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MULTI-RECURRENCE AND VAN DER WAERDEN SYSTEMS
DOMINIK KWIETNIAK, JIAN LI, PIOTR OPROCHA, AND XIANGDONG YE

ABSTRACT. We explore recurrence properties arising from dynamipar@ach to the
van der Waerden Theorem and similar combinatorial probleviis describe relations
between these properties and study their consequencegrfamitcs. In particular, we
present a measure-theoretical analog of a result of Glasnerulti-transitivity of topo-

logically weakly mixing minimal maps. We also obtain a dyneahproof of the existence
of aC-set with zero Banach density.

1. INTRODUCTION

We study multiple-recurrence properties of dynamicaleayston compact metric spac-
es. We use topological dynamics to characterize selectsdes of subsets bif (e.g. IP-
sets, C-sets, etc.) and to gain a better understanding & slaisses of transitive systems.
The idea goes back to the work of Furstenberg in the 1970s.

Our starting point is the following result published in [35]

Van der Waerden Theorem. If N is partitioned into finitely many subsets, then one of
these sets contains arithmetic progressions of arbitranydilength.

In 1978, Furstenberg and Weiss [14] obtained a dynamicalfafdhe van der Waerden
Theorem. They proved the Topological Multiple Recurrenbedrem and showed that it
is equivalent to the van der Waerden Theorem. “Equivaler@&ns here that any of these
results may be proved by assuming the other is true.

Topological Multiple Recurrence Theorem. Let (X, T) be a compact dynamical system.
Then there exists a point& X such that for any d& N there is a strictly increasing
sequencgng}y_, in N with T"kx — x as k— o for every i=1,2,...,d.

We call a pointx € X fulfilling the conclusion of the topological multiple reeence
theorem amulti-recurrent point In Section 3 we show that the set of all multi-recurrent
points is aGs subset ofX; it is a residual set if X, T) is minimal; and wher(X,T) is
distal or uniformly rigid, then every point is multi-recent. We also provide an example
of a substitution subshift with minimal points which are motlti-recurrent. Then we
prove that multi-recurrent points can be lifted throughstaliextension but this does not
need to hold for a proximal extension (we strongly beliewat ih can not be lifted by
weakly mixing extension, but we do not have an example aintioisient). Using ergodic
theory we show that the collection of multi-recurrent psinthich return to any of their
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neighborhoods with positive upper density has full meagsurevery invariant measure.
If the invariant measure is weakly mixing and fully suppdrtieen for almost every € X
and everyd > 1 the diagonatl-tuple (x,x,...,X) has a dense orbit under the action of
T xT2x---x T9 which can be viewed as a measure-theoretical version ot ref
Glasner on topological weakly mixing minimal maps [16].

Let us mention another equivalent version of the Topoldg\taltiple Recurrence
Theorem which shows the relationship between these remudt$-urstenberg’s Multiple
Recurrence Theorem for measure preserving systems (tballed-“ergodic Szemerédi
Theorem”). It also comes from [14, Theorem 1.5]. For a shod @legant proof see [15,
Theorem 1.56].

Topological Multiple Recurrence Theorem Il. If a dynamical systerfX, T) is minimal,
then for any de N and any non-empty open subset U of X, there exists a positiegeir
n > 1 with

unT"unT2un.--NnT-9U £0.

Inspired by this result, we introduce a new class of dynahsigstems, which we call
van der Waerden systemthat is systemgX,T) such that for every non-empty open
subsetJ of X and for everyd € N there exists an € N such that

UunT"UnT2Un...-nT79U £0

and we will study their basic properties in Section 4. By theosnd variant of Topological
Multiple Recurrence Theorem every minimal system is a van/deerden system and it
is also not hard to see théX,T) is a van der Waerden system if and only if its multi-
recurrent points are densexXn

A generalization of van der Waerden Theorem is Szemer&tieorem [34], proved in
1975.

Szemegédi Theorem. If F C N has positive upper density, then it contains arithmetic
progressions of arbitrary finite length.

Two years later, in 1977, Furstenberg presented a new pfostemerédi Theorem
using dynamical systems approach. Furstenberg’s proaddsedon the equivalence of
Szemerédi Theorem and the following Multiple Recurrenbedrem (see [11]).

Multiple Recurrence Theorem. If (X, B, u) is a probability space and T is a measure
preserving transformation @, B, i), then for any d= N and any set A& B with u(A) >
0, there exists an integers>a 1 with

u(ANT"AN---T~2"AN--.NT~9"A) > 0.

It follows that every compact dynamical system with a fullypported invariant mea-
sure is a van der Waerden system. We examine whether thersengetrue. It turns
out that there exists a topologically strongly mixing systehich is a van der Waerden
system, but the only invariant measure is a point mass on d figent, see Remark 5.6.
We also provide an example of a strongly mixing system whsafot a van der Waerden
system.

While we were preparing this paper we found a work of Host ef24l] which studies
closely related problems, but from a different point of vielvich emphasises the con-
nection between recurrence properties and assocsatisdof (multiple) recurrencésee
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[20, Definitions 2.1 & 2.9]). Here we focus on recurrence ofrgke point in a concrete
dynamical systems, and this complements the approach pf [20

Our study of van der Waerden systems leads naturald/terecurrent points. We say
that a pointx is AP-recurrentif for every neighborhood) of x the set of return times
of x toU contains arithmetic progressions of arbitrary finite léndt is clear that every
multi-recurrent point isAP-recurrent, but the converse is not true. It is a consequence
of the following characterization: a point&XP-recurrent if and only if the closure of its
orbit is a van der Waerden system. A nice propertl®frecurrent points is that they can
be lifted through factor maps.

In [12], Furstenberg defined central subset®ah terms of some notions from topo-
logical dynamics. He showed that any finite partitiomMbMmust contain a central set in
one of its cells and proved the following Central Sets Theoj¥2, Proposition 8.21].

Central Sets Theorem.LetC be a central set ™. Letde Nand foreachE {1,2,...,d},

let{ pg)}‘r’,":1 be a sequence iA. Then there exista sequen@ },»_, in N and a sequence
{Hn}p_, of finite subsets dfl such that

(1) for every ne N, maxH, < minH,, 1 and
(2) for every finite subset F &f and every i€ {1,2,...,d},

ngp (an+ j;n pﬁ”) eC.

Central Sets Theorem has very strong combinatorial comsegs, such as Rado’s
Theorem [32]. The authors in [8] proved a stronger versiothefCentral Sets Theorem
valid for an arbitrary semigrou and proposed to call a subset®& C-set if it satisfies
the conclusion of this version of the Central Sets Theorerdy#amical characterization
of C-sets was obtained in [27] by introducing a class of dyicahsystems satisfying
the multiple IP-recurrence property. Note that C-sets iclaned in [27] are subsets of
Z, however Neil Hindman pointed out to the second author & piaiper that a similar
characterization also holds for C-setsNn ! A dynamical characterization of C-sets in
an arbitrary semigroufis provided in [24] .

We study the multiple IP-recurrence property in Section & dNow that every transi-
tive system with the multiple IP-recurrence property ib@itequicontinuous or sensitive.
This result generalizes theorems of Akin, Auslander and)BHrand Glasner and Weiss
[18]. We also provide an example of a strongly mixing systemcivis a van der Waerden
system but does not have the multiple IP-recurrence prnpp@fe characterize bounded
density shifts with the multiple IP-recurrent property.tlmining this result with the dy-
namical characterization @f-sets we obtain a dynamical proof of the main result of [19]:
there is &C-set inN with zero Banach density.

As seen above, the notion of a multi-recurrent point, whiclparallel to the notion
of a recurrent point provides some insight to the theory afadgical systems. In the
same spirit we define the notion of a multi-non-wanderinghpparallel to the classical
notion of a non-wandering point. In section 6, we study thatiens between multi-non-
wandering points and the sets containing arithmetic pssgoas of arbitrary finite length.
In particular, we provide a link between multi-non-wandegrsets andiP-recurrence.

1see also the review of [27] by N. Hindman in MathSciNet, MR2324.
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By what we said above, it is easy to see that a transitive vai\@erden system can
be viewed as a generalization of &rsystem (transitive system with a full supported
invariant measure). In a transitive van der Waerden systarh gansitive point isAP-
recurrent, and the set of multi-recurrent points is densete Kkhat for arE-system, the
return time set of a transitive point to its neighborhood hasitive upper Banach density
and at the same time, the set of recurrent points with peditwer density of return time
sets is dense. For an-system (transitive system with a dense set of minimal gdjthis
can be explained using piecewise syndetic sets and syrsgdsic

2. PRELIMINARIES

In this section, we present basic notations, definitionsrasdits.

2.1. Subsets of positive integersDenote byN (Z. andZ, respectively) the set of all
positive integers (nonnegative integers and integerpetively).

A Furstenberg familyr simply afamilyon N is any collectiory of subsets oN which
Is hereditary upwards, i.e. A€ F andA C BC N thenB € F. A dual familyfor &,
denoted byF*, consists of sets that meet every elemenffpf.e. A € 3* provided that
N\A¢ F. Clearly, 57 = 7.

Given a sequencgp; }i> ; in N, define the set of finite sums ¢p;}° ; as

FS{pi}ioq,= { Z pi: a is a non-empty finite subset N}.

lea
We say that a subs€tof N is

(1) anlP-setif there exists a sequeng@; };> ; C N such thaFS{p;}>; C F;

(2) anAP-setif it contains arbitrarily long arithmetic progressionkat is, for every
d > 1, there area,n € N such that{a,a+n,...,a+dn} C F. The family of all
AP-sets is denoted by P;

(3) thickif it contains arbitrarily long blocks of consecutive intgg, that is, for every
d > 1thereisne Nsuchthafnn+1, ... n+d} CF;

(4) syndetidf it has bounded gaps, that is, for soMdec N and everyk € N we have
{k,k+1,.... k+N}NF #0;

(5) co-finiteit it has finite complement, i.éN \ F is finite.

