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SUBDIAGRAMS AND INVARIANT MEASURES ON BRATTELI

DIAGRAMS

M. ADAMSKA, S. BEZUGLYI, O. KARPEL, AND J. KWIATKOWSKI

Dedicated to the memory of Ola Bratteli.

Abstract. We study ergodic finite and infinite measures defined on the path space

XB of a Bratteli diagram B which are invariant with respect to the tail equivalence

relation on XB . Our interest is focused on measures supported by vertex and edge

subdiagrams of B. We give several criteria when a finite invariant measure defined

on the path space of a subdiagram of B extends to a finite invariant measure on

B. Given a finite ergodic measure on a Bratteli diagram B and a subdiagram B
′ of

B, we find the necessary and sufficient conditions under which the measure of the

path space XB′ of B′ is positive. For a class of Bratteli diagrams of finite rank, we

determine when they have maximal possible number of ergodic invariant measures.

The case of diagrams of rank two is completely studied. We include also an example

which explicitly illustrates the proved results.

1. Introduction and background

1.1. Motivation and main results. A Bratteli diagram B is an N-graded graph

whose vertices are partitioned into levels and edges connect vertices of consecutive

levels. Bratteli diagrams is one of the most studied objects in the theories of operator

algebras and dynamical systems. They were originally defined by O. Bratteli in his

breakthrough article on the classification of AF C∗-algebras [Br72]. During the last

two decades, Bratteli diagrams turned out to be a very powerful and productive tool

for the study of dynamical systems in the measurable, Borel, and Cantor settings.

Due to the pioneering works by Vershik [V81], Herman-Putnam-Skau [HPS92], and

Giordano-Putnam-Skau [GPS95], one can state, with some abuse of rigor, that every

transformation in all mentioned dynamics admits a realization as a continuous map

(usually called a Vershik map) acting on the path space of a Bratteli diagram. These

remarkable results have served for a long time as the basis for the further study of diverse

aspects of Bratteli diagrams and dynamical systems defined on their path spaces. The

list of related papers is very long, so that we would refer only to a recent survey by

Durand [Du10] where the reader will find a detailed exposition of this subject and

further references.

It is difficult to overestimate the significance of Bratteli diagrams for the study of

dynamical systems. The main reason of their importance is the fact that various prop-

erties of dynamical systems become more transparent and can be investigated in an

easier way when one deals with corresponding Bratteli diagrams and Vershik maps.

Our interest is focused on a Cantor dynamical system (X,T ) which is determined by

a Cantor set X and an aperiodic self-homeomorphism T . The problem of finding all
1
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ergodic invariant measures and their supports for a given (X,T ) is traditionally a cen-

tral one in the theory of dynamical systems, especially for specific interesting examples

of homeomorphisms T . But being considered in general settings, this problem looks

rather vague, and there are very few universal results that can be applied to the study

of a given homeomorphism T .

The situation changes completely when one first realizes T as a Vershik map acting

on the path space XB of a Bratteli diagram B. Then the structure of the corresponding

Bratteli diagram helps very much to clarify dynamical properties of T . In particular,

we can say a lot about minimal components, ergodic invariant measures and their

supports. Moreover, if a Bratteli diagram does not admit a Vershik map (this situation

was considered in [M06], [BKY14], [BY]), we can still study invariant measures and

minimal components with respect to the tail equivalence relation defined on the path

space of the diagram.

The present paper continues the series of our articles [BKMS10], [BK11], [BKMS13],

and [BKK14] which are devoted to the study of ergodic measures on Bratteli diagrams

from different points of view. In [BKMS10], [BK11], and [BKMS13] we dealt with

important but peculiar cases of stationary and finite rank Bratteli diagrams. In this

paper, we focus on the study of measures defined on general Bratteli diagrams and

which are invariant with respect to the tail equivalence relation.

Suppose that we have a Bratteli diagram B and an ergodic measure µ. It is still an

open question whether one can explicitly describe the support of µ on XB in terms of

the diagram B. It is worth noting that this question is completely solved for stationary

and finite rank Bratteli diagrams, simple or non-simple ones [BKMS10], [BKMS13].

In this case such measures with necessity are supported by a subdiagram of B (more

precisely, the measure is extended by invariance from a subdiagram). By a Bratteli

subdiagram, we mean a Bratteli diagram B′ that can be obtained from B by removing

some vertices and edges from each level of B. Then XB′ ⊂ XB . We will consider two

extreme cases of Bratteli subdiagrams: vertex subdiagram (when we fix a subset of

vertices at each level and take all edges between them) and edge subdiagram (some

edges are removed from the initial Bratteli diagram but the vertices are not changed).

It is clear that an arbitrary subdiagram can be obtained as a combination of these

cases.

The central problems, we are interested in this paper, are the following:

(A) Given a subdiagram B′ of B and an ergodic measure µ on XB , under what

conditions on B′ the subset XB′ has positive measure µ in XB?

(B) Let ν be a measure supported by the path space XB′ of a subdiagram B′ ⊂
B. Then ν is extended to the subset E(XB′) by invariance with respect to the tail

equivalence relation E . Under what conditions ν(E(XB′)) is finite (or infinite)?

(C) Let B be a Bratteli diagram of finite rank k. It is known that B can support at

most k ergodic (finite and infinite) measures. Is it possible to determine under what

conditions on the incidence matrices of B there exist exactly k ergodic measures?

Our main results give affirmative answers (in some cases, partial answers) to the

questions above.
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The paper is organized as follows. We collected in Introduction all necessary infor-

mation about Bratteli diagrams and measures on their path spaces. This section also

contains basic notation. In Section 2, we consider an extension of a probability invari-

ant measure defined on a subdiagram of a Bratteli diagram. We prove several criteria

of the finiteness of the measure extension for both vertex and edge subdiagrams. These

results form an extended affirmative answer to question (B) and moreover refine the

statements proved earlier in [BKMS13] and [BKK14]. In Section 3, we find out when a

finite rank Bratteli diagram has the maximal possible number of finite ergodic invariant

measures using the results from Section 2. This answers question (C) above. We ob-

serve that this type of results is principally new in the context of Bratteli diagrams and

is based on the careful study of incidence matrices. Section 4 contains our main results

about measure of the path space of a subdiagram. They answer question (A). Given a

finite invariant measure µ on a Bratteli diagram B, we determine when the measure of

a path space of a subdiagram B is positive or zero. One of our results is a criterion for

the path space XB to have measure zero. We show that in case when µ(XB) = 0, the

extension of any measure defined on XB to the whole space XB is infinite. In Section 5,

we illustrate the proved results by considering an interesting class of Bratteli diagrams

for which our results admit an explicit clarification.

1.2. Invariant measures for Cantor dynamical systems. Let (X,T ) be an ape-

riodic Cantor dynamical system, that is X is a zero-dimensional compact metric space

with no isolated points (a Cantor set) and T is a homeomorphism of X with infinite

orbits. A Borel measure µ is called T -invariant if µ(TA) = µ(A) for any Borel set

A. Let M(X,T ) be the set of all invariant measures. It is known that M(X,T ) is a

Choquet simplex whose extreme points are T -ergodic measures. This simplex includes

probability measures (when µ(X) = 1) and infinite measures (when µ(X) = ∞). We

observe that infinite measures cannot arise, for instance, in minimal dynamics.

It follows from [HPS92], [GPS95], and [M06] that any minimal (and even aperiodic)

Cantor dynamical system (X,T ) admits a realization as a Bratteli-Vershik dynamical

system (XB , ϕB) acting on a path space XB of a Bratteli diagram (the definitions

of notions related to Bratteli diagrams are given in the next subsection). Thus, the

study of measures invariant with respect to a homeomorphism T is reduced to the case

of measures defined on the path space of a Bratteli diagram. The advantage of this

approach is based on the facts that (i) any such a measure is completely determined

by its values on cylinder sets of XB , and (ii) there are simple and explicit formulas

for measures of cylinder sets. Especially transparent this method works for stationary

and finite rank Bratteli diagrams, simple and non-simple ones [BKMS10], [BKMS13].

We remark that any Bratteli diagram of finite rank k has at most k finite and infinite

ergodic invariant measures.

We need to point out that the study of measures on a Bratteli diagram is a more

general problem than that in the case of Cantor dynamics. This observation follows

from the existence of Bratteli diagrams that do not support any continuous dynamics

on their path spaces which is compatible with the tail equivalence relation. The first

example of such a Bratteli diagram was given in [M06]; a more comprehensive coverage
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of this subject can be found in [BKY14] and [BY]. If a Bratteli diagram does not admit

a Bratteli-Vershik homeomorphism, then we consider the tail equivalence relation E
on XB and study measures invariant with respect to E . In this paper we work with

E-invariant measures.

1.3. Bratteli diagrams and their subdiagrams. The concept of a Bratteli diagram

has been studied in a great number of recent research and survey papers devoted to

various aspects of Cantor dynamics. We focus here only on some necessary definitions

referring to the pioneering articles [HPS92], [GPS95] (see also [Du10], [BKMS10] and

the references there) where the reader can find more facts about Bratteli diagrams and

widely used techniques, for instance, the telescoping procedure. The most of definitions

and notation utilized in this paper are taken from [BKMS13].

A Bratteli diagram is an infinite graph B = (V,E) such that the vertex set V =⋃
i≥0 Vi and the edge set E =

⋃
i≥1 Ei are partitioned into disjoint subsets Vi and Ei

where

(i) V0 = {v0} is a single point;

(ii) Vi and Ei are finite sets, ∀i ≥ 1;

(iii) there exist r : V → E (range map r) and s : V → E (source map s), both from

E to V , such that r(Ei) = Vi, s(Ei) = Vi−1, and s−1(v) 6= ∅, r−1(v′) 6= ∅ for all v ∈ V

and v′ ∈ V \ V0.

Given a Bratteli diagram B, the n-th incidence matrix Fn = (f
(n)
v,w), n ≥ 0, is a

|Vn+1| × |Vn| matrix such that f
(n)
v,w = |{e ∈ En+1 : r(e) = v, s(e) = w}| for v ∈ Vn+1

and w ∈ Vn. Here the symbol | · | denotes the cardinality of a set.

The set of all infinite paths in B = (V,E) is denoted by XB . The topology defined

by finite paths (cylinder sets) turns XB into a 0-dimensional metric compact space. By

assumption, we will consider only such Bratteli diagrams for which XB is a Cantor set.

Let x = (xn) and y = (yn) be two paths from XB . It is said that x and y are tail

equivalent (in symbols, (x, y) ∈ E) if there exists some n such that xi = yi for all i ≥ n.

Since XB has no isolated points, the E-orbit of any point x ∈ XB is countable, i.e., E
is a Borel countable equivalence relation.

For a Bratteli diagram B = (V,E), we consider subsets V ⊂ V and E ⊂ E. Then,

by definition, the pair B = (V ,E) defines a subdiagram of B if V = s(E) and s(E) =

r(E) ∪ {v0}. The path space XB of the subdiagram B is obviously a closed subset of

XB .

On the other hand, there are closed subsets of XB which are not obtained as the

path space of a Bratteli subdiagram. It was proved in [GPS04] that a closed subset

Z ⊂ XB is the path space of a subdiagram if and only if E|Z×Z is an etalé equivalence

relation (see the definition in [GPS04]).

Let B be a subdiagram of a Bratteli diagram B. Then we consider the sequence of

incidence matrices {Fn}∞n=0 of B. We will study two extreme cases of subdiagrams, edge

subdiagrams and vertex subdiagrams. By definition, an edge subdiagram is obtained from

the diagram B by “removing” some edges and leaving all vertices of B unchanged. That

is, the incidence matrices {F n}∞n=0 of an edge subdiagram are |Vn+1| × |Vn| matrices

such that Fn ≤ Fn for every n ∈ N. We denote F̃n = Fn − Fn. It is also required
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that the following property holds as a part of the definition of an edge subdiagram: if

f
(n)
vw > 0, then f

(n)
vw > 0. Let E denote the tail equivalence relation considered on the

set XB . If there exists N such that Fn = Fn for all n > N , then the diagram B is

Kakutani equivalent to B; this case was studied earlier (see, for instance, [GPS95]). So

that we will assume, without loss of generality, that Fn < Fn for infinitely many n.

