂∞

d=1Qd is aGδ subset ofX. It is easy to see
thatQ=

⋂∞
d=1Qd is the set of allAP-recurrent points.

(2): First note that by Lemma 4.2 every van der Waerden systemhas dense set of
multi-recurrent points, henceAP-recurrent points are dense.

On the other hand, ifx isAP-recurrent andx∈U then for everyd≥ 1 there area,n≥ 1
such thatTa+inx∈U for everyi = 0,1, . . .d and so

Tax∈U ∩T−nU ∩T−2nU ∩· · ·∩T−dnU

completing the proof. �

We have the following connection betweenAP-recurrent points and their orbit clo-
sures.

Proposition 4.9. Let (X,T) be a dynamical system and x∈ X. Then x isAP-recurrent if
and only if(Orb(x,T),T) is a van der Waerden system.

Proof. If x is AP-recurrent, then every point in the orbit ofx is alsoAP-recurrent. By
Lemma 4.8,(Orb(x,T),T) is a van der Waerden system.

Now assume that(Orb(x,T),T) is a van der Waerden system. By Lemma 4.8,(Orb(x,T),T)
has a dense set ofAP-recurrent points. Fix an open neighborhoodU of x. It suffices to
show thatN(x,U) ∈ AP. Choose anAP-recurrent pointsy in U . For everyd ≥ 1, there
existk,n∈ N such that

Tky∈U,Tk+ny∈U,Tk+2ny∈U, . . . ,Tk+dny∈U.

By continuity ofT, there exists an open neighborhoodV of y such that for anyz∈V we
have

Tkz∈U,Tk+nz∈U,Tk+2nz∈U, . . . ,Tk+dnz∈U.

Sincey∈Orb(x,T), there existsm≥ 0 such thatTmx∈V. Then

Tm+kx∈U,Tm+k+nx∈U,Tm+k+2nx∈U, . . . ,Tm+k+dnx∈U,

which implies thatN(x,U) is an AP-set. This ends the proof. �

Proposition 4.10. Let (X,T) be a dynamical system and x∈ X. Then the following con-
ditions are equivalent:

(1) x is anAP-recurrent point in(X,T);
(2) x is anAP-recurrent point in(X,Tn) for some n∈ N;
(3) x is anAP-recurrent point in(X,Tn) for any n∈ N.

Proof. The implications (3)⇒ (2)⇒ (1) are clear. We only need to show (1)⇒ (3).
Fix n ∈ N. Without loss of generality, we can assume thatX = Orb(x,T). Then(X,T)
is topologically transitive system, becausex is a recurrent point. Moreover, asx is AP-
recurrent in(X,T), applying Proposition 4.9 we get that(X,T) is a van der Waerden
system. DenoteX0 = Orb(x,Tn). It is well known (see [27, Lemma 6.5] for example)
that the interior ofX0 (with respect to the topology ofX) is dense inX0, that is,X0 is
regular closed subset ofX. By Lemma 4.2, the collection of multi-recurrent points in
(X,T) is dense inX. By Lemma 3.2, every point multi-recurrent under action ofT is
also multi-recurrent forTn. Hence the set of multi-recurrent points of(X0,Tn) is dense in
X0. By Lemma 4.2 again,(X0,Tn) is a van der Waerden system. By Proposition 4.9 we
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obtain that every transitive point in(X0,Tn) isAP-recurrent. Sox is alsoAP-recurrent in
(X0,Tn). �

In the proof of next result we will employ the technique developed in [27] and show
that everyAP-recurrent point can be lifted through factor maps.

Proposition 4.11. Let π : (X,T)→ (Y,S) be a factor map. If y∈Y is anAP-recurrent
point, then there exists anAP-recurrent point x∈ X such thatπ(x) = y.

Proof. It is clear that for anyn∈ Z and anyF ∈AP, the translation ofF by n denoted by
n+F = {n+k∈N : k∈F}, is also an AP-set. In other words, the familyAP is translation
invariant (see [27, page 263]). Recall that the familyAP has the Ramsey property. Then
by [27, Lemma 3.4], all the assumptions of Proposition 4.5 in[27] are satisfied byAP.
The result follows by application of [27, Proposition 4.5] to the familyAP. �

Remark 4.12. The proof of Proposition 4.11 which is short and compact, uses advanced
machinery from [27]. Another, more elementary proof will begiven later in Section 6.

To characterize when a transitive system is a van der Waerdensystem, we need the
following definition. It is a special case of a notion considered in [26].

Definition 4.13. We say thatx∈ X is anAP-transitive pointif N(x,U) is an AP-set for
every non-empty open setU ⊂ X.

Proposition 4.14. Let (X,T) be a transitive system. Then the following conditions are
equivalent:

(1) (X,T) is a van der Waerden system;
(2) there exists anAP-transitive point;
(3) every transitive point is anAP-transitive point.