(6) anIP*-set(AP*-set respectively) if it has non-empty intersection with evéty
set (AP-set, respectively), that is it belongs to an appatgdual family.

It is easy to see that a sub$edf N is syndetic if and only if it has non-empty intersec-
tion with every thick set, i.e. is in the family dual to all thisets. Every thick set is an
IP-set, hence every TFset is syndetic.

A family F has theRamsey propertif F € 3 andF = FL UF, imply thatF € J for
somei € {1,2}. Itis not hard to see that the van der Waerden theorem is @eguivto the
fact that the familyAP has the Ramsey property.

Let F be a subset oL, . Define theupper densityl(F) of F by

H(F):Iimsup#(':mo’n l]),

n— oo n
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where #-) is the number of elements of a set. SimiladyF ), thelower densityof F, is
defined by

d(F) = liminf #FN[0n—1))
n—oo n
Theupper Banach density BDF ) andlower Banach density BOF ) are defined by
BD"(F) = ”msupw, BD,(F) = liminf #EN[M,N))
N—M—c0 N-M+1 N-M—eo N-—M-4+1

2.2. Topological dynamics. By a(topological) dynamical systeme mean a paifX, T)
consisting of a compact metric spaf€,p) and a continuous map: X — X. If X
is a singleton, then we say théX,T) is trivial. If K C X is a nonempty closed sub-
set satisfyingT (K) C K, then we say thatK,T) is a subsystenof (X, T) and (X, T)
is minimal if it has no proper subsystems. T(ositive) orbit of x under Tis the set
Orb(x,T) = {T"x: ne Z,}. Clearly, (Orb(x,T), T) is a subsystem X, T) and(X,T)
is minimal if Orb(x, T) = X for everyx € X.
We say that a point € X is
(1) minimal if x belongs to some minimal subsystem(Xf T);
(2) recurrent if iminf p_. p(T"X,X) = 0;

(3) transitive if Orb(x, T) = X.
For a pointx € X and subsetd,V C X, we define the following sets dfansfer times

NU,V) = {neN: TUNV #0}={neN: UNT™ "V 0},
N(x,U) = {neN:T"xeU}.

To emphasize that we are calculating the above sets usimgfaoranationl we will some-
times writeNy (x,U ) andNr (U, V).
We say that a dynamical systgid, T) is

(1) transitiveif N(U,V) # 0 for every two non-empty open subsetandV of X;

(2) totally transitiveif (X, T") is transitive for every € N;

(3) (topologically) weakly mixingf the product systeniX x X, T x T) is transitive;

(4) (topologically) strongly mixingf for every two non-empty open subsétsandV
of X, the set of transfer timds$(U,V) is cofinite.

Denote by TrafX, T) the set of all transitive points @X, T). It is easy to see that if
a dynamical systemiX, T) is transitive then TrafX, T) is a denséss subset ofX. It is
also clear that a dynamical systé, T) is minimal if and only if TrariX,T) = X, and a
pointx € X is minimal if and only if(Orb(x, T), T) is a minimal system.

The following characterizations of recurrent points andimal points are well-known
(see, e.g., [12]).

Lemma 2.1. Let (X, T) be a dynamical system. A poinexX is

(1) recurrent if and only if for every open neighborhood U of x ¢ Nx,U) con-
tains an IP-set;

(2) minimal if and only if for every open neighborhood U of x thé Néx,U) is
syndetic.
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A dynamical systentX, T) is equicontinuousf for every € > 0 there is @ > 0 such
that if x,y € X with p(x,y) < 0 thenp(T"x, T"y) < e forn=0,1,2,.... A pointx € X
is equicontinuousf for every € > 0 there is ad > 0 such that for every € X with
p(x,y) <o, p(T"x, T"y) < € for all n € Z,.. By compactnesg$X,T) is equicontinuous if
and only if every point inX is equicontinuous.

We say that a dynamical systef¥, T) hassensitive dependence on initial condition
or briefly (X, T) is sensitivef there exists & > 0 such that for everx € X and every
neighborhood) of x there exisy € U andn € N such thap(T"x, T"y) > 9.

A transitive system ialmost equicontinuous there is at least one equicontinuous
point. It is known that if(X, T) is almost equicontinuous then the set of equicontinuous
points coincides with the set of all transitive points anditidnally (X, T) is uniformly
rigid, that is for everye > 0 there exists an € N such thafo(T"x,x) < ¢ for all x € X.
We also have the following dichotomy: if a dynamical systefT) is transitive, then it
is either almost equicontinuous or sensitive. See [1, 18pfoofs and more details.

A pair (x,y) € X2 is proximal if liminf,_.p(T"x, T"y) = 0, anddistal if it is not
proximal, that is liminf . o(T"x, T"y) > 0. A pointx is distalif (x,y) is distal for any
y € Orb(x, T) with y # x. If every pointinX is distal then we say th&X, T) is distal.

Let (X,T) and (Y,S) be two dynamical systems. If there is a continuous surjactio
m: X — Y with mo T = So 11, then we say thatr is afactor map the systen{Y,S) is a
factorof (X,T) or (X, T) is anextensiorof (Y, S).

A factor maprr: X — Y is:

(1) proximalif (x1,x%p) € X2 is proximal providedt(x;) = 11(Xp);

(2) distalif (x1,%2) € X2 is distal provided(x1) = 71(xp) With X; # Xo;

(3) almost one-to-oné there exists a residual subggtof X such thatr1(r(x)) =
{x} for anyx € G.

Let M(X) be the set of Borel probability measuresXn We are interested in those
members ofM(X) that are invariant measures for. Therefore, denote b (X,T)
the set consisting of ali € M(X) making T a measure-preserving transformation of
(X, B(X), 1), whereB(X) is the Borelo-algebra ofX. By the Krylov-Bogolyubov The-
orem,M(X,T) is nonempty.

Thesupportof a measurgr € M(X), denoted by sugp), is the smallest closed subset
C of X such thafu(C) = 1. We say that a measure Ha#l supportor isfully supportedf
supg ) = X. We say thatX, T) is anE-systenif it is transitive and admits &-invariant
Borel probability measure with full support.

2.3. Symbolic dynamics. Below we have collected some basic facts from symbolic dy-
namics. The standard reference here is the book of Lind andud429].

Let {0,1}%+ be the space of infinite sequence of symbol&dril} indexed by the non-
negative integers. Equif®, 1} with the discrete topology anfD, 1}%+ with the product
topology. The spacg0, 1}%+ is compact and metrizable. A compatible mepits given
by
0, X=Y,

p(X7 y) - {ZJ(ny), X # y,

whereJ(x,y) =min{i € Z, : X #Vi}.
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A word of lengthn is a sequence = wiws ... w, € {0,1}" and itslengthis denoted by
|w| = n. Theconcatenatiomf wordsw = wiWs...Wn andv = ViVs.. .V is the wordwv =
WiWa ... WpV1Vs. .. Vm. If uis a word andh € N, thenu" is the concatenation afcopies of
uandu® is the sequence if0, 1}%+ obtained by infinite concatenation of the wardwe
say that a wordi = ujUs. .. U appears ik = (x;) € {0,1}%+ at positiont if X.;j_1 = Uj
for j=1,2,...,k. Forxe {0,1}%+ andi,j € Z, i < j write Xji,j] = XiXi+1..-Xj. Words
Xi,j) andx i, Xi,j) are defined in the same way.

The shift mapo: {0,1}%+ — {0,1}%+ is defined byg(X)n = Xhs1 forne Z,.. ltis
clear thato is a continuous surjection. The dynamical systdi® 1}%+, g) is called the
full shift. If X is non-empty, closed ang-invariant (i.e.o(X) C X), then(X, o) is called
asubshift

Given any collectiortf of words over{0,1}, we define asubshift specified b¥, de-
noted byXgy, as the set of all sequences frdi, 1}%+ which do not contain any words
from F. We say thatf is a collection offorbidden words for X% as words from are
forbidden to occur irKs.

A cylinderin {0,1}%+ is any seflu] = {x € X : XoX; ...X,_1 = U}, whereu is a word
of lengthn. Note that the family of cylinders if0,1}%+ is a base of the topology of
{0,1}%+. Let X be a subshift of0,1}%+. Thelanguage of X denotedl (X), consists of
all words that can appear in some X, i.e. £(X) = {x; j : X € X,i < j}.

For every wordu € £(X), let [ulx = XN [u]. Then{[u]x: ue £(X)} forms a base of
the topology ofX. Let ¥ = {0,1}*\ £(X), where{0,1}* is the collection of all finite
words over{0,1}. ThenX = Xg, that is,F is the set of forbidden words fot.

Remark 2.2. In some examples we will consider sequences indexed byiymosite-
gersN instead ofZ, . That is, we identify{0, 1} with {0,1}%+. It will simplify some
calculations.

3. MULTI-RECURRENT POINTS
3.1. Definition and basic properties.

Definition 3.1. Let (X, T) be a dynamical system. A poir& X is calledmulti-recurrent
if for every d > 1 there exists a strictly increasing sequefiogly’ ; in N such that for
eachi=1,2,...,d we haveT'"™kx — x ask — oo,

In other words, a point € X is multi-recurrent if and only if for everg > 1 the point
(X,...,X) € X9 is recurrent forT x T2 x --- x T9. Equivalently,x is multi-recurrent if
and only if for everyd > 1 and every neighborhodd of x there existk € N such that
K 2k,...,dke N(x,U).

