
SMALL REPRESENTATIONS OF FINITE CLASSICAL GROUPS

SHAMGAR GUREVICH AND ROGER HOWE

Abstract. Finite group theorists have established many formulas that express interesting properties
of a finite group in terms of sums of characters of the group. An obstacle to applying these formulas is
lack of control over the dimensions of representations of the group. In particular, the representations
of small dimensions tend to contribute the largest terms to these sums, so a systematic knowledge of
these small representations could lead to proofs of important conjectures which are currently out of
reach. Despite the classification by Lusztig of the irreducible representations of finite groups of Lie
type, it seems that this aspect remains obscure. In this note we develop a language which seems to be
adequate for the description of the ”small” representations of finite classical groups and puts in the
forefront the notion of rank of a representation. We describe a method, the ”eta correspondence”,
to construct small representations, and we conjecture that our construction is exhaustive. We also
give a strong estimate on the dimension of small representations in terms of their rank. For the sake
of clarity, in this note we describe in detail only the case of the finite symplectic groups.

0. Introduction

Finite group theorists have established formulas that enable expression of interesting properties of
a group G in terms of quantitative statements on sums of values of its characters. There are many
examples [9, 10, 34, 33, 39, 48, 52]. We describe a representative one. Consider the commutator map

[, ] : G×G→ G; [x, y] = xyx−1y−1, (0.1)

and for g ∈ G denote by [, ]g the set [, ]g = {(x, y) ∈ G×G; [x, y] = g}. In [44] Ore conjectured that

for a finite non-commutative simple group G the map (0.1) is onto, i.e., # [, ]g 6= 0, for every g ∈ G.
The quantity # [, ]g is a class function on G and Frobenius developed the formula for its expansion
as a linear combination of irreducible characters. Frobenius’ formula is

#[, ]g
#G

= 1 +
∑

1 6=ρ∈Irr(G)

χρ(g)

dim(ρ)
, (0.2)

where for ρ in the set Irr(G) of isomorphism classes of irreducible representations—aka irreps—of G,
we use the symbol χρ to denote its character. Estimating the sum in the right-hand side of (0.2) for
certain classes of elements in several important finite classical groups was a major technical step in
the recent proof [33, 39] of the Ore conjecture. Given the Ore conjecture thus, the following question
naturally arises:

Question. What is the distribution of the commutator map (0.1)?

In [52] Shalev conjectured that for a finite non-commutative simple group G the distribution of
(0.1) is approximately uniform, i.e., ∑

16=ρ∈Irr(G)

χρ(g)

dim(ρ)
= o(1), g 6= 1, (0.3)

in a well defined quantitative sense (e.g., as q →∞ for a finite non-commutative simple group of Lie
type G = G(Fq)). This conjecture is wide open [52]. It can be proven for the finite symplectic group
Sp2(Fq)1 invoking its explicit character table, and probably also for Sp4(Fq) [55]. As was noted by

Date: Submitted July 13, 2016.
1For the rest of this note, q is a power of an odd prime number p.
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Figure 1. Ore sum for the transvection T (0.4) in G = Sp6(Fq) for various q’s.

Shalev in [52], one can verify the uniformity conjecture for elements of G with small centralizers,
using Schur’s orthogonality relations for characters [33, 39, 52]. However, relatively little seems to be
known about Shalev’s conjecture in the case of elements with relatively large centralizers—see Figure
1 for numerical2 illustration in the case of G = Sp2n(Fq) and the transvection element T in G which
is given by

T =

(
I E
0 I

)
, Ei,j =

{
1, i = j = 1;
0, other 1 ≤ i, j ≤ n. (0.4)

To suggest a possible approach for the resolution of the uniformity conjecture, let us reinterpret (0.3)
as a statement about extensive cancellation between the terms

χρ(g)

dim(ρ)
, ρ ∈ Irr(G), (0.5)

which are called character ratios. The dimensions of the irreducible representations of a finite group

Figure 2. Partition of Irr(Sp6(F5)) according to nearest integer to log5(dim(ρ)).

G tend to come in certain layers according to order of magnitude. For example—see Figure 2 for

2The numerical data in this note was generated with J. Cannon (Sydney) and S. Goldstein (Madison) using Magma.
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illustration—it is known [7, 35] that the dimensions of the irreducible representations of G = Sp2n(Fq)
are given by some ”universal” set of polynomials in q. In this case the degrees of these polynomials
give a natural partition of Irr(Sp2n(Fq)) according to order of magnitude of dimensions. Since the
dimension of the representation of a group G is what appears in the denominator of (0.5), it seems
reasonable to expect that in (0.3)

(A) Character ratios of lower dimensional representations tend to contribute larger terms.

(B) The partial sums over low dimensional representations of ”similar” size exhibit cancellations.

A significant amount of numerical data collected recently with Cannon and Goldstein supports
assertions (A) and (B). For example, in Figure 3 we plot the numerical values of the character ratios

Figure 3. Character ratios at T (0.4) vs. nearest integer to log5(dim(ρ)) for Irr(Sp6(F5)).

of the irreducible representations of G = Sp6(F5), evaluated at the transvection T (0.4). More
precisely, for each ρ ∈ Irr(Sp6(F5)) we marked by a circle the point3 (blog5(dim(ρ)e , χρ(T )/ dim(ρ))
and find that the overall picture is in agreement with (A) and (B). Moreover—see Figures 2 and 3
for illustration—the numerics shows that, although the majority of representations are ”large”, their
character ratios tend to be so small that adding all of them contributes very little to the entire Ore
sum (0.3).