Proof. The implication (3)⇒ (2) is obvious and (2)⇒ (1) follows from Proposition 4.9.
We only need to show that (1)⇒ (3).

Let x be a transitive point. It follows from Proposition 4.9 thatx is anAP-recurrent
point. Fix a non-empty open subsetU of X. There exist a neighborhoodV of x andk∈ N

such thatTkV ⊂U . Thenk+N(x,V) ⊂ N(x,U). But N(x,V) is an AP-set and so also
N(x,U) is an AP-set, which proves thatx is anAP-transitive point. �

Proposition 4.15.Let(X,T) be a transitive system. If(X,T) is a van der Waerden system,
then(Xn,T(n)) is also a van der Waerden system for every n∈ N, where T(n) denotes n-
times Cartesian product T(n) = T×T×·· ·×T .

Proof. Let U1,U2, . . . ,Un be non-empty open subsets inX. Pick a transitive pointx∈U1.
Then there existk1,k2, . . . ,kn−1∈N such thatTk1x∈U2,Tk2x∈U3, . . . ,Tkn−1x∈Un. Since
(X,T) is a van der Waerden system,x is AP-recurrent. This immediately implies that
(x,Tk1x,Tk2x, . . . ,Tkn−1x) is AP-recurrent in(Xn,T(n)), hence(Xn,T(n)) has a dense set
of AP-recurrent points. The proof is finished by application of Lemma 4.8. �

The following example shows that Proposition 4.15 is no longer true if we do not
assume that(X,T) is transitive. As a byproduct, we obtain two van der Waerden systems
whose product is not a van der Waerden system.
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Example 4.16.Let n1 = 2 and define inductivelynk+1 = (nk)
3. PutAk = [nk,(nk)

2]∩N
and denoteS=

⋃∞
k=1A2k andR=

⋃∞
k=1A2k+1. Clearly,S∩R= /0. Denote byXS andXT

the following subshifts (so-called spacing shifts, see [5]).

XS=
{

x∈ {0,1}N : xi = x j = 1 =⇒ |i− j| ∈ S∪{0}
}

XR=
{

x∈ {0,2}N : xi = x j = 2 =⇒ |i− j| ∈ R∪{0}
}

.

We can considerXS andXR as subshifts of{0,1,2}N. Let X = XS∪XT ⊂ {0,1,2}N.
For a wordw over{0,1,2}N we write[w]S= [w]∩XS and[w]R= [w]∩XR. First note that
the product system(X×X,σ ×σ) is not a van der Waerden system. This is because

Nσ×σ (([1]× [2])∩X,([1]× [2])∩X)= Nσ ([1]S, [1]S)∩Nσ([2]R, [2]R) = S∩R= /0.

Now we show that(X,σ) is a van der Waerden system. It it enough to prove that both
(XS,σ) and (XR,σ) are van der Waerden systems. We will consider only the case of
(XS,σ), since the proof for(XR,σ) is the same.

Fix a wordw∈ L(XS), take any positive integerk such thatn2k > 2(d+ |w|) and con-

sider the following sequencex=
(

w0n2k
)d+1

0∞. We claim thatx∈ XS. Take any integers
i < j with xi = x j = 1. If j− i ≤ |w|, then j− i ∈ Sby the choice ofw. In the remaining
casej− i > |w| we have

n2k ≤ j− i ≤ (d+1)|w0n2k|= (d+1)(|w|+n2k)≤
n2k

2

(n2k

2
+n2k

)

< (n2k)
2,

therefore also in this casej − i ∈ S. Indeed,x ∈ XS. Put m= |w0n2k| and observe that
x,Tmx,T2mx, . . . ,Tdmx ∈ [w]S. But for every nonempty open setU ⊂ XS we can find a
wordw such that[w]S⊂U and then there ism such that

x∈U ∩T−nU ∩T−2nU ∩· · ·∩T−dnU.

This shows that(XS,σ) is a van der Waerden system.

By Proposition 4.5 every∆-transitive system is a van der Waerden system. On the other
hand, [30, Proposition 3] provides an example of a strongly mixing system which is not
∆-transitive. In fact, we will show that the example in [30, Proposition 3] is not even a
van der Waerden system.

Proposition 4.17. There exists a strongly mixing system which is not a van der Waerden
system.

Proof. Let F be a collection of finite words over{0,1} satisfying the following two con-
ditions: the word 11 is inF and if u andv are two finite words over{0,1} such that
|u| = |v|, then the word 1u1v1 is inF. Let X = XF be the subshift specified by takingF
as the collection of forbidden words. Note thatX is non-empty since 0∞,0n10∞ ∈ X for
everyn≥ 0.