To define a vertex subdiagram, we start with a sequence W = {Wn}n>0 of proper

subsets Wn of Vn, and let W ′
n = Vn \ Wn 6= ∅ for all n. The vertex subdiagram

B = (W,E) is formed by the vertices from Wn and by the set of edges E whose source

and range are in Wn and Wn+1, respectively. Thus, the incidence matrix Fn of B has

the size |Wn+1| × |Wn|, and it is represented by a block of Fn corresponding to the

vertices from Wn and Wn+1. We say in this case that W = (Wn) is the support of B.

It is not hard to see that the study of any subdiagram B of B is reduced to the cases

of edge and vertex subdiagrams. Indeed, B can be viewed as an edge subdiagram of a

vertex subdiagram of B.

Throughout the paper we keep the following notation: given n ≥ 1 and v ∈ Vn, let

X
(n)
v ⊂ XB be the set of all paths that go through the vertex v (the clopen set X

(n)
v is

also called a tower because any two cylinder sets (finite paths) e1(v0, v) and e2(v0, v)

from X
(n)
v are E-equivalent); let h

(n)
v be the cardinality of the set E(v0, v) of all cylinder

sets between v0 and v, i.e. h
(n)
v is the height of the tower X

(n)
v . Similarly, X

(n)
v stands

for the tower in a subdiagram B that is determined by a vertex v of B. Thus, we

consider the paths in X
(n)
v that contain edges from B only. Let h

(n)
v be the height of

the tower X
(n)
v . As a rule, objects related to a subdiagram B are denoted by barred

symbols.

We note that the vectors of tower heights h(n) = (h
(n)
v : v ∈ Vn) are related in the

following obvious way:

(1.1) Fnh
(n) = h(n+1), n ≥ 1.

1.4. Measures on Bratteli diagrams. Let µ be a probability E-invariant Borel mea-

sure on XB (for brevity, we will use the term “measure on B” below). It is not hard to

see that µ is completely determined by its values (p
(n)
v , v ∈ Vn, n ≥ 1) on the cylinder

sets [e(v0, v)] corresponding to a finite path between v0 and v (since µ is E-invariant,

the value p
(n)
v does not actually depend on a choice of e(v0, v)). The details can be

found, for instance, in [BKMS10]. In other words, p
(n)
v =

µ(X
(n)
v )

h
(n)
v

. Then one has the

relation

(1.2) F T
n p(n+1) = p(n), n ≥ 1,

where p(n) is the column vector with entries (p
(n)
v : v ∈ Vn), and F T

n denotes the

transpose of Fn.

Let B be any (vertex or edge) subdiagram of a Bratteli diagram B. Then we can

consider an “inner” probability measure µ defined on the path space XB and invariant
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with respect to E . It is obvious that E|X
B
×X

B
= E . For every vertex v from the n-th

level of B, we have p
(n)
v =

µ(X
(n)
v )

h
(n)
v

, n ≥ 1.

Let X̂B := E(XB) be the subset of paths in XB that are tail equivalent to paths from

XB . In other words, the E-invariant subset X̂B of XB is the saturation of XB with

respect to the equivalence relation E (or XB is a countable complete section of E on

X̂B). Let µ be an ergodic probability measure on XB invariant with respect to the tail

equivalence relation E defined on B. Then µ can be canonically extended to the ergodic

measure µ̂ on the space X̂B by invariance with respect to E [BKMS13]. In case of need,

we can think that µ̂ is extended to the whole space XB by setting µ̂(XB \ X̂B) = 0.

Specifically, take a finite path e ∈ E(v0, v) from the top vertex v0 to a vertex v that

belongs to the subdiagram B. Let [e] denote the cylinder subset of XB determined by

e. For any finite path f ∈ E(v0, v) from the diagram B with the same range v, we set

µ̂([f ]) = µ([e]). In such a way, the measure µ̂ is extended to the σ-algebra of Borel

subsets of X̂B generated by all clopen sets of the form [z] where a finite path z has

the range in a vertex from B and the tail of z remains in B. By construction, µ̂ is

E-invariant and its restriction on XB coincides with µ. We note that the value µ̂(X̂B)

can be either finite or infinite depending on the structure of B and B (see (1.4) and

Theorems 2.2, 2.4 below). Furthermore, the set X̂B is said to be the support of µ̂.

Denote by X̂
(n)

B
the set of all paths x = (xi)

∞
i=1 from XB such that (x1, . . . , xn) is a

finite path in B which starts at the vertex v0 and ends at a vertex v of B, and the tail

(xn+1, xn+2, . . .) belongs to B. For instance, for a vertex subdiagram B we have

(1.3) X̂
(n)

B
= {x = (xi) ∈ X̂B : r(xi) ∈Wi, ∀i ≥ n}.

It is obvious that X̂
(n)

B
⊂ X̂

(n+1)

B
and

(1.4) µ̂(X̂B) = lim
n→∞

µ̂(X̂
(n)

B
).

More precisely, if B is a vertex subdiagram, then µ̂(X̂
(n)

B
) =

∑
w∈Wn

h
(n)
w p

(n)
w and there-

fore

(1.5) µ̂(X̂B) = lim
n→∞

∑

w∈Wn

h(n)w p(n)w .

In the case of an edge subdiagram B, the vertex set of B at level n is Vn and we

obtain a slightly different formula

(1.6) µ̂(X̂B) = lim
n→∞

∑

w∈Vn

h(n)w p(n)w .

1.5. Some classes of Bratteli diagrams. A Bratteli diagram B = (V,E) is called

of finite rank if there exists some natural number d such that |Vn| ≤ d for every n. In a

particular case, when all incidence matrices of B are the same, the diagram B is called

stationary. If B is a finite rank diagram, then it can be telescoped to a diagram B′ where

B′ has the same vertex set at each level. Finite rank (simple or non-simple) Bratteli

diagrams represent examples of Cantor systems (minimal or non-minimal) that have
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finitely many ergodic measures. These measures may be finite or infinite. Moreover,

for each such a measure µ, one can explicitly describe its support, a vertex subdiagram

Bµ (see details and more results in [BKMS13]).

As in a recent work of Handelman [H13], we also consider Bratteli diagrams whose

incidence matrices satisfy the equal row sum (ERS) and equal column sum (ECS)

properties. It is said that a non-negative integer matrix F = (fi,j) satisfies the equal

row sum property (F ∈ ERS or F ∈ ERS(r)) if
∑

j fi,j = r for all i for some r ∈ N. A

matrix F = (fi,j) has the equal column sum property (F ∈ ECS) if the sum of entries

of each column is the same. We write ECS(c) if this value is c ∈ N.

For a Bratteli diagram B defined by a sequence of incidence matrices {Fn}∞n=0, we

write B ∈ ERS(rn) if
∑

w∈Vn
f
(n)
v,w = rn for every v ∈ Vn+1 and every n, and additionally

F0 = h(1) = (r0, . . . , r0)
T . It follows from (1.1) that in this case h

(n)
w = r0 · · · rn−1 for

every w ∈ Vn. Thus, for every probability E-invariant measure on B, we have

∑

w∈Vn

p(n)w =
1

r0 · · · rn−1

for n = 1, 2, . . . The proof follows easily from (1.2) by induction. Similarly, we write

B ∈ ECS(cn) if for every w ∈ Vn and every n ≥ 1 we have
∑

v∈Vn+1
f
(n)
vw = cn. Suppose

that F0 = (r0, . . . , r0)
T , then c0 = r0|V1|. According to (1.2), we see that there exists

a probability E-invariant measure µ on B defined by relations p
(n)
v = (c0 · · · cn−1)

−1

where v ∈ Vn, n ≥ 1.

If Fn ∈ ERS(rn) ∩ ECS(cn) for all n, then the fact that µ is a probability measure

implies the relation r0 · · · rn−1|Vn| = c0 · · · cn−1.

2. Finiteness of measure extension

In this section, we focus on the following problem: given a Bratteli diagram B and

a subdiagram B of B, find necessary and sufficient conditions for finiteness of measure

extension µ̂(X̂B) when a probability measure µ is defined on B of B. We prove several

criteria here. We deal with both edge and vertex subdiagrams.

If (Fn) is a sequence of incidence matrices of a Bratteli diagram B, then we can also

define the sequence of stochastic matrices (Qn) with entries

q(n)v,w = f (n)
v,w

h
(n)
w

h
(n+1)
v

, v ∈ Vn+1, w ∈ Vn.

For convenience of the reader, we collect here some results proved in [BKK14]. The

following theorem gives criteria for finiteness of the measure extension.

Theorem 2.1. Let B be a Bratteli diagram with the sequence of incidence matrices

{Fn}∞n=0, and let B be a vertex subdiagram of B defined by the sequence of subsets

(Wn)
∞
n=0, Wn ⊂ Vn. Suppose that µ is a probability E-invariant measure on XB. Then
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the following properties are equivalent:

µ̂(X̂B) <∞ ⇐⇒
∞∑

n=1

∑

v∈Wn+1

∑

w∈W ′

n

f (n)
v,wh

(n)
w p(n+1)

v <∞

⇐⇒
∞∑

n=1

∑

w∈Wn+1

µ̂(X(n+1)
w )

∑

v∈W ′

n

q(n)w,v <∞

⇐⇒
∞∑

i=1


 ∑

w∈Wi+1

h(i+1)
w p(i+1)

w −
∑

w∈Wi

h(i)w p(i)w


 <∞.

The next theorem contains some necessary and sufficient conditions for finiteness of

the measure extension.

Theorem 2.2. Let B be a Bratteli diagram with incidence stochastic matrices {Qn =

(q
(n)
v,w)}; and let B be a proper vertex subdiagram of B defined by a sequence of subsets

(Wn) where Wn ⊂ Vn.

(1) Suppose that, for a probability invariant measure µ on the path space XB, the

extension µ̂ of µ on X̂B is finite. Then

(a)

(2.1)

∞∑

n=1

∑

v∈Wn+1

∑

w∈W ′

n

q(n)v,wµ(X
(n+1)
v ) <∞,

(b)
∞∑

n=1

min
v∈Wn+1

max
w∈W ′

n

q(n)v,w <∞.

(2) If

(2.2)

∞∑

n=1

∑

v∈Wn+1

∑

w∈W ′

n

q(n)v,w <∞,

then any probability measure µ defined on the path space XB of the subdiagram B

extends to a finite measure µ̂ on X̂B.

(3) If

(2.3) I =

∞∑

n=1

max
v∈Wn+1


 ∑

w∈W ′

n

q(n)vw


 <∞,

then, for any probability measure µ defined on the path space XB of the subdiagram B,

we have µ̂(X̂B) <∞.

In order to illustrate the methods used in the proof of Theorems 2.1 and 2.2, we

prove here condition (2.3).
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Proof. By Theorem 2.1 , it suffices to show that I <∞ implies S <∞ where

S =

∞∑

n=1

∑

v∈Wn+1

∑

w∈W ′

n

f (n)
v,wh

(n)
w p(n+1)

v .

We have

∑

v∈Wn+1

∑

w∈W ′

n

f (n)
v,wh

(n)
w p(n+1)

v =
∑

v∈Wn+1

∑

w∈W ′

n

f (n)
v,wh

(n)
w

p
(n+1)
v h

(n+1)
v

h
(n+1)
v

=
∑

v∈Wn+1

µ(X
(n+1)
v )

∑

w∈W ′

n

f (n)
v,w

h
(n)
w

h
(n+1)
v

≤ max
v∈Wn+1


 ∑

w∈W ′

n

f (n)
v,w

h
(n)
w

h
(n+1)
v


 ∑

v∈Wn+1

µ(X
(n+1)
v ).