The above example illustrates that a possible obstacle to getting group theoretical properties
by summing over characters, as in Formula (0.2), is lack of control over the representations with

3We denote by bxe the nearest integer value to a real number x.
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relatively small dimensions. In particular, it seems that a systematic knowledge on the ”small”
representations of finite classical groups could lead to proofs of some important open conjectures,
which are currently out of reach. However, relatively little seems to be known about these small
representations [34, 39, 52, 59].

In this note we develop a language suggesting that the small representations of the finite classical
groups can be systematically described by studying their restrictions to unipotent subgroups, and
especially, using the notion of rank of a representation [23, 31, 47]. In addition, we develop a new
method, called the ”eta correspondence”, to construct small representations. We conjecture that
our construction is exhaustive. Finally, we use our construction to give a strong estimate on the
dimension of the small representations in terms of their rank. For the sake of clarity of exposition we
treat in this note only the case of the finite symplectic groups Sp2n(Fq).

Acknowledgement. We would like to thank John Cannon and Steve Goldstein for the help in
generating the numerical data appearing in this note. We are grateful to Bob Guralnick for important
conversations. Thanks go also to the following institutions: MPI Bonn, Texas A&M, UW-Madison,
Weizmann Institute, and Yale, where the work on this note was carried out. Finally, S.G. thanks the
UW-Madison for choosing him as a Vilas Associate for the period of working on this project.

1. Notion of Rank of Representation

Let us start with the numerical example of the dimensions of the irreducible representations of
the group Sp6(F5). The beginning of the list appears in Figure 4. These numbers—see also Figure

Figure 4. Dimensions of Irreps of Sp6(F5).

2—reveal the story of the hierarchy in the world of representations of finite classical groups. A lot
of useful information is available on the ”minimal” representations of these groups, i.e., the ones
of lowest dimensions [34, 39, 52, 59]. In the case of Sp2n(Fq) these are the 4 components of the
oscillator (aka Weil) representations [14, 18, 21, 22, 61], 2 of dimension (qn−1)/2 and 2 of dimension
(qn + 1)/2, which in Figure 4 are the ones of dimensions 62, 62, 63, 63. In addition, a lot is known
about the ”big” representations of the finite classical groups, i.e., those of considerably large dimension
(See [6, 7, 8, 32, 34, 35, 36, 37, 52, 57] and references therein). We will not attempt to define the
”big” representations at this stage, but in Figure 4 the ones of dimension 6510 and above fall in
that category. However, relatively little seems to be known about the representations of the classical
groups which are in the range between ”minimal” and ”big” [34, 39, 52, 59]. In Figure 4 those form
the layer of 11 representations of dimensions between 1240 and 3906.

In this section we introduce a language that will enable us to define the ”small” representations of
finite classical groups. This language will extend well beyond the notion of minimal representations
and will induce a partition of the set of isomorphism classes of irreducible representations which is
closely related to the hierarchy afforded by dimension. In particular, this language gives an explicit
organization of all the representations in Figure 4, and explains why this list is, in a suitable sense,
complete. The key idea we will use is that of the rank of a representation. This notion was developed
in the 1980s by Howe, in the context of unitary representations of classical groups over local fields
[25], but it has not been applied to finite groups. For the sake of clarity of exposition, in this note we
give the definition of rank only in the symplectic case, leaving the more general treatment to future
publication. We start by discussing necessary ingredients from the structure theory of Sp2n(Fq).

1.1. The Siegel Unipotent Radical. Let (V, 〈, 〉) be a 2n-dimensional symplectic vector space
over the finite field Fq. In order to simplify certain formulas, let us assume that

V = X ⊕ Y, (1.1)
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where X and Y are vector spaces dual to each other with pairing •, and that the symplectic form 〈, 〉
is the natural one which is defined by that pairing, i.e.,〈(

x1
y1

)
,

(
x2
y2

)〉
= x1 • y2 − x2 • y1. (1.2)

Note that X and Y are maximal isotropic—aka Lagrangian—subspaces of V. Consider the symplectic
group Sp = Sp(V ) of elements of GL(V ) which preserve the form 〈, 〉 . Denote by P = PX the
subgroup of all elements in Sp that preserve X. The group P is called the Siegel parabolic [54] and
can be described explicitly in terms of the decomposition (1.1)

P =

{(
I A
0 I

)
·
(
C 0
0 tC−1

)
; A : Y → X symmetric, C ∈ GL(X)

}
,

where tC−1 ∈ GL(Y ) is the inverse of the transpose of C. In particular, P has the form of a semi-direct
product, known also as its Levi decomposition [8],

P ' N oGL(X), (1.3)

where N = NX , called the unipotent radical of P , is the normal subgroup

N =

{(
I A
0 I

)
; A : Y → X symmetric

}
.

The group N is abelian and we have a tautological GL(X)-equivariant isomorphism

N−̃→Sym2(X), (1.4)

where Sym2(X) denotes the space of symmetric bilinear forms on Y = X∗, and the GL(X) action
on Sym2(X) is the standard one. In addition, if we fix a non-trivial additive character ψ of Fq we
obtain a GL(X)-equivariant isomorphism{

Sym2(Y )−̃→N̂ ,
B 7→ ψB,

(1.5)

where Sym2(Y ) denotes the space of symmetric bilinear forms on X = Y ∗, the GL(X) action on

Sym2(Y ) is the standard one, the symbol N̂ stands for the Pontryagin dual (group of characters) of
N, and

ψB(A) = ψ(Tr(BA)), (1.6)

for every A ∈ Sym2(X), where Tr(BA) indicates the trace of the composite operator Y
A→ X

B→ Y.