PutW = [1]X and assume that there existsn∈ N such thatW∩σ−nW∩σ−2nW 6= /0.
Then there exist two wordsu andv with lengthn−1 such that 1u1v10∞ ∈ X, which is a
contradiction. This shows that(X,σ) is not a van der Waerden system.

Now we show that(X,σ) is strongly mixing. Letu andv be two words in the language
of X. Put N = |u|+ |v|. For everyn≥ N, one hasu0nv0∞ ∈ X. This implies thatn ∈
N([u]X, [v]X) for everyn≥ N, proving that(X,σ) is strongly mixing. �
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Remark 4.18. In fact, one can show that the onlyAP-recurrent point of(X,σ) in the
Proposition 4.17 is the fixed point 0∞.

Proposition 4.19.Let π : (X,T)→ (Y,S) be a factor map.

(1) If (X,T) is a van der Waerden system, then so is(Y,S).
(2) If (Y,S) is a van der Waerden system, then there exists a van der Waerden subsys-

tem(Z,T) of (X,T) such thatπ(Z) =Y.
(3) If π is almost one to one, then(X,T) is a van der Waerden system if and only if

(Y,S) is a van der Waerden system.

Proof. (1): It is a consequence of the definition of van der Waerden system. (2): By
Lemma 4.8 the set ofAP-recurrent point of(Y,S), denoted byY0, is a dense subset ofY.
Then by Proposition 4.11, for everyy∈Y0, there existsxy ∈ X such thatπ(xy) = y andxy

is AP-recurrent. LetX0 = {xy : y∈Y0} andZ =
⋃

x∈X0
Orb(x,T). Clearlyπ(Z) =Y. For

everyx∈X0, any point in Orb(x,T) isAP-recurrent. SoZ has a dense set ofAP-recurrent
points and so(Z,T) is a van der Waerden system by Lemma 4.8.

(3): By (1) we only need to prove that whenπ is almost one-to-one and(Y,S) is a van
der Waerden system then(X,T) is also a van der Waerden system.

If we put X0 = {x∈ X : π−1(π(x)) = {x}}, then by the definition of an almost one-to-
one factor,X0 is residual inX. For everyx∈ X0 and every neighborhoodU of x there is a
neighborhoodV of π(x) such thatπ−1(V) ⊂U . This implies thatπ(X0) is residual inY.
By Lemma 4.8, the set ofAP-recurrent point of(Y,S), denoted again byY0, is a residual
subset ofY. Thenπ(X0)∩Y0 is also residual inY andπ−1(π(X0)∩Y0) is residual inX.
By Proposition 4.11, every point inπ−1(π(X0)∩Y0) is AP-recurrent. Thus(X,T) is a
van der Waerden system by Lemma 4.8. �

5. MULTIPLE IP-RECURRENCE PROPERTY

To get a dynamical characterization of C-sets, the second author of this paper intro-
duced in [27] a class of dynamical system satisfying the multiple IP-recurrence property.
In this section, we study this property and its relation to the van der Waerden systems.

Definition 5.1. We say that a dynamical system(X,T) has themultiple IP-recurrence
property if for every non-empty open subsetU of X, every d ≥ 1 and every IP-sets

FS{p(1)i }
∞
i=1, FS{p(2)i }

∞
i=1, . . . ,FS{p(d)i }

∞
i=1 in N, there exists a finite subsetα of N such

that
U ∩T−∑i∈α p(1)i U ∩T−∑i∈α p(2)i U ∩· · ·∩T−∑i∈α p(d)i U 6= /0.

It is clear that if a dynamical system(X,T) has the multiple IP-recurrent property, then
it is a van der Waerden system.

By [13, Theorem A] we know that every E-system has the multiple IP-recurrent prop-
erty. It is shown in [18] that every E-system is either equicontinuous or sensitive. We
show that this dichotomy also holds for transitive systems with the multiple IP-recurrence
property. This is an extension of the main result in [18] because there are transitive mul-
tiply IP-recurrent systems which are not E-systems (see Remark 5.6).

Theorem 5.2. If (X,T) is a transitive system with the multiple IP-recurrence property,
then(X,T) is either equicontinuous or sensitive.
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Proof. Every transitive system is either almost equicontinuous orsensitive (see [1]), so let
us assume that(X,T) is almost equicontinuous. It suffices to show that(X,T) is minimal,
since every minimal almost equicontinuous system is equicontinuous (see [4]).

