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VINBERG’S θ-GROUPS AND RIGID CONNECTIONS

TSAO-HSIEN CHEN

Abstract. Let G be a simple complex group of adjoint type. In his unpublished work,
Z. Yun associated to each θ-group (G0, g1) and a vector X ∈ g1 a flat G-connection ∇X

on the trivial G-bundle on P
1−{0,∞}, generalizing the construction of Frenkel and Gross

in [FG]. In this paper we study the local monodromy of those flat G-connections and
compute the de Rham cohomology of ∇X with values in the adjoint representations of G.
In particular, we show that in many cases the connection ∇X is cohomologically rigid.

1. Introduction

1.1. The goal. Let G be a simple complex algebraic group of adjoint type. Motivated by
Langlands correspondence, Frenkel and Gross [FG] constructed a flat G-connection ∇ on
the trivial G-bundle on P

1 − {0,∞} with following remarkable properties:

(1) ∇ has a regular singularity at 0, and the residue is a regular nilpotent element in
the Lie algebra g of G.

(2) ∇ has an irregular singularity at ∞ with slope 1/h, where h is the Coxeter number
of G (see [FG, §5] or [CK, §2.2]) for the definition of slope).

(3) ∇ is cohomologically rigid, i.e., we have H∗(P1, j!∗∇
Ad) = 0, here ∇Ad is the D-

module defined by the connection ∇ with values in the adjoint representation of
G and j!∗∇

Ad is the intermediate extension of the D-module ∇Ad to P
1 along j :

P
1 − {0,∞} → P

1.

The construction used the θ-group (G0, g1) studied by Vinberg and his school, which comes
from a Z/hZ-grading on g.

In his unpublished work, Z.Yun generalized the Frenkel-Gross’s construction to all θ-
groups. More precisely, starting with a θ-group (G0, g0), he constructed a family of flat
G-connections ∇X on P

1 − {0,∞} parametrizing by vectors X ∈ g0. We called ∇X the
θ-connection associated to X ∈ g1.

The goal of this paper is to study properties of θ-connections ∇X . In more detail, recall
that each θ-group (G0, g1) corresponds to a torsion automorphism of g = LieG, which
we also denote by θ ∈ Aut(g). Let σ be the image of θ in Out(g), the group of outer
automorphism of g. We establish the following properties of ∇X , parallel to the properties
(1), (2) and (3) above:
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(1) ∇X has a regular singularity at 0, and the residue Res(∇X) is a nilpotent element
in the Lie algebra gσ. Moreover, for generic vectors X ∈ g1 the residues Res(∇X)
lie in a single nilpotent orbit in gσ.

(2) ∇X has an irregular singularity at ∞ with slope e/m for any semi-simple X ∈ g1.
Here m (resp. e) is the order of θ ∈ Aut(g) (resp. σ ∈ Out(g)).

(3) Assume θ is stable with normalized Kac coordinates s0 = 1 (see §2.2 for the definition
of stable automorphism and normalized Kac coordinates). Then for any stable
element X ∈ g1 the connection ∇X is cohomologically rigid.

1.2. Let me explain briefly how these properties are obtained in the untwisted case σ = id.
Properties (1) and (2) follow basically from the construction. To prove property (3), we
need to show that the cohomology groups H∗(P1, j!∗∇

X,Ad) vanishes (see Definition 4.1).
Here we follow an argument in [FG]. First, it follows from a general result in [FG, §7]
that those cohomology groups are isomorphic to kernels of certain C-linear maps on the
loop algebra g̃ = g[t, t−1]. So we reduce to show that kernels of those maps vanish. In
the case of [FG], the authors observe that if we consider the principal grading on the loop
algebra g̃ (see Example 3.1), then in terms of a homogeneous basis of g̃ (with respect to the
principal grading), the relevant maps become more tractable and the desired cohomology
vanishing follows from Kac’s Theorem on principal Heisenberg subalgebras of affine Kac-
Moody algebras. Now our observation is that for general θ-connections ∇X , if we consider
theKac grading on g̃ corresponding to the torsion automorphism θ (see §3), then the relevant
maps again become more tractable and the desired cohomology vanishing follows from the
results in [Kac, V, RLYG, RY] about gradings on Lie algebras (known as Vinberg’s theory
of θ-groups), and a generalization of Kac’s Theorem to general Heisenberg subalgebras of
affine Kac-Moody algebras (see Proposition 3.5 and Remark 4.4).

1.3. Relation with [Yun] and ramified geometric Langlands. In [Yun], starting with a
stable torsion automorphism θ ∈ Aut(ǧ) for the Langlands dual of g and a stable functional
φ ∈ ǧ

∗,s
1 , the author constructed a remarkable ℓ-adic G-local system KLG(φ) on P

1−{0,∞},
which generalized his early work in [HNY] with Heinloth and Ngô. This ℓ-adic local system
is tamely ramified at 0 and ramified at ∞. He furthermore described the monodromy
of KLG(φ) at 0 and conditionally deduced the cohomologically rigid of KLG(φ) (see [Yun,
Theorem 4.7 and Proposition 5.2]). The construction can carry out over the complex number
with ℓ-adic sheaves replaced by D-modules. Thus, starting with a stable automorphism θ
of ǧ and a stable function φ ∈ ǧ

∗,s
1 , we get a flat G-connection KLG(φ)dR on P

1 − {0,∞}.
The result of this paper gives strong evidence of the following conjecture:

Conjecture 1.1 (Z.Yun and [HNY] Conjecture 2.14). There is a bijection between the set
of stable linear functions φ ∈ g

∗,s
1 and the set of stable vectors X ∈ ǧs1, such that whenever

φ corresponds to X under this bijection, there is a natural isomorphism between σ-twisted
flat Ǧ-connection on Gm

KLǦ(φ) ≃ ∇X .

