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MODULI SPACES OF SHEAVES ON K3 SURFACES

AND SYMPLECTIC STACKS

ZIYU ZHANG

Abstract. We view the moduli space of semistable sheaves on a
K3 surface as a global quotient stack, and compute its cotangent
complex in terms of the universal sheaf on the Quot scheme. Rele-
vant facts on the classical and reduced Atiyah classes are reviewed.
We also define the notion of a symplectic stack, and show that it
includes all moduli stacks of semistable sheaves on K3 surfaces.
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1. Introduction

This paper grows out of the attempt of studying moduli spaces of
semistable sheaves on K3 surfaces and holomorphic symplectic mani-
folds from a new point of view.

Holomorphic symplectic manifolds are complex manifolds with nowhere
degenerate holomorphic 2-forms. They have very rich geometry and
beautiful properties, mainly due to the interaction of two structures on
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2 ZIYU ZHANG

the second cohomology group, namely, the weight 2 Hodge decompo-
sition and the Beauville-Bogomolov pairing. For example, they have
unobstructed deformations [Bog78, Tia87, Tod89, Ran92, Kaw92], lo-
cal and global Torelli theorems [Bea83, Ver09, Huy11]. Furthermore,
birational irreducible holomorphic symplectic manifolds are always de-
formation equivalent [Huy03]. Looking for examples of holomorphic
symplectic manifolds is always a central problem in this area.

On the other hand, moduli spaces of semistable sheaves on a projective
variety [Gie77, Mar77, Mar78] has been a very popular research area in
differential geometry, algebraic geometry, gauge theory and theoretical
physics since a long time ago. When the underlying variety is a K3 sur-
face, Mukai [Muk84] constructed a non-degenerate holomorphic 2-form
on the smooth locus of the moduli space. Therefore, the smooth mod-
uli spaces of sheaves on K3 surfaces provide a whole series of examples
of irreducible holomorphic symplectic manifolds. A similar results on
abelian surfaces [Bea83] yields another series of examples, which are
are the so called generalized Kummer varieties. For quite a long time
these are the only known examples of irreducible symplectic varieties.
A natural question to ask at this stage is: since Mukai has showed the
existence of a holomorphic 2-form on the smooth locus of any singular
moduli space of semistable sheaves on K3 surfaces, is there any way to
turn these singular spaces into holomorphic symplectic manifolds?

O’Grady’s work [O’G99, O’G03] partly answered this question. He
studied such a 10-dimensional singular moduli space, as well as a 6-
dimensional moduli space of sheaves over an abelian surface, and con-
structed their symplectic resolutions. A comparison of topological in-
variants shows that they are two new examples of irreducible symplec-
tic manifolds. Some work was done along this route, and eventually,
Kaledin, Lehn and Sorger showed that, O’Grady’s example was the
only one which could arise by desingularizing moduli spaces of sheaves
on K3 surfaces [KLS06, Theorem 6.2]. This result is somehow a neg-
ative one which excludes many of the moduli spaces from the game,
although they are very close to be symplectic manifolds.

At the same time, people are trying to generalize the notion of sym-
plectic manifolds to allow singularities. Beauville defined the notion of
symplectic singularities in [Bea00]. After that a lot of work was exten-
sively done by many other people, such as [Kal06, Nam01a, Nam01b].
In particular, in [KLS06, Theorem 6.2], it is proved that all singu-
lar moduli spaces of sheaves on K3 surfaces are (singular) symplectic
varieties in the sense of [Bea00].

Another reason why we should enlarge the notion of holomorphic sym-
plectic manifolds to include all singular moduli spaces of sheaves on
K3 surfaces roots in enumerative geometry and theoretical physics. In
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recent years, the study of Donaldson-Thomas type invariants has grow
into a large area involving many modern techniques in many different
fields in algebraic geometry, such as deformation theory, stacks, derived
categories and motives. Although a lot of work about Donaldson-
Thomas type invariants on Calabi-Yau 3-folds is done, not so much
is known on a K3 surface. On the other hand, Vafa and Witten in
[VW94] predicted from S-duality that the generating function of the
Euler characteristics of instanton moduli spaces on K3 surfaces has a
modularity property. As a consequence, the Euler characteristics of
singular moduli spaces could be all determined by those of the smooth
ones, with possible denominators 2 or 4. Mathematically there’s no
convincing definition of the Euler characteristics (which are presumbly
Donaldson-Thomas type invariants) needed for this conjecture so far,
and the contribution of the singularities of the moduli spaces to the
denominators remains a mystery.

In this paper, we are trying to generalize the notion of holomorphic
symplectic manifolds into the stacky world. So that one has the pos-
sibility of dealing with all moduli spaces of semistable sheaves on K3
surfaces, when considered as Artin stacks, in a uniform way, without
the necessity of distinguishing them by the existence of symplectic res-
olutions. The role of the holomorphic symplectic form in the definition
of the holomorphic symplectic manifolds, is to provide an isomorphism
of the tangent bundle, or rather the cotangent bundle, with its dual,
such that the isomorphism is anti-symmetric. We generalize the cate-
gory of manifolds to stacks, and replace the cotangent bundle by the
cotangent complex. Therefore, motivated by the work on symmetric
obstruction theories in [BF08], in this paper we define the notion of a
symplectic stack as follows:

Definition 1.1. A symplectic stack is an algebraic stack, whose cotan-
gent complex is a symplectic complex, namely, a complex equipped with
a non-degenerate anti-symmetric bilinear pairing.

The precise definitions can be found in Definition 6.1, 6.5 and 6.6.

Besides the trivial examples of symplectic manifolds and quotients of
symplectic manifolds by finite subgroups of symplectomorphisms, the
major part of this paper is devoted to study the question, whether
moduli stacks of semistable sheaves on K3 surfaces, when viewed as a
global quotient stack of the GIT-semistable locus of Quot scheme by
the gauge group, are examples of symplectic stacks. The difficulty lies
in the computation of their cotangent complexes. More precisely, we
will prove the following results (see Theorem 4.5 and 5.10):

Theorem 1.2. The cotangent complexes of the GIT-semistable locus of
the Quot scheme Q and the moduli stack of semistable sheaves M can
be expressed explicitly by the universal quotient sequence on Q. More
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precisely, under the notations given at the end of this section, we have
quasi-isomorphisms

Rπ∗RHom(K,F)∨0
∼=

−→ LQ

Rπ∗RHom(F ,F)∨0 [−1]
∼=

−→ q∗LM.

And by using Serre duality, we finally get a positive conclusion to the
above question, that is (see Theorem 6.9):

Theorem 1.3. The moduli stack M of semistable sheaves on a K3
surfaces is a symplectic stack.

The main techniques in the computation were adopted from the paper
[HT10] of Huybrechts and Thomas on the application of Atiyah class
on deformation theory of complexes, and the paper [Gil11] of Gillam
on the application of reduced Atiyah class on the deformation theory
of quotients. The paper is organized as follows:

In section 2, we first of all briefly recall some properties of cotangent
complexes which will be used later, then we turn to a short summary
of classical Atiyah classes and reduced Atiyah classes, including their
definitions and properties in the deformation-obstruction theory. We
will also show that the reduced Atiyah class is a lift of the classical
Atiyah class.

Section 3 is mainly a technical point. Since we will eventually be inter-
ested in the moduli space of sheaves with fixed determinant, we have to
remove the effect of the trace map. This section uses techniques in de-
rived categories to create “traceless version” of all complexes involved
in the following sections.

Section 4 contains the first half of the central computation, which is on
the cotangent complex of the GIT-semistable locus of the Quot scheme.
Following [HT10, Gil11], we use the reduced Atiyah class to establish a
morphism from a complex constructed only from the universal family
on the Quot scheme, to the cotangent complex of Quot scheme. Then
we show that this morphism induces isomorphisms on all cohomology
groups.

Section 5 provides the other half of the central computation. We use
the transitivity property of the cotangent complex, together with the
cotangent complex of the Quot scheme computed in previous section to
obtain the cotangent complex of the quotient stack. The commutativity
of the diagram 11 is the major obstacle that we have to overcome in
this section.

In section 6, we take the definition of symmetric obstruction theories in
[BF08] as a model, and formally introduce the notion of a symplectic
stack. As an application of the computations in previous sections, we
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show that the moduli stacks we studied in previous sections are indeed
examples of symplectic stacks.