While we do not need such generality in the present papeerebshat Definition 3.1
can be stated faZ%-actions in a similar manner. A proof of the following obsstien is
straightforward, thus we leave it to the reader.

Lemma 3.2. Let (X, T) be a dynamical system and=xX. Then the following conditions
are equivalent:
(1) x is a multi-recurrent point ofX, T);
(2) x is a multi-recurrent point ofX,T") for some re N;
(3) x is a multi-recurrent point ofX,T") for any ne N.
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The following fact implies that every dynamical system @m$é a multi-recurrent
point, because every dynamical system has a minimal swmysiNote that Lemma
3.3 can also be deduced from properties of sets of multiglerrence provided by [20,
Lemma 2.5]. Results in [20] allow further analysis of retwimes of multi-recurrent
points.

Lemma 3.3. Let (X, T) be a dynamical system.

(1) The set of all multi-recurrent points 0K, T) is a G5 subset of X.
(2) If (X, T) is minimal, then the set of all multi-recurrent points isicegl in X.

Proof. (1): Givend > 1, let
Ry = {ye€ X:3n>1such thap(y,Ti”y) < % fori=0,1,...,d}.

It is clear that everyRy is open, henc® = NJ_1 Ry is aG; subset oiX. It is easy to see
thatR = Ng_; Ry is the set of all multi-recurrent points.

(2): If (X,T) is minimal, then it follows from the Topological Multiple Rerrence
Theorem Il thaRy is dense irX for everyd > 1. ThusR=NJ_; Ry is residual inX. [

Lemma 3.4. If a dynamical systeniX, T) is uniformly rigid, then every point in X is
multi-recurrent.

Proof. Fix d > 1. Since(X, T) is uniformly rigid, for everye > 0 there exists € N such
thatp(T"x,x) < £/d for all x € X. Then

p(x,T"X) < g/d, p(T"x, T?"x) < £/d,...,p(TE I TI%) < £/d,

which shows that the diameter ¢k, T"x, T2"x,...,T9%} is less thare. It follows that
(X,...,x) € X9 is recurrent forT x T2 x --- x T9. Butd is arbitrary, hence is multi-
recurrent. U

Remark 3.5. It is shown in [12, Proposition 9.16] that if a point is distiaén it is multi-
recurrent. In particular, in a distal system every point idtirrecurrent.

Remark 3.6. Notice that there exist minimal as well as non-minimal wgakixing and
uniformly rigid systems (see, respectively, [17] and [LBY Lemma 3.4, every point in
those systems is multi-recurrent. None of these examplebea subshift. Furthermore,
a non-trivial strongly mixing dynamical system can neveuhgormly rigid by [17].

One of the referees of this paper, motivated by the aboveriemaggested the follow-
ing problem.

Question 3.7.Is there a non-trivial weakly mixing subshift or any mixingndmical
system for which each point is multi-recurrent? Can suchsdesy be minimal?

In [36] it is proved that if each pair in a dynamic@X, T) is positively recurrent un-
derT x T, then it has zero topological entropy (it is also a consegei@f a result in
[6]). Distal or uniformly rigid systems are examples of gaiise multi-recurrent systems
which have zero topological entorpy. But pointwise mudicurrence does not imply zero
topological entropy in general as shown below.
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Remark 3.8. A dynamical systen{X,T) is multi-minimalif for every d > 1 (X9, T x
T2 x ---x T9) is minimal [30]. Clearly, every point in a multi-minimal sigsn is multi-
recurrent. Note that by the proof of [23, Proposition 3.58rthexists a multi-minimal
system with positive topological entropy.

The existence of a system constructed in the following t@as probably a folklore,
but we were unable to find it in the literature.

Theorem 3.9. For every d> 1, there is a minimal point x in the full shif{0,1}%+, o)
such that(x,x, ...,x) € X9 is recurrent undeio x 02 x --- x 0% and (x,x, ...,x) € X9+1
is not recurrent undeo x 2 x - -- x g9 x g4+1,

Proof. First we consider the cagsk= 1 and then the general case. ot 1, we define
the local rule of a substitution by

1:1— 1101
0— 0101

and then extend it to all finite words ovfD, 1} putting inductivelyr (uv) = t(u)T(v). Let
X = (X))o = limy_. T%(1)0® be a fixed point of. It is easy to check thatc {0,1}%+
is a minimal point.

We claim that; = 1 if and only ifi = 0 ori = 4™(2n+ 1) for somen,me Z... It will
follow thatx; = 0 if and only ifi = 2-4™(2n+ 1) for somen,me Z .

These conditions are clearly true foe 0,1,2,3. Now fix anyi > 0 and assume that
our claim holds foii. We will show that the claim also holds for,4i + 1,4i +2,4i + 3.
We have two cases to consider.

If x; =1, then by the claim = 4™(2n+ 1) for somem,n € Z . By the definition of
substitutionxg; 4,3 = T(%) = (1), so

e X4i =1 and 4 =4™71(2n41);
e Xqipp=land4+1=4™12n+1)+1=2(2-4"2n+1)) +1;
e X4 2=0and4+2=4™12n+1)4+2=2(2-4"2n+1) +1);
o X43=21and4+3=4™12n+1)+3=2(2-4M(2n+1) +1) +1.

If x; =0, theni = 2.-4™.n for somem,n € Z... Thenx 4,3 = 7(0) and we have:

e Xgg=0and4=2-4™1.n
o X4iyr=1and4+1=2.4™1.np1=2(4"1.n)+1;
o Xqiipo=0and4+2=2.4M1.np2=2(4™1.nt1),
e Xgisz=land4+3=2.4™1.n33=2(4™1.n41)+1.
This ends the proof of the claim.
The pointx is minimal, hence it is recurrent under By the claim, it is clear that if
i € Nandx; = 1 thenxy = 0. So(x,X) is not recurrent undey x o2, because it will never
return to[1] x [1].
For the cas@ > 2, we extend the above idea. We define a local rule of a sutistitu
by
T:1— 181 e a(d+1)2_1,
0—0a... a(dJrl)z,l,
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wherea; = 0 for j = 0 mod(d + 1) anda; = 1 otherwise. Lek = limy_,,, T%(1)0® be a
fixed point oft. As abovex is a minimal point.

For everyk € N, x can be expressed as-= [1%(1)]9711X(0)..., so(x,X,...,x) € X4 is
recurrent undeo x g2 x --- x 09. Analogously to the casg= 1, we prove that if € N
andxj = 1 thenxy,1); = 0. The details are left to the reader. 8ox,...,X) € x4+ s

not recurrent undew x g2 x --- x g9 x g9+1, O

3.2. Multi-recurrent points and factor maps. Letm: (X, T) — (Y,S) be a factor map.
Itis well known that ify € Y is a recurrent point d§, then there is a recurrent poxe X
of T with r(x) =y. In this subsection we investigate if this result holds fadtirecurrent
points. It turns out that it is still the case for distal exgems but may fail for proximal
extensions.

Proposition 3.10.LetmT: (X, T) — (Y, S) be a factor map.

(1) If x € X is multi-recurrent, then so ig(X).
(2) If y € Y is multi-recurrent andt*(y) consists of a single point x, then x is also
multi-recurrent.

Proof. (1): It is a direct consequence of continuity mf

(2): Sincerr1(y) = {x}, for every neighborhoot of x there exists a neighborhood
V of y such thavr1(V) c U. ThereforeN(y,V) c N(x,U). It follows that if y is multi-
recurrent, then so is O

By Remark 3.5 every distal system is multi-recurrent. Irtipatar, every equicontin-
uous system is multi-recurrent. Therefore the projectibmmimal dynamical system
onto its maximal equicontinuous factor maps every poinb@multi-recurrent point. It
turns out that the system presented in Theorem 3.9 is a pabextension of its maximal
equicontinuous factor and there is a fiber not containingranlfi-recurrent points.

Proposition 3.11. There exist two dynamical syste(s T) and (Y, S), a proximal factor
mapt: (X, T) — (Y,S) and a point yc Y which is multi-recurrent butr—(y) does not
contain any multi-recurrent points.

Proof. Let T be a local rule of a substitution defined by

1:1— 1101
0— 0101

i.e. T is the substitution from the proof of Theorem 3.9. ket lim,_,, 7"(1)0* and
z=1imp_ 1"(0)0” be fixed points of. Let X = Orb(x, o). ThenX is a minimal set and
ze X.

Observe thatg =0, zx = 1 fork =4™(2n+ 1) andz = 0 fork = 2-4M(2n+1). In
particular one hag = x; for i > 0 (see the proof of Theorem 3.9). Note thatjit= 0 for
somej > 0 thenz; = 1 and ifzj = 1 thenzj; = 0. Neither(x,x) nor (z z) is recurrent
undero x .

Denotek, = |1"(1)| = 4" and observe that position of 11 uniquely identifies position
of 7(1) in x= 1(x). By the same argument(1)7(1) identifies uniquely beginning of
T2(1) in X, etc. In other words, blocks’(0) andt"(1) form a code for everyr > 1 and
hence there is a unique decompositioxafito blocks from{t"(0), 7"(1)}. But X is the
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closure of the orbit ok which yields that for any € X and anyn > 1 there is a uniquely
determined infinite concatenatiga/" i1 of blocks over{1"(0),7"(1)} and a blockun

of length 0< |un| < ky such that = uwi"wi w" ...
With everyn associate a natural projectin: Zy,,, — Zx,, én(X) = X(modky). Then
we obtain a well defined inverse limit

Y =1IM(Zig,;én) ={(J1, j2,---) 1 énlint1) = In} C |_| Zi,

Addition in Y is coordinatewise, modulk, on each coordinata. Endowed with the
product topology over the discrete topologieZjspaceY becomes a topological group
satisfying the four properties characterizing odometses (9]). LetS: Y — Y be defined
by S(j1,j2,...) =(j1+1,j2+1,...). ThenY = Orb((0,0,...),S) and(Y,S) is a minimal
dynamical system (an odometer).