The solution of the conjecture above will provide many interesting examples of geometric
Langlands correspondences with wild ramifications. When m = h is the Coxeter number,
i.e., in the Frenkel-Gross case (see §4.3.1), the conjecture above was proved in [Zhu] using a
ramified version of Beilinson-Drinfeld’s work on quantization of Hitchin’s integrable systems.
We plan to extend the methods in [Zhu] to more general stable automorphisms.
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1.4. The paper is organized as follows. In §2 we give a review of Vinberg’s theory of θ-
groups. In §3 we recall Kac gradings for loop algebras and Kac’s theories on automorphism
of loop algebras and Heisenberg subalgebras of affine Kac-Moody algebras. In §4 we recall
Yun’s construction of θ-connections ∇X . We compute the residue of ∇X at 0 and the slope
and irregularity at ∞. In §5 we prove the main results of this paper: In Theorem 5.1, assume
the θ-group (G0, g1) is regular, i.e., g1 contains regular semi-simple elements, we compute
the de Rham cohomology of the θ-connections with values in the adjoint representation. In
Theorem 5.2, assume the θ-group is stable and with normalized Kac coordinates s0 = 1,
we establish the cohomological rigidity of ∇X . Finally, in §7 we give several examples of
θ-connections.

Acknowledgement. The author is grateful to Z. Yun for allowing him to use his unpub-
lished result and for many helpful discussions. He also thanks X. Zhu and M. Kamgarpour
for inspiring conversations. The main part of this work was accomplished when the author
was visiting the Max Planck Institute for Mathematics in Bonn. He thank the institution
for the wonderful working atmosphere.

2. Gradings on simple Lie algebras

2.1. Notation. Let g be the Lie algebra of a simple complex algebraic group G of adjoint
type. Let ℓ be the rank of g. Let B be a Borel subgroup of G and let T ⊂ B be maximal
torus. We denote by g = LieG, t = LieT and b = LieB. We let Ad : G → Aut(g) (resp.
ad : g → End(g)) denote the adjoint representation of G (resp. g). For any element x ∈ g

we denote by gx the kernel of ad(x).

Let X (resp. X̌) be the weight lattices (resp. coweight lattices) of T , and R (resp. Ř)
be the set of roots (resp. co-roots) of T in G. We fixed a pinning (X, R, X̌, Ř, {Ei}), where
Ei ∈ g is a root vector for the simple roots αi ∈ ∆.

Let Aut(R) be the subgroup of Aut(X) preserving R and let Aut(R,∆) be the subgroup
of Aut(R) preserving ∆. The choice of pinning induced an isomorphism Aut(g) = G ⋊

Aut(R,∆). Let exp : V := X̌⊗R → T be the exponential map given by α(exp(x)) = e2πiα(x),
for all α ∈ X.

For any m ∈ Z
×, we let ξm = e

2πi

m . For any C-vector space V , we denote by V ∗ =
Hom(V,C) the dual of V .

2.2. Affine simple roots. In this subsection we collect some basic definitions and prop-
erties of twisted affine Kac-Moody algebra and affine simple roots. For details, see [Kac,
§8].

Let σ ∈ Aut(R,∆) and let e be the order of σ. We have e = 1 or e = 2 (type A, D, E6) or
e = 3 (type D4). Consider the affine Kac-Moody algebra ĝ = g̃⊕CK⊕Cd. Here g̃⊕CK is
the universal central extension of the loop algebra g̃ := g[t, t−1] and [d, ti⊗x+K] = iti⊗x.
The automorphism σ extends to an automorphism of ĝ by

σ(ti ⊗ x) = ξ−i
e ti ⊗ σ(x), σ(K) = K, σ(d) = d.
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The fixed point subalgebra
σĝ := σg̃⊕CK ⊕ Cd,

where σg̃ := g[t, t−1]σ , is the twisted affine Kac-Moody algebra associated to (g, σ).

Set σ t̂ := tσ ⊕ CK ⊕ Cd (here tσ is the σ-fixed vectors in t) and define δ ∈ (σ t̂)∗ by
δ|tσ⊕CK = 0, δ(d) = 1. Then there is an affine root spaces decomposition of σĝ with respect
to σ t̂

(1) σĝ = σ t̂⊕
⊕

α∈Φaff

σĝα

here Φσ
aff ⊂ (tσ)∗ ⊕ Cδ is the set of affine roots. We identify affine roots Φσ

aff with affine
functions on tσ by sending δ to the constant function 1.

We now recall the construction of affine simple roots ∆σ
aff ⊂ Φσ

aff . Let R/σ (resp. ∆/σ)
be the set of orbits in R (resp, ∆) under σ. For any orbit a ∈ R/σ, let βa denote the
restriction to tσ of any α ∈ a. Then the collection Rσ := {βa|a ∈ R/σ} is a root system
(possibly non-reduced) with basis ∆σ = {βa|a ∈ ∆/σ}. Let us choose a numbering

∆σ = {β1, ..., βℓσ},

where ℓσ is the number of σ-orbits on the set of simple roots ∆. We define a certain positive
root η as follows. If σ = id, then η is the highest root. If σ 6= id, unless (R,σ) is of type
2A2n, η is the highest short root of Rσ; when (R,σ) is of type 2A2n, η is twice the highest
short root of Rσ. There are unique positive integers {b0 = 1, b1, ..., bℓσ} such that

(2) η =

ℓσ∑

i=1

biβi.

The sum hσ := e
∑ℓσ

i=0 bi is the twisted Coxeter number of (R,σ). We define

β0 = 1/e− η.

Then ∆σ
aff := {β0, ..., βℓσ} is the set of affine simple roots associated to (g, σ). The set

Cσ = {x ∈ V σ|βi(x) > 0, i = 0, ..., ℓσ} is called the fundamental alcove. We denote by C̄σ

the closure of Cσ in V σ.

2.3. Normalized Kac coordinates. Let g =
⊕

i∈Z/mZ
gi be a grading of g. The grading

on g corresponds to a torsion automorphism θ = θ′ ⋊ σ ∈ Aut(g) such that θ(v) = ξimv for
v ∈ gi. The automorphism θ is G-conjugate to one of the form t ⋊ σ with t ∈ T σ. Thus
without loss of generality, we can assume θ = t⋊ σ, t ∈ T σ.

According to [Kac, Proposition 8.1] (see also [OV, §3]), there exists x ∈ C̄σ such that
θ = exp(x)⋊ σ. Since θ has order m, we have

(3) βi(x) =
si
m
.

The integers (si)i=0,...,ℓσ are the normalized Kac coordinates of θ (see [RLYG, §2.2]). These
coordinates satisfy

(4) e

ℓσ∑

i=0

bisi = m,

here e is the order of σ and the bi are integers mentioned earlier in §2.2.
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Let λ̌ = mx ∈ X̌
σ. The action of Gm on g via λ̌ give a grading g =

⊕
k∈Z g(k) and each

gi decomposes as

(5) gi =
⊕

k∈Z

gi(k).