Notations. Throughout this paper, X will always be a projective K3
surface, andH is an ample line bundle onX , which is used to determine
the stability of sheaves in Gieseker’s sense. We always use Q for the
GIT-semistable locus of the Grothendieck’s Quot scheme used in the
GIT construction of the moduli space. For simplicity, sometimes we
will omit the words “GIT-semistable locus”, but we will never take the
unstable locus into consideration. We denote the two projections from
Q×X by

Q×X
π

||xx
xx

xx
xx

x
πX

##GG
GG

GG
GG

G

Q X.

The gauge group PGL(N) in the GIT construction will be denoted by
G, and the global quotient stack [Q/G] will be denoted by M. We use

q : Q −→ M

for the structure morphism from Q to the global quotient stack M. We
always assume that there is at least one stable quotient sheaf. Since the
stability is an open condition, we denote the open dense subscheme of
Q over which the quotient sheaf is stable by Qs, and the corresponding
image of Qs under q by Ms.

We also fix the universal quotient sequence

(1) 0 −→ K −→ E −→ F −→ 0

on the GIT-semistable locus of the Quot scheme, or more precisely, on
Q×X . Here we should note that E is obtained by pulling back a vector
bundle on X via the projection πX , therefore is a trivial family over
Q.
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when most of this paper was written. The author also wants to thank
Professor Dan Edidin, Professor Zhenbo Qin, Professor Ravi Vakil,
Professor Justin Sawon, Professor Sönke Rollenske, Jason Lo and Timo
Schürg for their interests and discussions. The author also wants to
thank Max-Planck-Institute for Mathematics in Bonn for their support
during the final stage of this work.
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2. Cotangent Complexes and Atiyah Classes

2.1. Cotangent Complexes. We first of all recall some properties of
cotangent complexes, which will be important for our later discussions.
The classical reference for cotangent complexes is [Ill71]. For cotangent
complexes of stacks, one can see [LMB00, Chapter 17] and [Ols07].

Lemma 2.1. [Ill71, LMB00] The cotangent complex of X is an object
in the derived category Db(X ), which

(1) is quasi-isomorphic to a single locally free sheaf in degree 0 if
X is a smooth scheme;

(2) has perfect amplitude in [−1, 0] and is quasi-isomorphic to a
single sheaf in degree 0 if X is a scheme of locally complete
intersection;

(3) has perfect amplitude in (−∞, 0] if X is a scheme or a Deligne-
Mumford stack;

(4) has perfect amplitude in (−∞, 1] if X is an Artin stack.

�

The computation of the cotangent complex is in general very difficult,
however the following functorial property turns out to be very helpful
in some cases.

Proposition 2.2. [Ill71, LMB00] Let

X
f

−→ Y
g

−→ Z

be two morphisms of schemes or stacks, then we have the following
exact triangle in Db(X ):

(2) f ∗
LY/Z −→ LX/Z −→ LX/Y .

Furthermore, this exact triangle is functorial. Namely, if we have a
commutative diagram

X
f //

u

��

Y //

��

Z

��

X ′
f ′

// Y ′ // Z ′,

then there are morphisms between two exact triangles (vertical arrows
in the following diagram) which makes the diagram commute

u∗f ′∗
LY ′/Z′

//

��

u∗LX ′/Z′ //

��

u∗LX ′/Y ′

��
f ∗LY/Z

// LX/Z // LX/Y

�
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The other important property which is helpful in understanding the
cotangent complex of a scheme is

Lemma 2.3. [Ill71] Let X be a scheme, then

H0(LX) = ΩX ,

the cotangent sheaf of X. In particular, if X is of local complete inter-
section (or even smooth), we have a quasi-isomorphism

LX

∼=
−→ ΩX .

Proof. See [Ill71, Proposition 1.2.4.2]. �

The reason why cotangent complexes are important is that they play
a central role in deformation theory, which is the whole essence of
[Ill71, Ill72]. For our purpose, we need two properties of cotangent
complexes concerning deformation theory.

Let X be any scheme, and I be any coherent OX-module. We use the
notion

X [I] = SpecX(OX ⊕ I)

for the trivial square zero extension of X by I. In other words, X [I]
can be viewed as a first order deformation of X , and we denote the
corresponding natural inclusion by ιI : X −→ X [I]. A retract of X [I]
is defined to be a morphism r : X [I] −→ X such that the composition
r ◦ ιI = idX .

Proposition 2.4. [Ill71] Under the above notations, all retracts from
X [I] to X are parametrized by Hom(LX , I). Or in other words, the
automorphism group of X [I] is given by Hom(LX , I).

Proof. This is part of [Ill71, Theorem III.2.1.7]. Since X is a scheme,
by the above lemmas, we have

Hom(LX , I) = Hom(ΩX , I) = Der(OX , I).

However every retract r : X [I] −→ X corresponds to a splitting ϕ of
the exact sequence

0 // I // OX ⊕ I // OX
//

ϕ
nn 0,

which is an algebra homomorphism, therefore corresponds to a deriva-
tion into I. �

A priori, X [I] may not be the only first order thickening of X by the
ideal I. The following proposition gives a parameter space for all such
thickenings. It’s an application of the so-called “Fundamental Theorem
of Cotangent Complex” in [Ill71].
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Proposition 2.5. [Ill71] Under the above notations, all isomorphism
classes of first order thickenings of X by the ideal I are parametrized
by Ext1(LX , I).

Proof. See [Ill71, Theorem III.1.2.3, III.1.2.7]. �

The class corresponding the a particular thickening ofX is the so-called
Kodaira-Spencer class. Obviously, the zero element in Ext1(LX , I) rep-
resents the trivial thickening X [I].

So much general theory of cotangent complexes. Now we want to show
that, the GIT-semistable locus of Quot scheme, which is, by abuse
of notation, denoted by Q, although is in general singular due to the
existence of strictly semistable sheaves, in fact has a simple cotangent
complex, namely, quasi-isomorphic to a single sheaf concentrated in
degree 0.

Lemma 2.6. The GIT-semistable locus of the Quot scheme Q in the
GIT construction of the moduli space of semistable sheaves on a K3
surface is a local complete intersection. In particular, the cotangent
complex LQ has perfect amplitude in [−1, 0], and is quasi-isomorphic
to the cotangent sheaf ΩQ.

Proof. By [HT10, Proposition 2.2.8], at every closed point q ∈ Q, which
is by the above notation represented by a quotient

0 −→ K −→ E −→ F −→ 0,

there is an inequality concerning the dimension of Q at the point

dimHom(K,F ) > dimq Q > dimHom(K,F )− dimExt1(K,F )0,

where Ext1(K,F )0 is the kernel of the composition map

Ext1(K,F )
∼=

−→ Ext2(F, F )
tr

−→ H2(OX) = C.

And the Quot scheme Q is a local complete intersection if and only if
the second equality holds at every closed point q ∈ Q.

By [KLS06, Theorem 4.4] (see also [Yos03, Theorem 3.18]), we know
that the GIT-semistable locus of the Quot scheme Q is irreducible.
Therefore, dimq Q is constant on the only connected component of Q.
Furthermore, it’s easy to check that for every i > 2, we have

Exti(K,F ) = 0,

which implies

dimHom(K,F )− dimExt1(K,F )0 = χ(K,F ) + 1

which is a topological number only depending on the Chern classes of
F , hence is also constant. Therefore it suffices to check the equality of
both sides at one closed point of Q.
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However by the assumption, there exists at least one point in the Quot
scheme Q which is represented by a stable quotient sheaf F . At such a
point the obstruction space Ext1(K,F )0 vanishes, therefore both equal-
ities hold at the same time. By the above discussion we conclude that
the Quot scheme Q is a local complete intersection. �

2.2. Classical Atiyah Classes. In [Ill71], the Atiyah class were de-
fined in two different ways. We follow the second approach using the
exact sequence of principal parts, which itself was defined in [Ill71,
III.1.2.6].

Let A −→ B be a ring homomorphism, then we have an exact sequence

0 −→ I −→ B ⊗A B −→ B −→ 0

which splits by either of the ring homomorphisms

j1, j2 : B −→ B ⊗A B

where
j1(x) = x⊗ 1, j2(x) = 1⊗ x.

After dividing by I2 we obtained

0 −→ I/I2 −→ B ⊗A B/I2 −→ B −→ 0

which we denoted by

0 −→ ΩB/A −→ P 1
B/A −→ B −→ 0.

Note that P 1
B/A is a B-B-bimodule. Let M be a B-module, we tensor

the above exact sequence by M from right side and obtain

0 −→ ΩB/A ⊗B M −→ P 1
B/A ⊗B M −→ M −→ 0,

which define a class in Ext1B(M,M ⊗ ΩB/A). This class is called the
Atiyah class of M .