With everyv € X we can associate a sequerjée = (j\, j%....) e Y given byj =
kn— |un| ( modky,). This way we obtain a natural factor map (X, o) — (Y,S),vi— jV.
Note that if 77(u) = m(u') then for everyn > 1 takingk = |tT"*1(0)| — jn,1 provides a
decompositiono®(u), o*(u) € {t"(0), T"(1)}%+ which in turn implies thatu,u’ share
arbitrarily long common word of symbols (e.g"(0)), and as a consequengg/ form a
proximal pair. This proves that is a proximal extension. Denoye= m(x).

To finish the proof observe thatifc X and ri(u), = 0 thenu € {15(0), T5(1)}%+ by
the definition ofrr. But if T"(0) is a prefix ofu (the same forr"(1) and (u)p1 =0
then T"*1(0) must be a prefix ot (resp. ™"+1(1) is a prefix). Therefore, if we put
y=(0,0,0,...) thenrr1(y) = {x,z} and every point inY,S) is multi-recurrent (it is a
distal system and so Remark 3.5 applies). O

To prove that multi-recurrent points can be lifted by distatensions, we apply the
theory of enveloping semigroup. LEX, T) be a dynamical system. Endo¢ with the
product topology. By the Tychonoff theored* is a compact Hausdorff space. The
enveloping semigroupf (X, T), denoted byE(X, T), is defined as the closure of the set
{T":necZ,} in XX. We refer the reader to the book [3] for more details (see[@Bo

Theorem 3.12.Letm: (X, T) — (Y,S) be a factor map, let & 1 and assume thatg Y
is recurrent under & & x --- x S . If x € m1(y) is such that the paifx, z) is distal for
any zc 1 1(y) with z# x, then x is recurrent under X T? x - -- x TY. In particular, if y
IS multi-recurrent then so is Xx.

Proof. Let iy = x 7 --- x 11 (X4, T xT2x---x T4 = (Y4, Sx P x --- x ). Then
Ty Is a factor map. There exists a unique onto homomorphﬂsrﬁ(xd,T XT2x - X
T 5 E(Y9,Sx P x--- x F) such that(pz) = 8(p) my(2) foranyp e E(X3, T x ... x
T9) andz e X9 (see Theorem 3.7 in [3]). Sindg,...,y) is recurrent under the action of
Sx P x---x S, by [2, Proposition 2.4] there is an idempotart E(Y9, Sx S x - - - x )
such thatu(y,...,y) = (,...,y). If we denoteJ = 8~1(u) then clearly it is a closed
subsemigroup o (X9, T x T? x --- x T9) and so by Ellis-Numakura Lemma there is an
idempotenv € J.

Observe that
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hence each coordinatewi, . . ., x) belongs tat1(y). Furthermore, sinceis an idempo-
tent, we haver(v(x,...,X)) = v(X,...,X), thus again by [2, Proposition 2.4] we obtain that
V(X,...,x) and(x,...,x) are proximal undef x T2 x --- x T9, and therefore each coordi-
nate ofv(x,...,X) is proximal withx (under the action of ). But the pair(x, z) is distal for
anyz < mr1(y) with z# x, which immediately implies that(x, ..., X) = (X, ..., X). Sincev

is an idempotent, it is equivalent to say tiiat.. ., x) is recurrent undeF x T2 x ... x T4
which ends the proof. O

Corollary 3.13. Letm: (X, T) — (Y,S) be a factor map. Iftis distal, then a point x X
is multi-recurrent if and only if so ir(x).

3.3. The measure of multi-recurrent points. It follows from the Poincaré recurrence
theorem that almost every point is recurrent for any invamaeasure (see [12, Theorem
3.3]). A similar connection holds between multi-recurrpaints and multiple recurrence
in ergodic theory.

Theorem 3.14.Let (X, T) be a dynamical system apdbe a T -invariant Borel probabil-
ity measure on X. Them-almost every point of X is multi-recurrent for T.

Proof. Choose a countable baB; }* ; for topology ofX. For everyi € N, let

A= (B\UBNT"BINT 28N NT-%"g,).
d=1 n=1
Note that a poink is not multi-recurrent if and only if there exidt> 1 andi € N such that
x € Bi butx¢Z BN T "BiN---NT~9"B; for all n € N. Thereford ;> ;1 A is the collection
of non-multi-recurrent points fX, T). By the Multiple Recurrence Theorem(A;) =0
for everyi > 1. Thenu (U1 A) = 0. O

Corollary 3.15. If a dynamical systerX, T) admits an ergodic invariant Borel proba-
bility measureu with full support, then there exists a densg §ubset X of X with full
U-measure such that every point ig ¥ both transitive and multi-recurrent.

Proof. Sincey is ergodic, then the set of all transitive points is a de@gesubset ofX
and has fullu-measure. By Lemma 3.3 and Theorem 3.14, the set of all madtifrrent
point is also a dens€s subsets oKX and has fullu-measure. Then the intersection of
those two sets is as required. O

Using results on multiple recurrence developed by Furgenim [11], we strengthen
Theorem 3.14 as follows.

Theorem 3.16.Let(X, T) be a dynamical system. For every T -invariant Borel prolgpil
measureu on X, there exists a Borel subset &f X with t(Xp) = 1 such that for every
X € Xo, every de N and every neighborhood U of x the set.N2,, . ta((X;...,X),U x
---x U) has positive upper density.

Proof. For everyd € N and everyd > 0, letAy 5 be the collection of all pointg € X for
which there exists a neighborhobdof x with diam(U ) < & such that the set

NT><T2><...><Td((X7---,X),U X e xU)

has positive upper density.
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Let u be an ergodicT -invariant Borel probability measure ok. We are going to
show thatu(Aq 5) = 1 for everyd € N and everyd > 0. First we show tha# 5 is
Borel measurable. To this end, for evéry 0 and everyn,me N, let Aq 5(t,n,m) be
the collection of all pointx € X such that there exists an neighborhdddf x with
diamU) < 9 satisfying

1

ﬁ#(NTXTZX...XTd((XV-'7X)7U XX U)m[o7n_l]) >t r_:t]

It is clear thatAs(t,n,m) is an open subset of and

Acs=J ) U Ads(E.nm.
k=1m=1n=m
It follows thatAy 5 is Borel measurable.
If u(Adﬁ) < 1, then we can choose a Borel sulBet X \ As with diam(B) < /3 and

1 (B) > 0. For anyx € X, let

_ N—1

g(x) =Ilim sup 1g-1-ign..T-ieg(X)-
N— 00 i=

Theng s also Borel measurable and0g(x) < 1 for anyx € X. By the Fatou lemma and
[12, Theorem 7.14], we have

[ st0dutn > imsup: [ 'S ;1Bm 7 (AU ()

N— o0

N
> liminf = Z}u (BAT™'BN---NT9B) > 0.

Clearly g(x) = 0 for anyx ¢ B, hence there exists some= B such thatg(x) > 0. Let

U =B(x,20). ThenB C U and the upper density & r2,.....ra((X,...,X),U x - xU)

is not less thag(x). We obtain thak € Ay 5, which is a contradiction.
Thereforeu(Ay 5) = 1 for every ergodic measugg everyd € N and everyd > 0. Let

Xo= [V Aqz-
d=1k=1
Thenu(Xp) = 1 for every ergodic measure, and by the ergodic decompogti® same
holds for anyT -invariant measure. Therefokg is as required. O

Remark 3.17. Assume that pointwise convergence of multiple averagesstfol i, that
is, for everyd € N andfy, fp,..., fq € L®(u),

N-1
1 Z) f1(T"X) f2(T2"X) - - f4(T9"X) convergeg a.e..

Then the proof of Theorem 3.16 can be modified by replacinglimin the definition of
g by liminf, and the modified proof yields that for evexye Xg, everyd € N and every
neighborhood) of xthe setNy 12, 1a((X,...,X),U x--- xU) has positive lower den-
sity. Unfortunately, the pointwise convergence of mu#iplverages for general ergodic
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measures is still an open problem. It was proved recenthytiigapointwise convergence
of multiple averages holds for distal measures (see [22]).

Glasner proved in [16] that if a minimal systefX, T) is topologically weakly mix-
ing, then there is a densgs subsetXy such that for eacl € Xo, the orbit of(x,...,X)
is dense inX% underT x T2 x ... x T9. Below we present an analogous result for sys-
tems possessing a fully weakly mixing invariant measurdeNat Lehrer [25] proved a
variant of the Jewett-Krieger theorem, which implies ttnere are topologically weakly
mixing minimal systems without weakly mixing invariant nseiaes. Therefore our result
complements Glasner’s theorem.

Theorem 3.18.Let (X, T) be a dynamical system. If there exists a weakly mixing, fully
supported T -invariant Borel probability measymeon X, then there exists a Borel subset
Xo of X with i (Xp) = 1 such that for every x Xp, every de N, and every non-empty open
subsets Y,U,,...,Uy of X the set

NT><T2><...><Td ((X,X, R ,X),Ul XU X -+ X Ud)
has positive upper density.

Proof. For everyd € N and everny > 0, letAq 5 be the collection of all points € X such
that there exists an open cov; }/_; of X with diam(U;) < & fori = 1,...,¢ and such
that for everya € {1,2,...,0}% the setNr 12, 1a((X.X,...,X),Ug(1) X Ug(z) X -+ X
Uq(q)) has positive upper density.

Following the same lines as in the proof of Theorem 3.16 waiolhatA, 5 is Borel
measurable. We are going to show tha#y 5) = 1.