Since µ is a probability measure, we obtain
∑

v∈Wn+1
µ(X

(n+1)
v ) = 1.

We show that there exists M > 0 such that
h
(n)
w

h
(n)
w

< M for all w ∈ Wn and all

sufficiently large n. Indeed, set Mn = maxw∈Wn

h
(n)
w

h
(n)
w

. Fix any v ∈Wn+1. Then

h
(n+1)
v

h
(n+1)
v

=
1

h
(n+1)
v


 ∑

w∈Wn

f (n)
v,wh

(n)
w +

∑

w∈W ′

n

f (n)
v,wh

(n)
w




≤ Mn

h
(n+1)
v

∑

w∈Wn

f (n)
v,wh

(n)
w +

1

h
(n+1)
v

∑

w∈W ′

n

f (n)
v,wh

(n)
w

= Mn +
h
(n+1)
v

h
(n+1)
v

∑

w∈W ′

n

f (n)
v,w

h
(n)
w

h
(n+1)
v

= Mn +
h
(n+1)
v

h
(n+1)
v

∑

w∈W ′

n

q(n)v,w

≤ Mn +
h
(n+1)
v

h
(n+1)
v

εn,

where

εn = max
v∈Wn+1


 ∑

w∈W ′

n

q(n)v,w


 .

Since I <∞, εn → 0 as n→∞. From the above inequalities we obtain

h
(n+1)
v

h
(n+1)
v

(1− εn) ≤Mn and Mn+1 ≤
Mn

1− εn
.
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Finally,

Mn ≤
M1∏∞

k=1(1− εn)
=: M.

Since I <∞, we get that M is finite.

Thus,

∑

v∈Wn+1

∑

w∈W ′

n

f (n)
v,wh

(n)
w p(n+1)

v < M max
v∈Wn+1


 ∑

w∈W ′

n

f (n)
v,w

h
(n)
w

h
(n+1)
v




= M max
v∈Wn+1



∑

w∈W ′

n

q(n)v,w


 .

This completes the proof. �

It was also shown in [BKK14] that, in general, the sufficient condition (2.2) is not

necessary and the necessary condition (2.1) is not sufficient.

Example 2.3. The following example illustrates our approach to the study of measures

on subdiagrams of a Bratteli diagram. In this example we answer the main problems

we are interested in.

Let B be a Bratteli diagram defined by rectangular incidence matrices

Fn =



1 . . . 1
...

. . .
...

1 . . . 1




of size |Vn+1|×|Vn|. We remark that this type of Bratteli diagrams appears, for instance,

for the symbolic minimal system known as the Grillenberger flow (see [G72]). Let

rn = |Vn| and cn = |Vn+1|, then Fn ∈ ECS(cn) ∩ ERS(rn), i.e., the sum of entries in

each row is rn and the sum of entries in each column is cn.

There is a unique probability invariant measure µ on XB . Indeed, by (1.2), we have

p
(n)
w = p

(n)
w′ for every w,w′ ∈ Vn, and

p(n)w =
1

|V0| · · · |Vn|
for every w ∈ Vn.

Let now B be a vertex subdiagram of B defined by a sequence of vertices (Wn) where

Wn ( Vn. Compute µ(XB) as follows:

µ(XB) = lim
n→∞

∑

w∈Wn

p(n)w h
(n)
w

= lim
n→∞

∑

w∈Wn

|W1| . . . |Wn−1|
|V1| · · · |Vn|

= lim
n→∞

n∏

i=1

|Wi|
|Vi|

.
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Hence,

(
µ(XB) > 0

)
⇐⇒

(
∞∏

i=1

|Wi|
|Vi|

> 0

)
⇐⇒

(
∞∑

i=1

(
1− |Wi|

|Vi|

)
<∞

)
.

Let µ be the unique invariant measure on XB . Then p
(n)
w = (|W1| · · · |Wn|)−1.We

obtain

µ̂(X̂B) = lim
n→∞

∑

w∈Wn

h(n)w p(n)w

= lim
n→∞

|Wn|
|V1| · · · |Vn−1|
|W1| · · · |Wn|

=
∞∏

i=1

|Vi|
|Wi|

.

Finally,

(2.4)
(
µ̂(X̂B) <∞

)
⇐⇒

(
∞∏

i=1

|Vi|
|Wi|

<∞
)
⇐⇒

(
µ(XB) > 0

)
.

It follows from (2.4) that, if µ(XB) = 0 then µ̂(X̂B) = ∞. We will see below that

this fact is a particular case of a general result proved in Theorem 4.4 and Corollary 4.7.

We remark that if the measure of XB is positive, then
|Vi|
|Wi|

→ 1 as i→∞. It follows

that if B is, in particular, a subdiagram of B of finite rank, then µ(XB) = 0.

Continuing this example, we can apply the necessary and sufficient conditions of the

finiteness of measure extension found above. By Theorem 2.1, if µ̂(XB) <∞, then

S1 =
∞∑

n=1

min
w∈Wn+1

max
v∈W ′

n

q(n)w,v <∞.

For the considered example, we have

S1 =
∞∑

n=1

min
w∈Wn+1

max
v∈W ′

n

f (n)
w,v

h
(n)
v

h
(n+1)
w

=
∞∑

n=1

1

|Vn|
.

In particular, we conclude that if, for the diagram B, the sequence (|Vn|) is not growing

sufficiently fast, then the probability invariant measure µ cannot be obtained as an

extension from some vertex subdiagram.

We finish this example by the following observation. The set XB \ X̂B consists of

all paths that visit vertices W ′
n = Vn \Wn for infinitely many n’s. Since Wn  Vn, the

sequence (W ′
n) defines a proper subdiagram of B. If µ(XB) > 0, then

∏∞
n=1

|Vn|
|Wn|

<∞.

Since
|Vn|
|Wn|

> 1 for all n, we have
∏∞

k=1

|Vnk
|

|Wnk
| < ∞ for any increasing subsequence

{nk}. This inequality implies that
∏∞

k=1

|W ′
nk
|

|Vnk
| = 0 for any increasing subsequence

{nk}.
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Now we consider the case of an edge subdiagram.

Theorem 2.4. Let B be an edge subdiagram of a Bratteli diagram B. For a probability

invariant measure µ on XB, the extension µ̂(X̂B) is finite if and only if

∞∑

n=1

∑

v∈Vn+1

∑

w∈Vn

f̃ (n)
v,wh

(n)
w p(n+1)

v <∞

where f̃v,w = fv,w − fv,w. Moreover, the following equality holds:

µ̂(X̂B) = µ̂(X̂
(1)

B
) +

∞∑

n=1

∑

v∈Vn+1

∑

w∈Vn

f̃ (n)
v,wh

(n)
w p(n+1)

v .

Proof. We recall that, for a given probability measure µ on B, the relations X̂
(n)

B
=

⋃
w∈Vn

X̂
(n)
w and µ̂(X̂B) = limn→∞ µ̂(X̂

(n)

B
) hold for any n ∈ N (see (1.3)).

Denote

Rn =
∑

w∈Vn

h̃(n)w p(n)w ,

where h̃
(n)
w = h

(n)
w − h

(n)
w . Then µ̂(X̂

(n)

B
) = µ(XB) +Rn = 1 +Rn. Since

h̃(n+1)
v =

∑

w∈Vn

f̃ (n)
v,wh

(n)
w +

∑

w∈Vn

f
(n)
v,wh̃

(n)
w ,

we have

(2.5) Rn+1 =
∑

v∈Vn+1

∑

w∈Vn

f̃ (n)
v,wh

(n)
w p(n+1)

v +
∑

v∈Vn+1

∑

w∈Vn

f
(n)
v,wh̃

(n)
w p(n+1)

v .

On the other hand, we can represent the second summand in (2.5) as follows:
∑

v∈Vn+1

∑

w∈Vn

f
(n)
v,wh̃

(n)
w p(n+1)

v =
∑

w∈Vn

h̃(n)w p(n)w = Rn.

This gives the relation

Rn+1 = Rn +
∑

v∈Vn+1

∑

w∈Vn

f̃ (n)
v,wh

(n)
w p(n+1)

v .

Because 1 +R1 = µ̂(X̂
(1)

B
), we finally conclude that

µ̂(X̂B) = µ̂(X̂
(1)

B
) +

∞∑

n=1

∑

v∈Vn+1

∑

w∈Vn

f̃ (n)
v,wh

(n)
w p(n+1)

v .

Since µ̂(X̂
(1)

B
) <∞, the statement of the theorem follows. �

Remark 2.5. One can notice that Theorem 2.4 implies Theorem 2.1 in the following

nonrigorous way. Set

f
(n)
vw =

{
f
(n)
vw if v ∈Wn+1, w ∈Wn

0 otherwise.
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Let p
(n+1)
v = 0 for any v ∈W ′

n+1. Then we have

∞∑

n=1

∑

v∈Vn+1

∑

w∈Vn

f̃ (n)
v,wh

(n)
w p(n+1)

v =

∞∑

n=1

∑

v∈Wn+1

∑

w∈W ′

n

f (n)
v,wh

(n)
w p(n+1)

v .

Example 2.6. Let B be a Bratteli diagram and consider the edge subdiagram B of B

which is obtained by removing only one edge from each set En of edges between levels

n− 1 and n in the diagram B. In other words, we have for all n ≥ 1

f̃ (n)
v,w =

{
0 if (v,w) 6= (vn+1, wn)

1 if (v,w) = (vn+1, wn)

for some (vn+1, wn) ∈ Vn+1 × Vn depending on n. It follows from Theorem 2.4 that

(µ̂(X̂B) <∞) ⇐⇒
∞∑

n=1

h(n)wn
p(n+1)
vn+1

<∞.

Example 2.7. Let B be a Bratteli diagram whose incidence matrices (Fn) satisfy

ERS(rn):
∑

w∈Vn
f
(n)
v,w = rn for every v ∈ Vn+1 and every n. Suppose that B is

an edge subdiagram of B with incidence matrices Fn ∈ ECS. Hence, there exists

cn > 0 such that
∑

v∈Vn+1
f
(n)
v,w = cn for every w ∈ Vn and every n. Denote by

Tn := {(v,w) : f̃
(n)
v,w 6= 0, v ∈ Vn+1, w ∈ Vn}. The set Tn consists of pairs of vertices

such that an edge between them has been removed from the set En to construct B.

According to the results of Subsection 1.5, there is a finite measure µ on XB such that

p
(n)
v = (c0 · · · cn−1)

−1. Then, by Theorem 2.4,

(2.6) (µ̂(X̂B) <∞) ⇐⇒
∞∑

n=1

r0 . . . rn−1

c0 · · · cn
∑

(v,w)∈Tn

f̃ (n)
v,w <∞.

In order to illustrate the considered above case, we take a Bratteli diagram B of

finite rank two with incidence matrices

Fn =

(
an cn
dn bn

)
,

where an+ cn = dn+ bn = rn for every n. Denote sn(1) = an+ dn and sn(2) = cn+ bn.

Without loss of generality, assume that sn(1) > sn(2). Then there exist integers x, y ≥ 0

such that (an−x)+(dn−y) = sn(2). Define a subdiagram B whose incidence matrices

are

Fn =

(
an − x cn
dn − y bn

)
, n ≥ 1.

Then Fn satisfies the ECS property with cn = sn(2). Obviously, we have

F̃n =

(
x 0

y 0

)
.