In our settings, we let A be OX and B be OQ×X . For any sheaf F on
Q×X , we obtained the Atiyah class of F , which we denote by At(F).
Note that, a priori, what we defined above is only a truncation of the
full Atiyah class. For the definition of the full Atiyah class, we need to
replace B by a simplicial resolution in the sequence of principal parts.
However, because of Lemma 2.6, there’s no difference in this case. Note
that

ΩQ×X/X = LQ×X/X = π∗
LQ,

so we actually have defined the (full) Atiyah class

At(F) ∈ Ext1Q×X(F ,F ⊗ π∗
LQ).

Now we study the deformation properties of the Atiyah class. We have
already seen from Lemma 2.4 that, for any coherent sheaf I on Q, the
space HomQ(LQ, I) parametrizes all retracts ι : Q[I] −→ Q. On the
other hand, from classical sheaf deformation theory, we also know that
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Ext1Q×X(F ,F ⊗ π∗I) parametrizes all flat deformations of F from Q
to Q[I] (see for example [Tho00, Lemma 3.4]). The Atiyah class gives
gives a nice relation of the two spaces as follows:

Proposition 2.7. Let I be any coherent OQ-module and F be a co-
herent sheaf of OQ×X-module which is flat over Q. Let At(F) be its
Atiyah class defined as above. Then the map

At(F) ∪ (F ⊗−) : HomQ(LQ, I) −→ Ext1Q×X(F ,F ⊗ π∗I)

given by precomposing with the Atiyah class of F can be interpreted as

{retracts of ιI} −→ {flat deformations of the F over Q[I]},

where the arrow is given by pulling back the sheaf F via the chosen
retract.

The proof of the proposition is very straightforward and is just a matter
of unwinding the definitions. However, to the best of my knowledge, it
doesn’t seem to appear anywhere in this form. So we include a proof
here.

Proof. From Lemma 2.4, we actually know that, for any

u ∈ HomQ(LQ, I) = HomQ(ΩQ, I),

the corresponding retract is given by the splitting of the second row in
the following diagram via the arrow (id, u ◦ dQ):

0 // ΩQ
//

u

��

OQ ⊕ ΩQ
//

��

OQ
//

(id,dQ)
pp

0

0 // I // OQ ⊕ I // OQ
//

(id,u◦dQ)
mm 0,

where dQ is the universal derivation defined by

dQ(x) = 1⊗ x− x⊗ 1

for every x ∈ OQ.

Note that OQ ⊕ ΩQ is exactly the principal part P 1
Q together with

the left OQ-module structure, while the splitting (id, dQ) is exactly the
right OQ-module structure. Similarly, OQ ⊕ I can also be identified
with OQ[I] such that the splitting (id, u ◦ dQ) correspond exactly to the
retract.
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We pullback the diagram to Q × X and tensor every term with the
sheaf F , using the splittings of both rows, then we get

0 // π∗ΩQ ⊗ F //

��

P 1
Q×X/X ⊗ F //

��

F // 0

0 // π∗I ⊗ F // π∗Q[I]⊗F // F // 0,

From the above construction we see exactly that the second row is the
class At(F) ∪ (F ⊗ u), which finishes the proof. �

The above proposition concerns the relation of the Atiyah class with de-
formations of F over the trivial first order deformation Q[I] of Q. Next
proposition relates the Atiyah class with obstructions of deforming F
to an arbitrary first order deformation of Q. More precisely, we have
seen from Lemma 2.5 that Ext1(LQ, I) parametrizes all isomorphism
classes of first order thickenings of Q by the ideal sheaf I. And classical
deformation theory tells us that the obstruction of deforming F to any
first order extension of the base lies in the space Ext2(F ,F ⊗π∗I) (see
for example [Tho00, Proposition 3.13]). Via the Atiyah class, we can
make a precise formation of their relation:

Proposition 2.8. [Ill71] Let I be any coherent OQ-module and F be a
coherent sheaf of OQ×X-module which is flat over Q. Let At(F) be its
Atiyah class defined as above. The map

At(F) ∪ (F ⊗−) : Ext1Q(LQ, I) −→ Ext2Q×X(F ,F ⊗ π∗I)

given by precomposing with the Atiyah class can be interpreted as

{thickenings Q′ of Q by ιI} −→ {obstructions to the existence

of flat deformations of F over Q′}.

Proof. This proposition is under the general principle of “the compo-
sition of Atiyah class and Kodaira-Spencer class is the obstruction”.
The proof can be found in [Ill71, Proposition IV.3.1.8]. �

2.3. Reduced Atiyah Classes. Now we turn to the reduced Atiyah
class, which was defined and extensively studied in [Gil11]. Two defini-
tions were given, one using graded cotangent complex, the other using
more classical language. We follow the second approach in [Gil11] and
give a brief definition of the reduced Atiyah class in our context, under
the additional property that Q is a local complete intersection, just to
avoid any simplicial resolution of algebras.

Recall that we have the short exact sequence of sheaves on Q×X given
by 1, where

E = π∗
XE0
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is a trivial family of vector bundles over Q. We have the following
commutative diagram with all rows and columns exact:

0

��

0

��

0

��

0 // K ⊗ π∗ΩQ

��

// E ⊗ π∗ΩQ

��

// E ⊗ π∗ΩQ

��

// 0

0 // P 1(K)

��

// P 1(E)

��

// P 1(F)

��

// 0

0 // K

��

// E

��

//

σ

TT

F

��

// 0

0 0 0.

The exactness of the three columns are trivial, because they are all
exact sequence of principal parts. The exactness of the third row is
part of given data. The exactness of the first row is by the flatness of
F and exactness of the middle row comes from that of the other two
rows.

As observed in [Gil11], the middle column naturally splits, due to the
fact that E is a trivial family over Q. The reversed arrow σ in the
above diagram is chosen as follows: we have

E = OQ ⊗C E0

and

P 1(E) = (OQ×Q/I
2)⊗C E0 = (OQ ⊗C OQ/I

2)⊗C E0,

where I is the ideal sheaf of the diagonal in Q×Q. Then we define

σ : E −→ P 1(E)

a⊗ e 7−→ a⊗ 1⊗ e.

It’s obvious that σ is indeed a splitting.

After all of the preparation, we define the reduced Atiyah class at ∈
Hom(K,F⊗π∗LQ) as the composition of the following arrows from the
above diagram, starting from K:

(3) F ⊗ π∗LQ

��

P 1(E) // P 1(F)

K // E

σ

OO
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where the downward arrow in the right column means that, every-
thing in P 1(F) which comes from K via the composition of the other
three arrows is in the image of this downward arrow, therefore can be
uniquely lifted to F ⊗ π∗LQ. The reason is that if we maps it further
down to F as in the above diagram, we get the zero section. Hence the
composition of the four arrows is well-defined.

The reduced Atiyah class behaves compatibly with the classical Atiyah
class. In fact, it is a lifting of the classical Atiyah class, as we can see
from next property,

Proposition 2.9. Let at ∈ Hom(K,F ⊗ π∗LQ) be the reduced Atiyah
class, and e ∈ Ext1(F ,K) be the extension class represented by the
universal quotient sequence 1 on Q. Then

(1) The composition

(at[1]) ◦ e : F −→ K[1] −→ F ⊗ π∗
LQ[1]

is the classical Atiyah class At(F);
(2) The composition

(e⊗ π∗
LQ) ◦ at : K −→ F ⊗ π∗

LQ −→ K⊗ π∗
LQ[1]

is the classical Atiyah class At(K).

Proof. We will only use the first half of the proposition, so only this
part will be proved in details. However, the proof of the second part
of the proposition is completely parallel to that of the first part.

To prove the first part of the proposition, it suffices to show that

0 // K //

��

E //

��

F // 0

0 // F ⊗ π∗LQ
// P 1(F) // F // 0

is a pushout diagram, where the first row is the universal family 1,
while the second row is the principal part sequence for F . By the
construction of the pushout, in fact we just need to show that

(4) 0 −→ K
ϕ1

−→ E ⊕ (F ⊗ π∗
LQ)

ϕ2

−→ P 1(F) −→ 0

is exact, where the map ϕ1 is the pair of the first arrow in diagram 3
and the negation of the reduced Atiyah class −at, and the map ϕ2 is the
sum of composition of the middle two arrows in 3 and the downward
arrow.