Lemma 2.1. In above decomposition, we have 1) gi(k) = 0 unless k ≡ i mod m
e and 2)

−m+ es0 ≤ k ≤ m− es0.

Proof. Let 0 6= v ∈ gi(k). Then we have θ(v) = ξimv. On the other hand, since θ = λ̌(ξm)⋊σ,

we have θ(v) = σ(ξkmv) = ξleξ
k
mv = (ξm)

ml

e
+kv for some l ∈ Z. This implies k ≡ i mod m

e .

For part 2), it is enough to show that β(λ̌) ≤ m−es0, where β is the highest root of g (here

we regard β as an element in (tσ)∗). For this, observe that we have eη − β ∈
∑ℓσ

i=1 Z≥0βi
1,

here η is the root introduced in (2). Hence

β(λ̌) ≤ eη(λ̌) = e

ℓσ∑

i=1

biβi(λ̌)
(3)
= e

ℓσ∑

i=1

bisi
(4)
= m− es0.

We are done.

�

2.4. The θ-group. Let G0 be the reductive subgroup of G with Lie algebra g0. There are
natural actions of G0 ⋊ σ on gi. The pair (G0, g1) is called θ-group in the terminology of
the Vinberg school.

A grading g =
⊕

i∈Z/mZ
gi (resp. a torsion automorphism θ ∈ Aut(g), resp. a θ-group

(G0, g1)) is called regular, if g1 contains a regular semi-simple element; stable if g1 contains
a stable element (recall that an element v is called stable if G0-orbit of v is closed and the
stabilizer in G0 is finite). According to [RLYG, §5.3], a vector v ∈ g1 is stable if only if v is a
regular semi-simple elements of g and the action of θ on the Cartan sub-algebra centralizing
v is elliptic, i.e. Zg0(v) = 0. We denote by gr1 (resp. gs1) the open set of regular semi-simple
(resp. stable) elements.

For future reference, we include a lemma about structure of g0:

Lemma 2.2.

(1) g0 is the reductive subalgebra with Cartan subalgebra tσ and the system of simple
roots ∆σ

0 = {β̄i|βi ∈ ∆σ
aff , si = 0}. Here β̄i denotes the linear part of βi.

(2) If s0 6= 0, we have g0 = g0 ∩ g(0) = g(0)σ.

Proof. Part (1) is proved in [Kac, Proposition 8.6] (see also [OV, §3.11]). For part (2) we
first note that g0 ⊃ g0 ∩ g(0) = g(0)σ . Since g(0)σ is the Levi subalgebra of gσ with system
of simple roots {β̄i|βi ∈ ∆σ

aff , i 6= 0, si = 0}, part (1) implies dim g0 = dim g(0)σ . The claim
follows.

�

1This is obvious when σ = id, for σ 6= id one can use the table 1 in [RLYG] to check it.
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3. Kac gradings on loop algebras

3.1. Let σg̃ = g[t, t−1]σ be the twisted loop algebra. The decomposition in (1) induces a
roots space decomposition of the twisted loop algebra σg̃ =

⊕
α∈Φσ

aff∪{0}
σg̃α (here we set

σg̃0 = tσ). For any x ∈ V σ, Kac has introduced a Z-grading

(6) σg̃ =
⊕

i∈Z

σg̃x,i.

Explicitly, we have
σg̃x,i =

⊕

α∈Φσ

aff∪{0}, α(x)= i

m

σg̃α.

We called the Z-grading in (6) the Kac grading associated to x.

Example 3.1 (Principal grading). Consider the case θ = exp(x) where x = ρ̌
h , ρ̌(αi) = 1

for i = 1, ..., ℓ. In this case the corresponding Kac grading can be described as follows. Let
Ei, Hi, Fi, i = 1, ..., ℓ be a Chevalley basis of g such that Ei ∈ n, Hi ∈ t, Fi ∈ n̄. Then
g̃ = g[t, t−1] has Kac-Moody generators ei = Ei ⊗ 1, hi = Hi ⊗ 1, fi = Fi ⊗ 1, i = 1, ..., ℓ;
e0 = F−β ⊗ t, f0 = Eβ ⊗ t−1, here β is the highest root and Eβ (resp. F−β) is a generator
of the root space gβ (resp. g−β). Now the grading on g̃ is given by deg(ei) = − deg(fi) = 1,
deg(hi) = 0. We call this grading the principal grading (see [Kac, §14]).

Remark 3.2. In [Kac, §1.3], Kac called the Z-grading in (6) the gradation of type (s0, ..., sℓσ ).

3.2. We preserve the setup in §2.3. Let θ = exp(x) ⋊ σ ∈ Aut(g), x ∈ C̄σ and let

g =
⊕

i∈Z/mZ
gi be the grading on g defined by the automorphism θ. Let u = t

e

m , and

consider the following Z-graded Lie algebra

g(θ,m) :=
⊕

i∈Z

uigi ⊂ g[u, u−1],

with g(θ,m)i := uigi. In his book, Kac proved the following.

Theorem 3.3 (See [Kac], Theorem 8.5).

(1) Let λ̌ = mx ∈ X̌
σ. The automorphism Ad(λ(u−1)) : g[u, u−1] ≃ g[u, u−1] induces

an isomorphism

Φ : g(θ,m) ≃ σg̃.

(2) Under the isomorphism Φ, the Z-grading of g(θ,m) becomes to the Kac-Moy-Prasad
grading of σg̃ associated to x.

(3) Under the isomorphism Φ, the derivation u∂u on g(θ,m) becomes the derivation
D = m

e t∂t + adλ̌ on σg̃.

(4) The invariant form 〈uix, ujy〉 = δi,−j(x, y)Kill on g[u, u−1] induced an invariant
from 〈, 〉θ (resp. 〈, 〉σ) on g(θ,m) (resp. σg̃) which is compatible with the grading,
i.e., we have 〈v,w〉θ = 0 (resp. 〈v,w〉σ=0) for v ∈ g(θ,m)i, w ∈ g(θ,m)j , i+ j 6= 0
(resp v ∈ σg̃x,i, w ∈ σg̃x,j, i+ j 6= 0).

We have the following corollary:

Corollary 3.4 ([Kac], [RY]).