If L(Ag5) <1, there exists a Borel sél C X\ A5 with diam(Wp) < 8/2 andu(Wo) >
0. Fix an open covefU;}"; of X with diamU;) < & for i = 1,...,/. Enumerate
{1,2,...,p}% as{ay,az,..., ax} with k= pd.

First note that(Uj) > 0fori=1,2,...,¢sinceu has the full support. For everye X,
let | =

91(x) = “an_?:ij IZ} ]-V\IomT*'Ual(l)m..ﬂT*'dUal(d) (%)

Theng; is also Borel measurable and<0g;(x) < 1 for anyx € X. The measurg is
weakly mixing, hence we can apply [11, Theorem 2.2] obtarihat

18 d
,\ll@ooﬁ lzl]WoﬂT*'Ua1(1>ﬂ~~ﬂT*'dUal(d> (X) = Iwy(X) Iﬂﬂ(ual(l))
in L?(X). In particular fy gz(x)du > 0. Clearlygy(x) = 0 for anyx ¢ Wo. Then there
exists a Borel satvy  Wp with p (W) > 0 andgz (x) > O for anyx € Wy. Note that for
everyx € Wy the upper density dfir, 2, 1a((X,X,-..,X),Uq; (1) X Ugy2) X - X Ugy @)
is not less thaw (x).

Working by induction, for every=1,2,...,k, we can construct a Borel 9&f C W_1
with p(W) > 0 such that for everx € W the setNy 12, 7a((XX;...,X),Ug 1) X
Uai2) X -+ X Ug,(q)) has positive upper density. This implies that for every W and
everya € {1,2,...,0}9the seNp 2, 1a((XX,...,X),Ug(1) X Ug(z) X -+ x Uqqg)) has
positive upper density. Thé C Ay 5, which is a contradiction, hengg(Ay 5) = 1.
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To finish the proof, it is enough to put

Xo= {1 [Aqz-
d=1k=1
sinceu(Xo) = 1 andXy is as required. O

Remark 3.19. One can modify the proof of Theorem 3.18, by replackgs by Aiﬂ,é

defined as the collection of all pointss X such that there exists an open coyer}’_;
of X with diam(U;) < é fori = 1,...,¢ for which the set

N2y sea (%X, X),Ug(1) X Ug(2) X -+ X Ug(q))

is not empty for evena € {1,2,...,¢}%. Then one obtains tha;, 5 is a dense open

subset oiX and o

Xo={1AqL

d=1k=1

Is a denseéGs subset ofX with full u-measure. Moreover, for eveye N and every
x € X}, the orbit of(x, X, ..., X) is dense iK% underT x T2 x ... x T4, Since(X9, T x T2 x
...x T9) is an E-system, by [21, Lemma 3.6] we know that for evegyX, everyd € N
and every non-empty open subsetsU,, ...,Uq of X the setNy, r2,, . 1d((XX,...,X),
U x Uz x -+ xUg) has positive upper Banach density, but we cannot conclwadét thas
positive upper density. On the other hand, we do not know dréhe sek, constructed
in Theorem 3.18 is residual.

4. VAN DER WAERDEN SYSTEMS ANDAP-RECURRENT POINTS

In this section we introduce the concept of a van der Waerdstes. We explore how
this notion relates to the behaviour of multi-recurrentp®andAP-recurrent points.

Definition 4.1. We say that a dynamical systegiX, T) is avan der Waerden systeifrit
satisfies the topological multiple recurrence propertgt ithfor every non-empty open set
U c X and everyd € N there exists an € N such that

unT"unt2un.--nT-9U 0.
By the Topological Multiple Recurrence Theorem, we knowt theery minimal system
is a van der Waerden system. It follows from the ergodic NdigtRecurrence Theorem
that every E-system is a van der Waerden system.

Itis easy to see that (X, T) is a van der Waerden system, then the relaflen§_; Ry
is residual, where

Ry = {ye X:3dn>1such thap(y,Ti”y) < % fori=0,1,...,d}.
As a corollary, we obtain the following (cf. Lemma 3.3).

Lemma 4.2. A dynamical systertX, T) is a van der Waerden system if and only if it has
a dense set of multi-recurrent points.

By Lemmas 4.2 and 3.2, we have the following result.

Proposition 4.3. Let (X, T) be a dynamical system. Then the following conditions are
equivalent:
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(1) (X,T) is avan der Waerden system;
(2) (X, T")is a van der Waerden system for some N;
(3) (X,TM) is a van der Waerden system for anyg iN.

Lemma 3.4 implies that every point in a uniformly rigid systés multi-recurrent.
Then by Lemma 4.2 every uniformly rigid system is a van der e system. By [1,
18], every almost equicontinuous system is uniformly rigM/e have just proved the
following.

Proposition 4.4. Every almost equicontinuous system is also a van der Waangstam.

Moothathu introduced\-transitive systems in [30]. Recall that a dynamical system
(X,T) is A-transitiveif for everyd € N there existx € X such that the diagonaktuple
(X,X,...,X) has a dense orbit under the actioriTok T2 x - -- x T4,

Proposition 4.5. If a dynamical systerfX, T) is A-transitive, then it is a van der Waerden
system.

Proof. LetU be a non-empty open subsetofind fix anyd € N. There existx € X such
that diagonatl-tuple (x,x, ..., x) has a dense orbit under the actiorTok T2 x --- x T9,
Then there exists € N such thaff"x e U, T?x e U, ..., T9 € U and thus

TxeUunT"un...nT-@-1ny,
This shows thatX, T) is a van der Waerden system. O

By Proposition 3.11, multi-recurrent points may not beeliftthrough factor maps.
To remove this disadvantage, we introduce the followinghgly weaker notion ofA®P-
recurrentpoint. As we will see later, it is possible to characterize dar Waerden sys-
tems throughdP-recurrent points.

Definition 4.6. A point x € X is AP-recurrentif N(x,U) is an AP-set for every open
neighborhood) of x .

Remark 4.7. It is clear that every multi-recurrent point &XP-recurrent and everylP-
recurrent point is recurrent. The notion 4fP-recurrent points can be seen as an inter-
mediate notion of recurrence. By Proposition 4.14, evenyimal point isAP-recurrent
since minimal systems are van der Wearden systems. But lyrdime3.9 there exist some
minimal points which are not multi-recurrent. Those minipaints areAP-recurrent but
not multi-recurrent. Every transitive point of the dynaalisystem presented in the proof
of Proposition 4.17 is naflP-recurrent. So those transitive points are recurrent but no
A®P-recurrent.

Lemma 4.8. Let (X, T) be a dynamical system.

(1) The collection of allAP-recurrent points of X, T) is a G5 subset of X.
(2) (X,T)isavander Waerden system if and only if it has a dense s&Pakcurrent
points.

Proof. (1): Givend > 1, let
Qa = {y€ X: In,a>1suchthap(y, T"?y) < L fori=0,1,...,d}.
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It is clear that everyq is open, henc® = Nj_; Qq is aGs subset oiX. It is easy to see
thatQ = Ng_, Qq is the set of allAP-recurrent points.

(2): First note that by Lemma 4.2 every van der Waerden sysiasndense set of
multi-recurrent points, hencé®-recurrent points are dense.

On the other hand, iis A®P-recurrent and € U then for everyd > 1 there ar@a,n> 1
such thaff""x ¢ U for everyi =0, 1,...d and so

TqecUNTUNT 2Un...nT 9
completing the proof. O

We have the following connection betwegiP-recurrent points and their orbit clo-
sures.

Proposition 4.9. Let (X, T) be a dynamical system and=xXX. Then x isAP-recurrent if

and only if(Orb(x, T), T) is a van der Waerden system.

Proof. If x is AP-recurrent, then every point in the orbit »fis also AP-recurrent. By
Lemma 4.8(Orb(x,T), T) is a van der Waerden system.

Now assume thdOrb(x, T), T) is a van der Waerden system. By Lemma 4@&b(x,T),T)
has a dense set gfP-recurrent points. Fix an open neighborhddaf x. It suffices to
show thatN(x,U) € AP. Choose amiP-recurrent pointy in U. For everyd > 1, there

existk,n € N such that
Thyeu, TFy cu, Ty cu, ... TRy cU.

By continuity of T, there exists an open neighborhddaf y such that for ang € V we
have
Tkze U, TNze U, T ?zc U, ... Tz c U,

Sincey € Orb(x, T), there existen > 0 such thalf ™x € V. Then
TR e U, TR ey, TRy cy, .. TMHRHN c Yy
which implies thalN(x,U) is an AP-set. This ends the proof. O

Proposition 4.10. Let (X, T) be a dynamical system and=xX. Then the following con-
ditions are equivalent:

(1) xis anAP-recurrent pointin(X,T);

(2) x is anAP-recurrent point in(X, T") for some re N;

(3) x is anAP-recurrent point in(X, T") for any ne N.

Proof. The implications (3)= (2) = (1) are clear. We only need to show &) (3).

Fix n € N. Without loss of generality, we can assume tKat Orb(x,T). Then(X,T)

Is topologically transitive system, becauses a recurrent point. Moreover, ass AP-
recurrent in(X, T), applying Proposition 4.9 we get théX,T) is a van der Waerden
system. Denot&y = Orb(x, T"). It is well known (see [27, Lemma 6.5] for example)
that the interior ofXy (with respect to the topology of) is dense inXg, that is, X is
regular closed subset . By Lemma 4.2, the collection of multi-recurrent points in
(X,T) is dense inX. By Lemma 3.2, every point multi-recurrent under actionTofs
also multi-recurrent fol ". Hence the set of multi-recurrent points(&h, T") is dense in

Xo. By Lemma 4.2 again(Xp, T") is a van der Waerden system. By Proposition 4.9 we
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obtain that every transitive point {iXo, T") is AP-recurrent. Sx s alsoAP-recurrent in

(Xo, TM). O

In the proof of next result we will employ the technique dexgd in [27] and show
that everyAP-recurrent point can be lifted through factor maps.