To verify this claim, we observe that

• ϕ1 is injective, which is obvious because the first component is
injective;
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• ϕ2 is surjective. In fact, Im(ϕ2) is a submodule of P 1(F), and
obviously F ⊗ π∗LQ lies in Im(ϕ2). Furthermore, Im(ϕ2)/(F ⊗
π∗LQ) = F because the image of E hits everything in F ;

• Im(ϕ1) ⊂ ker(ϕ2), which is due to the construction of the re-
duced Atiyah class;

• ker(ϕ2) ⊂ Im(ϕ1). In fact, if (e, f ′) ∈ E ⊕ (F ⊗ π∗LQ) satisfies
α2(e, f

′) = 0, then e comes from a certain k ∈ K, because its
image in F is the negation of the image of f ′in F , which is 0.
Then it’s clear that ϕ1(k) = (e, f ′).

The above observations finish the proof of the exact sequence 4. �

Similar to the discussion of the classical Atiyah class, we will also need
to use some deformation interpretations of the reduced Atiyah class.
We know from the deformation theory of quotients (for example, in
Chapter 2 of [HL10]) that, for any coherent OQ-module I, the space
Hom(K,F ⊗ π∗I) parametrizes all first order flat deformations of the
universal quotient 1 to the square 0 extension Q[I]. We also know
that Ext1Q×X(K,F ⊗ π∗I) contains all obstruction classes of lifting the
quotient 1 to the first order.

The following two propositions from [Gil11] concerning the relation
between the reduced Atiyah class and the deformation theory. The
statements are parallel to similar results in previous section about clas-
sical Atiyah class. The first one relates the reduced Atiyah class with
deformation of quotients on the trivial square free deformation of the
base:

Proposition 2.10. [Gil11] Let I be any coherent OQ-module and at
be the reduced Atiyah class of the quotient 1. The map

at ∪ (F ⊗−) : HomQ(LQ, I) −→ HomQ×X(K,F ⊗ π∗I)

given by precomposing with the reduced Atiyah class can be interpreted
as

{retracts of ιI} −→ {flat deformations of the quotient 1 over Q[I]},

where the arrow is given by pullback.

Proof. See the proof in [Gil11, Lemma 3.2]. �

Next proposition concerns the relation between the Atiyah class and
the obstruction of deformation of the quotient map, which is also under
the essence of “the product of Atiyah class and Kodaira-Spencer class
is the obstruction class”.

Proposition 2.11 ([Gil11]). Let I be any coherent OQ-module and at
be the reduced Atiyah class of the quotient 1. The map

at ∪ (F ⊗−) : Ext1Q(LQ, I) −→ Ext1Q×X(K,F ⊗ π∗I)
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given by precomposing with the reduced Atiyah class can be interpreted
as

{thickenings Q′ of Q by ιI} −→ {obstructions to the existence

of flat deformations of the quotient 1 over Q′}.

Proof. See [Gil11, Lemma 1.13]. �

3. Trace Maps and Trace-free parts of Complexes

On the Quot scheme Q, we apply the derived functor Rπ∗RHom(−,F)
to the exact sequence 1 and get an exact triangle of complexes
(5)
Rπ∗RHom(K,F)[−1] −→ Rπ∗RHom(F ,F) −→ Rπ∗RHom(E ,F).

In this section we will construct the “traceless” version of all the three
complexes.

First of all it’s easy to see that the trace map tr : RHom(F, F ) −→
OQ×X splits by a reverse map of scaling. Therefore we have

RHom(F, F ) = RHom(F, F )0 ⊕OQ×X ,

where the first summand is the kernel of the above trace map. The
splitting leads to

Rπ∗RHom(F, F ) = Rπ∗RHom(F, F )0 ⊕ Rπ∗OQ×X .

However, the second component above can be further decomposed into
two direct summands as

Rπ∗OQ×X = Rπ∗π
∗
XOX

= RΓ(OX)⊗OQ

= (H0(OX)⊕H2(OX)[−2])⊗OQ

= π∗OQ×X ⊕ Rπ∗OQ×X [−2]

Therefore we have a decomposition of the middle complex of 5
(6)
Rπ∗RHom(F, F ) = Rπ∗RHom(F, F )0 ⊕ π∗OQ×X ⊕ R2π∗OQ×X [−2],

in which we also keep in mind that

π∗OQ×X = OQ

R2π∗OQ×X = OQ

We combine the equation 5 and the obvious morphisms of embeddings
and splittings from the equation 6 and get two morphism

α : π∗OQ×X −→ Rπ∗RHom(E ,F);

β : Rπ∗RHom(K,F)[−1] −→ R2π∗OQ×X [−2].
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Now we define the “traceless” version of the other two complexes by
completing the exact triangles. More precisely, we define

Rπ∗RHom(E ,F)0 = Cone(α)

Rπ∗RHom(K,F)0 = Cone(β).

Then we have the following

Proposition 3.1. We naturally get an exact triangle
(7)
Rπ∗RHom(K,F)0[−1] −→ Rπ∗RHom(F ,F)0 −→ Rπ∗RHom(E ,F)0.

Proof. We observe two exact triangles from the above cone construc-
tion:

(8) π∗OQ×X −→ Rπ∗RHom(E ,F) −→ Rπ∗RHom(E ,F)0,

and
(9)
Rπ∗RHom(K,F)0[−1] −→ Rπ∗RHom(K,F)[−1] −→ R2π∗OQ×X [−2].

Then this proposition is just a direct consequence of next lemma. �

Lemma 3.2. Let

A −→ B −→ C

be an exact triangle in a triangulated category, where B = B1 ⊕ B2.

(1) If we complete the natural morphism A −→ B2 into an exact
triangle

A0 −→ A −→ B2,

then we get a new exact triangle

A0 −→ B1 −→ C;

(2) If we complete the natural morphism B1 −→ C into an exact
triangle

B1 −→ C −→ C0,

then we get a new exact triangle

A −→ B2 −→ C0.

Proof. They are both applications of octohedral axiom of triangulated
categories. �

Next we analyze the fiberwise behaviour of the exact triangle 7 and the
corresponding cohomology groups. Let p ∈ Q be a closed point. Let
Xp be the corresponding fiber in the product Q×X , and

(10) 0 −→ Kp −→ Ep −→ Fp −→ 0
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be the corresponding quotient represented by p. Then the restriction
of the decomposition 6 becomes

RHom(Fp, Fp) = RHom(Fp, Fp)0 ⊕H0(OXp
)⊕H2(OXp

)[−2].

When we restrict the exact triangle 8 to the closed point p, we get the
exact triangle

H0(OXp
) −→ RHom(Ep, Fp) −→ RHom(Ep, Fp)0.

When we consider the corresponding long exact sequence of the co-
homology groups, we realize that the complexes RHom(Ep, Fp) and
RHom(Ep, Fp)0 actually computes the same cohomology groups except
in degree 0, where we get an exact sequence

0 −→ H0(OXp
)

αp

−→ Hom(Ep, Fp) −→ Hom(Ep, Fp)0 −→ 0.

From the above construction we see that the arrow αp factor through
Hom(Fp, Fp) by a scalar map H0(OXp

) −→ Hom(Fp, Fp) and a natural
map induced by the quotient 10, therefore Hom(Ep, Fp)0 is obtained
by “removing” the 1-dimensional vector space generated by the map
in the quotient 10.

Similarly, we can analyze the exact triangle 9 and get a parallel con-
clusion. Summarizing the discussion we obtain the following lemma

Lemma 3.3. We have the following pointwise behaviour of the “trace-
less” complexes Rπ∗RHom(E ,F)0 and Rπ∗RHom(K,F)0:

(1) The restriction of the complex Rπ∗RHom(E ,F)0 to any closed
point p ∈ Q computes the cohomology groups

Exti(Ep, Fp)0 =

{
Exti(Ep, Fp) if i 6= 0;

coker(αp) if i = 0,

where αp is the composition the scalar and the natural map in-
duced by 10 H0(OXp

) −→ Hom(Fp, Fp) −→ Hom(Ep, Fp).
(2) The restriction of the complex Rπ∗RHom(K,F)0 to any closed

point p ∈ Q computes the cohomology groups

Exti(Kp, Fp)0 =

{
Exti(Kp, Fp) if i 6= 1;

ker(βp) if i = 1,

where βp is the composition of the natural map induced by 10
and the trace map Ext1(Kp, Fp) −→ Ext2(Fp, Fp) −→ H2(OXp

).

�

4. Cotangent Complex of the Quot Scheme

The goal of this section is to compute the cotangent complex of the
GIT-semistable locus of the Quot scheme Q.
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Lemma 4.1. The reduced Atiyah class at induces a morphism from
Rπ∗RHom(K,F)∨ to the cotangent complex LQ.