VINBERG’S θ-GROUPS AND RIGID CONNECTIONS 7

(1) For each i = 0, 1, ..,m − 1, there is a canonical isomorphism

σg̃x,i =
⊕

k

t
e(i−k)

m gi(k) ≃ gi.

where the sum is over −m+ es0 ≤ k ≤ m− es0, k ≡ imod m
e .

(2) If i > 0, all powers t
e(i−k)

m appearing in the above sum are positive, i.e., for 0 < i <
m, gi(k) = 0 unless −m+ es0 ≤ k ≤ i, k ≡ imod m

e .

Proof. Since g(θ,m)i = uigi for i = 0, 1, ..,m − 1, result in §2.2 and above Theorem implies

σg̃x,i = Φ(uigi) = Ad(λ(u−1))(uigi) =
⊕

k

t
e(i−k)

m gi(k),

here the sum is over −m + es0 ≤ k ≤ m− es0, k ≡ imod m
e . Part (1) follows. Since x is

in the fundamental alcove C̄σ, direct calculation shows that, for i > 0, σg̃x,i is contained in
σg̃ ∩ g[t]. Part (2) follows.

�

Let us assume θ is regular and let X ∈ gr1 be a regular semi-simple element. Consider

p1 = Φ(uX) ∈ σg̃x,1.

We have the following generalization of [Kac1, Proposition 3.8]

Proposition 3.5. Let a = Ker(adp1) and c = Im(adp1). We have

(1) The twisted loop algebra σg̃ has an orthogonal decomposition σg̃ = a⊕ c with respect
to the invariant form 〈, 〉σ in Theorem 3.3.

(2) The Lie subalgebra a is commutative. With respect to the Kac grading, a =
⊕

ai,
the subspaces ai and aj are orthogonal ( resp. non degenerately paired) with respect
to the invariant form 〈, 〉σ on σg̃ if i+ j 6= 0 ( resp. i+ j = 0).

(3) Consider the Kac-Moody central extension σg̃⊕CK of σg̃ (cf. §2.2). The pre-image
â = a⊕ CK of a in σg̃⊕ CK is a non-split central extension of a.

Proof. We first prove part (1) and (2). Since the isomorphism Φ : g(θ,m) ≃ σg̃ is compatible
with the invariant forms on both side, it is enough to prove the corresponding statement for
g(θ,m). Let s =

⊕
i∈Z/m si be the centralizer of X in g and b =

⊕
i∈Z/m bi be its orthogonal

complement with respect to the Killing form (, )Kill. Consider a′ = Ker(ad(uX)) and its
orthogonal complement c′ in g(θ,m) with respect to the invariant form 〈, 〉θ. We have

a′ =
⊕

i∈Z

a′i, c′ =
⊕

i∈Z

c′i,

where a′i = uisi, c
′
i = uibi. Now since the restriction of (, )Kill to any Cartan subalgebra

is non-degenerate and ad(X) in invertible on b, we have i) bi+1 = [X, bi] and ii) si and sj
are orthogonal (resp. non degenerately paired) with respect to (, )Kill if i + j 6= 0 (resp.
i+ j = 0). Part (1) and (2) follow.
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For part (3), we first notice that a cocycle corresponding to the central extension is given
by σg̃× σg̃ → C, (v,w) → 〈t∂t(v), w〉σ . Thus it is enough to show that for any z 6= 0 ∈ an
there exists z′ ∈ a−n such that 〈t∂t(z), z

′〉σ 6= 0. Now observe that

〈t∂t(z), z
′〉σ = 〈

e

m
(D − adλ̌)(z), z′〉σ = 〈

ne

m
z, z′〉σ − 〈

e

m
[λ̌, z], z′〉σ,

here D is the derivation of σg̃ in Theorem 3.3. Since a is commutative by part (2) we have
〈 e
m [λ̌, z], z′〉σ = 〈 e

m λ̌, [z, z′]〉σ = 0, hence 〈t∂t(z), z
′〉σ = 〈nem z, z′〉σ and the desired claim

follows again from part (2). �

4. Yun’s θ-connections

In his unpublished work, Z. Yun associated to each torsion automorphism θ ∈ Aut(g)
and a nonzero vector X ∈ g1, a twisted flat G-connection ∇X on the trivial G-bundle on
Gm = P

1 − {0,∞}, called the θ-connection associated to X. In this section we shall recall
his construction of ∇X and compute its residue at 0 and slope and irregularity at ∞.

4.1. Twisted flat G-connection and cohomological rigidity. In this subsection we
recall the definition of twisted flat G-connection and cohomological rigidity (see [Yun1] in
the setting of ℓ-adic sheaves).

Let C be a smooth curve and let F be a G-bundle on C. Denote by πF : F → C the
natural projection. A G-connection ∇ on F is a G-equivaraint map ∇ : Ω1

F → π∗
FΩ

1
C

such that the composition π∗
FΩ

1
C

dπF→ Ω1
F

∇
→ π∗

FΩ
1
C is equal to the identity map. Now

let C̃ → C be a finite étale Galois cover with Galois group Γ. Let σ : Γ → Aut(G) be a
homomorphism. We define a σ-twisted flat G-connection on C to be a triple (F ,∇, δ) where

F is G-bundle on C̃, ∇ is a flat G-connection on it, and δ is a collection of isomorphisms
δγ : (F ,∇) ≃ γ∗(F ,∇), γ ∈ Γ satisfying the usual cocycle relations with respect to the
multiplication on Γ.

When F is the trivial G-bundle, then a σ-twisted flat connection on it may be described
as an operator

∇ = d+A(t)dt,

where d is the exterior derivative and A(t)dt is a Γ-invariant g-valued one-form on C̃, with

Γ acting by deck transformation and by the map Γ
σ
→ Aut(G) → Aut(g) on g.

Let (F ,∇, δ) be a σ-twisted flat G-connection on a smooth curve C. Then the corre-

sponding flat vector bundle ∇Ad on C̃ associated to the adjoint representation descends to
C by Γ-equivariance. Let ∇̄Ad be the flat vector bundle on C after descent.

Definition 4.1. A σ-twisted flatG-connection (F ,∇, δ) over an open subset C of a complete
smooth curve C̄ is called cohomologically rigid if

H∗(C̄, j!∗∇̄
Ad) = 0,

where j : C →֒ C̄ is the inclusion, and j!∗∇̄
Ad is the non-derived push forward of the

D-module ∇̄Ad along j.2

2 We use the notation j!∗ because in this case j!∗∇̄
Ad is also the intermediate extension of the D-module

∇̄Ad to C̄ (see [BBD, §5.2.2]).
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Remark 4.2. Our definition of cohomological rigidity here is stronger than the usual defi-
nition. Usually one only requires H1(C̄, j!∗∇̄

Ad) = 0.