1.2. The N-spectrum of a Representation. Now, take a representation ρ of Sp and look at the
restriction to N . It decomposes [58] as a sum of characters with certain multiplicities

ρ|N =
∑

B∈Sym2(Y )

mBψB. (1.7)

The function m and its support will be called, respectively, the N -spectrum of ρ, and the N -support
of ρ, and will be denoted by SpecN (ρ), and SuppN (ρ), respectively.

We would like to organize the decomposition (1.7) in a more meaningful way. Note that the
restriction to N of a representation ρ of Sp can be thought of as the restriction to N of the restriction
of ρ to P . Using (1.3), this implies [41]:

Proposition 1.2.1. The N -spectrum of a representation ρ of Sp is GL(X) invariant. That is,
mB = mB′ if B and B′ define equivalent symmetric bilinear forms on X.
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The first major invariant of a symmetric bilinear form is its rank. It is well known [30] that, over
finite fields of odd characteristics, there are just two isomorphism classes of symmetric bilinear forms
of a given rank r. They are classified by their discriminant [30], which is an element in F∗q/F∗2q . We
denote by Or+ and Or−, the two classes of symmetric bilinear forms, these whose discriminant is the
coset of squares, and these whose coset consists of non-squares, respectively; or we will denote the
pair of them, or whichever one is relevant in a given context as Or±. If B is a form of rank r, we will
also say that the associated character ψB has rank r. We may also refer to the character as being of
type + or type −, according to the type of B. With this notation, we can reorganize the expansion
(1.7) of ρ|N . Namely, we split the sum according to the ranks of characters, and within each rank we
split the sum into two partial sub-sums according to the two isomorphism classes of the associated
forms:

ρ|N =
∑
r

∑
±
mr±

∑
B∈Or±

ψB. (1.8)

Note that, Formula (1.8) implies, by evaluation at the identity of N , that the dimension of ρ must be

dim(ρ) =
∑
r

∑
±
mr± ·#Or±, (1.9)

i.e., a weighted sum of the cardinalities #Or± of the isomorphism classes of symmetric bilinear forms.
It is easy to write formulas for these cardinalities [1]. We have

#Or± = #Grn,r ·
#GLr
#Or±

, (1.10)

where Grn,r denotes the Grassmannian of r-dimensional subspaces of Fnq , the symbol GLr stands for
the group of automorphisms of Frq, and Or± is the isometry group of a non-degenerate form of type
± on Frq, i.e., it is Or+ in case of a form from Or+ and likewise with + and − switched. In particular,
using standard formulas [1] for #Grn,r, #GLr, and #Or±, we obtain

#Or± ≈
1

2
qr(n−

r−1
2

) . (1.11)

1.3. Smallest Possible Irreducible Representation. From (1.11) we get, in particular, that
the smallest non-trivial orbits are those of rank one forms. Using (1.10) we see that these have
size #O1± = (qn − 1)/2. It follows from this that the smallest possible dimension of a non-trivial
irreducible representation ρ of Sp should satisfy

dim(ρ) ≥ qn − 1

2
. (1.12)

Indeed, we have the following lemma:

Lemma 1.3.1. The only irreducible representation of Sp with N -spectrum concentrated at zero is
the trivial one.

The proof of Lemma 1.3.1 is easy, but to avoid interrupting this discussion, we defer it to Appendix
A.1.

A representation whose dimension attaining the lower bound (1.12) would contain each rank one
character of one type, and nothing else. Since N is such a small subgroup of Sp, it is unclear whether
to expect such a representation to exist. In particular, it would be irreducible already on the Siegel
parabolic P , and it would be the smallest possible faithful representation of P . It turns out, however,
that it does exist; in fact, there are two [14, 21, 22, 29, 61].

Proposition 1.3.2. There are two irreducible representations of Sp of dimension qn−1
2 , one contain-

ing either one of the two rank one GL(X) orbits in N̂ .

What is the next largest possible dimension? Well, one more - the N -spectrum could include a
rank one orbit, and a trivial representation. It turns out that these also exist [14, 21, 22, 29, 61].
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Proposition 1.3.3. There are two irreducible representations of Sp of dimension qn−1
2 + 1 = qn+1

2

one whose N -spectrum contains one of the rank one orbits in N̂ .

For a proof of Propositions 1.3.2 and 1.3.3, see Section 2.4.

1.4. Definition of Rank of Representation. The existence of the above smallest possible rep-

resentations, plus considerations of tensor products, tell us that, for any orbit Ok± in N̂ there will
be representations of Sp whose N -spectrum contains the given orbit, together with orbits of smaller
rank. Since the size—see Formulas (1.10) and (1.11)—of the orbits Ok± is increasing rapidly with
k, representations whose N -spectrum is concentrated on orbits of smaller rank can be expected to
have smaller dimensions. This motivates us to introduce the following key notion in our approach for
small representations.

Definition 1.4.1 (Rank). Let ρ be a representation of Sp.

(1) We say that ρ is of rank k, denoted rk(ρ) = k, iff the restriction ρ|N contains characters of
rank k, but of no higher rank.