Pick a transitive pointx of (X,T). By [1, Theorem 2.4] the set of transitive points
coincides with the set of equicontinuity points. Thenx is also a equicontinuity point.
Fix any open neighborhoodU of x and takeε > 0 such that the openε-ball aroundx
is contained inU . By equicontinuity ofx there isδ > 0 such that ifρ(x,y) < δ then
ρ(T ix,T iy) < ε/2 for every integeri ≥ 0. LetV denote the openδ -ball aroundx. Since
(X,T) has the multiple IP-recurrence property, for every IP-set FS{pi}

∞
i=1 there exists a

finite subsetα of N such thatV ∩T−∑i∈α piV 6= /0. It follows thatN(V,V) is an IP∗-set.
In particular,N(V,V) is a syndetic set. Next observe, that ify ∈ V, thenρ(x,y) < δ .
Therefore ify,Tny∈V, thenρ(Tnx,Tny)< ε/2 andρ(Tny,x)< ε/2. It followsTnx∈U
and thereforeN(V,V)⊂ N(x,U). SoN(x,U) is syndetic. This implies thatx is a minimal
point and hence(X,T) is minimal. �

Remark 5.3. It is shown in [1] that there exists an almost equicontinuoussystem(X,T)
which is not equicontinuous. By Proposition 4.4 the system(X,T) is a van der Waerden
system. But it can not have the multiple IP-recurrence property by Theorem 5.2.

Next, we will modify the example constructed in Proposition4.17, to obtain a strongly
mixing van der Waerden system without the multiple IP-recurrence property.

Proposition 5.4. There is a strongly mixing system which is a van der Waerden system
but does not have the multiple IP-recurrence property.

Proof. We are going to construct a subshiftX and two IP-sets FS{pi}
∞
i=1,FS{qi}

∞
i=1 such

that for every finiteα ⊂ N we have

[1]X ∩T−∑i∈α pi [1]X∩T−∑i∈α qi [1]X = /0.

Let us take any sequences{pi}
∞
i=1 and{qi}

∞
i=1 satisfying:

n

∑
j=1

p j < pn+1 andqn = 2npn+1 for everyn∈ N.

LetF be a collection of finite words over{0,1} satisfying the following two conditions:
the words 11 is inF, and if u and v are two finite words over{0,1} such that|u| =
∑i∈α pi−1 and|u|+ |v|= ∑i∈α qi−2 for some finite subsetα of N then the word 1u1v1
is in F. Let X be the subshift specified by takingF as the collection of forbidden words.
Note thatX is nonempty since 0∞ ∈ X.

Let w′ andw′′ be two words in the language ofX. Take anys such that

|w′|+ |w′′|+2< ps+1 < qs< qs+1.

It follows that if α ⊂ N is a finite set such that

∑
i∈α

pi < |w
′|

then maxα ≤ s. Let N = qs+1. For anyn≥N, let xn = w′0nw′′0∞. We will show thatxn is
a point inX and henceX is a mixing subshift. We need to show that no word fromF may
appear inxn. First note that the word 11 does not appear inxn, since the word 11 appears
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neither inw′ nor in w′′. Suppose that for some non-empty wordsu andv over{0,1} the
word 1u1v1 appears inxn. If it is a subblock ofw′ or w′′, then it does not belong toF.
Now assume that 1u1v1 appears inxn, but neither inw′, nor inw′′. Therefore either 1u1
is a subword ofw′ or 1v1 is a subword ofw′′. In the first case, ifα ⊂ N is a finite set such
that

∑
i∈α

pi = |u|+1≤ |w′|< ps+1,

then maxα ≤ s, hence

∑
i∈α

qi ≤
s

∑
j=1

q j < qs+1.

But on the other hand|v| ≥ n≥ qs+1 and therefore|u|+ |v|+2> ∑i∈α qi. It implies that
1u1v1 /∈ F.

In the second case note that|w′′| ≥ |v|+2. Now, if α ⊂ N is a finite set such that

∑
i∈α

pi = |u|+1≥ n≥ qs+1,

then maxα > s, hence

∑
i∈α

qi ≥ qs+1≥ ∑
i∈α

pi + ps+1 > |u|+1+ |w′|+ |w′′|> |u|+ |v|+2.

It implies that 1u1v1 /∈ F. Hencexn ∈ X and thereforen ∈ N([u]X, [v]X) and (X,σ) is
strongly mixing.

By a similar argument, one can show that(X,σ) is a van der Waerden system.
Finally observe that if

[1]X∩T−∑i∈α pi [1]X ∩T−∑i∈α qi [1]X 6= /0

then there are two finite wordsu,v such that 1u1v1 is in the language ofX and |u| =
∑i∈α pi −1 and|u|+ |v|+ 1 = ∑i∈α qi − 1. This contradicts the definition ofX. Thus
(X,σ) does not have multiple IP-recurrence property. �

In the rest of this section, we show that there is a large family of subshifts, with the
multiple IP-recurrence property. For a functionf : Z+→ [0,∞), we define

Ψ f =
{

x∈ {0,1}N : ∀p∈ Z+,∀i ∈ N,
i+p−1

∑
r=i

xr ≤ f (p)
}

and call it thebounded density subshiftgenerated byf . Bounded density shifts were
introduced by Stanley in [33]. Stanley proved also that to defineΨ f we can consider only
canonical functions f: Z+→ [0,∞). By [33, Theorem 2.9] a functionf : Z+→ [0,∞) is
canonicalfor the bounded density shiftΨ f if and only if:

(1) f (0) = 0;
(2) f (m+1) ∈ f (m)+Z+ for anym∈ Z+;
(3) f (m+n)≤ f (m)+ f (n) for anyn,m∈ Z+.