Remark 4.3. For a general connected reductive group G, one should modify the definition
above by replacing ∇̄Ad by ∇̄Ad,der where ∇̄Ad,der is the flat vector bundle associated to the
representation gder = Lie Gder. For example, consider the case σ is trivial, G = GLn and
C ⊂ C̄ = P

1. Then for an irreducible GLn-connection (F ,∇) we have ∇Ad,der = End0(E),
the flat vector bundle of traceless endomorphisms of E := F ×GLn C

n. The connection ∇ is
cohomologically rigid if and only if H1(P1, j!∗∇

Ad) = 0, H0(P1, j!∗∇
Ad) = H2(P1, j!∗∇

Ad) =
C, which is equivalent to the condition that the Euler characteristic χ(P1, j!∗∇

Ad) = 2. In
particular, we see that our definition is compatible with the one in [Katz1, §5].

4.2. Construction of ∇X . We preserve the setup in §2.2. Let θ = exp(x)⋊σ ∈ Aut(g) =
G ⋊ Aut(R,∆) be a torsion automorphism of g. Let g =

⊕
i∈Z/m gi be the corresponding

grading. Let X ∈ g1 and let us write X =
∑

Xk, Xk ∈ g1(k) according to (5). By Corollary
3.4, we have Xk = 0 unless −m+ es0 ≤ k ≤ 1 and k ≡ 1mod m

e . Define

p1 = Φ(uX) =
∑

Xkt
e(1−k)

m ∈ σg̃,

here Φ is the isomorphism in Theorem 3.3. Then the θ-connection associated to X is the
following flat G-connection on the trivial G-bundle on Gm = SpecC[t, t−1]

(7) ∇X = d+ p1
dt

t
= d+

∑

−m+es0≤k≤1, k≡1mod m

e

Xkt
e(1−k)

m

dt

t
.

Note that e(i−k)
m ∈ Z.

The g-valued one form p1
dt
t is σ-invariant, where σ acts on Gm by the formula t → ξ−1

e t
and by the pinned automorphism on g. Therefore, by the discussion in §4.1, we can regard
∇X as a σ-twisted flat G-connection on the trivial G-bundle on Gm, where we regard σ as
a map σ : µe = 〈ξe〉 → Aut(G) sending ξe → σ, and Γ = µe is the Galois group of the finite

étale Galois cover [e] : G̃m = Gm → Gm given by the e-th power map.

4.3. Residue at 0. Notice that e(1−k)
m > 0 for k < 1, thus the connection ∇X has regular

singularity at 0 with residue Res(∇X) = X1 ∈ g1(1)
σ . Since g(1)σ consists of nilpotent

elements of gσ, the residue is nilpotent.

Moreover, since there are only finitely many Gσ orbits on g(1)σ (see [V]), there is a dense
open subset of g(1)σ which lies in a single nilpotent Gσ-orbit of gσ. We denote this orbit
by Oθ. Thus, for generic X ∈ g1 the residue Res(∇X) lies in Oθ.

The assignment θ → Oθ gives a well defined map 3

{torsion automorphism of g whose image in Aut(R,∆) is σ} → {nilpotent orbits in gσ}.

We now assume θ is stable. Consider the normalized Kac coordinates {s0, s1, ..., sℓσ} of
θ. If we omit s0 and double the remaining Kac coordinates we obtain the weighted Dynkin

3This map and the map in (8) are due to Z. Yun.
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diagram for the nilpotent orbit Oθ. Thus for Y in Oθ, we have dim gσ,Y = dim g(0)σ . The
nilpotent class Oθ is distinguished if and only if dim g(0)σ = dim g(1)σ .

Recall that stable torsion automorphisms θ are classified by regular elliptic W -conjugacy
classes in the coset Wσ (see [RLYG, Corollary 15]). We therefore get a map

(8) {regular elliptic classes in Wσ} → {nilpotent orbits in gσ}.

In the case σ = id and the normalized Kac coordinates satisfies s0 = 1, this map is studied
in [S] and [RLYG, §7.3] (see §7.1 for more details). The relation between this map and
Kazhdan-Luszitg map [KL] is discussed in [RLYG, §8.3, Remark 2].

We expect that for any stable vector X ∈ gs1 we have X1 ∈ Oθ. In other worlds, we
expect the conjugacy classes of the residue Res(∇X), X ∈ gs1 depends only on θ and is
given by the map (8). We will verify this expectation in some examples in §7.

4.3.1. An example. We preserve the setup in example 3.1. Consider θ = exp(ρ̌/h), where ρ̌
is the half-sum of positive co-roots and h is the Coxeter number. We have g0 = t and g1 =

g(1)
⊕

g(−h+1), g(1) =
⊕ℓ

i=1 gαi
, g(−h+1) = g−β. Here β is the highest root. Choosing

a generator Ei for each gαi
, a generator E0 for g−β, and identifying g1 with

⊕ℓ
i=0CEi, the

open subset gs1 of stable vectors can be identified with gs1 = {
∑

ciEi|ci 6= 0 for i = 0, ..., ℓ}.

For any X =
∑ℓ

i=0 ciEi ∈ gs1, the corresponding θ-connection takes the form

∇X = d+

∑ℓ
i=1 ciEi

t
dt+ c0E0dt.

This is the rigid connections constructed in [FG]. The residue of ∇X at 0 is N ′ =
∑ℓ

i=1 ciXi,
which is regular nilpotent.

Remark 4.4. Recall that Heisenberg algebras of the Kac-Moody central extension σg̃⊕CK
are parametrized, up to conjugacy, by W-conjugacy classes of the coset Wσ (see, e.g.,[KP]
for the case σ = id). Given w ∈ Wσ, let âw denote the associated Heisenberg subalgebra.
One can show that, when θ is stable torsion automorphism, the algebra â in Proposition 3.5
is conjugate to the Heisenberg sub-algebra âw where w is an element in the regular elliptic
conjugacy class of Wσ corresponding to θ.