Proposition 4.11. Let rt: (X, T) — (Y,S) be a factor map. If ¥ Y is anA®P-recurrent
point, then there exists aAP-recurrent point xc X such thatr(x) =y.

Proof. It is clear that for any € Z and anyF € AP, the translation oF by n denoted by
n+F ={n+keN: ke F},is also an AP-set. In other words, the famil is translation
invariant (see [27, page 263]). Recall that the family has the Ramsey property. Then
by [27, Lemma 3.4], all the assumptions of Proposition 4.Rif] are satisfied bylP.
The result follows by application of [27, Proposition 4.6]the family AP. 0J

Remark 4.12. The proof of Proposition 4.11 which is short and compacts aégkvanced
machinery from [27]. Another, more elementary proof willdgieen later in Section 6.

To characterize when a transitive system is a van der Waesgigtiem, we need the
following definition. It is a special case of a notion consetkin [26].

Definition 4.13. We say thak € X is an A®P-transitive pointif N(x,U ) is an AP-set for
every non-empty open set C X.

Proposition 4.14. Let (X, T) be a transitive system. Then the following conditions are
equivalent:

(1) (X,T) is avan der Waerden system;
(2) there exists alP-transitive point;
(3) every transitive point is arlP-transitive point.

Proof. The implication (3)= (2) is obvious and (23 (1) follows from Proposition 4.9.
We only need to show that (B- (3).

Let x be a transitive point. It follows from Proposition 4.9 thais an AP-recurrent
point. Fix a non-empty open subdétof X. There exist a neighborhodof x andk € N
such thafT"v c U. Thenk+N(x,V) € N(x,U). But N(x,V) is an AP-set and so also
N(x,U) is an AP-set, which proves thais anAP-transitive point. O

Proposition 4.15.Let (X, T) be a transitive system. (K, T) is a van der Waerden system,
then(X", T(") is also a van der Waerden system for every N, where T denotes n-
times Cartesian product®™ =T x T x--- x T.

Proof. LetU;,Uo, ... .Uy be non-empty open subsetsin Pick a transitive poirnt € U;.
Then there exidty, ko, . . .. kq_1 € N such thafTXx € Uy, Tkex e Us, . .., T*-1x € U,,. Since
(X,T) is a van der Waerden systemjs A®P-recurrent. This immediately implies that
(x, Thax, Tkex, ... Tk-1x) is AP-recurrent in(X", T(M), hence(X", T("M) has a dense set
of AP-recurrent points. The proof is finished by application ofrirea 4.8. O

The following example shows that Proposition 4.15 is no &ngue if we do not
assume thatX, T) is transitive. As a byproduct, we obtain two van der Waergestesns
whose product is not a van der Waerden system.
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Example 4.16.Let n; = 2 and define inductivelp, 1 = (ny)3. PutA, = [ny, ()% NN
and denotsS= |J;_1 Ak andR = [Up_1 A+ 1. Clearly, SNR= 0. Denote byXs andXr
the following subshifts (so-called spacing shifts, seg.[5]

Xs={xe {0,1}N: x =xj =1 = |i—j| € SU{0}}
Xg={x€{0,2}": x =xj =2 = |i— j| € RU{0}}.

We can consideXs and X as subshifts 0f0,1,2}N. Let X = XsU Xt  {0,1,2}N,
For a wordw over{0,1,2}" we write [w]s = [w] N Xs and[w|r = [w] N Xg. First note that
the product systertX x X, o x o) is not a van der Waerden system. This is because

Noxo (([] % [2]) N X, ([1] % [2]) N X) = Ng([1]s, [1]s) "No([2]r, [2]r) = STR=0.

Now we show thatX, o) is a van der Waerden system. It it enough to prove that both
(Xs,0) and (Xr,0) are van der Waerden systems. We will consider only the case of
(Xs, 0), since the proof fo(Xgr, 0) is the same.

Fix a wordw € £(Xs), take any positive integdrsuch thaiy > 2(d + |w|) and con-

sider the following sequence= (wO”Zk)dHO“. We claim thatx € Xs. Take any integers
i < jwithx =x; =1. If j—i <|w|, thenj—i € Sby the choice ofv. In the remaining
casej —i > |w| we have

Mok <n2k

ok < =1 (d+ 1) WO = (d+ 1w+ o) < 2 (2 g ) < (a2

therefore also in this case—i € S Indeed,x € Xs. Putm= |w0"| and observe that
X, T™, T2™x, ..., T9Mx e [w|s. But for every nonempty open sbt C Xs we can find a
wordw such thafw]s C U and then there is1such that

xeunT"unT2Un-..nT- 9.
This shows thatXs, 0) is a van der Waerden system.

By Proposition 4.5 eveng-transitive system is a van der Waerden system. On the other
hand, [30, Proposition 3] provides an example of a strongkimg system which is not
A-transitive. In fact, we will show that the example in [30pposition 3] is not even a
van der Waerden system.

Proposition 4.17. There exists a strongly mixing system which is not a van derdéa
system.

Proof. Let  be a collection of finite words ovdl0, 1} satisfying the following two con-
ditions: the word 11 is irf and if u andv are two finite words ovef0,1} such that
|u| = |v|, then the word @lvl is in F. Let X = Xy be the subshift specified by takidg
as the collection of forbidden words. Note thais non-empty since®®@ 0"10” € X for
everyn > 0.

PutW = [1]x and assume that there existg N such thatw N o~"Wn o ~2"W +# 0.
Then there exist two words andv with lengthn — 1 such that t1v10” € X, which is a
contradiction. This shows th&X, o) is not a van der Waerden system.

Now we show thatX, o) is strongly mixing. Leu andv be two words in the language
of X. PutN = |u| + |v|. For everyn> N, one hasu0"™0” € X. This implies thain €
N([u]x,[v]x) for everyn > N, proving that(X, o) is strongly mixing. O
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Remark 4.18. In fact, one can show that the onK/P-recurrent point of X, o) in the
Proposition 4.17 is the fixed point’0

Proposition 4.19. Lett: (X, T) — (Y, S) be a factor map.

(1) If (X, T) is a van der Waerden system, then spvisS).

(2) If (Y,S) is a van der Waerden system, then there exists a van der \Wesudsys-
tem(Z,T) of (X, T) such thatri(Z) =Y .

(3) If mis almost one to one, thgiX, T) is a van der Waerden system if and only if
(Y,S) is a van der Waerden system.

Proof. (1): It is a consequence of the definition of van der Waerdestesy. (2):. By
Lemma 4.8 the set oflP-recurrent point ofY, S), denoted byYp, is a dense subset ¥t

Then by Proposition 4.11, for eveyye Yo, there existsy € X such thati(xy) =y andxy

is AP-recurrent. Leo = {Xy: Y € Yo} andZ = [Uyex, Orb(x,T). Clearlym(Z) =Y. For
everyx € Xp, any pointin Orlgx, T) is AP-recurrent. S& has a dense set @fP-recurrent
points and s@Z, T) is a van der Waerden system by Lemma 4.8.

(3): By (1) we only need to prove that whenis almost one-to-one an®, S) is a van
der Waerden system théK, T) is also a van der Waerden system.

If we putXo = {x € X: m1(m(x)) = {x}}, then by the definition of an almost one-to-
one factorXg is residual inX. For everyx € Xg and every neighborhodd of x there is a
neighborhood/ of 71(x) such thatt1(V) c U. This implies thatt(Xo) is residual inY.
By Lemma 4.8, the set ofP-recurrent point ofY, S), denoted again by, is a residual
subset ofY. Thenm(Xo) NYy is also residual ity and m2(11(Xo) NYo) is residual inX.
By Proposition 4.11, every point i (71(Xo) N Yp) is AP-recurrent. ThugX,T) is a
van der Waerden system by Lemma 4.8. O

5. MULTIPLE IP-RECURRENCE PROPERTY

To get a dynamical characterization of C-sets, the secotitbaof this paper intro-
duced in [27] a class of dynamical system satisfying the ipleltP-recurrence property.
In this section, we study this property and its relation ®ytan der Waerden systems.

Definition 5.1. We say that a dynamical systefK,T) has themultiple IP-recurrence
property if for every non-empty open subset of X, everyd > 1 and every IP-sets
FS{pi(l) i FS{pi(Z)}i‘”:l, e FS{pi(d)}i‘”:1 in N, there exists a finite subsetof N such
that
(1) ) (d)
UNT 2ieaPyNT 2icaP ' yn...AT 2icaPi 'y £0.

It is clear that if a dynamical syste(X, T) has the multiple IP-recurrent property, then
it is a van der Waerden system.

By [13, Theorem A] we know that every E-system has the mutipltrecurrent prop-
erty. It is shown in [18] that every E-system is either eqotawuous or sensitive. We
show that this dichotomy also holds for transitive systentl the multiple IP-recurrence
property. This is an extension of the main result in [18] luseathere are transitive mul-
tiply IP-recurrent systems which are not E-systems (seedreB6).

Theorem 5.2.1f (X, T) is a transitive system with the multiple IP-recurrence @ap,
then(X,T) is either equicontinuous or sensitive.
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Proof. Every transitive system is either almost equicontinuolseositive (see [1]), so let
us assume thdi, T) is almost equicontinuous. It suffices to show tH&LT ) is minimal,
since every minimal almost equicontinuous system is equiicoous (see [4]).