(2) If ρ is of rank k and contains characters of type Ok+, but not of type Ok−, then we say that
ρ is of type Ok+; and likewise with + and − switched.

Let us convey some intuition for this notion using numerical data obtained for the irreducible
representations of the group Sp6(F5)—see Figure 5. The computations of the multiplicities and rank
in this case reveal a striking compatibility with the families of representations appearing in the list
of Figure 4. For example, it shows that the trivial representation is the one with rank k = 0; the

Figure 5. Multiplicities and rank for irreps of Sp6(F5).

4 components of the two oscillator representations are those of rank k = 1 and they split into 2 of
type O1+ and 2 of type O1−; the 11 representations of dimensions between 1240 and 3906 are the
ones of rank k = 2 and they split into 5 of type O2+ and 6 of type O2−; and above that the ”big”
representations are those with rank k = 3.

The main quest now is for a systematic construction of the ”low rank” irreducible representa-
tions. In the next section we take the first step toward that goal by treating the smallest non-trivial
representations of Sp which are of rank k = 1—see Propositions 1.3.2 and 1.3.3.

2. The Heisenberg and Oscillator Representations

Where do the smallest representations of Sp come from? A conceptual answer to this question was
given by Weil in [61]. They can be found by considering the Heisenberg group.



8 SHAMGAR GUREVICH AND ROGER HOWE

2.1. The Heisenberg Group. The Heisenberg group attached to (V, 〈, 〉) is a two-step nilpotent
group that can be realized by the set

H = V × Fq,
with the group law

(v, z) · (v′, z′) = (v + v′, z + z′ +
1

2

〈
v, v′

〉
).

In particular, the center Z of the Heisenberg group

Z = {(0, z); z ∈ Fq},
is equal to its commutator subgroup. Moreover, the commutator operation in H induces a skew-
symmetric bilinear form on H/Z ' V that coincides with the original symplectic form.

The group H is the analog over a finite field of the Lie group associated with the Canonical
Commutation Relations (CCR) of Werner Heisenberg, of Uncertainty Principle fame.

2.2. Representations of the Heisenberg Group. We would like to describe the representation
theory, i.e., the irreducible representations, of the Heisenberg group. This theory is simultaneously
simple and deep, with fundamental connections to a wide range of areas in mathematics and its
applications. Take an irreducible representation π of H. Then, by Schur’s lemma, the center Z will
act by scalars

π(0, z) = ψπ(z)I, z ∈ Z,
where I is the the identity operator on the representation space of π, and ψπ ∈ Ẑ is a character of
Z, called the central character of π. If ψπ = 1, then π factors through H/Z ' V , which is abelian,
so π is itself a character of V. The case of non-trivial central character is described by the following
celebrated theorem [40]:

Theorem 2.2.1 (Stone–von Neumann–Mackey). Up to equivalence, there is a unique irreducible

representation πψ with given non-trivial central character ψ in Ẑ r {1}.

We will call the (isomorphism class of the) representation πψ the Heisenberg representation asso-
ciated to the central character ψ.

Remark 2.2.2 (Realization). There are many ways to realize (i.e., to write explicit formulas for)
πψ [14, 18, 19, 21, 22, 29, 61]. In particular, it can be constructed as induced representation from any
character extending ψ to any maximal abelian subgroup of H [24, 41]. To have a concrete one, note
that the inverse image in H of any Lagrangian subspace of V will be a maximal abelian subgroup for
which we can naturally extend the character ψ. For example, consider the Lagrangian X ⊂ V and

the associated maximal abelian subgroup X̃ with character ψ̃ on it, given by

X̃ = X × Fq, ψ̃(x, z) = ψ(z).

Then we have the explicit realization of πψ, given by the action of H, by right translations, on the
space

IndH
X̃

(ψ̃) = {f : H → C; f(x̃h) = ψ̃(x̃)f(h), x̃ ∈ X̃, h ∈ H}. (2.1)

In particular, we have dim(πψ) = qn.

2.3. The Oscillator Representation. A compelling property of the Heisenberg group is that it
has a large automorphism group. In particular, the action of Sp on V lifts to an action on H by
automorphisms leaving the center point-wise fixed. The precise formula is g(v, z) = (gv, z), g ∈ Sp.
It follows from the Stone–von Neumann–Mackey theorem, that the induced action of Sp on the set

Irr(H) will leave fixed each isomorphism class πψ, ψ ∈ Ẑ r {1}. This means that, if we fix a vector
space Hψ realizing πψ, then for each g in Sp there is an operator ωψ(g) which acts on space Hψ and
satisfies the equation

ωψ(g)πψ(h)ωψ(g)−1 = πψ(g(h)), (2.2)
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which is also known as the exact Egorov identity [11] in the mathematical physics literature. Note
that, by Schur’s lemma, the operator ωψ(g) is defined by (2.2) up to scalar multiples. This implies
that for any g, g′ ∈ Sp we have ωψ(g)ωψ(g′) = c(g, g′)ωψ(gg′), where c(g, g′) is an appropriate complex
number of absolute value 1. It is well known (see [14, 18, 19] for explicit formulas) that over finite
fields of odd characteristic this mapping can be lifted to a genuine representation.

Theorem 2.3.1 (Oscillator Representation). There exists4 a representation

ωψ : Sp −→ GL(H),

that satisfies the Egorov identity (2.2).