4.4. Slope and Irregularity at ∞. In this section we compute the slope and irregularity
of ∇X at ∞. We adapt the definition of the slope of a connection on a principal G-bundle
from [D, FG] (see [BS, CK] for other equivalent definitions): a connection on a principal G-
bundle with irregular singularity at a point x on a curve X has slope a/b > 0 at this point if
the following holds. Let s be a uniformizing parameter at x, and pass to the extension given
by adjoining the b-th root of s: ub = s. Then the connection, written using the parameter
u in the extension and a particular trivialization of the bundle on the punctured disc at x
should have a pole of order a+ 1 at x, and its polar part at x should not be nilpotent.

Let us compute the slopes of ∇X at ∞ using the definition above. Consider the covering
given by t = a−

m

e . Then the connection ∇X becomes

d−
m

e

∑

k

Xka
k−1da

a
.
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Taking the gauge transform with λ̌−1(a), then Ad(λ̌−1(a))Xi = a−kXk, hence the connec-
tion becomes

(9) d−
m

e
X

da

a2
+ λ̌

da

a
.

Assume X is semi-simple, then according to the above definition of slopes, we see that the
slope of ∇X at ∞ are either 0 or e/m.

Recall that any representation V of G gives rise to a flat vector bundle ∇X,V on Gm. We
compute the irregularity of the connection Irr∞(∇X,V ) at infinity when X is semi-simple
following [FG, §13]. Since X is semi-simple the leading term of the connection in (9) is
diagonalizable in any representation V of G. It implies the slopes of the connection ∇X,V

is either 0 or e/m, the former occurring at the zero eigenspaces of X on V and the later
occurring at the non-zero eigenspaces. According to [Katz, §1 and §2.3], the irregularity
Irr∞(∇X,V ) is equal to the sum of the slopes of the connection at ∞. This implies

Irr∞(∇X,V ) =
e

m
(dimV − dimV X).

Assume∇X,V descends to a flat vector bundle ∇̄X,V via the e-th power map [e] : G̃m → Gm.
Then again by [Katz, §2.3], we have

(10) Irr∞(∇̄X,V ) = Irr∞(∇X,V )/e =
1

m
(dim V − dimV X).

Remark 4.5. Let me mention that the θ-connections constructed by Z. Yun (in the un-
twisted case) and their slopes can be also constructed and computed using the theory of
regular strata developed by C. Bremer and D. Sage [BS].

5. Main results

We preserve the setup of §4.1. Let g =
⊕

i∈Z/mZ
gi be a grading of g and let θ = θ′⋊σ ∈

Aut(g) be the corresponding automorphism. Let X ∈ g1 be a nonzero vector and ∇X be
the corresponding θ-connection, which is a σ-twisted flat G-connection on Gm.

Consider the adjoint representation Ad of G on its Lie algebra g. The corresponding flat

vector bundle ∇X,Ad descends via the e-th power map [e] : G̃m → Gm by σ-equivariance.
Let ∇̄X,Ad be the connection after descent.

Here are the main results of this note, generalizing [FG, Theorem 1 and Proposition 11]
to general θ-groups:

Theorem 5.1. Assume θ is regular. Then for any regular semi-simple vector X ∈ gr1, we
have

H0(P1, j!∗∇̄
X,Ad) = H2(P1, j!∗∇̄

X,Ad) = 0

and

(11) dimH1(P1, j!∗∇̄
X,Ad) =

#R

m
− dim gσ,X1 .

Here j : Gm →֒ P
1 is the canonical embedding and X1 ∈ g1(1)

σ is the residue of the
connection ∇X at 0 (see §4.3).
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Theorem 5.2. Assume θ is stable and its normalized Kac coordinates satisfies s0 = 1.
Then for any stable vector X ∈ gs1, we have

H i(P1, j!∗∇̄
X,Ad) = 0

for all i, that is, ∇X is cohomologically rigid (see Definition 4.1).

6. Proofs

6.1. The key step leading the proofs of Theorem 5.1 and Theorem 5.2 is the computation
of the cohomology groups H0(D×

0 , ∇̄
X,Ad) and H0(D×

∞, ∇̄X,Ad). Here D×
0 = SpecC((t))

(resp. D×
∞ = SpecC((t−1))) is the formal punctured disc around 0 (resp. ∞).

We first introduce some auxiliary notations that will be used in the rest of the section.
Let ∇X = d + p1

dt
t be the θ-connection associated to X ∈ gs1 (see §4.2). Recall p1 =

∑
Xkt

e(1−k)
m ∈ σg̃. The connection ∇X gives a C-linear map

∇X,Ad : g[[t, t−1]] → g[[t, t−1]]
dt

t
.

Let f =
∑

vnt
n ∈ g[[t, t−1]] be a solution to ∇X,Ad(f) = 0. The components vn satisfy

(12) nvn + [X1, vn] +
∑

−m+es0≤i≤0, i≡1mod m

e

[Xi, vai ] = 0,

where ai = n− e(1−i)
m ∈ Z. Notice that ai < n for all i.

6.1.1. We compute H0(D×
0 , ∇̄

X,Ad). Recall ∇̄X,Ad is the descent of ∇X,Ad along the e-th

power map [e] : Gm → Gm. ThusH0(D×
0 , ∇̄

X,Ad) = H0(D×
0 , [e]

∗∇̄X,Ad)σ = H0(D×
0 ,∇

X,Ad)σ =

Ker(∇X,Ad : g((t))σ → g((t))σ dt
t ). Let f =

∑
vnt

n ∈ g((t))σ be a solution to ∇X,Ad(f) = 0.
If f 6= 0, then there exists b ∈ Z such that vb 6= 0 and vs = 0 for s < b. We claim that
b ≥ 0. Indeed, if b < 0, then equation (12) implies

bvb + [X1, vb] = 0,

which is impossible since the operator b·Id+X1 is invertible (recall X1 ∈ g(1)σ is nilpotent).
Thus f =

∑
vnt

n ∈ g[[t]]σ and v0 ∈ gσ lies in the kernel of ad(X1). The equation (12) also
implies there is a unique solution f =

∑
vnt

n in g[[t]]σ for each v0 ∈ gσ,X1 . Above discussion
shows that

H0(D×
0 , ∇̄

X,Ad) = Ker(∇X,Ad : g((t))σ → g((t))σ
dt

t
) = gσ,X1 .