Note that if f (1) = 0, thenΨ f = {0∞}.

Theorem 5.5. If f is an unbounded canonical function then the bounded density subshift
(Φ f ,σ) generated by f has the multiple IP-recurrent property.
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Proof. Fix a wordw in the language ofΨ f and letU = [w]∩Ψ f . Take anyd ≥ 1 and

any IP-setsFS{p(1)i }
∞
i=1, FS{p(2)i }

∞
i=1, . . . ,FS{p(d)i }

∞
i=1. For simplicity of notation, given

a finite subsetα of N, we definep(i)α = ∑ j∈α p(i)j .
Without loss of generality, we may assume that for anyi ∈ {1, . . . ,d} and j ∈ N we

have
p(i)j < p(i)j+1andp(i)j < p(i+1)

j (providedi < d).

Since f is unbounded, there existsp∈N such thatf (p)> (d+1)|w| andp≥ d|w|. There

is N ∈ N such that ifα ⊂ N is a finite set with maxα ≥ N, then∑ j∈α p(i)j > p+ |w| for
everyi ∈ {1, . . . ,d}. Note that for everyα = {a1, . . . ,as} ⊂ N and any 1≤ i < d we have

p(i+1)
α ≥

s

∑
j=1

p(i+1)
a j ≥

s

∑
j=1

(p(i)a j +1)≥ s+ p(i)α .

Denoteβ = {N+1, . . . ,N+2p+1} and observe thatp(i+1)
β > p(i)β +2p for any 1≤ i < d

andp(1)β > p+ |w|. Let

x= w0p(1)β −|w|w0p(2)β −p(1)β −2|w|w. . .w0p(d)β −p(d−1)
β −d|w|w0∞.

It is easy to see thatx∈Ψ f and

σ p(i)β (x) ∈ [w] for i = 1, . . . ,d.

Therefore

U ∩σ−p(1)β U ∩σ−p(2)β U ∩ . . .∩σ−p(d)β U 6= /0. �

Remark 5.6. By [33, Theorem 2.14], the bounded density shift(Φ f ,σ) in Theorem 5.5
is also strongly mixing. If the functionf grows very slow, for examplef (n) = log(n+1),
then for any pointx∈Φ f one has

lim
n→∞

1
n

#(N(x, [1])∩ [1,n])≤ lim
n→∞

f (n)
n

= 0.

It follows that the only invariant measure of(Φ f ,σ) is the point mass on{0∞}. But Ψ f is
uncountable, hence(Ψ f ,σ) is not an E-system. Letx be transitive point of(Φ f ,σ). By
[27, Theorems 8.5 and 4.4], we know thatN(x,U) is a C-set for every neighborhoodU of
x. Since(Ψ f ,σ) is not an E-system andx is its transitive point, there exists a neighbor-
hoodV of x such thatN(x,V) has the Banach density zero. This gives a dynamical proof
of a combinatorial result in [19] that there exists a C-set which has Banach density zero.

6. MULTI -NON-WANDERING POINTS AND VAN DER WAERDEN CENTER

We say that a pointx ∈ X is a non-wandering pointif for every neighborhoodU of
x there exists ann∈ N such thatU ∩T−nU 6= /0. Denote byΩ(X,T) the set of all non-
wandering points of(X,T). It is easy to see thatΩ(X,T) is a non-empty, closed and
T-invariant. So(Ω(X,T),T) also forms a dynamical system, so we can consider non-
wandering points of the subsystem(Ω(X,T),T). To introduce the notion of Birkhoff
center, we define a (possibly transfinite) descending chain of non-empty closed andT-
invariant subsets ofX. We put inductivelyΩ0(X,T) = X, Ω1(X,T) = Ω(Ω0(X,T),T),
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and for every ordinalα we setΩα+1(X,T) = Ω(Ωα(X,T),T). We continue this process
by a transfinite induction: ifλ is a limit ordinal we define

Ωλ (X,T) =
⋂

α<λ
Ωα(X,T).