Thus,
∑

v∈Vn+1

∑
w∈Vn

f̃
(n)
v,w = x+ y = sn(1)− cn. By Theorem 2.4, we obtain that

(µ̂(X̂B) <∞) ⇐⇒
∞∑

n=1

r0 · · · rn−1

c0 · · · cn
(sn(1)− sn(2)) <∞.
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We now return to the problem of finding conditions that imply finiteness of measure

extensions. Similarly to Theorem 2.2 (3), we find a sufficient condition for finiteness of

µ̂(X̂B) for an edge subdiagram B and a probability invariant measure µ on XB .

Denote

J =

∞∑

n=1

∑

v∈Vn+1

∑

w∈Vn

f̃ (n)
v,wh

(n)
w p(n+1)

v .

By Theorem 2.4, µ̂(X̂B) is finite if and only if J <∞.

Proposition 2.8. Let B, B, µ, and J be as above. If
∞∑

n=1

max
v∈Vn+1

(
∑

w∈Vn

f̃ (n)
v,w

h
(n)
w

h
(n+1)
v

)
<∞,

then µ̂(X̂B) is finite.

Proof. The general term of J can be estimated as follows:

∑

v∈Vn+1

∑

w∈Vn

f̃ (n)
v,wh

(n)
w p(n+1)

v =
∑

v∈Vn+1

∑

w∈Vn

f̃ (n)
v,wh

(n)
w p(n+1)

v

h
(n+1)
v

h
(n+1)
v

=
∑

v∈Vn+1

∑

w∈Vn

f̃ (n)
v,wh

(n)
w µ(X

(n+1)
v )

1

h
(n+1)
v

=
∑

v∈Vn+1

µ(X
(n+1)
v ) max

v∈Vn+1

(
∑

w∈Vn

f̃ (n)
v,w

h
(n)
w

h
(n+1)
v

)
.

Since
∑

v∈Vn+1
µ(X

(n+1)
v ) = 1, we obtain the desired result. �

3. The number of finite ergodic measures for finite rank Bratteli

diagrams

We begin with considering in detail the class of Bratteli diagrams of rank two that

have the ERS property. It turns out that this class can be studied completely, and one

can find necessary and sufficient conditions for a diagram to have either a single finite

ergodic measure or two finite ergodic measures.

Proposition 3.1. Let B be a Bratteli diagram with 2× 2 incidence matrices Fn satis-

fying ERS:

Fn =

(
an cn
dn bn

)
,

where an + cn = dn + bn = rn for every n. Then

(1) There are exactly two finite ergodic invariant measures on B if and only if

(3.1)

∞∑

k=1

(
1− |ak − dk|

rk

)
<∞,

or, equivalently,

(3.2)

∞∑

k=1

(
1− max{ak, dk}

rk

)
<∞ and

∞∑

k=1

min{ak, dk}
rk

<∞.
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In this case, one can point out explicitly the subdiagrams (odometers) that support these

measures.

(2) There is a unique invariant measure µ on B if and only if

(3.3)

∞∑

k=1

(
1− |ak − dk|

rk

)
=∞.

Moreover, if

(3.4)
∞∑

k=1

min

{
min{ak, dk}

rk
, 1− max{ak, dk}

rk

}
=∞,

then there is no odometer such that the unique measure µ would be the extension of a

measure supported by this odometer. Otherwise, if for instance (3.3) holds and (3.4)

does not hold, then there is an example when the unique invariant measure is an exten-

sion from an odometer and there is an example when it is not.

Proof. Without loss of generality, we can assume that r0 = 1, that is the diagram has

single edges between V0 and V1.

Let µ be any probability invariant measure on B. Let p
(n)
0 and p

(n)
1 be the measures

of cylinder sets of length n that end at the vertices v0 ∈ Vn and v1 ∈ Vn, respectively.

Then we have for any n ≥ 1

p
(n)
0 = anp

(n+1)
0 + dnp

(n+1)
1 ,

p
(n)
1 = cnp

(n+1)
0 + bnp

(n+1)
1 .

Clearly, p
(1)
0 + p

(1)
1 =

1

r0
= 1. It is easy to see that h

(n)
i = r0 · · · rn−1, i = 0, 1, and

p
(n)
0 + p

(n)
1 =

1

r0 · · · rn−1

for any n ≥ 1. Hence,

p
(n)
0 = anp

(n+1)
0 + dn

(
1

r0 · · · rn
− p

(n+1)
0

)
= (an − dn)p

(n+1)
0 +

dn

r0 · · · rn
.

Therefore we have

(3.5) p
(n)
0 =

m∏

k=0

(an+k − dn+k)p
(n+m+1)
0 + Cn,m,

where

Cn,m =
dn

r0 . . . rn
+

m−1∑

k=0

(an − dn) · · · (an+k − dn+k)
dn+k+1

r0 . . . rn+k+1

for m = 1, 2, . . . In particular, Cn,0 =
dn

r0 · · · rn
.

Thus, the measure µ is completely determined by the sequence of numbers {p(n)0 }
such that 0 ≤ p

(n)
0 ≤ 1

r0 · · · rn−1
and

(3.6) p
(n)
0 = (an − dn)p

(n+1)
0 +

dn

r0 · · · rn
.
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Denote by ∆(n) the interval

[
0,

1

r0 · · · rn−1

]
. Then we have a sequence of maps

∆(1) G1←− ∆(2) G2←− ∆(3) G3←− . . .

where the linear map Gn is defined by (3.6). Relation (3.5) presents the composition

Gn ◦ . . . ◦Gn+m : ∆(n+m+1) → ∆(n).

We have Gn ◦ . . . ◦Gn+m(0) = Cn,m and

Gn ◦ . . . ◦Gn+m

(
1

r0 · · · rn+m

)
=

1

r0 · · · rn−1

m∏

k=0

(an+k − dn+k)

rn+k

+ Cn,m.

Thus, since Gn is a linear map in variable p
(n+1)
0 , we obtain

|Gn ◦ . . . ◦Gn+m(∆(n+m+1))| = 1

r0 · · · rn−1

m∏

k=0

|an+k − dn+k|
rn+k

where |∆| stands for the length of an interval ∆. It follows from this relation that there

is a unique measure µ on B if and only if
∞∏

k=0

|ak − dk|
rk

= 0

or, equivalently,
∞∑

k=1

(
1− |ak − dk|

rk

)
=∞.

On the other hand, the diagram B has two ergodic measures on B if and only if
∞∑

k=1

(
1− |ak − dk|

rk

)
<∞.

We notice that
∞∑

k=1

(
1− |ak − dk|

rk

)
=

∞∑

k=1

(
1− max{ak, dk}

rk

)
+

∞∑

k=1

min{ak, dk}
rk

.

Therefore
∞∑

k=1

(
1− |ak − dk|

rk

)
<∞

if and only if
∞∑

k=1

(
1− max{ak, dk}

rk

)
<∞ and

∞∑

k=1

min{ak, dk}
rk

<∞.

In this case, each ergodic measure is the extension of a measure from an odometer. We

show how to find these odometers. Suppose that (3.2) holds.

Claim . A measure µ is an extension from an odometer B(Wn) if and only if

(3.7)

∞∑

n=1

f
(n)
wn+1,v′n

rn
<∞,
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where W
′

n = {v′

n} and Wn+1 = {wn+1}.

Proof of the claim. It is easy to see that in our case

(3.8)

∞∑

n=1

∑

v∈Wn+1

∑

w∈W ′

n

f (n)
v,wh

(n)
w p(n+1)

v =

∞∑

n=1

r0 · · · rn−1∏n
k=1 f

(k)
wk+1,wk

f
(n)
wn+1,v′n

.

By Theorem 2.1, the measure extension µ̂ is finite if and only if the series (3.8) converges.

We observe that

∞∑

n=1

r0 · · · rn−1∏n
k=1 f

(k)
wk+1,wk

f
(n)
wn+1,v′n

<∞ ⇐⇒
∞∑

n=1

f
(n)
wn+1,v′n

rn
<∞.

Indeed, since
r0 · · · rn−1∏n
k=1 f

(k)
wk+1,wk

> 1, the direction “=⇒” is clear. To prove “⇐=”, we use

equality

1−
f
(n)
wn+1,v′n

rn
=

f
(n)
wn+1,v′n

rn
.

Hence,

∞∑

n=1

f
(n)
wn+1,v′n

rn
<∞ ⇐⇒

∞∏

n=1


1−

f
(n)
wn+1,v′n

rn


 > 0 ⇐⇒

∞∏

n=1

f
(n)
wn+1,v′n

rn
> 0.

Therefore,
∏∞

n=1

rn

f
(n)
wn+1,v′n

< ∞ and there exists K > 0 such that
∏N

n=1

rn

f
(n)
wn+1,v′n

< K

for every N , and the claim is proved.

Thus, if (3.2) holds we have

∞∑

k=1

min{f (k)
11 , f

(k)
21 }

rk
<∞.

Notice that, by the ERS property, the equality (1−max{ak, dk}) = min{bk, ck} holds.

Hence if f
(k)
11 < f

(k)
21 then f

(k)
22 < f

(k)
12 . Therefore, in order to obtain (3.7), one of

the odometers should go through vertices {w(k)
1 , w

(k+1)
2 } and the other through ver-

tices {w(k)
2 , w

(k+1)
1 }. Otherwise, these odometers go through vertices {w(k)

1 , w
(k+1)
1 }

and {w(k)
2 , w

(k+1)
2 }. Thus, for each two consecutive levels, we define two disjoint sets of

vertices. The choice of one of these sets for the first and second level uniquely defines

B(Wn). Indeed, suppose that f
(1)
11 < f

(1)
21 and we choose {w(1)

1 , w
(2)
2 }. Then to form a

subdiagram, the next set of vertices should contain w
(2)
2 and so on. We observe that in

this case we do not need the procedure of telescoping to find subdiagrams supporting

finite ergodic measures.

Now we prove the last part of the theorem. Denote

mk = min

{
min{ak, dk}

rk
, 1− max{ak, dk}

rk

}

=
min{ak, bk, ck, dk}

rk
.



18 M. ADAMSKA, S. BEZUGLYI, O. KARPEL, AND J. KWIATKOWSKI

Suppose that µ is an extension of a measure µ from an odometer defined by vertices

(wn). We obtain

(3.9)

∞∑

n=1

∑

v∈Wn+1

∑

w∈W ′

n

f
(n)
v,w

rn
≥

∞∑

n=1

mn =∞.

As it was proved above, a measure is an extension from an odometer B(Wn) if and only

if Eq. (3.7) holds. Hence, inequality (3.9) implies that that the extension of a measure

from any odometer is infinite.

For the case when (3.3) holds and (3.4) does not hold, the examples of measures are

provided in the next series of examples. �

The following example provides us with a diagram B and unique ergodic invariant

measure µ such that (3.3) holds, (3.4) does not hold, and µ is an extension from an

odometer.

Example 3.2. Consider a Bratteli diagram B of rank two with incidence matrices

F2n+1 =

(
2 an

an

2
+ 1

an

2
+ 1

)
,

where an is an even number and
∞∑

n=1

1

an
<∞.

Let

F2n =

(an

2
+ 1

an

2
+ 1

an 2

)
.

All matrices Fn have the property ERS with row sum r2n = r2n+1 = an + 2. Consider

the series (3.2) for this example. We have

min{f (2n)
11 , f

(2n)
21 }

an + 2
=

1

2
; 1− max{f (2n)

11 , f
(2n)
21 }

an + 2
=

2

an + 2
.

Also
min{f (2n+1)

11 , f
(2n+1)
21 }

an + 2
=

2

an + 2
; 1− max{f (2n+1)

11 , f
(2n+1)
21 }

an + 2
=

1

2
.

Hence, both of the series (3.2) diverge, but the series (3.4) converges. By Proposi-

tion 3.1, there is a unique invariant probability measure on XB . Consider a vertex

subdiagram B of B such that Wn consists of the second vertex for n odd and of the

first vertex for n even. Therefore, the incidence matrices for B are F 2n = F 2n+1 = an.