6.1.2. We show that H0(D×
∞, ∇̄X,Ad) is zero. For this, we need some preliminary results

about solutions f ∈ g[[t, t]]σ to ∇X,Ad(f) = 0. Let f be such a solution. If we write f in its
components for the Kac grading : f =

∑
yn where yn ∈ σg̃x,n, then we have

(
m

e
t∇X,Ad)(f) =

∑

n

((
m

e
t∂t + adλ̌)yn +

m

e
[p1, yn]− [λ̌, yn])dt = 0.

Recall p1 =
∑

Xkt
e(1−k)

m ∈ σg̃.
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Notice that the operator m
e t∂t + adλ̌ is exactly the derivation D of σg̃ in Theorem 3.3

which defines the Kac grading. Thus we have (me t∂t + adλ̌)yn = nyn and above equation
gives rise to the identity

(13) nyn − [λ̌, yn] +
m

e
[p1, yn−1] = 0

for all n ∈ Z.

We have the following lemma

Lemma 6.1 ([FG], Lemma 6). Suppose that yn satisfying (13) and yn ∈ an for some n.
Then ym = 0 for all m ≤ n.

Proof. Assume that yn 6= 0. In the course of the proof of Corollary 3.5 (part (3)), we have
shown that there exists z ∈ a−n such that 〈t∂t(yn), z〉σ 6= 0. On the other hand, since yn
satisfies (13), we have

t∂t(yn) =
e

m
(D − adλ̌)(yn) =

e

m
(nyn − [λ̌, yn]) = −[p1, yn−1] ∈ c

and it implies 〈t∂t(yn), z〉σ = 0. We get a contradiction. Hence yn must be zero.

Now, the equation (13) shows that if yn = 0 then yn−1 ∈ an−1, hence, by induction that
ym = 0 for all m ≤ n. �

Above lemma implies H0(D×
∞, ∇̄X,Ad) = 0. To see this, observe that

H0(D×
∞, ∇̄X,Ad) = Ker(∇X,Ad : g((t−1))σ → g((t−1))σ

dt

t
).

Let f ∈ Ker(∇X,Ad : g((t−1))σ → g((t−1))σ dt
t ). Then we have vn = 0 for n ≫ 0. This

implies yn = 0 for n ≫ 0 (recall that yn are the components of f for the Kac grading),
hence by above lemma yn = 0 for all n. So we must have f = 0.

6.2. Proof of Theorem 5.1. According to [FG, §8], we have

H0(P1, j!∗∇̄
X,Ad) = H0(Gm, ∇̄X,Ad),

H2(P1, j!∗∇̄
X,Ad) = H2

c (Gm, ∇̄X,Ad),

and there is an exact sequence

0 → H0(Gm, ∇̄X,Ad) → H0(D×
0 , ∇̄

X,Ad)⊕H0(D×
∞, ∇̄X,Ad) →

H1
c (Gm, ∇̄X,Ad) → H1(P1, j!∗∇̄

X,Ad) → 0.

We first prove H0(P1, j!∗∇̄
X,Ad) = H2(P1, j!∗∇̄

X,Ad) = 0. Since H0(D×
∞, ∇̄X,Ad) = 0 by the

result in §6.1.2, ∇̄X,Ad admits no global sections, i.e., H0(P1, j!∗∇̄
X,Ad) = H0(Gm, ∇̄X,Ad) =

0. Dually, H2(P1, j!∗∇̄
X,Ad) = H2

c (Gm, ∇̄X,Ad) = H0(Gm, ∇̄X,Ad)∗ = 0. Here we used the
fact adjoint representation Ad is self-dual, hence (∇̄X,Ad)∗ ≃ ∇̄X,Ad.

Now we prove dimH1(P1, j!∗∇̄
X,Ad) = #R/m − dim gσ,X1 . Results from §6.1.1, §6.1.2

and above exact sequence imply

(14) 0 → gσ,X1 → H1
c (Gm, ∇̄X,Ad) → H1(P1, j!∗∇̄

X,Ad) → 0.

Thus it suffices to prove that dimH1
c (Gm, ∇̄X,Ad) = #R/m.
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Recall the Deligne’s formula in [D, §6.21.1] for the Euler characteristic

χc(Gm, ∇̄X,Ad) :=
∑

i

(−1)i dimH i
c(Gm, ∇̄X,Ad) = χc(Gm) rank(∇̄X,Ad)−

∑

α=0,∞

Irrα(∇̄
X,Ad).

Since χc(Gm) = 0 and ∇̄X,Ad is regular at 0, it implies

χc(Gm, ∇̄X,Ad) = − Irr∞(∇̄X,Ad).

Using the vanishing of H0
c , H

2
c and the formula in line (10), we get

dimH1
c (Gm, ∇̄X,Ad) = Irr∞(∇̄X,Ad) =

1

m
(dim g− dim gX).

Since X is regular semi-simple, we have 1
m(dim g− dim gX) = #R/m, hence

dimH1
c (Gm, ∇̄X,Ad) = #R/m.

This finished the proof of Theorem 5.1.

6.3. Proof of Theorem 5.2. It is enough to show that H1(P1, j!∗∇̄
X,Ad) = 0. We begin

with the following lemma:

Lemma 6.2. For any solution f =
∑

vnt
n of ∇X,Ad(f) = 0 in g[[t, t−1]]σ we have vn = 0

for all n < 0.

Proof. Write f =
∑

yn in the components for the Kac grading. When n = 0, the equation
(13) becomes

−[λ̌, y0] +m[p1, y−1] = 0.

Since s0 = 1 by assumption, Lemma 2.2 implies y0 ∈ g0 = g0 ∩ g(0) ⊂ ker(adλ̌). Therefore
above equation implies y−1 ∈ a−1, thus by Lemma 6.1, we have yn = 0 for n < 0, or
equivalently f =

∑
n≥0 yn. On the other hand, Corollary 3.4 and the fact g0 = g0 ∩ g(0)

imply yn ∈ g[t] for n ≥ 0. The Lemma follows. �

By [FG, §9], we have H1
c (Gm, ∇̄X,Ad) ≃ Ker(∇X,Ad : g[[t, t−1]]σ → g[[t, t−1]]σ dt

t ), which

is equal to Ker(∇X,Ad : g[[t]]σ → g[[t]]σ dt
t ) by above Lemma. The same argument as in

§6.1.1 shows that Ker(∇X,Ad : g[[t]]σ → g[[t]]σ dt
t ) = gσ,X1 . Therefore the first two terms in

the short exact sequence (14) both have dimension dim gσ,X1 . This proves the vanishing of
H1(P1, j!∗∇̄