In compact metric space decreasing family of closed sets is always at most countable,
hence then there is a countable ordinalα such that

X = Ω0(X,T)⊃Ω1(X,T)⊃ ·· · ⊃Ωα(X,T) = Ωα+1(X,T) = · · · .

We say thatΩα(X,T) is theBirkhoff centerof (X,T) if Ωα+1(X,T) = Ωα(X,T) and we
definedepthof (X,T) by

depth(X,T) = min
{

α : Ωα(X,T) = Ωα+1(X,T)
}

.

Note that compactness ofX implies that depth(X,T)< ω1, whereω1 is the first uncount-
able ordinal number.

Inspired by the notion of non-wandering points and the Birkhoff center, we introduce
multi-non-wandering points and the van der Waerden center.

Definition 6.1. Let (X,T) be a dynamical system. A pointx∈ X is multi-non-wandering
if for every open neighborhoodU of x and everyd ∈ N there exists ann∈ N such that

U ∩T−nU ∩T−2nU ∩· · ·∩T−dnU 6= /0,

that is for everyd ∈ N, the diagonald-tuple (x,x, . . . ,x) is non-wandering in(Xd,T ×
T2×·· ·×Td). Denote byΩ(∞)(X,T) the collection of all multi-non-wandering points.

First, we have the following characterization of multi-non-wandering points in a orbit
closure of a point.

Proposition 6.2. Let (X,T) be dynamical system and x∈ X. Suppose thatOrb(x,T) =
X. Then y is a multi-non-wandering point if and only if N(x,U) is an AP-set for every
neighborhood U of y.

Proof. First assume thaty is a multi-non-wandering point. Fix a neighborhoodU of y. For
everyd ∈N there exists ann∈N such that the setV =U ∩T−nU ∩T−2nU ∩· · ·∩T−dnU
is non-empty and open. SinceOrb(x,T) = X there existsm≥ 0 such thatTmx∈V ⊂U ,
and hence

Tm+nx∈U, Tm+2nx∈U, . . . , Tm+dnx∈U,

that is{m+n,m+2n, . . . ,m+dn} ⊂ N(x,U). ThusN(x,U) is an AP-set.
Fix a neighborhoodU of y and assume thatN(x,U) is an AP-set. There existm,n∈ N

such that{m,m+n,m+2n, . . . ,m+dn} ∈ N(x,U). Putz= Tmx. Thenz∈U ∩T−nU ∩
T−2nU ∩· · ·∩T−dnU and soy is a multi-non-wandering point. �

The proof of following result is inspired by the set’s forcing in [7] (consult [27, Section
5] for more information on this topic).

Theorem 6.3. A set F⊂ N is an AP-set if and only if for every dynamical system(X,T)
and every x∈X, there is a multi-non-wandering point inTFx, where TFx= {Tnx: n∈F}.
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Proof. Assume thatF is an AP-set. Let(X,T) be a dynamical system andx∈X. Without
loss of generality, assume thatOrb(x,T) = X. SetK = TFx. CoverK with closed balls
with diameter less than 1 and letr1 be the cardinality of a finite subcover of this cover.
Then we can present

K =
r1
⋃

i=1

K1,i ,

where eachK1,i is compact and has diameter less than 1. Since the familyAP of AP-
sets has the Ramsey property, there is an AP-setF1 ⊂ F and i1 such thatTF1x ∈ K1,i1.
SetK1 = K1,i1. CoverK1 with closed balls with diameter less than 1/2 and letr2 be the
cardinality of some finite subcover of this cover. Write

K1 =
r2
⋃

i=1

K2,i ,

where eachK2,i is compact and has diameter less than 1/2. By induction we have a
sequence of compact sets{Ki}

∞
i=1 and a sequence of AP-sets{Fi}

∞
i=1 such thatKi+1⊂ Ki ,

diam(Ki) < 1/i, Fi+1 ⊂ Fi andTFix⊂ Ki . By the compactness ofX, there isy∈ X such
that

⋂∞
i=1Ki = {y}. For every neighborhoodU of y, there existsi0 such thatKi0 ⊂ U .

ThenFi0 ⊂ N(x,U), henceN(x,U) is an AP-set. Thusy is a multi-non-wandering point
by Proposition 6.2.

Now assume that for every dynamical system(X,T) and everyx∈ X there is a multi-
non-wandering point inTFx. Let x be the characteristic function ofF. We can viewx as
a point in the full shift({0,1}Z+,σ). Put X = Orb(x,σ) and note thatN(x, [1]∩X) =

F. By assumption, there exists a multi-non-wandering pointy ∈ TFx ⊂ [1]∩X. By
Proposition 6.2,F = N(x, [1]∩X) is an AP-set, since[1]∩X is a neighborhood ofy. �

Theorem 6.4. Let (X,T) be a dynamical system and x∈ X be such thatOrb(x,T) = X.
Then

(1) If U is a neighborhood ofΩ(∞)(X,T) and y∈ X, then N(y,U) is an AP∗-set.
(2) If M is a non-empty closed subset X satisfying (1), thenΩ(∞)(X,T) ⊂M, that is

Ω(∞)(X,T) is characterized as the smallest subset of X satisfying (1).