Proof. In section 2.3, we defined the reduced Atiyah class

at ∈ HomQ×X(K,F ⊗ π∗
LQ).

By Grothendieck-Verdier duality and Serre duality, we have

HomQ×X(K,F ⊗ π∗
LQ) = HomQ×X(RHom(F ,K), π∗

LQ)

= HomQ(Rπ∗RHom(F ,K)[2],LQ)

= HomQ(Rπ∗RHom(K,F ⊗ ωπ)
∨,LQ)

= HomQ(Rπ∗RHom(K,F)∨,LQ).

Therefore the class at induces a morphism between the two complexes,
denoted by

γ : Rπ∗RHom(K,F)∨ −→ LQ.

�

The rest of the section is aiming at proving that, although γ itself is not
a quasi-isomorphism, if we replace the complex Rπ∗RHom(K,F)∨ by
its “traceless” counterpart Rπ∗RHom(K,F)∨0 constructed in previous
section, then we get a quasi-isomorphism. We start from the following
lemma comparing the degree 0 cohomology groups.

Lemma 4.2. The morphism γ defined as above induces an isomor-
phism on the 0-th cohomology groups of the two complexes.

This lemma was proved in [Gil11, Theorem 4.2]. For the sake of com-
pleteness we include the proof here.

Proof. For simplicity, in this proof we denote

C := Rπ∗RHom(K,F)∨.

We are aiming to show that

H0(γ) : H0(C) −→ H0(LQ)

is an isomorphism. By Yoneda’s lemma for the abelian category of
coherent sheaves, it suffices to show that, for every coherent sheaf I on
Q, the induces morphism

H0(α)I : HomQ(H
0(LQ), I) −→ HomQ(H

0(C), I)

is an isomorphism. However, notice that both complexes LQ and C
have non-trivial cohomology only in non-positive degrees. Therefore,
we have

HomQ(H
0(LQ), I) = HomQ(LQ, I),

HomQ(H
0(C), I) = HomQ(C, I).
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Hence it suffices to show that the pullback morphism

γI : HomQ(LQ, I) −→ HomQ(C, I)

is an isomorphism. Again by Grothendieck and Serre duality theorems,
we have

HomQ(C, I) = HomQ(Rπ∗RHom(K,F)∨, I)

= HomQ(Rπ∗RHom(F ,K)[2], I)

= HomQ×X(RHom(F ,K), π∗I)

= HomQ×X(K,F ⊗ π∗I).

Therefore the morphism γI becomes

αI : HomQ(LQ, I) −→ HomQ×X(K,F ⊗ π∗I),

which is given by the product with the reduced Atiyah class at. The
deformation interpretation of this morphism is given by Proposition
2.10, namely, for any retraction ι : Q[I] → Q, γI(ι) is a deformation of
quotient of E , given by pulling back the universal quotient 1 from Q to
Q[I] via ι.

However, because of the universal property of Q, any deformation of
the universal quotient is obtained by pulling back from Q. Therefore,
the above morphism αI is an isomorphism, which concludes that H0(α)
is also an isomorphism. �

We take the dual of the exact triangle 9 and get another exact triangle

R2π∗OQ×X [1] −→ Rπ∗RHom(K,F)∨ −→ Rπ∗RHom(K,F)∨0 .

Lemma 4.3. The morphism

γ : Rπ∗RHom(K,F)∨ −→ LQ

can be lifted to a morphism

γ0 : Rπ∗RHom(K,F)∨0 −→ LQ.

Proof. It suffices to prove that

HomQ(R
2π∗OQ×X [1],LQ) = 0.

In fact, by 2.6, LQ is quasi-isomorphic to a single sheaf in degree 0.
Also notice that R2π∗OQ×X [1] = OQ[1] is a single sheaf lying in degree
−1, due to degree reason the above equation is true. Therefore γ can
be lifted to γ0. �

Lemma 4.4. The complex Rπ∗RHom(K,F)∨0 has perfect amplitude in
[−1, 0], and is quasi-isomorphic to a single sheaf in degree 0.
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Proof. We first look at the fiber cohomology of Rπ∗RHom(K,F)0
before taking the dual. From the second part of Lemma 3.3, we
already know all cohomology groups when we restrict the complex
Rπ∗RHom(K,F)0 to any closed point p ∈ Q. Moreover, by the long
exact sequence induced by the restriction of the universal quotient at
the point p, we can easily tell which of them vanish. It’s not hard to
find out that

Exti(Kp, Fp)0 =






Hom(Kp, Fp) if i = 0;

Ext2(Fp, Fp)0 if i = 1;

0 otherwise.

Therefore, we know that the only possible non-trivial fiber cohomology
lies in degree 0 and 1. Furthermore, over the locus where Fp is stable,
the only non-trivial fiber cohomology lies in degree 0.

Now we turn to the dual complex Rπ∗RHom(K,F)∨0 . Since the fiber
cohomology respect the operation of taking duals, we conclude that,
the only possible non-trivial fiber cohomology lies in degree −1 and
0. Furthermore, on the open subset of Q where Fp is stable, the fiber
cohomology in degree −1 is even trivial.

Now we are ready to prove the two statements in the lemma. First of
all, we can always resolve the complex Rπ∗RHom(K,F)∨0 by a perfect
complex of finite length. We denote this perfect resolution by

As −→ As+1 −→ · · · −→ At−1 −→ At.

We prove the first statement. If s < −1, we can actually truncate
the complex at the position s + 1, by replacing As by 0 and As+1 by
the cokernel of the map As −→ As+1. We claim that this cokernel is
again a locally free sheaf over Q. In fact, for any closed point p ∈
Q, the kernel of the fiber map As

p −→ As+1
p is the fiber cohomology

group Ext−s(Kp, Fp)
∨
0 , which by the above discussion vanishes when

s < −1. Therefore the morphism between the two locally free sheaves
As and As+1 is fiberwise injective, hence has a locally free cokernel.
This operation increases the lowest degree of the locally free resolution
by 1. We can repeat this procedure until we have s = −1.

Similarly, if t > 0, we can always truncate the resolution step by step
from the highest degree, while keeping every term in the complex lo-
cally free, until we reach t = 0, by using the fact that the fiberwise
cohomology groups vanish in positive degrees. Therefore, we know tha
the complex Rπ∗RHom(K,F)∨0 is quasi-isomorphic to a perfect com-
plex in degree [−1, 0], which we still denote by

A−1 −→ A0.

Finally, to prove the second statement, we only need to show that the
cohomology of this 2-term complex in degree −1 vanishes. In fact, we
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already know that over an open dense subset Qs ofQ where the quotient
sheaf is stable, the fiberwise cohomology of this 2-term cohomology is
0 in degree −1, which implies that the morphism of locally free sheaves

A−1 −→ A0

is injective over the stable locus Qs. However any subsheaf of a locally
free sheaf is torsion free, hence we conclude that the kernel sheaf is 0,
which proves the second statement. �

Finally, we can state the main result of this section

Theorem 4.5. The morphism

γ0 : Rπ∗RHom(K,F)∨0
∼=

−→ LQ

is a quasi-isomorphism.

Proof. We have proved that both complexes have non-trivial cohomol-
ogy groups only in degree 0, and H0(α0) is an isomorphism, from which
the proposition is clear. �

5. Cotangent Complex of the Moduli Stack

The goal of this section is to compute the cotangent complex of the
moduli stack M = [Q/G]. To achieve this goal, we will first build up
the commutative diagram

(11) Rπ∗RHom(K,F)∨0
//

��

Rπ∗RHom(E ,F)∨0

��
LQ

// LQ/M

such that the two vertical arrows are isomorphisms. We should notice
that the two horizontal arrows are both functorial morphisms, while the
left vertical arrow was constructed in the previous section and proved to
be an isomorphism. It only remains to construct the right vertical arrow
to make the diagram commute, and prove that it’s an isomorphism.

Before we get into the main business, we need to study the fiber product
of the quotient map q : Q −→ M with itself. More precisely, we have
the following lemma:
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Lemma 5.1. The following diagram commutes:

(12) G×Q
m

''

pr2

""

j %%LLLLLLLLLL

Q×M Q
p1

//

p2
��

Q

q

��
Q

q // M,

where G is the gauge group PGL(N), whose action on the Quot scheme
Q is the upper horizontal arrow m, pri is the projection from G × Q
to the i-th factor, pi is the projection from Q×M Q to the i-th factor,
and j = (m, pr2). Moreover, j is an isomorphism of schemes.