X,Ad), hence finished the proof of Theorem 5.2

7. Examples

In this section we give several examples of θ-connections ∇X . In each example we write
down the connection explicitly and check its cohomological rigidity using the formula in
(11). We also check that, in each case, the residue of the θ-connection at 0 ∈ P

1 (or rather
its conjugacy classes) depends only on θ, hence verify our expectation in §4.3. References
for this section are [FG, RLYG, RY].
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7.1. S-distinguished nilpotent case. Recall that a nilpotent element N in g is called
distinguished if gN consists of nilpotent elements. Let N ∈ g be a distinguished nilpotent
element. There is a co-character λ̌ such that Adλ̌(t)N = tN for all t ∈ C

×. This gives a
grading g =

⊕a
k=−a g(k) where g(k) = {x ∈ g|Adλ̌(t)x = tkx}. Set m = a+ 1 and consider

the inner automorphism θN := λ̌(ξm) ∈ Aut(g). We have g0 = g(0) and g1 = g(1) ⊕
g(−a). Following [RLYG, §7.3], we say that a distinguished nilpotent element N ∈ g is S-
distinghuished if the automorphism θN is stable. According to loc. cit., a nilpotent element
N is S-distinguished if and only if there exits E ∈ g(−a) such that N + E ∈ g1 is stable.
Moreover, assume g is of exceptional type, the map N → θN defines a bijection between
the set of S-distinguished nilpotent orbits in g to the set of stable inner automorphism on
g with s0 = 1.

Let θN be the stable automorphism of g corresponding to a S-distinguished nilpotent
element N ∈ g. Let X = N + E ∈ g1 = g(1) ⊕ g(−a) be a stable vector. Then by the
formula in (7), the corresponding θ-connection ∇X takes the form

∇X = d+
N

t
dt+ Edt.

Note that N is the residue of ∇X at zero.

Let us verify that ∇X is cohomologically rigid, i.e., dimH∗(P1, j!∗∇
X,Ad) = 0. By Theo-

rem 5.1, we haveH0 = H2 = 0. Thus it remains to showH1(P1, j!∗∇
X,Ad) = #R

m −dim gN =

0. To see this recall that N is distinguished, thus we have dim gN = dim g(0) = dim g0. On

the other hand, we have dim g0 =
#R
m (see [P, Theorem 4.2]). Result follows.

7.1.1. Type G2. Let g is the simple Lie algebra of type G2. Let α1, α2 be the simple root
of g, where α2 is the short root. Consider the automorphism θ = λ̌(ξ3), where λ̌ = ω̌1 is
the fundamental co-weight dual to α1 and ξ3 is a 3-th primitive root of unity. According to
[RLYG], θ is a stable inner automorphism of order 3 with normalized Kac coordinates

1 1 ⇛ 0.

Observe that if we omit s0 and double remaining the Kac coordinates we obtain

2 ⇛ 0,

which is the weighted Dynkin diagram for the nilpotent orbit G2(2). This implies θ is equal
to θN in §7.1 for some N ∈ G2(2).

We have G0 = GL2(C) and g1 = g(1)⊕g(−2) , g(1) =
⊕3

k=0 gα1+kα2 , g(−2) = g−2α1−3α2 .
As a representation of G0 = GL2(C), we have

(15) g(1) ≃ det2 ⊗P3, g(−2) ≃ det−1 ⊗P0,

where Pd is the space of homogeneous polynomials of degree d on C
2, with the natural action

of G0 = GL2(C). Choosing coordinates, we regard a vector X ∈ g1 as a pair (f, z), where
f = f(x, y) is a binary cubic polynomials over C and a ∈ C. According to [RY, §7.5], we
have (f, z) ∈ gs1 if and only if z 6= 0 and f has three distinct roots in the projective line. For
any X ∈ gs1, let us write X = X1 +X−2 according to the decomposition g1 = g(1)⊕ g(−2).
The corresponding θ-connection takes the form

∇X = d+
X1

t
dt+X−2dt.
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We claim that the residue X1 is in the subregular nilpotent orbit G2(2). In particular,
the conjugacy classes of the residue Res(∇X) is independent of the choice X ∈ gs1. To
prove the claim, observe that the intersection of G2(2) with g(1) is open dense. Thus to
show that X1 is in G2(2) it is enough to show that dimAdG0(X1) = dim g(1) = 4. But
it follows from the fact that the centralizer ZG0(X1) of X1 in G0 is the symmetric group
S3 (permuting the roots of f , where f is the binary cubic polynomial corresponding to X1

under the isomorphism (15)), hence dimAdG0(X1) = dimG0 = 4.

7.2. Type 2A2n. Let g = sl2n+1(C) (n ≥ 1). Let σ be a pinned automorphism of g. We
define θ = ρ̌(−1) ⋊ σ ∈ Aut(g). According to [RLYG], it is a stable involution with Kac
coordinates

1 ⇒ 0 0 · · · 0 0 ⇒ 0.

Let g = g0 ⊕ g1 be the corresponding grading. We give a description of g0 and g1. Let
V be a vector space over C of dimension 2n + 1 with basis {x−n, ..., x−1, x0, x1, ..., xn}.
We define an inner product 〈, 〉 on V by the formula 〈

∑
aixi,

∑
bixi〉 =

∑n
i=−n aib−i. For

any X ∈ gl(V ), let X∗ be the adjoint of X with respect to this inner product. Then
under the canonical isomorphism sl(V ) ≃ g, we have θ(X) = −X∗ for any X ∈ g. Thus
g0 ≃ so(V ) = {X ∈ sl(V )|X = −X∗}, g1 = {X ∈ sl(V )|X = X∗}. Moreover, we have
gs1 = g1 ∩ grs, here grs is the open subset of regular semi-simple elements in g.

Since m = e = 2 (recall m and e are the order of θ and σ), Corollary 3.4 implies
g1 = g1(0). Thus for any X ∈ g1, the θ-connection ∇X has the form

∇X = d+Xdt.

In particular, it is unramified at zero.

Finally, since gσ is a simple lie algebra of type Bn we have dim gσ = n(2n+1). Thus for
X ∈ gs1 we have

dimH1(P1, j!∗∇̄
X,Ad) =

#R

2
− dim gσ =

2n(2n + 1)

2
− n(2n+ 1) = 0.
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