We will call ωψ the oscillator representation. This is a name that was given to this representation
in [22] due to its origin in physics [50, 51]. Another popular name for ωψ is the Weil representation,
following the influential paper [61].

Remark 2.3.2 (Schrödinger Model). We would like to have some useful formulas for the repre-
sentation ωψ. Note that the space (2.1) is naturally identified with

L2(Y ) - functions on Y. (2.3)

On the space (2.3) we realize the representation ωψ. This realization is sometime called the Schrödinger
model. In particular, in that model for every f ∈ L2(Y ) we have [14, 61]

(A)

[
ωψ

(
I A
0 I

)
f

]
(y) = ψ(12A(y, y))f(y),

where A : Y → X is symmetric;

(B)

[
ωψ

(
0 B

−B−1 0

)
f

]
(y) = 1

γ(B,ψ)

∑
y′∈Y

ψ(B(y, y′))f(y′),

where B : Y →̃X is symmetric, and γ(B,ψ) =
∑
y∈Y

ψ(−1
2B(y, y)) the quadratic Gauss sum;

(C)

[
ωψ

(
tC−1 0

0 C

)
f

]
(y) =

(det(C)
q

)
f(C−1y),

where C ∈ GL(Y ), tC−1 ∈ GL(X) its transpose inverse, and
( ·
q

)
is the Legendre symbol5.

It turns out that the isomorphism class of ωψ does change when varying the central character ψ

in Ẑ r {1}. However, this dependence is weak. The following result indicates that there are only two

possible oscillator representations. For a character ψ in Ẑ r {1} denote by ψa, a ∈ F∗q , the character
ψa(0, z) = ψ(0, az).

Proposition 2.3.3. We have ωψ ' ωψ′ iff ψ′ = ψs2 for some s ∈ F∗q .

For a proof of Proposition 2.3.3, see Appendix A.2.

4The lift is unique except the case n = 2 and q = 3, where still there is a canonical lift [18, 19].
5For x ∈ F∗q the Legendre symbol

(
x
q

)
= +1 or −1, according to x being a square or not, respectively.
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2.4. The Smallest Possible Representations. Using Formula (A) given in Remark 2.3.2, it is
easy to determine the rank of the oscillator representation.

Proposition 2.4.1. Each representation ωψ is of rank 1. One isomorphism class is of type O1+ and
the other is of type O1−.

In addition, the oscillator representations are slightly reducible. The center Z(Sp) = {±I} acts
on the representation ωψ—see Remark 2.3.2 for the explicit action of −I. We have the direct sum
decomposition

ωψ = ωψ,1 ⊕ ωψ,sgn, (2.4)

with

dim(ωψ,1) =

{ qn+1
2 if q ≡ 1 mod 4;

qn−1
2 if q ≡ 3 mod 4;

and dim(ωψ,sgn) =

{ qn−1
2 if q ≡ 1 mod 4;

qn+1
2 if q ≡ 3 mod 4,

where ωψ,1 is the subspace of ”even vectors”, i.e., vectors on which Z(Sp) acts trivially, and ωψ,sgn
is the subspace of ”odd vectors”, i.e., vectors on which Z(Sp) acts via the sign character. The above
discussion also implies the following:

Theorem 2.4.2. The decomposition (2.4) is the decomposition of ωψ into irreducible representations.

To conclude, our study of the oscillator representation has established Propositions 1.3.2 and 1.3.3.
More precisely, the representations (2.4) have rank one, they are of type O1±, and have the required
dimensions.

3. Construction of Rank k Representations

Where do higher rank representations of Sp come from? This section will include an answer to
this question in the regime of ”small” representations. More, precisely we give here a systematic
construction of rank k irreducible representations of Sp in the so-called ”stable range”

k < n =
dim(V )

2
.

We will also refer to such representations as ”small” or ”low rank”.

3.1. The Symplectic-Orthogonal Dual Pair. Let U be a k-dimensional vector space over Fq, and
let β be an inner product (i.e., a non-degenerate symmetric bilinear form) on U . The pair (U, β) is
called a quadratic space. We denote by Oβ the isometry group of the form β. Consider the vector
space V ⊗ U—the tensor product of V and U [4]. It has a natural structure of a symplectic space,
with the symplectic form given by 〈, 〉 ⊗ β. The groups Sp = Sp(V ) and Oβ act on V ⊗ U via their
actions on the first and second factors, respectively,

Spy V ⊗ U x Oβ.

Both actions preserve the form 〈, 〉 ⊗ β, and moreover the action of Sp commutes with that of Oβ,
and vice versa. In particular, we have a map

Sp×Oβ −→ Sp(V ⊗ U), (3.1)

which embeds the two factors Sp and Oβ in Sp(V ⊗U), and they form a pair of commuting subgroups.
In fact, each is the full centralizer of the other inside Sp(V ⊗U). Thus, the pair (Sp,Oβ) forms what
has been called in [22] a dual pair of subgroups of Sp(V ⊗ U).
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3.2. The Schrödinger Model. We write down a specific model for the oscillator representation6

ωV⊗U of Sp(V ⊗ U) which is convenient for us when we consider the restriction of ωV⊗U to the
subgroups Sp and Oβ. Let us identify the Lagrangian subspace Y ⊗ U of V ⊗ U with Hom(X,U).
This enables to realize (see Remark 2.3.2) the representation ωV⊗U on the space of functions

H =L2(Hom(X,U)).