Proof. We first show that (1) holds. Take a neighborhoodU of Ω(∞)(X,T). If there exists
z∈X such thatN(z,U) is not an AP∗-set, thenF =N(z,Uc) is an AP-set. By Theorem 6.3,
there exists a multi-non-wandering point inTFz⊂Uc. This contradictsΩ(∞)(X,T)⊂U .

Assume thatM ⊂ X is non-empty, closed and satisfies (1). We show thatΩ(∞)(X,T)⊂
M. Fix a multi-non-wandering pointz. Let V be a neighborhood ofz. It follows from
Proposition 6.2 thatN(x,V) is an AP-set. ButN(x,U) is an AP∗-set for every neighbor-
hoodU of M. HenceN(x,V)∩N(x,U) 6= /0. We get thatU∩V 6= /0 for every neighborhood
V of z and every neighborhoodU of M. Thusz∈M, sinceM is closed. �

Using the characterization of the set of multi-non-wandering points (Theorem 6.4),
we can give another proof of Proposition 4.11 without using the advanced results on
ultrafilters.
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Another proof of Proposition 4.11.Without loss of generality, assume thatY = Orb(y,S).
Let

A= {A⊂ X : (A,T) is a subsystem of(X,T) andY ⊂ π(A)}.
It is clear thatA is not empty sinceX ∈ A. By the Zorn Lemma, there is a minimal
(under the inclusion) elementZ ∈ A. Pick x∈ π−1(y)∩Z. Note thatOrb(x,T) ⊂ Z and
Y ⊂ π(Orb(x,T)). By the minimality ofZ, we haveZ = Orb(x,T). Fix a neighbourhood
U of Ω(∞)(Z,T) and a neighborhoodV of y. By Theorem 6.4,N(z,U) is an AP∗-set.
But N(x,V) is an AP-set. Then there existsn∈ N such thatTnz∈U andTny∈V. Thus
y∈ π(Ω(∞)(Z,T)). By the minimality ofZ again, one hasZ = Ω(∞)(Z,T). ThusZ is a
van der Waerden system andx is AP-recurrent by Proposition 6.2 and Lemma 4.8.�

It is clear thatΩ(∞)(X,T) is closed andT-invariant. So(Ω(∞)(X,T),T) also forms a
dynamical system. We can consider multi-non-wandering points in(Ω(∞)(X,T),T). It is
shown in Example 6.7 thatΩ(∞)

(

Ω(∞)(X,T),T
)

may not equal toΩ(∞)(X,T). Similar to

the Birkhoff center, we introduce the van der Waerden center. We putΩ(∞)
0 (X,T) = X,

Ω(∞)
1 (X,T) = Ω(∞)(Ω(∞)

0 (X,T),T) andΩ(∞)
2 (X,T) = Ω(∞)(Ω(∞)

1 (X,T),T). We continue

this process. ThenX =Ω(∞)
0 (X,T)⊃Ω(∞)

1 (X,T)⊃ ·· · , Ω(∞)
α+1(X,T)=Ω(∞)(Ω(∞)

α (X,T),T),

Ω(∞)
λ (X,T)=

⋂

α<λ Ω(∞)
α (X,T), whereλ is a limit ordinal number. We say thatΩ(∞)

α (X,T)

is thevan der Waerden centerof (X,T) if Ω(∞)
α+1(X,T) = Ω(∞)

α (X,T).
Note that a dynamical system is a van der Waerden system if andonly if every point is

multi-non-wandering. The following result shows that the van der Waerden center is just
the the maximal van der Waerden subsystem.

Proposition 6.5. Let (X,T) be a dynamical system andΩ(∞)
α (X,T) be the van der Waer-

den center of(X,T). ThenΩ(∞)
α (X,T) is the closure of the set ofAP-recurrent points

of (X,T). Furthermore,(Ω(∞)
α (X,T),T) is the maximal van der Waerden subsystem of

(X,T).

Proof. Let Z be the set ofAP-recurrent points of(X,T). It is not hard to see thatZ ⊂

Ω(∞)
γ (X,T) for every ordinal numberγ. SoZ⊂Ω(∞)

α (X,T).

SinceΩ(∞)
α+1(X,T) = Ω(∞)

α (X,T), every point in the dynamical system(Ω(∞)
α (X,T),T)

is multi-non-wandering, and then(Ω(∞)
α (X,T),T) is a van der Waerden system. By

Lemma 4.2, the set ofAP-recurrent points of(Ω(∞)
α (X,T),T) is dense inΩ(∞)

α (X,T).