Let µ be the probability invariant measure on B. Then µ̂(X̂B) is finite. Indeed, it

suffices to check that

∞∑

n=1

f
(n)
wn+1,v′n

rn
=

2

a0 + 2
+ 2

∞∑

n=1

2

an + 2
<∞

and apply Proposition 3.1. Hence, the unique measure µ is an extension of measure

µ from odometer XB . Thus, both series in (3.2) diverge, but the measure µ is not an

extension from some odometer.
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Remark 3.3. Example 3.2 can be slightly modified to obtain a situation when one of

the series in (3.2) diverges and the other one converges. For instance, let

Fn =

(
an 2

an

2
+ 1

an

2
+ 1

)

for every n. Set Wn to be the first vertex on each level. Then the measure µ is

an extension of a measure from XB ; in this particular situation, we do not need the

procedure of telescoping to find a subdiagram B.

In the next example, we provide a diagram B and unique ergodic invariant measure

µ such that (3.4) does not hold and µ is not an extension from any odometer.

Example 3.4. Suppose now that

Fn =

(
2 an

an

2
+ 1

an

2
+ 1

)
.

Then there is a unique ergodic invariant measure µ which is not an extension from some

odometer. Indeed, suppose that there is an odometer B sitting on {wn} and supporting

µ. Then
∞∑

n=1

f
(n)
wn+1,w′

n

rn
<∞.

Notice that
f
(n)
12

rn
>

1

2
and

f
(n)
21

rn
=

f
(n)
22

rn
=

1

2

for every n. Thus, series
∑∞

n=1

f
(n)

wn+1,w
′
n

rn
should have infinitely many elements

f
(n)
11
rn

and

finitely many others, but that’s obviously impossible. Thus, even in case when one

of the series in (3.2) converges and the other diverges, the measure might not be an

extension from some odometer.

Remark 3.5. In the previous example, set an = 2n and telescope the diagram with

respect to odd levels. Then the new incidence matrices must be
(

2 2n

2n−1 + 1 2n−1 + 1

)(
2 2n−1

2n−2 + 1 2n−2 + 1

)
=

(
22n−2 + 2n + 4 22n−2 + 2n+1

22n−3 + 2n + 2n−1 + 2n−2 + 3 22n−2 + 22n−3 + 2n + 2n−2 + 1

)

and the new row sum of the matrix is rnrn−1 = 22n−1 + 2n+1 + 2n + 4. We see that

∞∑

k=1

min

{
min{ak, dk}

rk
, 1− max{ak, dk}

rk

}
=∞,

and this proves that the measure is not an extension from some odometer. Besides

we have shown that convergence of one of the series in (3.2) is not preserved under

telescoping. On the other hand, the number of ergodic measures is preserved, so that

the conditions in Proposition 3.1 are not invariant under telescoping.
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Example 3.6. The examples given in [BKMS13] (see Example 4.13 and Remark 5.9

there) illustrate our Proposition 3.1. In case when

Fn =

(
n2 1

1 n2

)
,

there are two finite ergodic invariant measures. In case when

Fn =

(
n 1

1 n

)
,

there is a unique invariant measure µ which is not an extension from any odometer.

As known, any Bratteli diagram of rank k can have at most k ergodic measures. The

next result gives a necessary and sufficient condition under which such a diagram has

exactly k ergodic measures.

Theorem 3.7. Let B = (V,E) be a Bratteli diagram of rank k ≥ 2; identify Vn with

{1, ..., k} for any n ≥ 1. Let Fn = (f
(n)
i,j ) form a sequence of incidence matrices of B

such that
∑

j∈Vn
f
(n)
i,j = rn ≥ 2 for every i ∈ Vn+1. Suppose that rank Fn = k for all n.

Denote

z(n) = det




f
(n)
1,1

rn
. . .

f
(n)
1,k−1

rn
1

...
. . .

...
...

f
(n)
k,1

rn
. . .

f
(n)
k,k−1

rn
1




.

Then there exist exactly k ergodic invariant measures on B if and only if
∞∏

n=1

|z(n)| > 0,

or, equivalently,
∞∑

n=1

(1− |z(n)|) <∞.

Proof. We will use the ideas from the proof of Proposition 3.1. Let µ be any probability

invariant measure on B. Recall that p
(n)
i denotes the measure of a cylinder set of length

n that ends at the vertex i ∈ Vn. Since the incidence matrices Fn satisfy ERS, we

observe that, for any n ≥ 1,

k∑

i=1

p
(n)
i =

1

r0 · · · rn−1
.

We also have

p(n) = F T
n p(n+1)

for every n ∈ N.

Denote

∆(n) := {(x1, . . . , xk)T :

k∑

i=1

xi =
1

r0 · · · rn−1
and xi ≥ 0, 1 ≤ i ≤ k}.
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Then ∆(n) ⊂ Rk
+ contains all possible values for vectors (p

(n)
1 , . . . , p

(n)
k ) corresponding

to invariant probability measures on B. Denote Gn = F T
n . Then we have

∆(1) G1←− ∆(2) G2←− ∆(3) G3←− . . .

Since rank F = k, each Gn is injective. Let

∆(n)
m = Gn ◦ . . . ◦Gn+m−1(∆

(n+m)).

for m = 1, 2 . . . Since each Fn is a non-negative matrix we have for any fixed n

∆(n) ⊃ ∆
(n)
1 ⊃ ∆

(n)
2 ⊃ . . .

For every m ≥ 1, the mappings

Gn ◦ . . . ◦Gn+m−1 : ∆
(n+m) −→ ∆(n)

m ⊂ ∆(n)

are one-to-one and onto. The sets ∆
(n)
m are simplices in Rk−1 with vertices (considered

as points in Rk−1) {Gn ◦ . . . ◦Gn+m−1(e
(n+m)
i ) : i = 1, ..., k}, where

e
(n)
i =

(
0, . . . , 0,

1

r0 . . . rn−1
, 0, . . . , 0

)T

and the non-zero element corresponds to the i-th coordinate. In particular,

Gn

(
e
(n+1)
i

)
=

(
f
(n)
i1

r0 . . . rn
, . . . ,

f
(n)
ik

r0 . . . rn

)T

∈ ∆(n).

The intersection ∆
(n)
∞ =

⋂∞
m=1 ∆

(n)
m is a simplex with at most k vertices (see [Ph01,

P71]). Hence ∆
(n)
∞ has k vertices if and only if the (k−1)-dimensional Lebesgue measure

volk−1(∆
(n)
∞ ) is positive. We have volk−1(∆

(n)
∞ ) = limm→∞ volk−1(∆

(n)
m ).

Consider

volk−1(∆
(n)
m )

volk−1(∆(n))
=

volk−1[Gn ◦ . . . ◦Gn+m(∆(n+m+1))]

volk−1[Gn ◦ . . . ◦Gn+m−1(∆(n+m))]

· volk−1[Gn ◦ . . . ◦Gn+m−1(∆
(n+m))]

volk−1[Gn ◦ . . . ◦Gn+m−2(∆(n+m−1))]
· . . . · volk−1[Gn(∆

(n+1))]

volk−1(∆(n))
.

Since for m = 0, 1, . . . and n ≥ 1,

volk−1[Gn ◦ . . . ◦Gn+m(∆(n+m+1))]

volk−1[Gn ◦ . . . ◦Gn+m−1(∆(n+m))]
=

volk−1[Gn+m(∆(n+m+1))]

volk−1(∆(n+m))

we have

volk−1[∆
(n)
m ]

volk−1[∆(n)]
=

volk−1[Gn(∆
(n+1))]

volk−1[∆(n)]
· . . . · volk−1[Gn+m(∆(n+m+1))]

volk−1[∆(n+m)]
.

On the other hand, it can be easily seen that

volk−1(∆
(n)) =

1

(k − 1)!

(
1

r0 · · · rn−1

)k−1
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and

volk−1(∆
(n)
1 ) =

1

(k − 1)!

∣∣∣∣∣∣∣∣∣∣∣∣

det




f
(n)
1,1

r0 · · · rn
. . .

f
(n)
1,k−1

r0 · · · rn
1

...
. . .

...
...

f
(n)
k,1

r0 · · · rn
. . .

f
(n)
k,k−1

r0 · · · rn
1




∣∣∣∣∣∣∣∣∣∣∣∣

.

Therefore, we obtain that

volk−1[Gn+m(∆(n+m+1))]

volk−1[∆(n+m)]
=

volk−1[(∆
(n+m)
1 )]

volk−1[∆(n+m)]
=

∣∣∣∣∣∣∣∣∣∣∣∣

det




f
(n+m)
1,1

rn+m
. . .

f
(n+m)
1,k−1

rn+m
1

...
. . .

...
...

f
(n+m)
k,1

rn+m

. . .
f
(n+m)
k,k−1

rn+m

1




∣∣∣∣∣∣∣∣∣∣∣∣

.

for m = 0, 1, . . . Finally, the following formula is deduced from the above relations.

volk−1[(∆
(n)
m )]

volk−1[∆(n)]
=

n+m∏

s=n

∣∣∣∣∣∣∣∣∣∣∣∣

det




f
(s)
1,1

rs
. . .

f
(s)
1,k−1

rs
1

...
. . .

...
...

f
(s)
k,1

rs
. . .

f
(s)
k,k−1

rs
1




∣∣∣∣∣∣∣∣∣∣∣∣

=

n+m∏

s=n

|z(s)|.

Thereby, simplex ∆
(n)
∞ has k vertices if and only if

∏∞
s=n |z(s)| > 0. It follows that there

exist exactly k finite ergodic invariant measures on the Bratteli diagram B if and only

if
∏∞

n=1 |z(n)| > 0 or, equivalently,
∑∞

n=1(1− |z(n)|) <∞. �

We now consider the case when B is a Bratteli diagram of rank k ≥ 2 and its

incidence matrices Fn = (f
(n)
v,w) have rank Fn = 2 for all n = 1, 2, . . .

Theorem 3.8. Let B = (V,E) be a Bratteli diagram of rank k ≥ 2; identify Vn with

{1, ..., k} for any n ≥ 1. Let Fn = (f
(n)
i,j ) form a sequence of incidence matrices of B

such that
∑

j∈Vn
f
(n)
i,j = rn ≥ 2 for every i ∈ Vn+1. Suppose that rank Fn = 2 for all n.

Denote

∆(n) := {(x1, . . . , xk)T :
k∑

i=1

xi =
1

r0 · · · rn−1
and xi ≥ 0, 1 ≤ i ≤ k}.

Then there are two invariant measures if and only if

∞∏

n=1

d(F T
n F T

n+1(∆
(n+2)))

d(F T
n+1(∆

(n+2)))
> 0

or, equivalently,
∞∑

n=1

(
1− d(F T

n F T
n+1(∆

(n+2)))

d(F T
n+1(∆

(n+2)))

)
<∞.
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The diagram B = (V,E) has a unique invariant measure if and only if

∞∑

n=1

(
1− d(F T

n F T
n+1(∆

(n+2)))

d(F T
n+1(∆

(n+2)))

)
=∞.

Proof. Since rank Fn = 2 for every n, the set ∆
(n)
1 = Gn(∆

(n+1)) is an interval in ∆(n)

and the mappings

∆
(1)
1

G1←− ∆
(2)
1

G2←− ∆
(3)
1

G3←− . . .

are one-to-one. We denote by d
(n)
m+1 the length of the interval ∆

(n)
m+1 = Gn ◦ . . . ◦

Gn+m−1(∆
(n+m)
1 ). Then d

(n)
m+1 ≥ d

(n)
m+2 for every m and the intersection ∆

(n)
∞ =

⋂∞
m=0 ∆

(n)
m+1 is a point if and only if limm→∞ d

(n)
m+1 = 0. The set ∆

(n)
∞ is an inter-

val if and only if limm→∞ d
(n)
m+1 > 0. In this case we denote d(∆

(n)
∞ ) = limm→∞ d

(n)
m+1.