In this realization, the action of an element A : Y → X of the Siegel unipotent N of Sp is given by

(ωV⊗U (A)f) (T ) = ψ(
1

2
Tr(βT ◦A))f(T ), (3.2)

where for T : X → U we denote by βT : X → X∗ = Y the quadratic form

βT (x, x′) = β(T (x), T (x′)), (3.3)

and we denote by Tr(βT ◦ A) the trace of the composite operator Y
A→ X

βT→ Y. In addition, in this
model the action of an element r ∈ Oβ is given by

(ωV⊗U (r)f) (T ) =

(
det(r)n

q

)
f(r−1 ◦ T ). (3.4)

3.3. The Eta Correspondence. Consider the oscillator representation ωV⊗U of Sp(V ⊗ U).

Remark 3.3.1. For the rest of this section we make the following choice. If ψ is the central character
we use to define ωV⊗U , then the character ψ 1

2
, ψ 1

2
(z) = ψ(12z), of Fq is the one we use in (1.5) to

identify Sym2(Y ) and N̂ .

With this choice of parameters we can make the following precise statement:

Proposition 3.3.2. Assume that dim(U) = k < n. As a representation of Sp, ωV⊗U is of rank k
and type7 Oβ.

For a proof of Proposition 3.3.2, see Appendix A.3.

Now, consider the restriction, via the map (3.1), of ωV⊗U to the product Sp×Oβ. We decompose
this restriction into isotypic components for Oβ:

ωV⊗U |Sp×Oβ '
∑

τ∈Irr(Oβ)

Θ(τ)⊗ τ, (3.5)

where Θ(τ) is a representation of Sp. Although the factors Θ(τ) in (3.5) will in general not be
irreducible, we can say something about how they decompose. Let us denote by

Irr(Sp)k ⊃ Irr(Sp)kβ,
the sets of (equivalence classes of) irreducible representations of Sp of rank k, and of rank k and type
Oβ, respectively. The next theorem—the main result of this note—announces that each Θ(τ) has a
certain largest ”chunk”, which is in fact what we are searching for.

Theorem 3.3.3 (Eta Correspondence). Assume that dim(U) = k < n. The following hold true:

(1) Rank k piece. For each τ in Irr(Oβ) the representation Θ(τ) contains a unique irreducible
constituent η(τ) of rank k; all other constituents have rank less than k.

(2) Injection. The mapping τ 7−→ η(τ) gives an embedding

η : Irr(Oβ) −→ Irr(Sp)kβ. (3.6)

(3) Spectrum. The multiplicity of the orbit Oβ in η(τ)|N is dim(τ).

6We suppress the dependence of ωV⊗U on the central character, but we record which symplectic group it belongs to.
7A rank k form B on Y is of type Oβ if Y/rad(B) is isometric to (U, β).
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For a proof of Theorem 3.3.3, see Appendix B.

It also seems that this construction should produce all of the rank k representations. We formulate
this as a conjecture.

Conjecture 3.3.4 (Exhaustion). Assume that dim(U) = k < n. We have

Irr(Sp)k = η(Irr(Oβ+))
⊔

η(Irr(Oβ−)), (3.7)

where β+ and β− represent the two isomorphism classes of inner products of rank k.

Remark 3.3.5. Note that by (3.6) the union in (3.7) is indeed disjoint.

Conjecture 3.3.4 is backed up by theoretical observations and numerical computations—see Sub-
section 3.4 for illustration.

Remark 3.3.6 (The case dim(U) = n). Proposition 3.3.2 and Theorem 3.3.3, and their proofs,
hold also in the case dim(U) = n. However, due to Conjecture 3.3.4 we decided to formulate them
with k < n.

We give now several additional remarks that, in particular, will clarify the novelty of our main
result, and will also explain why we decided to call (3.6) the eta correspondence.

Remark 3.3.7. We would like to comment that

(a) Eta vs. Theta correspondence over local fields: Considering the groups Sp and Oβ
over a local field, one can associate, in a similar fashion as above, to every irreducible repre-
sentation τ of Oβ, a representation Θ(τ) of Sp. It will in general not be irreducible and the
question is, what component to select from it? One option is to take the ”minimal” piece of
Θ(τ). Indeed, it turns out that Θ(τ) has a unique irreducible quotient θ(τ). The assignment

τ 7→ θ(τ) - ”minimal” piece,

is the famous theta correspondence, which has been studied by many authors [13, 17, 23, 26, 28,
42, 45, 46, 60] for its usefulness in the theory of automorphic forms. A second option is to take
the ”maximal” piece of Θ(τ). Indeed, repeating in the local field case, verbatim, the scheme
we proposed above, we find that Θ(τ) has a largest chunk in the form of a unique irreducible
sub-representation η(τ) of rank k, which will equal θ(τ) exactly when Θ(τ) is irreducible. The
assignment

τ 7→ η(τ) - ”maximal” piece,

is our eta correspondence (3.6). Application of the new correspondence to representation
theory of classical groups over local fields, will be a subject for future publications.

(b) Eta Correspondence over finite fields: As noted by several authors (see [2, 3, 5, 22,
56], and in particular [2] where the case of unipotent representations was considered) the
theta correspondence is not defined over finite fields8. The eta correspondence comes as the
appropriate construction in this case. This is also the reason we use a related, although
different, notation for the correspondence (3.6).

Finally, we would like to make the following remark on the generality of our work.