ThenΩ(∞)
α (X,T)⊂ Z. �

Proposition 6.6. Let π : (X,T)→ (Y,S) be a factor map. Then the image of van der
Waerden center of(X,T) underπ coincides with the van der Waerden center of(Y,S).

Proof. Let X0 andY0 be the set of allAP-recurrent points in(X,T) and(Y,T) respectively.
By Proposition 4.11, we haveπ(X0) =Y0. Then the result follows from Proposition 6.5.

�

Example 6.7. There exists a dynamical system(X,T) such thatΩ(∞)
(

Ω(∞)(X,T),T
)

6=

Ω(∞)(X,T).
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Take any increasing sequence{zn}n∈Z⊂ (0,1) such that limn→−∞ zn=0 and limn→∞ zn=
1. Let X = {0,1}∪{zn : n∈ Z} (mod 1), that is, we viewzn as a sequence on the unit
circle. Then we have limn→∞ ρ(z−n,zn) = 0, whereρ is the standard metric on the unit
circle.

Define

Y = X×{0}∪
∞
⋃

n=1

2n+1
⋃

j=2n

n
⋃

i=−n

{(zi,4
−n− j2−n−14−n−1)}∪

∞
⋃

n=0

(z−n,2)∪ (0,2).

Clearly, if j 6= sthen 4−n− j2−n−14−n−1 6= 4−n−s2−n−14−n−1 and 4−n−4−n−1 > 4−n−1.
Therefore the coordinates like(zi,4−n− j2−n−14−n−1) uniquely determine a point inY.
The setY is a closed subset of a product spaceX× [0,4]. ThereforeY with the maximum
metric is compact.

Let g(zn) = zn+1 for everyn ∈ Z and g(0) = 0 ∈ X. For any integerj ∈ [2n,2n+1]
denotea j = (z−n,4−n− j2−n−14−n−1) andb j = (zn,4−n− j2−n−14−n−1). Then we define
a function f : Y→Y by putting

f (x,y) =



















(g(x),y) y= 0 or (y= 2 andx 6= z0),

a1 y= 2 andx= z0,

(g(x),y) y∈ (0,2) and(x,y) 6= b j for every j,

a j+1 (x,y) = b j .

Clearly f is a bijection and it is also not hard to verify that it is a homeomorphism.
Observe thatΩ( f ) = {(0,2)}∪X×{0}. We are going to show thatΩ(∞)( f ) = Ω( f ).
Clearly both fixed points are inΩ(∞)( f ). Now let us take anym∈ Z and any open set
U ∋ (zm,0). There isN > 0 such that(zm,y) ∈U for everyy≤ 4−N. Fix anyd > 0 and
taken> max{d,N, |m|}. Now if we take anyj = 2n, . . . ,2n+d < 2n+1−1 then

p j = (zm,4
−n− j2−n−14−n−1) ∈Y∩U.

By the definition off , for j = 0, . . . ,d−1 we havef 2n+1(p j) = p j+1. In other words

pd ∈U ∩ f−2n−1(U)∩· · ·∩ f−(2n+1)d(U) 6= /0.

Indeed(zm,0) ∈Ω(∞)( f ). But

Ω(∞)( f |Ω(∞)( f )) = Ω( f |Ω(∞)( f )) = {(0,0),(0,2)}.

It follows that the van der Waerden center can be a proper subset of Ω(∞)( f ).

Remark 6.8. It is shown in [31] that ifα is a countable ordinal, then there exists a
dynamical system(X,T) with depth(X,T) = α. We define thevan der Waerden depthof
(X,T) as

depth(∞)(X,T) = min
{

α : Ω(∞)
α+1(X,T) = Ω(∞)

α (X,T)
}

.

We conjecture that the van der Waerden depth is a countable ordinal and for every count-
able ordinal numberα there exists a dynamical system(X,T) such that depth(∞)(X,T) =
α. 2

2Li and Zhang [28] gave a positive answer to this conjecture.
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[34] Szemerédi E. On sets of integers containing nok elements in arithmetic progression. Acta Arith.,

1975, 27: 199–245.
[35] Van der Waerden L. Beweis eine Baudetschen Vermutung Nieus Arch. Wisk, 1927. 15:212–216.
[36] Weiss B. Multiple recurrence and doubly minimal systems. Topological dynamics and applications

(Minneapolis, MN, 1995), Contemp. Math., vol. 215, Amer. Math. Soc., Providence, RI, 1998, 189–
196.

(D. Kwietniak) INSTITUTE OFMATHEMATICS, JAGIELLONIAN UNIVERSITY IN KRAKÓW, UL . ŁOJASIEWICZA
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