Proof. The commutativity is straightforward. In fact, the commuta-
tivity of the square is due to the fiber product, and the commutativity
of the two triangles is due to the definition of the map j. And the
statement that j is an isomorphism is a standard fact. For example,
see [FGI+05, Part I, Proposition 4.43]. �

We will also need the following two facts related to the fiber product
described in diagram 12.

Lemma 5.2. Notations are the same as above. Then we have

m∗
LQ/M = pr∗1LG.

Proof. From the above lemma we know that the outer square of the
diagram 12 is also a fiber product. Since the quotient map q is smooth,
we apply [LMB00, Theorem 17.3 (4)] and get

m∗
LQ/M = LG×Q/Q = pr∗1LG,

which proves the claim. �

Lemma 5.3. Notations are the same as above. Let

LQ −→ LQ/M

be the canonical map induced by the right vertical arrow q, and

m∗
LQ −→ m∗

LQ/M

be its pullback via the multiplication. Then we have the following com-
mutative diagram

(13) m∗LQ
//

��

LG×Q

��
m∗LQ/M

∼= // pr∗1LG
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where the upper horizontal arrow is the funtorial map induced by the
multiplication map m, the lower horizontal arrow is the one constructed
in Lemma 5.2, and the right vertical arrow is the projection into the
first factor.

Proof. This is a direct application of the functoriality of the transitivity
sequence in Lemma 2.2. �

Lemma 5.4. Notations are the same as above. Recall that F is the
universal quotient sheaf on Q×X. Then we have

p∗1F = p∗2F .

By further pulling back via the isomorphism j, we have

m∗F = pr∗2F .

Proof. This is a direct application of the construction of fiber products.
Let’s call V = Q × Q and denote the pullback of the universal family
F via the two projections from V to Q by F1 and F2. Then the fiber
product Q×M Q is defined to be the scheme Isom(F1,F2), over which
there’s a canonical isomorphism from p∗1F to p∗2F , which, by abuse of
notation, was written as an equality in the lemma. �

Lemma 5.5. The composition of the reduced Atiyah class and the func-
torial morphism of cotangent complexes factor through E . In other
words, the dotted arrows in the following diagram exist and make the
diagram commute:

K //________

��

E

���
�

�

F ⊗ π∗LQ
// F ⊗ π∗LQ/M

Proof. To prove the composition of the two solid arrows factors through
E , we only need to show that the composition of the following three
maps is a zero map:

F [−1] // K

��
F ⊗ π∗LQ

// F ⊗ π∗LQ/M

However, by Proposition 2.9, we know that the composition of the first
two maps in the above diagram is exactly the classical Atiyah class.
Therefore the problem becomes to show the composition of the clas-
sical Atiyah class and the functorial morphism between the cotangent
complexes, i.e., the following two morphism, is a zero map:

(14) F [−1] −→ F ⊗ π∗
LQ −→ F ⊗ π∗

LQ/M.
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We can pull back the maps in equation 14 via the multiplication m. If

we denote m∗F by F̃ , by applying Lemma 5.2, we get

(15) F̃ [−1] −→ F̃ ⊗m∗
LQ −→ F̃ ⊗ pr∗1LG.

We will first show that the compositions of these two maps is zero.

By Lemma 5.3, we can further replace the above maps into the com-
position of three

(16) F̃ [−1] −→ F̃ ⊗m∗
LQ −→ F̃ ⊗ LG×Q −→ F̃ ⊗ pr∗1LG.

Since F̃ is obtained by the pullback via m, by the functorial property of
Atiyah classes, we realized that the composition of the first two maps

in 16 is simply the Atiyah class of the sheaf F̃ itself!

However, by Lemma 5.4, we see that the universal sheaf F̃ can also be
realized as pr∗2F , therefore by the functorial property again, its Atiyah
class can also be viewed as the pull back of the Atiyah class of F via
the projection pr2. In particular, it lies in the second component of

Ext1(F̃ , F̃ ⊗ LG×Q) = Ext1(F̃ , F̃ ⊗ pr∗1LG)⊕ Ext1(F̃ , F̃ ⊗ pr∗2LQ).

Therefore its projection into the first factor is 0, which implies the
composition of the three maps in 16 is 0.

Now we define the diagonal map

∆ : Q −→ G×Q,

q 7−→ (1, q)

and it’s easy to see that the composition m ◦∆ is the identity map on
Q. Because of this, we can pull back the maps in 15 via the map ∆ and
obtain the original maps in 14. The above discussion implies that the
composition in 14 is 0. Therefore the dotted arrows in the statement
exist and make the whole diagram commutative, where the horizontal
dotted arrow is simply the one in the exact sequence of the universal
quotient over the Quot scheme Q. �

We can translate the above lemma into the language of cotangent com-
plexes as follows.

Lemma 5.6. We have the commutative diagram

(17) Rπ∗RHom(K,F)∨ //

��

Rπ∗RHom(E ,F)∨

��
LQ

// LQ/M,

where the upper horizontal arrow is the natural map from the universal
quotient, the lower horizontal arrow is the functorial map given by the
quotient, and the left vertical arrow is given by the reduced Atiyah class.
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Proof. This is just a literal translation of lemma 5.5. In the proof of
Lemma 4.1, we use the Grothendieck-Verdier duality and Serre duality
to construct a canonical isomorphism (by abuse of notation we simply
use equalities)

HomQ×X(K,F ⊗ π∗
LQ) = HomQ(Rπ∗RHom(K,F)∨,LQ).

Following exactly the same steps, we can construct another canonical
isomorphism

HomQ×X(E ,F ⊗ π∗
LQ/M) = HomQ(Rπ∗RHom(E ,F)∨,LQ/M).

If we denote the two vertical arrows in Lemma 5.5 by u and v, which
are elements of the spaces on the left hand side of the two equations
respectively. We denote the corresponding elements on the right hand
side by u′ and v′.

The previous lemma claims that, the composition of u with the canon-
ical map LQ −→ LQ/M agrees with the precomposition of v with the
map K −→ E in the universal quotient sequence 1. Therefore, by the
above canonical isomorphisms, we know that, the composition of u′

with the canonical map LQ −→ LQ/M also agrees with the precompo-
sition of v′ with the map K −→ E in the universal quotient sequence
1, which is exactly the conclusion of this lemma. �

If we compare the above result with the one we stated at the beginning
of the section, we need to replace the upper two complexes by their
traceless counterparts. Therefore we have the following lemma.

Lemma 5.7. We have the commutative diagram 11.

Proof. From the discussion in section 3 we had the following two exact
triangles, which are the dual of the exact triangles 8 and 9:

(18) OQ[1] −→ Rπ∗RHom(K,F)∨ −→ Rπ∗RHom(K,F)∨0

and

(19) Rπ∗RHom(E ,F)∨0 −→ Rπ∗RHom(E ,F)∨ −→ OQ.

First of all we claim that both arrows coming out of Rπ∗RHom(K,F)∨

in 17 factor through Rπ∗RHom(K,F)∨0 . For this purpose it suffices to
show that the pre-composition of these two arrows by the first arrow in
18 is 0. In fact, since OQ[1] is a single sheaf lying in degree −1, while
both LQ and Rπ∗RHom(K,F)∨ are both single sheaves lying in degree
0, there is only the zero map from a sheaf in degree −1 to a sheaf in
degree 0. This allows us to replace the upper left corner of 17 by its
traceless counterpart.

Next we claim that the upper horizontal arrow in 17 can be lifted to
Rπ∗RHom(E ,F)∨0 . For this we only need to show, that the composition
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of this arrow with the second arrow in 19

Rπ∗RHom(K,F)∨ −→ Rπ∗RHom(E ,F)∨ −→ OQ

is a zero map, or equivalently, its dual composition

OQ −→ Rπ∗RHom(E ,F) −→ Rπ∗RHom(K,F)

is a zero map on Q. Since we assume that there is at least one stable
sheaf in the moduli space, the stable locus Qs in the Quot scheme is
open and dense. Therefore it suffices to check the above claim at every
closed point in Qs.

Pick any closed point p ∈ Qs. By the construction of the traceless
complexes, the restriction of the above two maps at p becomes

Hom(Fp, Fp) −→ Hom(Ep, Fp) −→ Hom(Kp, Fp),

whose composition of 0, as expected. Therefore we can as well replace
the upper right corner of 17 by its traceless counterpart and obtain the
commutative diagram 11. �

Finally we are aiming to prove that the right vertical map in 11 is
a quasi-isomorphism, or more precisely, an isomorphism between two
single sheaves in degree 0. First we compute the two sheaves explicitly
to see if they have a chance to be isomorphic.