Remark 3.3.8 (Generalized Eta Correspondence). The notion of rank for the group Sp2n over
local fields was described in [25]. The theory for general classical groups over local fields was developed
by Li in [31], and it was extended to all semi-simple algebraic groups over local fields by Salmasian in
[47]. The development of the eta correspondence (3.6) for all finite classical groups will be discussed
in future publications. For expositional purposes, in this note we describe only the case of the finite
symplectic groups.

8In fact, the attempt [22] to develop a duality theory over finite fields preceded the one over the local fields [23].
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3.4. Numerical Justification for the Exhaustion Conjecture . Conjecture 3.3.4 is backed up by
numerical data collected for the groups Sp6(Fq), q = 3, 5, 7, 9, 11, 13; Sp8(Fq), q = 3, 5, and Sp10(F3).
Indeed, the Magma computations done with Cannon and Goldstein, for the various sizes of symplectic

Figure 6. Multiplicities and rank for irreps of Sp8(F3): Ranks k = 0, 1, 2.

Figure 7. Multiplicities and rank for irreps of Sp8(F3): Ranks k = 3, 4.

Figure 8. Multiplicities and rank for irreps of Sp8(F3): Ranks k = 3, 4.

groups, repeatedly confirm the assertion made in the exhaustion conjecture, i.e., Identity (3.7). For
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example, the number of conjugacy classes in the orthogonal groups O1+(Fq) and O1−(Fq) together
is 4, each contributes 2 classes; the number of conjugacy classes in the groups O2+(Fq) and O2−(Fq)
together is q + 6, one contributes q+5

2 classes and the other q+7
2 classes. In addition, the number of

conjugacy classes in the groups O3+(Fq) and O3−(Fq) together is 4(q + 2), each contributes 2(q + 2)
classes. Hence, the computations of the multiplicities and rank for the groups Sp6(F5) and Sp8(F3)
presented in Figures 5 and 6–7–8, respectively, give the required numerical confirmation of (3.7) in
these cases.

4. Dimension of Rank k Representations

We would like to clarify the strong relationship between the dimension of a representation of Sp
and its rank.

4.1. Dimension. Fix k < n and consider a rank k irreducible representation ρ ∈ Irr(Sp)k. Let us
assume that ρ appears in the image of the eta correspondence (3.6). Namely, there exist τ ∈ Irr(Ok±)
such that ρ = η(τ)—see Section 3.3. Using Part 3 of Theorem 3.3.3, and the dimension formula (1.9),
we have

dim(η(τ)) = dim(τ) ·#Ok± +
∑
r<k

∑
±
mr± ·#Or±. (4.1)

The point now is—see Figure 9 for illustration—that the term dim(τ) · #Ok± dominates the right
hand side of (4.1). Indeed, we have

Theorem 4.1.1 (Dimension Estimate). Let η(τ) be a rank k < n irreducible representation of Sp
associated to an irreducible representation τ of Ok±. Then

1 ≤ dim(η(τ))

dim(τ)#Ok±
≤ 1 +

2 + ε(q)

qn−k+1
, with ε(q) = O(1/q). (4.2)

A proof of Theorem 4.1.1 will be given in a sequel paper.

Remark 4.1.2. The term ε(q) can be estimated explicitly. For example we have ε(q) < 2/q + 4/q2.

Theorem 4.1.1 seems to substantially extend the current knowledge [34, 43, 52, 59] on the dimen-
sions of representations of the finite symplectic groups (See Lemma 2.3. in [39]).

Figure 9. The relation between dim(τ) ·#Ok± and dim(η(τ)) for rank k < 3 irreps of Sp6(F5).
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4.2. Compatibility of Dimension and Rank. Although dimension tends to increase with rank,
because of the factor dim(τ) in (4.1), it may happen, see Figures 7–8, that a representation of rank
k has larger dimension than one of rank k + 1. However, for a given k, if n is large enough then
the representations of rank k will have smaller dimension than those of rank k + 1. For example, it
seems that if q is sufficiently large, then for k = 1, one can take n = 2, and for k = 2, one can take
n = 3—see Figures 9 and 6 for illustration. In general, using Theorem 4.1.1 and the known estimates
on the dimensions of the largest irreducible representations of the orthogonal groups, we have the
following result:

Proposition 4.2.1 (Compatibility of Dimension and Rank). For sufficiently large q, in the
regime

k < 2
√
n− 1,

the rank k representations appearing in the image of the eta correspondence (3.6) always have smaller
dimension then those of rank k + 1.

The exact computation leading to a verification of Proposition 4.2.1 will be given in a sequel paper.

Appendix A. Proofs

A.1. Proof of Lemma 1.3.1.

Proof. If SuppN (ρ) = 0 then ρ|N is trivial. The Lemma now follows from the well known fact that
the N conjugates generate the group Sp [1]. �

A.2. Proof of Proposition 2.3.3.

Proof. Consider the automorphism αs : H → H given by αs(v, z) = (v, s2z). It can be extended
to an automorphism of the semi-direct product of Sp with H, by letting it act trivially on Sp.
The equivalence of oscillator representations follows. The fact that for a non-square ε ∈ F∗q , the
representations ωψ and ωψε are not isomorphic, can be verified using the realization given in Remark
2.3.2. This completes the proof of the proposition. �

A.3. Proof of Proposition 3.3.2 .