Pick a transitive poink of (X, T). By [1, Theorem 2.4] the set of transitive points
coincides with the set of equicontinuity points. Theims also a equicontinuity point.
Fix any open neighborhodd of x and takes > 0 such that the opea-ball aroundx
is contained inJ. By equicontinuity ofx there isd > 0 such that ifp(x,y) < o then
p(T'x, T'y) < £/2 for every integei > 0. LetV denote the opend-ball aroundx. Since
(X,T) has the multiple IP-recurrence property, for every IP-sgftdr};> ; there exists a
finite subsetr of N such thatv N T~ 2ica PV £ 0. It follows thatN(V,V) is an IP-set.
In particular,N(V,V) is a syndetic set. Next observe, thayiE V, thenp(x,y) < 9.
Therefore ify, T"y € V, thenp(T"x, T"y) < £/2 andp(T"y,x) < £/2. It follows T"x € U
and therefor&N(V,V) C N(x,U). SoN(x,U) is syndetic. This implies thatis a minimal
point and hencéX, T) is minimal. O

Remark 5.3. It is shown in [1] that there exists an almost equicontinusystem(X, T)
which is not equicontinuous. By Proposition 4.4 the syst&nT) is a van der Waerden
system. But it can not have the multiple IP-recurrence ptypg®y Theorem 5.2.

Next, we will modify the example constructed in Propositbh7, to obtain a strongly
mixing van der Waerden system without the multiple IP-resice property.

Proposition 5.4. There is a strongly mixing system which is a van der Waerdstesy
but does not have the multiple IP-recurrence property.

Proof. We are going to construct a substifiand two IP-sets F&p; } 1, FS{qi}> ; such
that for every finitea C N we have

[1]XﬂT_Ziea pi [1]XQT_Zi€aCIi [1])( =0

Let us take any sequencep;}> ; and{q;} ; satisfying:
n
Z Pj < Pnt1 anddn, = 2"pn.1 for everyn e N.
=1

Let F be a collection of finite words oveD, 1} satisfying the following two conditions:
the words 11 is i, and if u andv are two finite words ovef0,1} such thatju| =
Yica Pi —1 andu| + V| = Sicq O — 2 for some finite subset of N then the word @i1vl
isin F. Let X be the subshift specified by takidgas the collection of forbidden words.
Note thatX is nonempty since®e X.

Letw andw’ be two words in the language Bf Take anys such that

W[+ W|+2< psy1 < Gs < Gsp1.
It follows that if o C N is a finite set such that
> p< W
lea

then maxa <s. LetN = gs; 1. For anyn > N, letx, = w0"wW’0”. We will show thaix, is
a pointinX and hencé& is a mixing subshift. We need to show that no word frérmay
appear irx,. First note that the word 11 does not appeaxisince the word 11 appears
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neither inw nor inw”’. Suppose that for some non-empty wotdsndv over {0,1} the
word 1ulvl appears ix,. If it is a subblock ofw' or w”’, then it does not belong t@.
Now assume thatullvl appears irx,, but neither irw/, nor inw”. Therefore eitherdl
is a subword ofv or vl is a subword o®’. In the first case, itr C N is a finite set such
that

> pi=ul+1< W< psig,

lea
then mava <'s, hence

S
D Gi< ) 0 <Osya
ica =1
But on the other hanf¥/| > n > gs;1 and thereforeu| + |v| +2 > Yicq Gi. It implies that
lulvl ¢ 9.

In the second case note thet’| > |v|+ 2. Now, if a C N is a finite set such that

Z Pi = U +1>n2>0st1,
ica
then maxa > s, hence

> G =0si1> Y Pit Psia> U+ 1+ W]+ W] > Jul+ |V +2.
lea lea
It implies that Lilvl ¢ F. Hencex, € X and thereforen € N([ulx, [V]x) and (X,0) is
strongly mixing.
By a similar argument, one can show tlixt o) is a van der Waerden system.
Finally observe that if

[AxNT~Zica Pi[1]y NT~ ZicaGi[1]y £ 0

then there are two finite wordsg v such that Li1vl is in the language oX and |u| =
Yiea Pi—1 and|u| + |v| +1 = i<, G — 1. This contradicts the definition of. Thus
(X, 0) does not have multiple IP-recurrence property. O

In the rest of this section, we show that there is a large faofilsubshifts, with the
multiple IP-recurrence property. For a functibnZ, — [0, ), we define
i+p—1
Wi = {xe {0,1}N:vpezZ, VieN, z X < f(p)}
r=i

and call it thebounded density subshiienerated byf. Bounded density shifts were
introduced by Stanley in [33]. Stanley proved also that ttna@é¥+ we can consider only
canonical functions f Z, — [0,). By [33, Theorem 2.9] a functiofi: Z, — [0, ) is
canonicalfor the bounded density shi; if and only if:

(1) f(0)=0;

(2) f(m+1) € f(m)+Z, foranyme Z;

(3) f(m+n) < f(m)+ f(n) foranyn.me Z,..
Note that iff (1) = O, thenW; = {0*}.

Theorem 5.5.If f is an unbounded canonical function then the boundeditiessbshift
(®¢,0) generated by f has the multiple IP-recurrent property.
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Proof. Fix a wordw in the Ianguage ofs and IetU = [wjNW¢. Take anyd > 1 and
any IP- set§S{pI 24 FS{pI , 1 FS{pI i ;. For simplicity of notation, given

a finite subsetr of N, we deflnepa = Z]Ea pg ),

Without loss of generality, we may assume that for amy{1,...,d} andj € N we
have _ _ _ _
pg') < pg'llanopg') < pE'H) (providedi < d).
Sincef is unbounded, there exisps= N such thatf (p) > (d+1)|w| andp > d|w|. There

is N € N such that ifa C N is a finite set with mag > N, theny ;. pg') > p+|w| for
everyi € {1,...,d}. Note that for everyr = {&,,...,as} C Nand any 1< i < d we have

(+) < © oi+) 5 % (i)
Pa ZZpa,- Z pa) +1) > s+py.
Denote = {N+1,...,N+2p+1} and observe thenB > pé) +2pforany 1<i<d

and p;;) > p+ |w|. Let
(d)

o WOPs Mo P -2, oPs P Ao
Itis easy to see thate W and
ol _
0B (x)e[wfori=1,...,d.
Therefore
o o _p®
Uno BUﬂo FPUN...Nnag " U#0. O

Remark 5.6. By [33, Theorem 2.14], the bounded density skt , o) in Theorem 5.5
is also strongly mixing. If the functiof grows very slow, for exampl&(n) =log(n+1),
then for any poink € ®; one has

lim S#N(x [1) N1 ) < lim - g,

n—oo N n—o N

It follows that the only invariant measure @P¢, 0) is the point mass of0*}. But Ws is
uncountable, henc@¥¢, 0) is not an E-system. Letbe transitive point of®;,0). By

[27, Theorems 8.5 and 4.4], we know tiN(x, U ) is a C-set for every neighborhotdof

x. Since(Wt,0) is not an E-system anxlis its transitive point, there exists a neighbor-
hoodV of x such thalN(x,V) has the Banach density zero. This gives a dynamical proof
of a combinatorial result in [19] that there exists a C-seiciinas Banach density zero.

6. MULTI-NON-WANDERING POINTS AND VAN DERWAERDEN CENTER

We say that a poink € X is anon-wandering pointf for every neighborhoodl of
x there exists am € N such thal N T~"U # 0. Denote byQ(X,T) the set of all non-
wandering points of X, T). It is easy to see th&®(X,T) is a non-empty, closed and
T-invariant. So(Q(X,T),T) also forms a dynamical system, so we can consider non-
wandering points of the subsystei@(X,T),T). To introduce the notion of Birkhoff
center, we define a (possibly transfinite) descending chiamor-empty closed andi-
invariant subsets ak. We put inductivelyQq(X,T) = X, Q1(X,T) = Q(Qo(X,T),T),
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and for every ordinatr we setQq1(X,T) = Q(Qq(X,T), T). We continue this process
by a transfinite induction: iA is a limit ordinal we define

Q) (X, T)= ) Qa(X,T).
a<A

In compact metric space decreasing family of closed setbvaya at most countable,
hence then there is a countable ordiaauch that

X=Qo(X,T) D Qi(X,T)D -+ DQa(X,T) = Qgs1(X,T) =---.

We say thaQ, (X, T) is theBirkhoff centerof (X, T) if Qg +1(X,T) = Qq(X,T) and we
definedepthof (X, T) by

depth(X, T) =min{a: Qa(X,T) = Qqa11(X,T)}.

Note that compactness Kfimplies that deptfX, T) < wy, wherec, is the first uncount-
able ordinal number.

Inspired by the notion of non-wandering points and the Bifklsenter, we introduce
multi-non-wandering points and the van der Waerden center.

Definition 6.1. Let (X, T) be a dynamical system. A poiri X is multi-non-wandering
if for every open neighborhodd of x and everyd € N there exists an € N such that

unT"unT2un.--NnT-9U £ 0,

that is for everyd € N, the diagonab-tuple (x,X,...,x) is non-wandering in(X%, T x
T2x ... x T9). Denote byQ(®)(X, T) the collection of all multi-non-wandering points.

First, we have the following characterization of multi-a@andering points in a orbit
closure of a point.

Proposition 6.2. Let (X, T) be dynamical system andexX. Suppose thaDrb(x, T) =
X. Then y is a multi-non-wandering point if and only i{X\U) is an AP-set for every
neighborhood U of y.