Then

d(∆
(n)
m+1)

d(∆
(n)
1 )

=
d(Gn ◦ . . . ◦Gn+m−1(∆

(n+m)
1 ))

d(Gn ◦ . . . ◦Gn+m−2(∆
(n+m−1)
1 ))

· . . . · d(Gn(∆
(n+1)
1 )

d(∆
(n)
1 )

=
d(Gn+m−1(∆

(n+m)
1 ))

d(∆
(n+m−1)
1 )

· . . . · d(Gn(∆
(n+1)
1 )

d(∆
(n)
1 )

.

Therefore, the diagram B = (V,E) has two invariant measures if and only if

∞∏

n=1

d(Gn(∆
(n+1)
1 ))

d(∆
(n)
1 )

> 0

or, equivalently,
∞∑

n=1

(
1− d(Gn(∆

(n+1)
1 ))

d(∆
(n)
1 )

)
<∞.

The diagram B = (V,E) has a unique invariant measure if and only if

∞∑

n=1

(
1− d(Gn(∆

(n+1)
1 ))

d(∆
(n)
1 )

)
=∞.

�

We remark that, in the above example, it suffices to require rank Fn = 2 for infinitely

many n and then use the procedure of telescoping.

4. Measure of the path space of a subdiagram

Let B′ be a subdiagram of a Bratteli diagram B. Suppose that a probability measure

µ is defined on B. In this section, we answer the question when the path space XB′ of

the subdiagram B′ considered as a subset of XB has positive measure µ. Both cases of

vertex and edge subdiagrams will be considered.

Let B be a Bratteli diagram with incidence matrices {Fn}∞n=0, and let B be a vertex

subdiagram of B defined by a sequence of subsets Wn ⊂ Vn, the support of B. Let µ be

a probability measure on XB . Denote by Y
(n)
w the set of all paths x = (x1, . . . , xn, . . .)

from XB which pass through vertex w ∈Wn and such that the finite path (x1, . . . , xn)
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lies in B. We set Y
(n)

B
=
⋃

w∈Wn
Y

(n)
w . Then, obviously, Y

(n)

B
⊃ Y

(n+1)

B
for all n and

the path space XB of B satisfies the relation:

(4.1) XB =
∞⋂

n=1

Y
(n)

B
.

Theorem 4.1. Let B, B, µ, Y
(n)

B
be as above. Then the series

S =

∞∑

n=1

∑

v∈W ′

n+1

∑

w∈Wn

f (n)
v,wp

(n+1)
v h

(n)
w

is always convergent and µ(XB) = µ(Y
(1)

B
)− S. Hence,

(µ(XB) = 0) ⇐⇒ (S = µ(Y
(1)

B
)).

Proof. By definition, we see that µ(Y
(n)

B
) =

∑
w∈Wn

h
(n)
w p

(n)
w . In what follows we use

the equality
∑

w∈Wn
f
(n)
v,wh

(n)
w = h

(n+1)
v , where v ∈ Vn+1.

µ(Y
(n+1)

B
) =

∑

v∈Wn+1

h
(n+1)
v p(n+1)

v

=
∑

v∈Wn+1

p(n+1)
v

∑

w∈Wn

f (n)
v,wh

(n)
w

=
∑

w∈Wn

h
(n)
w


 ∑

v∈Wn+1

f (n)
v,wp

(n+1)
v +

∑

v∈W ′

n+1

f (n)
v,wp

(n+1)
v −

∑

v∈W ′

n+1

f (n)
v,wp

(n+1)
v




=
∑

w∈Wn

h
(n)
w


p(n)w −

∑

v∈W ′

n+1

f (n)
v,wp

(n+1)
v




= µ(Y
(n)

B
)−

∑

v∈W ′

n+1

p(n+1)
v

∑

w∈Wn

h
(n)
w f (n)

v,w.

Because µ(XB) = 1, we have µ(Y
(1)

B
) ≤ 1. It follows from (4.1) that

µ(XB) = lim
n→∞

µ(Y
(n)

B
)

= µ(Y
(1)

B
) +

∞∑

n=1

(µ(Y
(n+1)

B
)− µ(Y

(n)

B
)).

We finally obtain

µ(Y
(1)

B
) = µ(XB) +

∞∑

n=1

(µ(Y
(n)

B
)− µ(Y

(n+1)

B
))

= µ(XB) + S.

This relation proves that the series S always converges and the theorem holds. �

The following result is an analogue of Theorem 4.1 for an edge subdiagram.
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Theorem 4.2. Let B be a Bratteli diagram with incidence matrices {Fn}∞n=0, and let

µ be a probability measure on XB. For an edge subdiagram B ⊂ B, the series

S̃ =

∞∑

n=1

∑

v∈Vn+1

∑

w∈Vn

f̃ (n)
v,wp

(n+1)
v h

(n)
w

is always convergent and µ(XB) = µ(Y
(1)

B
)− S̃. Hence,

(µ(XB) = 0) ⇐⇒ (S̃ = µ(Y
(1)

B
)).

Proof. The proof is similar to that of Theorem 4.1. Namely, we have

µ(Y
(n+1)

B
) =

∑

v∈Vn+1

h
(n+1)
v p(n+1)

v

=
∑

v∈Vn+1

p(n+1)
v

∑

w∈Vn

f
(n)
v,wh

(n)
w

=
∑

w∈Vn

h
(n)
w


 ∑

v∈Vn+1

f
(n)
v,wp

(n+1)
v +

∑

v∈V ′

n+1

f̃ (n)
v,wp

(n+1)
v −

∑

v∈V ′

n+1

f̃ (n)
v,wp

(n+1)
v




=
∑

w∈Vn

h
(n)
w


p(n)w −

∑

v∈Vn+1

f̃ (n)
v,wp

(n+1)
v




= µ(Y
(n)

B
)−

∑

v∈Vn+1

p(n+1)
v

∑

w∈Vn

h
(n)
w f̃ (n)

v,w.

Then, we use the same method as in Theorem 4.1 to finish the proof. �

In the next proposition we consider the case of a stationary Bratteli diagram B. It

is worth noting that this proposition is not true in the case of arbitrary diagrams (see

Remark 4.9 below).

Proposition 4.3. Let B be a stationary Bratteli diagram with irreducible incidence

matrix F and A = F T . Let B be a proper stationary edge subdiagram of B. Denote by

F the incidence matrix of B and set A = F
T
. Let µ be the unique probability measure

on B invariant with respect to the tail equivalence relation E. Then µ(XB) = 0.

Proof. It follows from the condition of the proposition that F < F and A < A. Let λ

be the Perron-Frobenius eigenvalue for A with the corresponding eigenvector x = (xv).

Denote by λ the Perron-Frobenius eigenvalue for A. Then λ < λ (see [G98]). If e is a

finite path with r(e) = v ∈ Vn, then µ([e]) =
xv

λn−1
, where [e] is the cylinder subset of

XB defined by e (see, for instance, [BKMS10]). Therefore, we have

µ(XB) = lim
n→∞

µ(Y
(n)

B
)

= lim
n→∞

∑

w∈Vn

µ(Y (n)
w )

= lim
n→∞

∑

w∈Vn

h
(n)
w

xw

λn−1
.
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We recall that an entry of A is positive if and only if the corresponding entry of A is

positive (we do not remove an edge to define B if it is the only one edge between a pair of

vertices). Therefore, since A is irreducible, we conclude that A is also irreducible. Then

h
(n)
w ∼ λ

n
as n → ∞ [BKMS10]. Hence, there exists some C > 0 such that

h
(n)
w

λ
n → C

as n→∞. Since
∑

w∈Vn

λ
n−1

λn−1
λxw → 0 as n→∞, we obtain µ(XB) = 0. �

The following theorem gives a necessary and sufficient condition for a subdiagram B

of B to have a path space of zero measure in XB . Though the theorem is formulated

for a vertex subdiagram, the statement remains true also for any edge subdiagram B

(see Remark 4.8 below).

Theorem 4.4. Let B be a simple Bratteli diagram, and let µ be any probability ergodic

measure on XB. Suppose that B is a vertex subdiagram of B defined by a sequence

(Wn) of subsets of Vn. Then µ(XB) = 0 if and only if

(4.2) ∀ε > 0 ∃n = n(ε) such that ∀w ∈Wn one has
h
(n)
w

h
(n)
w

< ε.

Proof. We first prove the “if” part. Fix ε > 0 and find n = n(ε) such that
h
(n)
w

h
(n)
w

< ε for

every w ∈Wn. We note that
∑

w∈Wn

h(n)w p(n)w <
∑

w∈Vn

h(n)w p(n)w = 1.

Then we have

µ(XB) ≤
∑

w∈Wn

h
(n)
w p(n)w

=
∑

w∈Wn

h
(n)
w

h
(n)
w

h(n)w p(n)w

< ε.

Hence µ(XB) = 0.

To prove the “only if” part, we will need the following lemma.

Lemma 4.5. If µ(XB) = 0, then for every m > 1 and every K > 1 there exists N > m

such that for every w ∈Wm and every v ∈WN we have

|E(w, v)| ≥ Kh
(N)
v

(recall that E(w, v) is the set of finite paths between vertices w and v).

Proof of the lemma. Since µ(XB) = 0, we get
∑

w∈Wn
h
(n)
w p

(n)
w → 0 as n → ∞.

Take any integers m and K. Then {p(m)
w : w ∈Wm} is a finite set of positive numbers.
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Hence there is n such that p
(m)
w > K

∑
w∈Wn

h
(n)
w p

(n)
w for every w ∈Wm. By the ergodic

theorem, we have

p(m)
w = lim

N→∞

|E(w, v)|
h
(N)
v

, and p(n)u = lim
N→∞

|E(u, v)|
h
(N)
v

for every v ∈ VN and every u ∈ Wn. Thus, we can find N such that for any w ∈ Wm

and any v ∈ VN the following inequality holds:

|E(w, v)|
h
(N)
v

> K
∑

u∈Wn

h
(n)
u

|E(u, v)|
h
(N)
v

.

Therefore,

|E(w, v)| > K
∑

u∈Wn

h
(n)
u |E(u, v)|

> K
∑

u∈Wn

h
(n)
u |E(u, v)|

= Kh
(N)
v ,

where we denote by E(u, v) the set of all finite paths in B between the vertices u and

v. This proves the lemma.

We continue now the proof of the theorem. Suppose that µ(XB) = 0. Take ε > 0 and

find K such that
1

K
< ε. By Lemma 4.5, there is N such that Kh

(N)
v < |E(w, v)| < h

(N)
v

for every w ∈Wm and for some m < N . Thus,

h
(N)
v

h
(N)
v

<
1

K
< ε

for every v ∈WN . This completes the proof. �

In fact, Theorem 4.4 states that if a subdiagram B satisfies (4.2), then XB has

measure zero with respect to every ergodic invariant measure, that is the set XB is thin

according to the definition from [GPS04].

Corollary 4.6. Let B be a simple Bratteli diagram with a probability ergodic measure

µ on XB. Suppose that B is a vertex subdiagram of B defined by a sequence of subsets

Wn of Vn. Then

(1) µ(XB) > 0 if and only if there exists δ > 0 such that for all n > 1 there is

w0 ∈Wn such that
h
(n)
w0

h
(n)
w0

> δ.

(2) If µ(XB) = 0, then for every m > 1 and every k > 1 there exists N > m such

that for every w ∈Wm and every v ∈WN we have

|E(w, v)| ≥ K|E(w, v)|.