Proof. The proposition follows immediately from Equation (3.2) in Section 3.2. �

Appendix B. Proof of the Eta Correspondence Theorem

We give a proof of Theorem 3.3.3 that is an elementary application of the double commutant
theorem [62].

B.1. The Double Commutant Theorem. We will use the following version:

Theorem B.1.1 (Double Commutant Theorem). Let W be a finite dimensional vector space.
Let A,A′ ⊂ End(W ) be two sub-algebras, such that

(1) The algebra A acts semi-simply on W.
(2) Each of A and A′ is the full commutant of the other in End(W ).

Then A′ acts semi-simply on W, and as a representation of A⊗A′ we have

W =
⊕
i∈I

Wi ⊗W ′i ,

where Wi are all the irreducible representations of A, and W ′i are all the irreducible representations of
A′. In particular, we have a bijection between irreducible representations of A and A′, and moreover,
every isotypic component for A is an irreducible representation of A⊗A′.
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B.2. Preliminaries. Let us start with several preliminary steps. We work with the Schrödinger
model of ωV⊗U appearing in Section 3.2. It is realized on the space

H = L2(Hom(X,U)), (B.1)

and there, the actions of an element A of the Siegel unipotent radical N ⊂ Sp, and an element r ∈ Oβ,
are given by Formulas (3.2) and (3.4), respectively. In particular, we have

Claim B.2.1. Every character appearing in the restriction of ωV⊗U to N is of the form ψβT for some
T ∈ Hom(X,U). Moreover, we have rank(βT ) = k iff T is onto.

For the rest of the section, we fix a transformation T : X � U which is onto and consider the
character subspace

HψβT = {f ∈ H; ωV⊗U (A)f = ψβT (A)f , A ∈ N}.
We would like to have a better description of the space HψβT . The orthogonal group Oβ acts naturally
on Hom(X,U) and we denote by OT the orbit of T under this action.

Proposition B.2.2. We have HψβT = L2(OT ) the space of functions on OT .

For a proof of Proposition B.2.2, see Section B.4.1.

Note that, because T is onto, the action of Oβ on OT is free. In particular, we can identify OT
with Oβ, and the Peter–Weyl theorem [50] for the regular representation implies

Corollary B.2.3. Under the action of Oβ, the space HψβT decomposes as

HψβT '
⊕

τ∈Irr(Oβ)

dim(τ)τ. (B.2)

We would like now to describe the commutant of Oβ in End(HψβT ). Considering the group

GβT = StabGL(X)(βT ),

of automorphisms of X that stabilize the form βT , we obtain two commuting actions

Oβ y HψβT x GβT .

Moreover, we have

Proposition B.2.4. The groups Oβ and GβT generate each other’s commutant in End(HψβT ).

For a proof of Proposition B.2.4, see Section B.4.2.

B.3. Proof of Theorem 3.3.3.

Proof. Write

Θ(τ) '
∑

ηi(τ),

for various irreducible representations ηi(τ) of Sp. Then

Θ(τ)ψβT '
∑

ηi(τ)ψβT . (B.3)

In addition, Θ(τ)ψβT is a GβT -module, and so is each ηi(τ)ψβT . Hence, Identity (B.3) gives a decom-

position of Θ(τ)ψβT into (not necessarily irreducible) submodules for GβT . But Proposition B.2.4

together with the Double Commutant Theorem says that Θ(τ)ψβT is irreducible as a GβT -module.

Therefore, exactly one of the ηi(τ)ψβT will be non-zero, and it defines an irreducible representation
of GβT , which has dimension equal to dim(τ), by equation (B.2). To conclude, there exists a unique
irreducible sub-representation η(τ) < Θ(τ) of rank k and type OβT , the multiplicity of the orbit Oβ
in η(τ)|N is dim(τ), and finally, the Double Commutant Theorem implies that for τ � τ ′ in Irr(Oβ),

we have η(τ) � η(τ ′). This completes the proof of Theorem 3.3.3. �
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B.4. Proofs.

B.4.1. Proof of Proposition B.2.2.

Proof. Using the delta basis {δT ; T ∈ Hom(X,U)}, we can verify Claim B.2.2, by showing that if
βT ′ = βT then there exists r ∈ Oβ such that T ′ = r ◦ T. Indeed, let r be the composition

U−̃→X/rad(βT )−̃→U,
where the first and second isomorphisms are these induced by T ′, and T, respectively, and rad(βT )
is the radical of βT . This completes the proof of Proposition B.2.2. �

B.4.2. Proof of Proposition B.2.4.

Proof. To verify this assertion, note that we have a short exact sequence

1→ Nk,n−k → GβT → O(X/rad(βT ))×GL(Z)→ 1, (B.4)

where Z = ker(T ) = rad(βT ), O(X/rad(βT )) is the orthogonal group of X/rad(βT ), and Nk,n−k is the
appropriate unipotent group. The group O(X/rad(βT )) acts simply transitively on the orbit OT , as
does the group Oβ, and these two actions commute with each other. If we use the map r 7→ r−1 ◦T to
identify Oβ with OT , then the action of Oβ becomes the action of Oβ on itself by left translation, and
the action of O(X/rad(βT )) can be identified with the action of Oβ on itself by right translation. By
the Peter-Weyl Theorem [50], we conclude that the groups O(X/rad(βT )) and Oβ generate mutual

commutants in the operators on L2(OT ) ' HψβT . A fortiori the groups GβT and Oβ generate mutual
commutants on L2(OT ). This completes the proof of Proposition B.2.4. �
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