Lemma 5.8. Both Rπ∗RHom(E ,F)∨0 and LQ/M are quasi-isomorphic
to a trivial vector bundle of rank equal to dimG concentrated in degree
0.

Proof. We recall the construction of the Quot scheme. There exists a
sufficient large integer n, such that for every semistable sheaf F with the
prescribed Mukai vector, F ⊗O(n) has trivial cohomology in positive
degrees, and E ⊗ cO(n) is the trivial bundle generated by the global
sections of F ⊗ O(n). Assuming the dimension of the global sections
is N , then the gauge group G = PGL(N). Therefore we have

Rπ∗RHom(E ,F) = Rπ∗RHom(E(n),F(n))

= Rπ∗RHom(O⊕N ,F(n))

= Rπ∗F(n)⊗O⊕N∨

= π∗F(n)⊗O⊕N∨

= O⊕N∨ ⊗O⊕N = End(O⊕N).

And from the construction of exact triangle 8, we see that the map
OQ −→ Rπ∗RHom(E ,F) is at every closed point p ∈ Q given by the
identity map

CId →֒ Hom(Fp, Fp) −→ Hom(Ep, Fp)
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which is injective. Therefore the exactly triangle 8 actually becomes
an exact sequence of sheaves on Q

0 −→ OQ −→ End(O⊕N
Q ) −→ End(O⊕N

Q )0 −→ 0.

So Rπ∗RHom(E ,F)0 is quasi-isomorphic to End(O⊕N
Q )0 which is a

trivial bundle of rank N2 − 1 concentrated in degree 0.

On the other hand, by noticing that

m ◦∆ = Id,

together with Lemma 5.2, we have

LQ/M = ∆∗m∗
LQ/M = ∆∗pr∗1LG = g⊗OQ

which is also a trivial bundle of rank equal to dim g = N2 − 1. �

Finally, we are ready to prove the following lemma.

Lemma 5.9. The right vertical arrow constructed in 11

ϕ : Rπ∗RHom(E ,F)∨0 −→ LQ/M

is an isomorphism of two sheaves.

Proof. From the above discussion we know that this arrow is a map
between two locally free sheaves of the same rank.

First of all we will show that, on the stable locus Qs, ϕ is an isomor-
phism. For this purpose, it suffices to show that ϕp is surjective on the
stable locus Qs. However, due to the commutativity of the diagram
11, whose left vertical arrow is an isomorphism, it suffices to show that
the functorial map

(20) LQs −→ LQs/Ms

is surjective on Qs, where Ms is as a substack of M the quotient of
Qs by the group G.

To show that the map 20 is surjective, we only need to show that the
pullback of the map via

ms : G×Qs −→ Qs

is surjective. By applying Lemma 5.2, we just need to prove that

m∗
sLQs −→ pr∗1LG

is surjective. Here by abuse of notation, we use pr1 for the projection
of G×Qs to its first factor.

Since both Qs and G are smooth, we can consider the dual of the above
map

pr∗1TG −→ m∗TQs.
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We need to show that it’s injective on fibers at every closed point
p ∈ Qs. Or in other words, we need to show that the pushforward of
the tangent spaces

ms∗(pr
∗
1TG) −→ TQs

is injective at every closed point p ∈ Qs. However, this is equivalent
of saying that the G-action is free on the stable locus Qs, which is
obvious.

So far we have proved that the map ϕ is an isomorphism of two locally
free sheaves of the same rank on Qs. Next we claim that ϕ is actually
an isomorphism over Q. In fact, the locus in Q where ϕ is not an iso-
morphism is the zero locus of the corresponding map of determinant
line bundles, therefore is a Cartier divisor. In particular, if it’s not an
empty set, it should have dimension 1. However, by [KLS06, Propo-
sition 6.1] that the strictly semistable locus Q\Qs has codimension at
least 2. Therefore the degeneracy locus must be empty, and ϕ is an
isomorphism everywhere. �

Now we get out key result on the cotangent complex of the moduli
stack.

Theorem 5.10. We have a quasi-isomorphism

Rπ∗RHom(F ,F)∨0 [−1]
∼=

−→ q∗LM.

Proof. From the above discussion on the diagram 11, and two functorial
exact triangles, we obtain the following diagram (in which the first
exact triangle follows from equation 7):
(21)

Rπ∗RHom(K,F)∨0 //

��

Rπ∗RHom(E ,F)∨0 //

��

Rπ∗RHom(F ,F)∨0

���
�

�

LQ
// LQ/M

// q∗LM[1]

Since the left square commutes, by the axioms of triangulated cate-
gories, the dotted arrow exists and is a quasi-isomorphism. �

6. Symplectic Stacks

Motivated by the symmetric obstruction theory in [BF08], we want to
study bilinear pairings on complexes. The following notion of anti-
symmetric forms is completely parallel to [BF08, Definition 1.1]:

Definition 6.1. Let X be a scheme, and E
q

∈ Db(X ) be a perfect
complex. A non-degenerate anti-symmetric bilinear form on E

q

is a
morphism

β : E
q

⊗ E
q

−→ OX

in Db(X ), which is
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(1) anti-symmetric, i.e. the following diagram is commutative

(22) E
q

⊗ E
q

β //

ι

��

OX

−id
��

E
q

⊗ E
q

β // OX ,

where ι is the isomorphism switching the two factors of the
tensor product;

(2) non-degenerate, which means that β induces an isomorphism

θ : E
q

−→ E
q∨.

In such a case, we call E
q

a symplectic complex and β a symplectic
pairing on E

q

.

Remark 6.2. Note that there are other equivalent ways of phrasing this
definition (c.f. [BF08, Remark 1.2]). In fact, we can avoid using the
tensor product and use only the isomorphism β, then the condition
of anti-symmetry becomes θ∨ = −θ, or more precisely, the following
diagram commutes:

(23) E
q θ //

iE
��

E
q∨

−id
��

E
q∨∨

θ∨ // E
q∨,

where i is the naturally isomorphism of the perfect complex E and its
double dual.

Similar to the situation in [BF08], it’s usually easier to work with θ
only. Then an anti-symmetric pairing on the complex E is simply an
isomorphism θ : E

q

−→ E
q∨ satisfying θ∨ = −θ.

Remark 6.3. Note that here we adopted the sign conventions in [Con00,
Section 1.3]. The sign conventions which are most relevant to the above
definition are the ones related to switching the two factors in a tensor
product and to the identification of a complex with its dual. More
precisely, we should keep in mind that the definition of the natural
isomorphism

(24) E
q

1 ⊗E
q

2
∼= E

q

2 ⊗ E
q

1

uses a sign of (−1)pq on the component Ep
1 ⊗ Eq

2 [Con00, page 11].
Moreover, from the definition of Hom complex in [Con00, page 10], we
can easily find that if E is a prefect complex represented by

· · · −→ Ei−1 ϕi−1

−→ Ei ϕi
−→ Ei+1 −→ · · · ,

then the dual complex E∨ can be represented by

· · · −→ (Ei+1)∨
(−1)iϕ∨

i−→ (Ei)∨
(−1)i−1ϕ∨

i−1

−→ (Ei−1)∨ −→ · · · ,
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and the double dual complex E∨∨ becomes

· · · −→ Ei−1 −ϕi−1

−→ Ei −ϕi
−→ Ei+1 −→ · · · .

Note that the extra sign is induced in all the morphisms in the com-
plex. To get compatible with this, according to [Con00, page 14], the
isomorphism iE : E

q

−→ E
q∨∨ is chosen to involve a sign of (−1)n in

degree n.

An obvious example of a symplectic complex is a single vector bundle
equipped with a symplectic metric sitting in degree 0. However, to
get a better feeling of a symplectic complex, especially the tricky sign
conventions, we can see the following example:

Example 6.4. Let X = C2n with x1, x2, · · · , xn, y1, y2, · · · , yn as coor-
dinates. Let E be the complex of locally free sheaves

OX
α

−→ O⊕2n
X

β
−→ OX ,

where the morphisms are

α = (x1, · · · , xn,−y1, · · · ,−yn)
T ,

β = (y1, · · · , yn, x1, · · · , xn),

where the letter “T” in the upper right corner denotes the transpose
of the matrix. Then the dual complex E∨ becomes

OX
βT

−→ O⊕2n
X

−αT

−→ OX ,

and we can define a morphism θ : E −→ E∨ by

OX
α //

id

��

O⊕2n
X

β //

γ

��

OX

id

��
OX

βT

// O⊕2n
X

−αT

// OX ,

where γ is the standard 2n× 2n symplectic matrix
(

0 −1n
1n 0

)
.