Proof. First assume thatis a multi-non-wandering point. Fix a neighborhddafy. For
everyd € N there exists an € N such thatthe sat =UNT"UNT2UN...NnT-9U

is non-empty and open. Sin€xrb(x, T) = X there existsn > 0 such thalT™x eV c U,
and hence

T eU, T™xcU, ..., T™I% e U,
thatis{m-+n,m+2n,....m+dn} C N(x,U). ThusN(x,U) is an AP-set.
Fix a neighborhootll of y and assume th&{(x,U) is an AP-set. There exist,n € N
such thafm,m+n.m+2n,... m+dn} € N(x,U). Putz=T™. ThenzeUNT"UN
T-2UN---NnT-9 and soy is a multi-non-wandering point. O

The proof of following result is inspired by the set’s forgim [7] (consult [27, Section
5] for more information on this topic).

Theorem 6.3. A set FC N is an AP-set if and only if for every dynamical systemT)
and every xc X, there is a multi-non-wandering point it x, where Tx= {T"x: ne F}.
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Proof. Assume thaF is an AP-set. LetX, T) be a dynamical system amd: X. Without
loss of generality, assume th@atb(x, T) = X. SetK = TFx. CoverK with closed balls
with diameter less than 1 and let be the cardinality of a finite subcover of this cover.
Then we can present

ri
K= U Kl,i?
i=1

where eaclKyj is compact and has diameter less than 1. Since the fafrilyf AP-
sets has the Ramsey property, there is an AR=set F andi; such thatT Fix € Ky,
SetK; = Kyj,. CoverK; with closed balls with diameter less thapi2land letr, be the
cardinality of some finite subcover of this cover. Write

r2

Ky = U Kaji,
i—1

where eaclKy; is compact and has diameter less thg.1 By induction we have a
sequence of compact sdts; };> ; and a sequence of AP-sdit5 }” ; such thaK; 1 C K,
diam(Kj) < 1/i, R4 1 C K andTFix c K;. By the compactness &, there isy € X such
that N>, Ki = {y}. For every neighborhood of y, there existsp such that;, C U.
ThenF, C N(x,U), henceN(x,U) is an AP-set. Thuy is a multi-non-wandering point
by Proposition 6.2.

Now assume that for every dynamical systenT) and every € X there is a multi-
non-wandering point i Fx. Letx be the characteristic function &f. We can viewx as
a point in the full shift({0,1}%+,0). PutX = Orb(x, o) and note thaN(x, [1] N X) =
F. By assumption, there exists a multi-non-wandering pgigt TFx C [1] N X. By
Proposition 6.2F = N(x, [1] N X) is an AP-set, sincfl] N X is a neighborhood of. O

Theorem 6.4. Let (X, T) be a dynamical system and=xX be such thaOrb(x, T) = X.
Then

(1) IfU is a neighborhood o©(*) (X, T) and ye X, then Ny,U) is an AP -set.
(2) If M is a non-empty closed subset X satisfying (1), 0¢# (X, T) C M, that is
Q(*)(X,T) is characterized as the smallest subset of X satisfying (1).

Proof. We first show that (1) holds. Take a neighborhabdf Q(*) (X, T). If there exists
ze X suchthalN(zU) is notan AP-set, therF =N(z U°) is an AP-set. By Theorem 6.3,
there exists a multi-non-wandering pointifiz c U®. This contradict€(®)(X,T) c U.

Assume thaM C X is non-empty, closed and satisfies (1). We showﬁﬁﬁ(X,T) C
M. Fix a multi-non-wandering poirt. LetV be a neighborhood of It follows from
Proposition 6.2 tha(x,V) is an AP-set. BulN(x,U) is an AP-set for every neighbor-
hoodU of M. HenceN(x,V)NN(x,U) # 0. We get that) NV # 0 for every neighborhood
V of zand every neighborhodd of M. Thusz € M, sinceM is closed. O

Using the characterization of the set of multi-non-wangmoints (Theorem 6.4),
we can give another proof of Proposition 4.11 without using &dvanced results on
ultrafilters.
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Another proof of Proposition 4.1MVithout loss of generality, assume that Orb(y, S).
Let

A={ACX: (AT)isasubsystem aiX, T) andY C m(A)}.
It is clear thatA is not empty sinceX € A. By the Zorn Lemma, there is a minimal
(under the inclusion) elemeitc A. Pickx € m1(y)NZ. Note thatOrb(x,T) C Z and
Y C n(Orb(x, T)). By the minimality ofZ, we haveZ = Orb(x, T). Fix a neighbourhood
U of Q(*)(Z,T) and a neighborhood of y. By Theorem 6.4N(zU) is an AP-set.
But N(x,V) is an AP-set. Then there exisiE N such thaff"ze U andT"y € V. Thus
y € m(Q(™)(Z,T)). By the minimality ofZ again, one hag = Q(*)(Z,T). ThusZ is a
van der Waerden system ards AP-recurrent by Proposition 6.2 and Lemma 4.8.0]

It is clear thatQ(®) (X, T) is closed andl -invariant. So(Q(*)(X,T),T) also forms a
dynamical system. We can consider multi-non-wanderingtsan (Q() (X, T),T). Itis
shown in Example 6.7 th&@(*) (Q(*)(X, T),T) may not equal t®(*) (X, T). Similar to
the Birkhoff center, we introduce the van der Waerden centé pthg”)(X,T) =X,
Q! (X, T) = @5 (X,T),T) andQ}” (X, T) = Q)(Q{”)(X,T),T). We continue
this process. TheX = Q5™ (X, T) 2 Q™ (X, T) o ---, QL (X, T) = Q=5 (X, T), T),
Q&m)(X,T) = Naer Q5 (X, T), where is a limit ordinal number. We say tha” (X, T)
is thevan der Waerden centerf (X, T) if Q% (X, T) = Q%7 (X, T).

a+1
Note that a dynamical system is a van der Waerden system ibraligdf every point is

multi-non-wandering. The following result shows that tlae\der Waerden center is just
the the maximal van der Waerden subsystem.

Proposition 6.5. Let (X, T) be a dynamical system amf,w)(x,T) be the van der Waer-
den center of X, T). Thean}w)(X,T) is the closure of the set ofP-recurrent points

of (X,T). Furthermore,(Qg,m)(X,T),T) is the maximal van der Waerden subsystem of
(X,T).

Proof. Let Z be the set ofAP-recurrent points of X, T). It is not hard to see tha C
Ql*) (X, T) for every ordinal numbey. SoZ c Q4 (X, T).

Sincng’?l(X,T) = 0l (X,T), every point in the dynamical systef@'” (X, T),T)

is multi-non-wandering, and themgm)(X,T),T) is a van der Waerden system. By
Lemma 4.2, the set ofiP-recurrent points of QS (X, T),T) is dense Q5" (X, T).
ThenQ$” (X, T) c Z. 0
Proposition 6.6. Let t: (X, T) — (Y,S) be a factor map. Then the image of van der
Waerden center gfX, T) underr coincides with the van der Waerden centef\afS).

Proof. Let Xp andYy be the set of aldP-recurrent points itiX, T) and(Y, T ) respectively.
By Proposition 4.11, we have(Xo) = Yp. Then the result follows from Proposition 6.5.
O

Example 6.7. There exists a dynamical systedd, T) such thaQ(®) (Q(*)(X,T),T) #
Q)(X,T).
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Take any increasing sequen@ }ncz C (0,1) such thatlim_, —» 2z, =0and lim e 2, =
1. LetX ={0,1}U{zy:ne Z} (mod 1), that is, we viewz, as a sequence on the unit
circle. Then we have lig,. p(z-n,2,) = 0, wherep is the standard metric on the unit
circle.

Define
o 21 00
Y=xx{otulJ U U{@s"—j2" a1 ulJ(zn2uU(02).
n=1j=2"i=—n n=0

Clearly, if j #sthen4 " —j2 "-14 144" _-1gn-1gnd4 415401
Therefore the coordinates liKeg,4 " — j2~""14-"-1) uniquely determine a point .
The setY is a closed subset of a product spXce [0,4]. ThereforeY with the maximum
metric is compact.

Let g(z) = z,.1 for everyn € Z andg(0) = 0 € X. For any integerj € [2",2"1]
denoteq = (z_n,4 " j2-""14"""1) andb; = (z,,4 " j2-""14-""1). Then we define
a functionf: Y — Y by putting

(9(x),y) y=0or(y=2andx+# ),

a1 y =2 andx =z,

(9(¥),y) Y€ (0,2) and(x.y) # by for every],

aj11 (%y) = bj.

Clearly f is a bijection and it is also not hard to verify that it is a ham®rphism.
Observe thaf(f) = {(0,2)}UX x {0}. We are going to show th@ () (f) = Q(f).
Clearly both fixed points are iQ(®)(f). Now let us take anyn € Z and any open set

U 3 (zm,0). There isN > 0 such thatzy,y) € U for everyy < 47N, Fix anyd > 0 and
taken > max{d,N,|m|}. Now if we take anyj = 2",...,2" +d < 2"*1 — 1 then

pj=(zm4 "—j2 "4 Hevnu.

f(xy) =

By the definition off, for j =0,...,d — 1 we havef2""1(p;) = pj1. In other words
pecUNf2YUu)n...nf-Cldyy) £
Indeed(zm,0) € Q(*)(f). But
Q) (] gy 1)) = Q| geo)(1)) = {(0.0),(0,2)}.
It follows that the van der Waerden center can be a propeesah® (=) (f).

Remark 6.8. It is shown in [31] that ifa is a countable ordinal, then there exists a
dynamical systeniX, T) with depti{(X, T) = a. We define thevan der Waerden depthf
(X,T) as

depth™) (X, T) =min{a: Q) (X, T) = QF” (X, T)}.

We conjecture that the van der Waerden depth is a countatiilgaband for every count-
able ordinal numbes there exists a dynamical systéd, T) such that deptf) (X, T) =

a.?

2Ljand Zhang [28] gave a positive answer to this conjecture.
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