Proof. (1) This is a straightforward corollary of Theorem 4.4.
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(2) Suppose that µ(XB) = 0. Then, by Lemma 4.5, for every m > 1 and every k > 1

there exists N > m such that for every w ∈Wm and every v ∈WN we have |E(w, v)| ≥
Kh

(N)
v . It is obvious that h

(N)
v > |E(w, v)|. Hence |E(w, v)| ≥ K|E(w, v)|. �

Theorem 4.4 states, in other words, that the structural properties of the diagram B

determine whether the measure of a path space of a subdiagram B is zero. Another

corollary of this result shows that the extension of any measure µ from XB must be

infinite.

Corollary 4.7. Let B be a subdiagram of B such that XB is a thin subset of XB. Then

for any probability invariant measure µ on B we have µ̂(X̂B) =∞.

Proof. Assume that the converse holds, i.e., there exists M such that µ̂(X̂B) < M .

Take ε > 0 such that
1

ε
> M . Given ε > 0, we can find n = n(ε), by Theorem 4.4,

such that
h
(n)
w

h
(n)
w

< ε for every w ∈Wn. Then

µ̂(X̂B) >
∑

w∈Wn

h(n)w p(n)w

=
∑

w∈Wn

h
(n)
w

h
(n)
w

h
(n)
w p(n)w

>
1

ε

∑

w∈Wn

h
(n)
w p(n)w

> M.

This is a contradiction. �

Remark 4.8. It is not hard to see that Theorem 4.4 and Corollary 4.7 hold also in the

case when B is an edge subdiagram. The proofs are analogous to the case of vertex

subdiagrams.

Remark 4.9. (1) We first note that Proposition 4.3 holds also for vertex subdiagrams.

Indeed, if B is a vertex subdiagram of a stationary simple Bratteli diagram, then

µ(XB) = 0, where µ is a unique probability invariant measure on B.

(2) On the other hand, Proposition 4.3 does not hold in case of Bratteli diagrams B

of finite rank. More precisely, there are vertex subdiagrams B of finite rank Bratteli di-

agrams whose path spaces XB are of positive measure in XB (see details in [BKMS13]).

In order to illustrate this fact, we recall Example 2.7. One can easily find an example

of a Bratteli diagram B and its subdiagram B such that µ̂(X̂B) is finite. For instance,

let

Fn =



1 . . . 1 2
...

. . .
...

...

1 . . . 1 2



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be a matrix with the ERS property. Take

Fn =



1 . . . 1 1
...

. . .
...

...

1 . . . 1 1


 .

Then Fn has the ECS property and, by relation (2.6),

(
µ̂(X̂B) <∞

)
⇐⇒

(
∞∑

n=1

r0 . . . rn−1

c0 . . . cn
|Vn+1| =

∞∑

n=1

n−1∏

i=0

|Vi|+ 1

|Vi+1|
<∞

)
.

If, for instance, |Vi| = 2i, then we obtain µ̂(X̂B) < ∞. Note that in the case of

stationary diagrams B and B, the measure µ̂(X̂B) is always infinite.

The procedure of measure extension that was regularly used above can be interpreted

in the following way. Let B be a Bratteli subdiagram with path space XB and an

ergodic probability measure µ on it such that the measure extension µ̂ is finite. We

have a sequence of clopen sets Y
(n)

B
such that

⋂
n Y

(n)

B
= XB . When we extend µ to

µ̂ we work consequently with cylinder sets taken from the sets Y
(n)

B
and construct the

measure extension. On the other hand, we could use the measure space (XB , µ) and a

Vershik map T acting on XB to define a partition of XB into the towers constructed

by the first return function; this construction is a classical one in the ergodic theory.

We remark that in order to use the notion of a Vershik map, one needs to turn B

into an ordered Bratteli diagram (see, for instance, [BKY14] for more information on

orders on Bratteli diagrams). Using the first return function we simultaneously define

an extension of µ by T -invariance to an ergodic measure ν on XB . Our result (see

below) states that these two constructions give the same measure on XB .

Proposition 4.10. Let B = B(Wn) be a vertex subdiagram of a Bratteli diagram

B = (V,E), and let µ be a finite ergodic measure on the path space of B such that

µ̂(X̂B) < ∞. Assume that |E(v,w)| ≥ 1 for every v ∈ Vn+1 and w ∈ Vn (n ∈ N). Let

ω be any order on B such that the sets of maximal and minimal paths, Xmax(ω) and

Xmin(ω), have µ̂-measure zero1. Let ν the measure on XB obtained from µ using the

first return function for the Vershik map Tω. Then the measures µ̂ and ν are equivalent.

Proof. We first observe that, for a given diagram B, there always exists an order ω for

which the condition of the theorem holds.

Given such an ω, the Vershik map T = Tω : XB \Xmax → XB \Xmin is well defined.

Then T defines the first return function n(x) on XB \Xmax as follows: n(x) = min{n ≥
1: T n(x) ∈ XB \Xmin} for x ∈ XB \Xmax.

Let e = (e1, . . . , en) be a finite path in B which ends in a vertex w ∈Wn. Since the

set of all such paths is ordered, we can consider all successors of e which also belong to

B. Suppose that this set is nonempty and denote by e′ the nearest successor from this

set. Denote by X
(n)
w (e) a cylinder set in XB corresponding to e. There exists an integer

k > 0 such that X
(n)
w (e′) = T k(X

(n)
w (e)). Denote X

(n)
w (e) = X

(n)
w (e) ∩XB . Then for a

1The definition of notions used here can be found in [BKY14].
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path x ∈ X
(n)
w (e) we set n(x) = k. Let E

(n)
w ∈ X

(n)
w be the cylinder set that does not

have a successor in X
(n)
w . Thus, E

(n)
w is generated by the path with the largest assigned

number amongst all finite paths (x1, . . . , xn) that lie in B with r(xn) = w ∈ Wn. We

have defined the value of the return function n(x) on each set X
(n)
w \E

(n)
w , w ∈Wn and

n ∈ N. Let

In =
⋃

w∈Wn

X
(n)
w \ E(n)

w .

Then In ⊂ In+1, and this means that the return function is well-defined. Indeed, the

first return function n(x) is defined on the set

∞⋃

n=1

⋃

w∈Wn

(X
(n)
w \E(n)

w ) =

∞⋃

n=1

In.

Let h
(n)
min = min{h(n)

w , w ∈ Wn}. Since |E(v,w)| ≥ 1 for every v ∈ Vn+1, w ∈ Vn and

n ∈ N, we have h
(n)
min →∞ as n→∞. Since µ(XB) =

∑
w∈Wn

h
(n)
w p

(n)
w = 1, we have

µ(
⋃

w∈Wn

E(n)
w ) =

∑

w∈Wn

p(n)w ≤ 1

h
(n)
min

→ 0

as n → ∞. This implies that µ(In) → 1 and the return function is defined on XB

except for a subset of µ-measure zero.

Let the cylinder set E
(n)
w be generated by a finite path (x1, . . . , xn) that lies in B.

Recall that this path does not have successor in B. Let l
(n)
w − 1 be the amount of paths

(y1, . . . , yn) in B such that r(yn) = w ∈Wn and each of these paths (y1, . . . , yn) has the

assigned order number greater than that of (x1, . . . , xn). Thus, these l
(n)
w − 1 paths do

not belong to B. For w ∈ Wn, let Ŷ
(n)
w be the set X̂

(n)
w without last l

(n)
w cylinder sets,

indicated above. For every n ≥ 1, the function n(x) determines a T -tower Ŷ (n) over

the set
⋃

w∈Wn
(X

(n)
w \E(n)

w ). Then for every w ∈Wn, the set Ŷ (n) contains all cylinder

sets of the tower X̂
(n)
w except for the last l

(n)
w sets. Let νn be the measure extended by

invariance from the measure µ on
⋃

w∈Wn
(X

(n)
w \ E(n)

w ). We have

νn(Ŷ
(n)) =

∑

w∈Wn

p(n)w (h(n)w − l(n)w ).

It is easy to see that Ŷ (n) ⊂ Ŷ (n+1). Denote Ŷ =
⋃∞

n=1 Ŷ
(n). Then Ŷ is a skyscraper

over XB \
⋂∞

n=1(
⋃

w∈Wn
Ew), i.e. Ŷ = E(XB \

⋂∞
n=1(

⋃
w∈Wn

Ew)). Moreover, Ŷ ⊂ X̂B

and the measure ν on Ŷ , where ν = limn→∞ νn, coincides with the measure µ̂. To prove

that the extension construction of the measure µ coincides with the above “classical”

skyscraper construction, it suffices to show that µ̂(X̂B \ Ŷ ) = 0.

Take v ∈Wn+1. Then the tower X̂
(n+1)
v consists of some subcolumns of the T̃ -towers

X̂
(n)
w1 , . . . , X̂

(n)
wk

. Denote these subcolumns by Z
(n)
w1 , . . . , Z

(n)
wk

. Let wn,v ∈ Wn be the

“last vertex” among w1, . . . , wk belonging to Wn, i.e. if wj = wn,v then wj+1, . . . , wk ∈
Vn \Wn. Here the order on vertices is induced by the order on edges that end in v. We
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have

(4.3) l(n+1)
v ≤

∑

w∈W ′

n

f (n)
vw h(n)w + l(n)wn,v

.

Applying (4.3) to l
(n)
wn,v and so on, we find uniquely a sequence of verices {wl,v}nl=1 such

that

l(n+1)
v ≤

∑

un∈W ′

n

f (n)
vun

h(n)un
+

∑

un−1∈W ′

n−1

f (n−1)
wn,vun−1

h(n−1)
un−1

+ . . .+
∑

u1∈W ′

1

f (1)
w2,vu1

h(1)u1
+ f (0)

w1,vv0
.

Denote Ml = maxw∈Wl+1

∑
u∈W ′

l
f
(l)
wuh

(l)
u . Then Ml =

∑
u∈W ′

l
f
(l)
wl+1uh

(l)
u for some wl+1 ∈

Wl+1. Thus, we can write

l(n+1)
v ≤

∑

un∈W ′

n

f (n)
vun

h(n)un
+

∑

un−1∈W ′

n−1

f (n−1)
wnun−1

h(n−1)
un−1

+ . . .+
∑

u1∈W ′

1

f (1)
w2u1

h(1)u1
+ f (0)

w1v0
,

where, in the right hand part of the above relation, all summands but the first one are

independent of v. Thus, we obtain

∑

v∈Wn+1

l(n+1)
v p(n+1)

v ≤
∑

v∈Wn+1,u∈W ′

n

f (n)
vun

h(n)un
p(n+1)
v +

∑

v∈Wn+1

p(n+1)
v




∑

un−1∈W ′

n−1

f (n−1)
wnun−1

h(n−1)
un−1

+ . . . +
∑

u1∈W ′

1

f (1)
w2u1

h(1)u1
+ f (0)

w1v0


 .

Rewrite the latter inequality in the form

(4.4)
∑

v∈Wn+1

l(n+1)
v p(n+1)

v ≤
∑

v∈Wn+1,u∈W ′

n

f (n)
vun

h(n)un
p(n+1)
v +

∑

v∈Wn+1

p(n+1)
v


 1

p
(n)
wn

∑

un−1∈W ′

n−1

f (n−1)
wnun−1

h(n−1)
un−1

p(n)wn
+ . . .+

1

p
(2)
w2

∑

u1∈W ′

1

f (1)
w2u1

h(1)u1
p(2)w2

+ f (0)
w1v0


 .