The dual isomorphism θ∨ : E∨∨ −→ E∨ now becomes

OX
−α //

id

��

O⊕2n
X

−β //

γT

��

OX

id

��
OX

βT

// O⊕2n
X

−αT

// OX ,
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We also mentioned above that the natural isomorphism iE : E −→ E∨∨

is defined to be

OX
α //

−id

��

O⊕2n
X

β //

id
��

OX

−id

��
OX

−α // O⊕2n
X

−β // OX .

The above diagrams verify the required symplectic condition in 23.
Therefore the complex E in this example is a symplectic complex. �

Now we define a symplectic complex on an algebraic stack, by using an
atlas of a stack.

Definition 6.5. Let X is an algebraic stack, and let u : U −→ X be
an atlas of the stack X , where U is a scheme. Let G ∈ Db(X ) be a
perfect complex. We say G is a symplectic complex, if there exists a
symplectic pairing

β : u∗G ⊗ u∗G −→ OU ,

satisfying that

q∗1β = q∗2β,

where q1 and q2 are the projections in the following fiber diagram

U ×X U
q1 //

q2

��

U

u

��
U u

// X .

Based on the definition of symplectic complex, we can now define the
following notion of symplectic stacks:

Definition 6.6. Let X be a scheme or an algebraic stack. We call X a
symplectic stack, if its cotangent complex LX is a symplectic complex.

From this definition we immediately see:

Example 6.7. Any holomorphic symplectic manifold X is a symplec-
tic stack, because a nowhere degenerate holomorphic 2-form defines
a symplectic pairing on the tangent bundle TX , or equivalently the
cotangent bundle ΩX .

A slightly more general situation is the following:

Example 6.8. Let X be a holomorphic symplectic manifold with a
nowhere degenerate holomorphic 2-form σ, and G is a finite group
acting on X preserving the symplectic form σ. Let q : X −→ X =
[X/G] be the stacky quotient map. Then the Deligne-Mumford stack
X is a symplectic stack.
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In fact, by Proposition 2.2, we know that

q∗LX = LX = ΩX ,

because G is finite. The holomorphic symplectic form σ defines a sym-
plectic pairing on ΩX . Since the G-action preserves σ, this symplectic
pairing descends to LX , which shows X is a symplectic stack.

We mentioned that the cotangent complex of a stack could lie over all
degrees not larger than 1. However, for a symplectic stack, due to the
isomorphism between the cotangent complex and its dual, its perfect
amplitude could only be within the interval [−1, 1]. Therefore, the
cotangent complex could have only two types: either a single locally
free sheaf sitting in degree 0, or a perfect complex in degree [−1, 1].
The above examples fall in the first type. However, all the calculations
from previous sections provide us examples of the second type.

Theorem 6.9. The moduli stack M of semistable sheaves on a K3
surface is a symplectic stack.

Proof. By Proposition 5.10, we know that the pullback of the cotangent
complex via the quotient map is

Rπ∗RHom(F ,F)∨0 [−1]
∼=

−→ q∗LM.

To prove the cotangent complex LM is a symplectic complex, we first
show that there exists a symplectic pairing on q∗LM, then show that
the symplectic pairing satisfies the compatibility condition in Definition
6.5 for a symplectic complex on a stack.

The relative Serre duality tells us that the composition of the derived
Yoneda product and the trace map

Rπ∗RHom(F ,F)⊗ Rπ∗RHom(F ,F ⊗ ωπ)
∪

−→ R2π∗RHom(F ,F ⊗ ωπ)[−2]
tr

−→ R2π∗ωπ[−2] ∼= OQ[−2]

is a non-degenerate bilinear form.

Due to the fact that X is a K3 surface, the relative dualizing sheaf ωπ

of the projection π : Q × X −→ Q has a trivialization given by the
pullback of generator of H2,0(X) via the second projection. We denote
the isomorphism by

σ : OQ×X −→ ωπ.

Then we can also write the above non-degenerate bilinear form as

Rπ∗RHom(F ,F)⊗ Rπ∗RHom(F ,F)
∪

−→ R2π∗RHom(F ,F)[−2]
tr

−→ OQ[−2]
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Furthermore, this trace map also satisfies the symmetry condition ([HL10,
Equation 10.3])

tr(e ∪ e′) = (−1)deg(e) deg(e
′)tr(e′ ∪ e).

After a degree shift we get a bilinear form

Rπ∗RHom(F ,F)[1]⊗ Rπ∗RHom(F ,F)[1] −→ OQ

which is still non-degenerate, and the symmetry condition becomes

tr(e ∪ e′) = (−1)(deg(e)+1)(deg(e′)+1) tr(e′ ∪ e)

= (−1)deg(e) deg(e
′)+deg(e)+deg(e′)+1 tr(e′ ∪ e)

= (−1)deg(e) deg(e
′)+1 tr(e′ ∪ e).

The reason for the last equality is that: for tr(e ∪ e′) to lie in the only
non-trivial degree of the complex OQ, we must have

deg(e) + deg(e′) = 0.

Comparing the above equation with the sign convention in the equa-
tion 24, we realize that, switching the two factors in the trace map
actually introduces an extra negative sign. This verifies the condition
in equation 22, therefore the bilinear pairing on Rπ∗RHom(F ,F)[1] is
anti-symmetric.

It’s also clear that the restriction of the above symplectic pairing on
the traceless complex Rπ∗RHom(F ,F)0[−1] again defines a symplectic
pairing. It suffices to show that it’s still non-degenerate. In fact, the
above application of Serre duality can also be written in the form of
(25)
Rπ∗(RHom(F ,F))⊗ Rπ∗RHom(RHom(F ,F), ωπ) −→ R2π∗ωπ[−2],

which can also be thought as the relative Serre duality on a single sheaf
RHom(F ,F). Note that from the decomposition

(26) RHom(F ,F) = RHom(F ,F)0 ⊕OQ×X

we also get

RHom(F ,F)∨ = RHom(F ,F)∨0 ⊕O∨
Q×X .

Together with the isomorphism ωπ = OQ×X , we immediately obtain
that Rπ∗RHom(RHom(F ,F)0, ωπ) is also naturally a direct summand
of Rπ∗RHom(RHom(F ,F), ωπ). Therefore, the restriction of equa-
tion 25 on the traceless complex becomes
(27)
Rπ∗(RHom(F ,F)0)⊗Rπ∗RHom(RHom(F ,F)0, ωπ) −→ R2π∗ωπ[−2],

which can be thought as the Serre duality on a single sheafRHom(F ,F)0,
therefore is again non-degenerate. Hence after shifting, we get a sym-
plectic pairing on Rπ∗RHom(F ,F)0[1], and by taking dual we get a
symplectic pairing on RHom(F ,F)∨0 [−1].

So far we have proved that q∗LM is a symplectic complex.
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Finally, we want to show that the symplectic pairing on the complex
Rπ∗RHom(F ,F)0 is G-equivariant. For this purpose we just need to
show that, the pull back of the symplectic pairing via the maps m and
pr2 in diagram 12 agree with each other.

By flatness and [Har66, Proposition 5.8, 5.9], as well as the fact that
the decomposition 26 is natural under pullback, we conclude that the
pullback of the Serre duality pairing

(28) Rπ∗RHom(F ,F)0 ⊗ Rπ∗RHom(F ,F)0 −→ R2π∗OQ[−2]

via m is

Rπ∗RHom(m∗F , m∗F)0⊗Rπ∗RHom(m∗F , m∗F)0 −→ R2π∗OG×Q[−2],

which is again the Serre duality pairing on G×Q by the functoriality
of Serre duality.

Similarly, if we pull back the pairing 28 via the other map pr2, we again
get a Serre duality pairing

Rπ∗RHom(pr∗2F , pr∗2F)0⊗Rπ∗RHom(pr∗2F , pr∗2F)0 −→ R2π∗OG×Q[−2].

In Lemma 5.4, we have showed that the pullback of the universal sheaf
F via m and pr2 are canonically isomorphic, denoted by

F̃ = m∗F = pr∗2F .

Therefore the above two pullback maps agree with each other, and we
conclude that the moduli stack M of the semistable sheaves on a K3
surface is a symplectic stack in the sense of Definition 6.6.

�
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