Recall that |E(v, u)| ≥ 1 for every v ∈ Vn+1 and u ∈ Vn. Hence

p(n)u =
∑

v∈Vn+1

f (n)
vu p(n+1)

v ≥
∑

v∈Vn+1

p(n+1)
v

and p
(n)
u ≤ p

(l)
w for any w ∈Wl and any l ≤ n. Thus, we get

(4.5)

∑
v∈Vn+1

p
(n+1)
v

p
(l)
w

≤ 1

for l = 1, 2, . . . , n. Let

K =

∞∑

n=1

∑

v∈Wn+1

∑

w∈W ′

n

f (n)
vw h(n)w p(n+1)

v .
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Since µ̂(X̂B) < ∞, we have K < ∞ by Theorem 2.1. Therefore, given ε > 0 we can

find l0 such that

(4.6)

n−1∑

l=l0

∑

u∈W ′

l

f (l)
wl+1u

h(l)u p(l+1)
wl+1

+
∑

v∈Wn+1

∑

u∈W ′

n

f (n)
vu h(n)u p(n+1)

v <
ε

2

for any n ≥ l0+1. Since
∑

v∈Wn
p
(n)
v tends to zero as n tends to infinity, we can choose

n0 ≥ l0 + 1 such that

(4.7)
1

p
(l)
w

∑

v∈Wn+1

p(n+1)
v <

ε

2K

for every n ≥ n0 and l = 1, . . . , l0. From inequality (4.4), using (4.6), (4.5) and (4.7),

we get

∑

v∈Wn+1

l(n+1)
v p(n+1)

v ≤


 ∑

v∈Wn+1,u∈W ′

n

f (n)
vun

h(n)un
p(n+1)
v +

n−1∑

l=l0+1

∑

ul∈W
′

l

f (l)
wl+1ul

h(l)ul
p(l+1)
wl+1




+
ε

2K




l0∑

l=1

∑

ul∈W
′

l

f (1)
wl+1ul

h(l)ul
p(l+1)
wl+1

+ f (0)
w1v0


 < ε

for n ≥ n0. Hence, ∑

w∈Wn

l(n)w p(n)w → 0 as n→∞.

µ̂(X̂B \ Ŷ ) = µ̂(X̂B)− µ̂(Ŷ )

= lim
n→∞

∑

w∈Wn

p(n)w h(n)w − lim
n→∞

∑

w∈Wn

p(n)w (h(n)w − l(n)w )

= lim
n→∞

∑

w∈Wn

p(n)w l(n)w

= 0.

Therefore, µ̂(X̂B) = µ̂(Ŷ ) = 1.

�

5. Example

In this section, we deal with a class of Bratteli diagrams for which our main results

can be applied.

Let B be a Bratteli diagram defined by the sequence of incidence matrices

Fn =




an 1 . . . 1

0 1 . . . 1
...

...
. . .

...

0 1 . . . 1

1 1 . . . 1




.



SUBDIAGRAMS AND INVARIANT MEASURES ON BRATTELI DIAGRAMS 33

We assume that they have the ECS property, that is an + 1 = |Vn+1| for all n ≥ 0.

Suppose for simplicity that a0 = 1. There are two natural vertex subdiagrams of B: one

of them, B1, is supported by the first vertex of each level and represents the odometer

(an), the other one, B2, contains all vertices except the first vertex and is similar to

that that was studied in Example 2.3. We will consider the measure µ on B defined by

its values p
(n)
w =

1

|V1| · · · |Vn|
on cylinder sets.

For B1, we have Fn = (an). Then

Proposition 5.1. µ(XB1
) = 0 if and only if

∑∞
i=0

1

ai
=∞.

Proof. Indeed, we have

µ(XB1
) = lim

n→∞
µ(Y

(n)
1 ) = lim

n→∞
h
(n)
1 p

(n)
1 = lim

n→∞

a0 · · · an−1

|V1| · · · |Vn|
=

∞∏

i=0

ai

(ai + 1)
.

Hence, µ(XB1
) = 0 if

∑∞
i=0

1

ai
=∞ and µ(XB1

) ∈ (0, 1) if
∑∞

i=0

1

ai
<∞. �

Remark 5.2. In fact, one can state even more. In notation used in Theorem 4.1, we can

conclude that the relation

µ(Y
(1)
1 ) = µ(XB1

) +
∞∑

n=1

∑

v∈W ′

n+1

∑

w∈Wn

f (n)
v,wp

n+1
v h

(n)
w

= µ(XB1
) +

∞∑

n=1

a0 · · · an−1

(1 + a0) · · · (1 + an)

holds. It follows that the series S =
∑∞

n=1

a0 . . . an−1

(1 + a0) · · · (1 + an)
converges for any

integers an > 1; and if µ(XB1
) = 0, then the sum S = µ(Y

(1)
1 ) =

a0

1 + a0
depends only

on a0.

Proposition 5.3. If µ(XB1
) = 0, then µ̂(X̂B1

) =∞.

Proof. We identify the vertices of Vn with the set {1, ..., |Vn|} for every n. Since

µ(XB1
) = 0, we have that, by Proposition 5.1,

∑
n≥0 a

−1
n =∞.

Let the matrix Gn < Fn be such that g
(n)
v,w = f

(n)
v,w for all vertices v,w but g

(n)
|Vn+1|,1

= 0

for every n. If k
(n)
w denotes the vector of heights corresponding to the subdiagram with
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incidence matrices Gn, then

S =
∞∑

n=1

1

a0 · · · an
∑

w 6=1

h(n)w

>

∞∑

n=1

1

a0 · · · an
k(n)w (|Vn| − 1)

=

∞∑

n=1

|V1| · · · |Vn−1|
a0 · · · an

an−1

=
∞∑

n=1

(1 + a0) · · · (1 + an−2)

a0 · · · an−2

1

an

>

∞∑

n=1

1

an
.

Hence S >
∑∞

n=0

1

an
=∞ and µ̂(X̂B1

) =∞. �

For a subdiagram B = B2 we can prove a statement that is analogous to Proposition

5.1

Proposition 5.4. µ(XB2
) = 0 if and only if

∑∞
i=0

1

ai
=∞.

Proof. We have

µ(XB2
) = lim

n→∞

∑

w 6=1

h
(n)
w p(n)w

= lim
n→∞

∑

w 6=1

|W1| · · · |Wn−1|
|V1| · · · |Vn|

= lim
n→∞

n∏

i=1

( |Wi|
|Vi|

)

= lim
n→∞

n∏

i=1

(
1− 1

|Vi|

)

=

∞∏

i=0

(
1− 1

1 + ai

)
.

Hence µ(XB2
) = 0 if

∑∞
i=0

1

ai
=∞, and µ(XB2

) ∈ (0, 1) if
∑∞

i=0

1

ai
<∞. �

The idea of the proof of next result is similar to Proposition 5.3, so that we omit its

proof.

Proposition 5.5. If µ(XB2
) = 0, then µ̂(X̂B2

) =∞.

To finish our study of the diagram B, we show how one can find all ergodic measures

on B. We recall that any finite ergodic invariant measure µ on XB is determined by



SUBDIAGRAMS AND INVARIANT MEASURES ON BRATTELI DIAGRAMS 35

the sequence (p(n)) of values of measure µ on cylinder sets at each level n. That is,

p(n)w =
∑

v∈Vn+1

f (n)
v,wp

(n+1)
v .

It is easy to see that in our example the vector p(n) has the form (p
(n)
1 , p

(n)
0 , ..., p

(n)
0 ).

Hence, for n ≥ 1, we obtain the system of equations




p
(n)
1 = anp

(n+1)
1 + p

(n+1)
0 ,

p
(n)
0 = p

(n+1)
1 + anp

(n+1)
0 .

For n = 1, we have a0p
(1)
1 + a0p

(1)
0 = 1, hence p

(1)
1 + p

(1)
0 =

1

a0
. Taking the sum of these

equations, we obtain p
(n)
1 + p

(n)
0 = (an + 1)(p

(n+1)
1 + p

(n+1)
0 ). Therefore,

p
(n)
1 + p

(n)
0 =

1

a0(1 + a1) · · · (1 + an−1)
.

Set cn = p
(n)
1 + p

(n)
0 . Define a linear transformation Tn acting on R2 as follows:

Tn : (x, y) 7→ (anx + y, x + any). We get the vectors Tn(cn+1, 0) = P
(1)
n and

Tn(0, cn+1) = Q
(1)
n . Similarly, we denote P

(m)
n = Tn ◦ . . . ◦ Tn+m−1(cn+m, 0) and

Q
(m)
n = Tn ◦ . . .◦Tn+m−1(0, cn+m). Let I

(m)
n be the interval on the plane with endpoints

P
(m)
n , Q

(m)
n . Then it is obvious that I

(1)
n ⊃ I

(2)
n ⊃ . . . ⊃ I

(m)
n ⊃ . . .; and the ergodic

measures on B correspond to the endpoints of the interval I
(∞)
n = limm→∞ I

(m)
n . In

such a way we see that there exist at most two ergodic measures on B. We prove the

following result.

Theorem 5.6. If the extensions of the ergodic measures supported by subdiagrams

Bi (i = 1, 2) are both finite, then there are exactly two finite ergodic measures on B,

and they coincide with these extensions. Otherwise, there is a unique finite ergodic

measure defined by the ECS property.

Proof. Let In be the interval in R2 with endpoints (0, cn) and (cn, 0). Denote by |In|
the length of In. We will need the following lemma

Lemma 5.7. If
∑∞

n=1

1

an
= ∞, then there is a unique ergodic invariant measure on

B. If
∑∞

n=1

1

an
< ∞, then there are exactly two different ergodic invariant measures

on B.

Proof of the lemma. We have

|I(1)n |
|In|

=

√
2(an − 1)cn+1√

2cn
=

an − 1

an + 1
= 1− 2

1 + an
.

Hence

|I(m)
n |
|In|

=
|I(m)
n |

|I(m−1)
n |

. . .
|I(0)n |
|In|

=

m∏

k=n

(
1− 2

1 + ak

)
.
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Thus,

|I(∞)
n |
|In|

=

∞∏

k=n

(
1− 2

1 + ak

)
.

Therefore,
|I(∞)
n |
|In|

→ 0 if and only if
∑∞

n=1

1

an
= ∞. In this case I

(∞)
n is just a point,

hence there is a unique ergodic invariant measure. Otherwise, there are two ergodic

measures. The lemma is proved.

We continue the proof of the theorem. We show that in the case of two ergodic

measures, they coincide with the extensions of ergodic measures from subdiagrams Bi.

Set Pn = (ancn+1, cn+1) and Qn = (cn+1, ancn+1). Let P (n), Q(n) be the endpoints of

I
(∞)
n . Then we have |P (n)Q(n)| = ∏k≥n

(
1− 2

1 + ak

)√
2cn. The coordinates of P (n)

are

P (n) =

(
cn

2
+
|P (n)Q(n)|

2
√
2

,
cn

2
− |P

(n)Q(n)|
2
√
2

)

=

(
cn

2

(
1 +

∞∏

k=n

(
1− 2

1 + ak

))
,
cn

2

(
1 +

∞∏

k=n

(
1− 2

1 + ak

)))
.

Let µP be the ergodic measure corresponding to P . Recall that µP is defined by its

values (p
(n)
1 , p

(n)
0 , . . . , p

(n)
0 ), where p

(n)
1 is the x-th coordinate of P (n) and p

(n)
0 is the y-th

coordinate. Then

µP (XB1
) = lim

n→∞
p
(n)
1 h

(n)
1

= lim
n→∞

cn

2

(
1 +

∞∏

k=n

(
1− 2

1 + ak

))
a0 · · · an

=
1

2
lim
n→∞

a0 · · · an−1

a0(1 + a1) · · · (1 + an−1)

(
1 +

∞∏

k=n

(
1− 2

1 + ak

))

> 0.

Recall that B1 is the odometer with edges (an). Hence, we have two non-zero finite

invariant measures on the odometer B1, namely, µB1
and µP . Since odometer is a

uniquely ergodic system, the measures are equivalent. Thus, µP = C1µ̂B1
, where C1

is a constant multiple. In the same way, one can prove that the other ergodic measure

µQ = C2µ̂B2
. �
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